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Abstract—Industrial Wireless Sensor Networks (IWSNs) inte-
grate various types of sensors to measure and control industrial
production. However, the unattended open environment makes
IWSNs vulnerable to malicious attacks, such as Sybil attacks,
which may degrade the network performance. In addition,
multipath distortion, impulse noise and interference effects in the
harsh industrial environment may influence the accuracy of at-
tack detection. In this paper, we propose a Sybil detection scheme
based on power gain and delay spread analysis by exploiting
the spatial variability from their channel responses. Specifically,
we utilize channel-vectors to represent the sensor features based
on the power gain and delay spread extracted from channel
response. Furthermore, we develop a kernel-oriented method to
distinguish Sybil attackers from benign sensors by clustering the
channel-vectors. In addition, to alleviate the impact of industrial
noise and interference effects, we design a multi-kernel based
fuzzy c-means method to map the extracted channel-vectors into a
new feature space such that the dispersive effects on the channel-
vectors can be reduced. We also propose a parameter selection
method to optimize the employed kernels. The simulation results
show that the proposed multi-kernel scheme can achieve high
accuracy in detecting the packets from Sybil attackers, and
tolerate the dispersive attenuation and interference effects in the
industrial environments.

I. INTRODUCTION

Industrial Wireless Sensor Networks (WSNs) provide an
integrated platform to incorporate sensor networks with intel-
ligent industrial automation systems, which bring benefits to
the distributed environment monitoring, instrument fault diag-
nosing and multiple-system cooperating [1]. For example, in
an industrial storage room, various products are automatically
conveyed to their related trunks such that they can be packaged
and transported to customers. Versatile sensors are installed in
each storage trunk to track the corresponding position, real-
time regional temperature and trunk saturation status. The
sensing information is gathered by a handle controller ac-
quiring the storage condition. After analyzing and processing
this collected information, the handle controller feedbacks
with control signallings to the automatic terminals. Therefore,
IWSNs facilitate the flexible automated manufacturing by
enabling reliable data collection and transmission even in areas
difficult or impossible to reach.

However, the unattended open environment of wireless
communication makes IWSNs vulnerable to identity-based

attack, since attackers may gather important identity infor-
mation during passive monitoring and utilize them to launch
attacks, such as, Sybil attacks. A Sybil sensor may manip-
ulate a large number of fake packets by forging different
identities, such that the aggregated reading results may be
modified [2], resulting in harmful and disastrous accidents in
industrial environments. For example, an attack on sewage
control system in Queensland leads to leakage of millions
liters of untreated sewage into a stormwater drain. The attacker
takes control of several sewage pumping stations and interacts
the sensors to falsely feedback with normal states. Without
periodical and dependable alarm from the sensors, the leakage
of flammable liquid and harmful gases could contaminate the
industrial environment and endanger the public. Therefore, it
is necessary to detect the Sybil attacks and eliminate them
from the IWSNs.

Research efforts have been put on Sybil detection in tra-
ditional WSNs [3]. The defense schemes against Sybil attack
can be categorized into two types: radio resource testing [4]
by exploring the resource characteristics of various physical
terminals; and key pre-distribution [5] which utilizes key
paired identification and key validation verification. However,
the limited computational resources of sensors and time-delay
validation of packets in WSNs, may decrease the capability
of cryptographic protocols. To ensure the detection on Sybil
attack, radio resource test becomes a preferable detection
method in WSNs. The uniqueness of the wireless propagation
channel of the transmitter can be used to discriminate the
Sybil attackers without exchanging authentication messages.
Nevertheless, it is challenging for channel-based Sybil detec-
tion schemes to maintain their precision in the harsh industrial
environment due to the following issues. Firstly, it is difficult
to distinguish attackers by comparing the received signal
power which are attenuated by the scattering environment.
Secondly, impulse noise and interference may decrease the
signal-to-noise ratio and distort the envelop of the received
signal such that the specific channel features of Sybil attackers
may be deformed during transmission [1]. Thirdly, vibrating
scatters bring further magnifications to phase and frequency
of the received signal to affect the features extraction. These
challenging issues motivate us to further improve the accuracy
of channel-based Sybil detection scheme in a harsh industrial
environment.
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In this paper, we propose a kernel-based Sybil detection
scheme in IWSNs based on the channel-vectors exploited from
the power gain and delay spread. Specifically, the contributions
of this paper are twofold.
• First, we propose an unsupervised kernel-oriented method

