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Abstract

Airport policy involves decisions about not only the sizes of airports but how many airports

should serve a given area. I test the arguments for airport consolidation by estimating the effect

of the number of airports on total local traffic using US data and a historical instrument for the

number of airports. Cities that are randomly allocated a larger number of airports are found

to host more air traffic and flights to more destinations. Furthermore, the effect is largely due

to a greater number of transit passengers, so cities with multiple airports are more likely to be

chosen as airline hubs.
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1 Introduction

Public debates about airport policy often concern questions of whether to expand or replace existing

airports. An important aspect of such decisions is whether to construct or continue to operate

secondary airports, which in some cases are the main airports serving their cities before the new

facilities are built. In practice it is common that when a major new airport is constructed, the city’s

former main airport is closed down, as occurred in Denver, Colorado and Austin, Texas in the

1990s.1 Similarly, some of the proposals for a new Thames Estuary airport for London involve

closing Heathrow Airport.2 However, London and many other large cities including Tokyo, New

York, Washington, Paris, and Moscow currently have two or more major airports. Should airport

operations be consolidated at a single facility? Or is it better to operate several airports, especially

if these airports have already been built?

Airport consolidation is motivated by implicit beliefs about the scale economies in airport op-

erations and the resulting advantages in terms of the air services offered. Lower operating costs

for a given level of services could be captured in higher profits or lower ticket prices, but should

also lead to more flights being operated by the airlines. The scale economies arise because the

same runways, terminal facilities, and ground transportation infrastructure can be used by many

aircraft and passengers. In addition, concentrating operations at a single airport makes it easier for

passengers to transfer between flights.

However, while there are advantages of operating a larger-scale airport, the costs of congestion

also increase with airport size. Indeed as the safe operation of air traffic requires a minimum

separation between any two aircraft, there is a maximum frequency at which flights can take off or

land at an airport, so there must be a level of traffic beyond which the costs of congestion exceed

the benefits of concentration. As the scale economies and congestion costs are difficult to measure,

1When Denver International Airport was opened in 1995 it replaced Stapleton International Airport, which was
then closed down and redeveloped for residential and retail use (Goetz, 2013). Austin–Bergstrom International Airport
replaced Robert Mueller Municipal Airport as the main airport in Austin, Texas in 1999, after which the site of the
former airport was redeveloped as the mixed-use Mueller Community.

2The proposed plans for London include expanding Heathrow or one of the other airports that currently serve
London or building a new airport in the Thames Estuary and either closing or continue to operate Heathrow (Gourlay
and Gadher, 2008). A further example is the new airport planned for Mexico City, which is to replace the existing
Mexico City International Airport (Luhnow, 2014).
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particularly for a proposed airport that is not yet in operation, it is not clear a priori whether having

a city served by a single airport or multiple airports leads to a greater provision of air services.

In this paper I aim to answer the question of whether consolidating the airports that serve a

city leads to more or less air services being provided. I do this by estimating the effect of the

number of airports in a metropolitan area on the frequency of passenger flights and the range of

destinations, using US data. As the number of airports may be influenced by the local demand

for air travel or other local factors that also influence air traffic, causality cannot be established

by simply comparing the numbers of airports and flights by metropolitan area. To identify the

effect I use the instrumental-variables method, which simulates an experiment by estimating the

treatment variable using an instrument that explains part of the variation in the treatment variable

but is otherwise unrelated to the outcome variable. The instrument I use is the number of major

airports in each metropolitan area in the 1944 National Airport Plan, a document authored by the

Civil Aeronautics Administration that included a survey of existing airports and specified which

airports could be constructed using federal funds in the following years.

The main finding is a positive causal effect of the number of airports in a metropolitan area

on the overall level of traffic at the metropolitan area’s airports. The effect is mostly due to a

difference in the number of transit passengers, as metropolitan areas that are randomly allocated a

larger number of airports have significantly more passengers who transfer between flights without

leaving the airport but do not have significantly more origin or destination passengers. This suggests

that metropolitan areas with multiple airports are more likely to be used as airline hubs. There is no

evidence of an effect of the number of airports on ticket prices, the composition of flights, or flight

delays.

The results can be used to inform debates about the design of airport policy. They predict how

air traffic – and therefore the possibilities for travel to or from the local area – will adjust when

new airports are opened or existing airports are closed. Having an additional airport will tend to

increase the air services offered to local residents and workers, allowing them to travel more easily

and local firms to interact with firms in other places.