to distinguish benign and malicious sensors by mapping
the extracted channel-vectors into a higher dimensional
Hilbert space. For the sake of discriminating the mali-
cious sensors, we develop Kernel Parameters Selection
(KPS) method to optimize the parameters in the proposed
kernels by enlarging the included angles between the
channel-vectors in different clusters and further decreas-
ing them within the same clusters.

• Second, considering an affine combination of the pro-
posed kernels, we propose a Multiple Kernel Fuzzy c
Means (MKFcM) method to improve the anti-interference
capability of the Sybil detection performance in the indus-
trial environment. In addition, as an unsupervised learning
algorithm, MKFcM fairly evaluates all the observations
with determined clusters such that each observation has
a chance to compare with others.

The remainder of this paper is organized as follows. The
related works are presented in Sec. II. We present the network
and attack models in Sec. III. We propose the detailed multi-
kernel scheme in Sec. IV. Finally, we conclude this paper in
Sec. V

II. RELATED WORK

A plethora research efforts have been put on the radio
resource test to detect the Sybil attacks in the conventional
WSNs [3]. In [6], with channel response de-correlativity, the
spatial variability of wireless channel is considered to detect
Sybil attack based on deriving a generalized likelihood ratio
test. In [7], attackers have autonomy and flexible control
over their behaviors. The interactions between benign and
malicious users are derived as a zero-sum authentication game
with channel parameters optimized by Q-learning method.
The characteristic of the Sybil attackers can also be pre-
defined according to the experience of their behaviors. [8]
explores the contacts and pseudonym changing behaviors of
the Sybil attackers in mobile social networks. By exploring the
difference in the contact rate distribution between the benign
and malicious users, a semi-supervised learning method based
on hidden Markov model is proposed to detect the collusion
of mobile users. The Sybil attacks are further categorized into
three types and discussed upon their defense schemes in [2].
[9] employs the variance of power distribution between the
received signal strength in the same and different places. A
signal-strength-based localization scheme is further introduced
to detect malicious user positions. Besides, discrimination can
also be determined based on the information which is ob-
tained by negotiating with neighbors. A cooperated detection
scheme is proposed in [10] by gathering neighbor transmission
powers. Signalprints are initiated by selecting a subset of the
received power observations which are shared among all the
neighbors. In [11], users associate with each other and derive
the signalprints by exploiting the similarity trust relationship

Sybil Attacker

Sensor2

Sensor1

Sensor 3

Handle
Controller

ID=3, DATA

ID=2, DATA

ID=4, DATA

Fig. 1: Network Model

among neighbors. There are also some other Sybil detec-
tion methods based on the unsupervised or semi-supervised
learning approach. [12] proposes a fuzzy C-means method
to softly cluster the probability of a user being malicious or
benign by examining the deterministic sensing reports in a
period. In [13], Sybil detection is determined by exploring
the existence of users and their connection information. A
semi-supervised learning approach is considered with a joint
distribution probability over all pre-defined labels of benign
or malicious users. The local rule according to the probability
distribution is further used to classify and rank the remaining
users by adopting loopy belief propagation algorithm.

Different from the existing work, we propose a multi-kernel
based Sybil detection scheme to explore the hidden features
of unsupervised packets from Sybil attackers. The proposed
multi-kernel scheme can exploit the spatial variability from
the extracted channel-vectors and tolerate the noise effects in
clustering the channel-vectors from Sybil attackers.

III. SYSTEM MODEL

A. Network Model

The network model consists of Sensors and Handle Con-
trollers (HC), where carrier-sense multiple access with col-
lision avoidance (CSMA/CA) is adopted to ensure the as-
sociation, as shown in Fig. 1. The network operates in a
manufacturing environment fulfilled with the scatters consisted
by various kinds of materials such that heavy multipath
attenuation takes a significant impact on the received signal.
The scatters are uniformly distributed in the environment. In
order to keep per-terminal cost low, sensors suffer limited
storage and computational resources so that tamper-resistant
hardware is un-occupied. Sensors are artificially positioned in
the environment and fixed after the deployment. Moreover,
sensors functionally perceive their surrounding environment
and forward the acquired data to the controller. HC is a wire-
less receiver, which can harvest and inquire information from
the sensors. HC keeps stabilization to promise the interaction
to the sensors within its communication range such that the
time-varying fading effects can be diminished.
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B. Attacker Model

A malicious sensor may gather profitable information and
launch attack, since sensor networks usually operate in an u-
nattended and open environment. Instead of ruling the channel
behavior by re-broadcasting the eavesdropped packets with
varying transmission power and delay, the malicious sensors
can only listen and record the critical information but not re-
broadcast it to the HC. We describe the attacks as below:
• Sybil Attack: Sensors are compromised by attackers

and then manipulate fake identities to pretend to be
multiple sensors to launch a Sybil attack. Because the
sensors hardly employ the cryptographic authentications
in consideration of the limited memory storages and
computational resources, the network cannot promise the
confidentiality such that the bogus packets labeled with
multiple fake identities are received by the HC.

• Various spatial Sybil attacks: Sensors deployed in
different places are compromised by attackers and then
produce fake identities to launch Sybil attacks. The fake
packets are transmitted from different places such that
dissimilar channel features can be extracted to decrease
the detection accuracy.

• Sybil attack hidden in heavy interference effects: Since
the received packets are distorted by industrial noise and
interference effects, the channel features extracted from
packets transmitted by same malicious sensor may have
different appearances. Malicious sensor may detect the
channel state and hide the attacks in heavy interference
effects.

IV. THE PROPOSED SCHEME

A. Overview

The multi-kernel scheme consists of two steps, extraction
and classification, as shown in Fig. 2. The channel model
is built up with attenuation factor, delay, Doppler frequency
and phase from each propagation path. Impulse noise and
interference are also considered in the model. The inputs of the
multi-kernel scheme are the packets transmitted through the
wireless channel, which may be affected by multipath fading,
impulse noise, and interference effects.

In the extraction step, the channel impulse responses are
estimated by evaluating the auto-correlation function of the
Pseudo Noise (PN) sequences in the received packets. The
power gain and delay spread are further extracted from the im-
pulse responses and combined into a two-dimension channel-
vectors. The channel-vectors containing the hidden clustering

information between the Sybil attackers and benign sensors
are imported into the classification block.

In the classification step, the channel vectors are firstly
explored by K-means clustering, which is an unsupervised
learning method used to roughly explore hidden patterns from
unlabeled data sets. The grouped data sets and predicted
cluster number are then brought into the MKFcM block for
further classification. The MKFcM algorithm alleviates the
effects of impulse noise and interference by mapping the
grouped data set from the data space into Hilbert space based
on the multiple linear combinatorial kernel components. Fur-
thermore, we provide KPS block to optimize the combinatorial
coefficient and kernel component parameters such that the
group data sets with similar characteristics are mapped into
the same area and dissimilar ones are in different areas.

B. Data Extraction

In this section, we derive the channel-vector observations by
extracting the propagation channel features from the received
packets. Since the signal propagation distance and the spatial
variance can be used to analyze the difference between Sybil
and benign sensor nodes, we define power gain and delay
spread as the clustering features. Specifically, we export the
channel gain and delay spread from the channel impulse
response which can be easily obtained by approximating
the auto-correlation function of the PN sequences in the
received packets. Moreover, we denote the power gain as
αm(t − τm) and the delay spread as τm in the sample slot,
where m ∈ {1, · · · ,M} is the number of the scatters. Firstly,
we normalize the power gain as the first part of the extracted
vector, which is given by gm(t) = αm(t−τm)∑

τm
αm(t−τm) . Secondly,

root mean square (rms) of the delay spread is indicated as
the second part of the extracted vector, which is given by

σm(t) =

√
τ2m(t)− (τm(t))2, where τ2m(t) =

τ2
mα

2
m(t−τm)∑

m α2
m(t−τm) .