This paper contributes to the existing literature on the economics of airport infrastructure in
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two broad ways. Firstly, it complements the research that estimates the production functions of

airports from financial and operations data, notably Bazargan and Vasigh (2003), Pels, Nijkamp

and Rietveld (2003), Martín and Voltes-Dorta (2008), Oum, Yan and Yu (2008), and Martín and

Voltes-Dorta (2011). These studies regress the output of the airport in terms of traffic or revenue

on factors of production such as runway capacities, raw materials, and labour costs to generate

relative measures of airports’ productivity levels. Of particular relevance to this paper is the work

of Martín and Voltes-Dorta (2008) and Martín and Voltes-Dorta (2011), who study the relative

efficiency of single- and multi-airport systems with data from several countries. They find evidence

of unexploited returns to scale in airport operations, with larger airports having lower costs per

flight than smaller airports and potential benefits of expansion for even the largest airports. These

results imply that airport consolidation would decrease operating costs. In contrast, Bazargan and

Vasigh (2003) studied the operational efficiency of US airports and found smaller airports to be

more efficient, in terms of the costs per unit of air services produced, than larger airports. This

suggests a possible cost advantage for having a city served by multiple airports.

This paper addresses the same question in a different way: rather than estimating the factors for

the output of an airport and asking how the outcomes would differ if there were a different set of

airports, it does not assess the factors but directly measures the outcomes that arise with different

sets of airports. It can be important to understand the roles of the underlying factors in determining

output. However, the approach used here has the advantage of allowing a quasi-experiment, with

feasibly exogenous variation in the numbers of airports explained by the instruments, which yields

more credible estimates of the causal effects. It would be difficult to do the equivalent for each of

an airport’s factors of production. Without such a technique there is a risk of reverse causality or

bias from unobserved variables, meaning that the results inferred by comparing actual single- and

multiple-airport systems may not apply to a counterfactual situation in which there is a change in

the number of airports serving a city.

Secondly, this paper can be used to inform work that estimates the economic benefits of airport

infrastructure. A growing body of literature addresses the fundamental question of how airport

infrastructure affects local employment and productivity using US data. Brueckner (2003) and
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Green (2007) were the first to apply modern econometric techniques, using instrumental variables

and finding positive effects of airport size on local employment growth. Sheard (2014), McGraw

(2014), and Sheard (2015) also applied instrumental variables and found positive effects on local

employment and productivity and on employment in particular industries. Blonigen and Cristea

(2015) and Bilotkach (2015) identified the effects of airports on the local economy by exploiting

time-series variation and also found positive effects.

These studies mostly leave aside the question of how the composition of airports affects the

costs and benefits of air services by simply aggregating the airports within each metropolitan area.

This approach is not unreasonable as Brueckner, Lee and Singer (2014) showed that the relevant

level for defining air-travel markets is the city rather than the airport, so travellers readily substitute

between local airports. However, it may ignore some important detail. The current paper adds

depth to this research by studying how the composition of airports affects the costs of operation

and thereby the amount of air services that airlines provide for a given level of demand. The

findings may be considered alongside the results of the studies that measure the effects of the

aggregate amount of infrastructure, or the ideas may be integrated into future studies to account for

the composition of local airports in a meaningful way.

Though the empirical evidence presented in this paper can be used to inform policy decisions

about airport infrastructure, it has some limitations that should be considered when applying the

results to policy design. Firstly, the results were derived using US data and may not apply to other

countries where the operation of air travel is substantially different. Secondly, the instrumental-

variables technique generates feasibly exogenous variation in the number of airports, given the

controls, but represents a specific source of variation and there is no guarantee that the outcomes

will match the results presented here. Thirdly, the approach measures the effects on overall out-

comes rather than detailing the individual mechanisms, which may make it more difficult to predict

the outcomes from certain policy decisions. And finally, the analysis is limited in how much it can

differentiate between the effects of different combinations of airport sizes. This means that cau-

tion should be taken when interpreting the results, but also represents a potential topic for further

research.
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The remainder of this paper is organised as follows. Section 2 describes the theoretical basis

for the empirical analysis. Section 3 describes the data and Section 4 describes the method used for

the empirical analysis. Section 5 presents the results of the empirical analysis. Section 6 presents

concluding remarks.