We can investigate the topology distribution characteristics of
the scatters around the sensors. The import data set to the
classification block can be defined as the channel-vector, which
is given as a two-dimension data set constituted by gm(t) and
σm(t) in the sample time slot.

However, in order to deceive the controllers, a clever
malicious sensor may change the transmission power when
it attempts to claim different identities. In this case, we
reconstruct the channel-vector and further provide an adapter
factor γ to balance the importance of the power gain during
the classification. To this end, we define the channel-vector at
time t as

x(t) =

(
g2m(t)

γ2+((1−γ)· gm(t)
σm(t) )

2 ,
σ2
m(t)

γ2+((1−γ)· gm(t)
σm(t) )

2

)
(1)

We give the data set X = {x1, . . . ,xN}, where the data
point xi = xi(t) ∈ Ξ ⊆ R2, i = 1, . . . , N , N is the
number of packets received in the sampling time slot. xi is
a data point deployed on a R2 plane characterizing by the
power gain and delay spread. The objective is to optimize the
estimation of the pattern clustering based on the knowledge of
the extracted channel-vectors xi under an environment fulfilled
with multipath attenuation, impulse noise and interference
effects.
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C. Multi-Kernel Fuzzy c-Means Clustering

Since the extracted channel features may be distorted by
the noise and interference, we have to develop a nonlinear
function to cluster the Sybil attackers from the benign sensors
in the original space. However, it is too complex to find out
such a function without pre-defined samples. We propose a
unsupervised MKFcM method to map the channel-vector set
X from the data space Ξ ⊆ R2 into Hilbert space H by
a function φ : Ξ → H [14]. After this reproduction in the
kernel Hilbert space, the channel-vectors are more easily to be
clustered and more robustness to handle the noise. Generally,
we consider the kernel function instead of discussing the map-
ping function φ, which is given by κ(x,y) = 〈φ(x), φ(y)〉,
∀x,y ∈ Ξ, where κ : Ξ×Ξ→ R and 〈, 〉 is the inner product
of Hilbert space. Additionally, the objective of ascending the
dimension is to diminish the influence of the noise in the
obtained channel-vectors. We transit the channel-vectors with
similar features into the same space in the proposed Hilbert
space and separate the different vectors into the disparate
space. In order to flexibly move the vector, we provide various
scalar multiplications with respect to different vector additions
while ascending the dimension. We iteratively optimize the
parameters in the kernel function and scalars with respect
to the multiplication to achieve better clustering. Considering
M such kinds of mappings, i.e., Φ = {φ1, φ2, . . . , φM}, we
re-write the x ∈ R2 with respect to the transform function
φk as φk(x). If we let {κ1, κ2, . . . , κM} be the Mercer
kernels corresponding to these implicit mappings, we have
the inner product with respect to k-th kernel transition as
κk(xi,xj) = φk(xi)

Tφk(xj). To combine these kernels, we
first list some necessary Mercer kernels’ properties in the
following.

Theorem: Let κ1 and κ2 be kernels over Ξ × Ξ, Ξ ⊆ Rp.
Let function ψ : Ξ→ Rp

• κ(xi,xj) = κ1(xi,xj) + κ2(xi,xj) is a kernel.
• κ(xi,xj) = ακ1(xi,xj) is a kernel, when α > 0.

The proof of these properties can be referred to [15].
Ensuring that the resulted kernel still satisfies Mercer’s

condition, we consider a nonnegative combination of these
mappings, φ′, i.e., φ′(x) =

∑M
k=1 wkφk(x), where wk ≥ 0

is the kernel weight of the k-th mapping function φk(·). As
these implicit mappings do not necessarily have the same di-
mensionality, we construct a new set of independent mappings
Ψ = {ψ1, . . . , ψM} from the direct linear combination of the
original mappings φ as [16]:

M∑
k=1

ψk(x) =


φ1(x)
0
...
0

+


0

φ2(x)
...
0

+ · · ·+


0
...
0

φM (x)

 (2)

In addition, these mappings form a new set of orthogonal bases
that ψk(xi)

Tψk(xj) = κk(xi,xj) and ψk(xi)
Tψk′(xj) = 0,

if k 6= k′. Suppose that {xic}i=1,...,Nc are the set of training
channel-vectors in the cluster c (sensor c), where Nc is the
number of training channel-vectors in cluster c, c = 1, . . . , C,
and C is the number of clusters. The kernel is defined as
κk(xic,xjc, σk) = exp

(
−‖xic−xjc‖

2

2σ2
k

)
, where xic,xjc ∈ R2,

and σk is the corresponding parameter. The kernel function κ
has two important properties [15]:

• κk(xic,xjc, σk) = 1. The norm of every channel-vector
in the feature space is 1;

• 0 < κk(xic,xjc, σk) ≤ 1. The cosine value of two
training channel-vectors xic and xjc in the feature space
is greater than 0 and less than or equal to 1, and it
determines the similarity between these two samples.

Two properties are further described as follows: 1) channel-
vectors in the same cluster should be mapped into the same
area, and 2) channel-vectors in different clusters should be
mapped into different areas. A proper parameter σk should be
found, such that κ(xic,xjc,σ) ≈ 1 and κ(xic,xjc′ ,σ) ≈ 0 if
c 6= c′. Two criterias are proposed for measuring separability in
the feature space. First, the mean distances of channel-vectors
belonging to the same cluster is

Sc(σ) =
1

C∑
c=1

N2
c

C∑
c=1

Nc∑
i=1

Nc∑
j=1

κ(xic,xjc,σ) (3)

where κ(xic,xjc,σ) =
∑M
k=1 w

2
kκk(xic,xjc, σk). The pa-

rameter σk should be optimized such that Sc(σk) is close to
1. We reform (3) and further simplify the expression as

Sc(w,σ) =

M∑
k=1

w2
kAk(σk) (4)

Ak(σk) =
1

C∑
c=1

N2
c

C∑
c=1

Nc∑
i=1

Nc∑
j=1

κk(xic,xjc, σk) (5)

Second, the mean distances of the channel-vectors belonging
to different clusters is

Dc(σ) =
1

C∑
c=1

C∑
c′=1
c′ 6=c

NcNc′

C∑
c=1

C∑
c′=1
c′ 6=c

Nc∑
i=1

Nc′∑
j=1

κ(xic,xjc′ ,σ) (6)

where κ(xic,xjc′ ,σ) =
∑M
k=1 w

2
kκk(xic,xjc′ , σk). Thus, σk

should be determined such that Dc(σk) approaches 0. We
further reform (6) and further simplify the expression as

Dc(w,σ) =

M∑
k=1

w2
kBk(σk) (7)

Bk(σk) =
1

C∑
c=1

C∑
c′=1
c′ 6=c

NcNc′

C∑
c=1

C∑
c′=1
c′ 6=c

Nc∑
i=1

Nc′∑
j=1

κk(xic,xjc′ , σk)

(8)
Hence, the optimal σk can be obtained by solving the follow-
ing optimization problem:

argmin
w,σ

1− Sc(w,σ) +Dc(w,σ)

s.t. (4), (7) and
M∑
k=1

wk = 1, wk ≥ 0
(9)

We first fix the σ to find the optimal kernel weight wk
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Algorithm 1: Kernel Parameter Selection
Data: Observation set {xic}i=1,...,Nc,c=1,...,C ⊂ Rd
Result: w,σ
Let σold be a randomly selected starting vector
J(w,σ)← 1− Sc(w,σ) +Dc(w,σ)
repeat