2 Conceptual framework

The arguments for airport consolidation can be grouped into two broad categories. On the one

hand, there are perceived economies of scale in operating an airport, which are borne by either the

airport operators or the airlines. On the other hand, having activities consolidated at one airport are

thought to make it less costly for travellers to access or use the airport, because larger airports tend

for example to have better infrastructure links or present more possibilities of transferring between

flights.

The potential benefits of airport consolidation would be reflected in the level of air traffic at a

city’s airports. This is illustrated in Figure 1, which plots the demand for and supply of air trips

in a city. For clarity only two airports are shown in the illustration, though the ideas can naturally

be extended to three or more airports. The quantity of trips is denoted q and the price of a trip

is denoted p. The demand and supply curves are labelled D and S, respectively, with subscripts

indicating the number of airports in the city. The demand curves are downward-sloping because

higher ticket prices will lead to fewer trips being made by air. The supply curves are upward-

sloping because of increasing marginal costs of operation, which mean that more services will be

provided if the price that can be charged for a ticket is higher. For the sake of argument, the baseline

case in Figure 1 is the one in which there are two airports and the relative positions of the demand

and supply curves reflect benefits of consolidation for both air-travel providers and passengers.

6



q

p

q∗2 q∗1

S2 S1

D2 D1

Figure 1: Demand for and supply of air trips in a city. If there are two airports in the city, then the equilibrium
level of traffic q∗2 is determined by the intersection of demand D2 and supply S2. If there is only one airport
in the city, then the equilibrium level of traffic q∗1 is determined by the intersection of demand D1 and supply
S1. By comparing the positions of the curves it is evident that lower costs of air travel for either providers or
customers leads to an increase in the equilibrium level of air traffic.

To see how the potential benefits of airport consolidation would affect local air traffic, begin

by observing the situation in which there are two airports. The equilibrium level of traffic q∗2 is

determined by the intersection of the demand curve D2 and the supply curve S2.

Now consider what would happen if operations are consolidated at a single airport. If indeed

there are efficiency gains for the airport operators or airlines because of increasing returns to scale,

then the per-flight costs of operation will be lower if there is only one airport. This will be reflected

in an outward shift in the supply curve, illustrated as a shift to S1 in Figure 1, as the airlines can

provide more services for a given ticket price. For a given level of demand, this leads to a decrease

in the equilibrium price and an increase in the equilibrium level of traffic.

If the benefits of consolidation accrue to the passengers, for example if the single airport is on

average more convenient to use or access than the two smaller airports, then the demand for trips

at a given ticket price will increase. This is reflected in Figure 1 by an outward shift in the demand

curve from D2 to D1. For a given level of supply, this shift results in a higher equilibrium ticket

price and again an increase in the equilibrium level of traffic.

It is therefore obvious from Figure 1 that an increase in efficiency from airport consolidation,

whether borne by the providers or customers of air travel, will result in a higher level of traffic.
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That is, if either demand or supply shifts out to reflect lower costs, then the new equilibrium level

of traffic q∗1 will be higher than in the baseline case with two airports. If, on the other hand, it was

less costly to have operations split between two airports, then the overall level of traffic would be

higher if there were two airports. The direction of the shift and what it implies about the relative

costs is essentially what is being tested in this paper: by measuring the causal effect of the number

of airports on the level of traffic, I test whether it is more efficient to operate a smaller or a larger

number of airports. The effect on ticket prices is ambiguous and will depend on how much the

efficiency gains accrue to the providers or the customers.

The relationship between the number of airports and the costs of operation will depend on a

trade-off between the scale economies and congestion costs at each facility. Figure 2 shows a

stylised representation of the overall costs of operating either one or two airports in a city. The

horizontal axis represents the total level of air traffic in the city and the vertical axis represents the

average, per-flight costs of operation. Average cost curves for scenarios with one or two airports

are shown in the plot.

The scale economies are captured by a substantial fixed cost of operating the airport: an amount

that is paid whatever the level of traffic. This generates an average cost curve that is decreasing for

low levels of traffic at each airport. The costs of congestion are trivial for low levels of traffic

but increase rapidly as an airport becomes more congested, hence the increasing average cost for

higher levels of traffic. The total capacity of each airport is q̄, which defines the absolute limit

for the amount of traffic at a single airport. Connections between flights are facilitated to some

degree by having traffic concentrated at a smaller number of airports. This feature is represented

in Figure 2 by a somewhat lower cost of operating a single airport of a given size than of operating

two airports that are each of that size.
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Figure 2: Average operating costs per flight as a function of the overall number of flights that depart from
a city. The solid lines in the plot represent scenarios in which the city is served by one or two airports. The
average cost is decreasing for low levels of traffic due to economies of scale, but increasing for high levels
of traffic due to congestion costs. For levels of traffic below q̂ it is less costly to operate one airport and for
levels of traffic above q̂ it is less costly to operate two airports.