Calculate Ak(σoldk ), where k = 1, . . . ,M
Calculate Bk(σoldk ), where k = 1, . . . ,M
for each k ∈ {1, . . . ,M} do

wk ←
(∑M

k′=1
Bk(σk)−Ak(σk)
Bk′ (σk′ )−Ak′ (σk′ )

)−1

H0 ← ∇2J(ση, wk)
while |∇J(ση, wk)| > ε do

sη ← −H−1
η ∇J(ση, wk)

ση+1 = ση + αsη
yη ← ∇J(ση+1, wk)−∇J(ση, wk)
Hη+1 ← Hη +

yηy
T
η

yηsη
− Hηsηs

T
η Hη

sTη Hηsη

end
σk ← ση

end
Set wold ← w and σold ← σ

until J(w,σ)− J(wold,σold) < ε
Output: w,σ

with Lagrange multiplier λ with respect to the constraint∑M
k=1 wk = 1, and then define the Lagrange function as Jλ =

1−
∑M
k=1 w

2
kBk(σk)+

∑M
k=1 w

2
kAk(σk)+λ

(∑M
k=1 wk − 1

)
.

We take its derivatives with respect to the weights and set them
to zero to obtain the close-form of weights wk

wk =

(
M∑
k′=1

Bk(σk)−Ak(σk)

Bk′(σk′)−Ak′(σk′)

)−1
(10)

And we consider quasi-Newton algorithm to find the mini-
mum value of σk with the obtained wk The proposed kernel
parameter algorithm is summarized in Alg. 1.

A nonnegative linear expansion of the based in Ψ, i.e.,
ψ(x) =

∑M
k=1 wkψk(x), which maps data to an implicit

feature space, is investigated below. According to the afore-
mentioned kernel features, we cluster the channel-vectors by
estimating the centers within all the channel-vectors. We
further evaluate which cluster the channel-vectors belong to
by calibrating the probability with respect to the distance from
the channel-vectors to that cluster center. Hence, the objective
function is

argmin
w,u,v

N∑
i=1

C∑
c=1

umic‖ψ(xi)− vc‖2

s.t. ψ(xi) =

M∑
k=1

wkψk(xi),

C∑
c=1

uic = 1, uic ≥ 0

(11)

where vc is the center of the c-th cluster in the implicit
feature space and can be defined as

∑N
i=1

∑N
i′=1

umic
um
i′c
ψ(xi),

w = (w1, w2, . . . , wM )T is a vector consisting of weights,
u is an N × C membership matrix whose elements are the
memberships uic, and v is an L × C matrix whose columns
correspond to cluster centers. The hidden labels of the channel-
vectors are acquired by finding the clusters with the maximum
weight u with respect to the distance from the channel-
vectors to that cluster center. If there are packets with multiple

Algorithm 2: Multi-Kernel Fuzzy c Means.
Data: Observation set {xic}i=1,...,N,c=1,...,C ⊂ Rd, kernels

with {κk}k=1,...,M and weights for the kernels
{wk}k=1,...,M

Result: {labeli}i=1,...,N

m← 2
Let umic be a randomly selected starting vector

ûoldic ←
N∑
i′=1

(umic/u
m
i′c)

αoldick ← κk(xi,xi)− 2
∑N
j=1 û

old
jc κk(xi,xj)

+
∑N
j=1

∑N
j′=1 û

old
jc ûj′cκk(xi,x

′
j)

repeat
for each i ∈ {1, . . . , N} do

w,σ ← KPS(xic) (Alg. 1)
Calculate

∑M
k=1 α

old
ickw

2
k

uic =

 C∑
c′=1

(∑M
k=1 α

old
ickw

2
k∑M

k=1 α
old
i′ckw

2
k

) 1
m−1

−1

ûic ←
N∑
i′=1

(umic/u
m
i′c)

αick ← κk(xi,xi)− 2
∑N
j=1 ûjcκk(xi,xj)

+
∑N
j=1

∑N
j′=1 ûjcûj′cκk(xi,x

′
j)

labeli ← argmax
u

N∑
i=1

C∑
c=1

umic

(
M∑
k=1

αickw
2
k

)
end

until J(u,α)− J(uold,αold) < ε
Output: {labeli}i=1,...,N

different IDs from the same cluster, these packets may be
delivered by Sybil attackers. We further compare these IDs
with IDs in other clusters to figure out which sensor node is
malicious. The MKFcM algorithm is summarized in Alg. 2.

V. PERFORMANCE EVALUATION

We evaluate the performance in terms of false positive
rate (FRP) and false negative rate (FNR). FPR refers to the
probability of mistaking a packet from benign sensors for a
bogus one, while FNR refers to the probability of regarding a
packet from the Sybil attackers as a benign one. The details of
FPR and FNR are formulated in [17]. The variables employed
in the scheme include the number of Sybil nodes and the
industrial impulse noise with interference effects. The wireless
propagation channel model is designed according to [17].
Following the steps explained in the Sec. IV-A, we extract
the channel-vector with respect to γ = 0.2. In addition, we
compare the performance of the multi-kernel scheme with the
PGDS scheme proposed in [17].

Fig. 3 shows that FPR rapidly increase to 50% after increas-
ing the number of malicious sensors to half of the total number
of sensors in the network. When malicious sensors take up to
half of the network and deploy in different places, the channel-
vectors are multiplied and diversified. This may increase the
possibility of mis-clustering channel-vectors from the benign
sensors as those from Sybil ones during the clustering. In
contrast to FPR, Fig. 3a shows that FNR decreases when the
number of adversary sensors are magnified. The reason is that
the numerous packets with similar channel characteristics are
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Fig. 3: The Impacts of the Number of Sybil Attackers

provided by increasing the number of malicious sensors. This
reduces the quantity of the packets from benign sensors and
further cuts down the diversity of the whole received packets,
such that the bogus packets are easier to be discriminated
from the whole received packets. In addition, in Fig. 3b, FPR
increases while enlarging the networks size. The simulation is
designed to be conducted in an unchanged scatter distribution
environment. That is, we set the simulation in a 100 × 100
map and keep the surrounding obstacles unmoved during the
simulation. If we enlarge the network size, we can obtain
a higher probability that the malicious and benign sensors
share a similar surrounding scenario. Since the proposed multi-
kernel scheme is based on the uncorrelated channel response
due to spatial variance, FPR increases when more channel-
vectors show resemblance in channel characteristics.

Fig. 4 shows that FNR and FPR remain below 20% despite
magnifying the impulse noise and interference effects. This is
because trying to reduce the impact of noise and interference
effects, we ascend the dimension of the channel-vectors into
a new dimension space according to the kernel method and
further intensify the de-correlation of channel-vectors between
different clusters. However, in the case that the noise and
interference effects are magnified to affect the signal-to-noise
ratio of the received packets, FNR and FPR increase because
the channel-vectors are hard to be constructed.

VI. CONCLUSION

In this paper, we have proposed a novel Sybil detection
scheme in IWSNs by exploiting the correlation between
channel responses from various spatial sensors. The proposed
unsupervised multi-kernel scheme has investigated the impacts
of the multipath fading, impulse noise and interference effects
on the Sybil detection accuracy in the industrial environments.
An affine combination of kernels which are optimized by
parameter selection method is employed with fuzzy c-means
algorithm to discriminate the channel-vectors from Sybil at-
tackers. The noise in the distorted channel-vectors can be
alleviated by mapping the channel-vectors into Hilbert space.
The simulation results have shown that in the harsh industri-
al environment, the multi-kernel scheme increases detection
accuracy with an anti-interference capability. In the future
work, we intend to investigate the hidden features of the Sybil
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Fig. 4: The Impacts of the Impulse Noise and Interference

attackers in the IWSNs and propose an unsupervised learning
approach to study the observations with hidden features.
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