Given the combination of factors represented in Figure 2, the costs of operation may be lower

for either one or two airports depending on the level of traffic. For levels of traffic up to the threshold

q̂ the costs of operation are lower for a single airport, whereas for levels of traffic above q̂ the costs

of operation are lower if there are two airports.

As explained above, a lower cost of operating each flight will lead to more traffic.3 Figure 2

shows that the cost of operating flights may be increasing or decreasing in the number of airports,

depending on the level of traffic q. A larger number of airports may therefore result in either

more or less air services being provided. Whether air services would be increased or decreased

in response to additional airports being opened is essentially a question of how the current and

anticipated levels of traffic compare to q̂.

The theory sketched out here does not generate a prediction about whether the current allocation

of airports and level of traffic is such that scale economies or congestion costs predominate. Rather,

to answer this question I turn to the data.

3The number of airports in operation will naturally be affected by the demand for traffic. For example, an additional
airport may be opened if those already serving a city are excessively congested. However, due to the costs of construc-
tion and the difficulty of acquiring land – the same factors that allow the instrument to explain the current distribution
of airports – the number of airports does not always adjust to achieve the lowest possible operating costs.
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3 Data

The empirical analysis in this paper uses data from the United States of America, aggregated by

Core Based Statistical Area (CBSA).4 The sample includes the airports that had at least 10,000

departing passengers in 2010, the Federal Aviation Administration definition of a Primary Airport.

The sample is limited to the contiguous United States and to the CBSAs with at least one Primary

Airport. This leaves 287 CBSAs in the sample. The main variables in the dataset are summarised

in Table 1.

Mean Std. dev. Minimum Maximum

  Land area (square miles) 7,966 6,606 366 45,759

  1940 population 293,383 865,617 3,663 11,950,188
  2010 population 812,414 1,768,433 21,100 18,897,109

  Number of existing category-5 airports in 1944 NAP 0.6 1.1 0 9
  Number of proposed category-5 airports in 1944 NAP 0.7 1.3 0 10

  Number of commercial airports in 2010 1.1 0.5 1 5

  Number of departing flights in 2010 29,867 75,876 235 576,213
  Number of departing passengers in 2010 2,431,174 6,979,748 10,197 53,578,997
  Number of originating passengers in 2010 143,608 356,116 0 2,804,362
  Number of transit passengers in 2010 54,442 228,026 0 2,246,306

  Number of daily destinations in 2010 14.8 30.2 0 167
  Number of daily destinations for main carrier in 2010 6.7 14.4 0 93

  Note: 287 observations of each variable, aggregated by CBSA; the originating and transit passengers are from
      a 10% sample of all tickets and therefore do not sum to the total number of departing passengers

Table 1: Summary statistics for the main variables in the dataset, which are aggregated by CBSA.

The estimation relates the number of airports in a CBSA to various measures of air traffic in

2010, which are summarised in Table 1. The numbers of departing flights, departing passengers,

and destination airports flown to at least daily are from the T-100 segment data published by the

Bureau of Transportation Statistics. The numbers of passengers who begin their trips or transfer at

an airport are from the DB1B coupon data.5 The data on the fares are from the DB1B market data

and the information about flight delays is from the BTS On-Time Performance data.6

The estimation also uses various sets of CBSA-level control variables. These include population

4The CBSAs are collections of counties that are defined as metropolitan areas by the Office of Management and
Budget.

5As the DB1B data are a 10% sample of tickets while the T-100 data include all tickets, the numbers of originating
and transit passengers from the DB1B data sum to roughly one tenth of the total numbers of passengers from the T-100
data.

6Some of the delays recorded in the data are negative, indicating that the aircraft departed or arrived before the
scheduled time. The delays for these flights are rounded up to zero before the CBSA-level data are aggregated.
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sizes and other demographic variables from the decennial United States Census, employment fig-

ures from the County Business Patterns, climate data from the National Oceanic and Atmospheric

Administration, and land-area and elevation data from the United States Geological Survey. The

land area and the 1940 and 2010 populations of the CBSAs are summarised in Table 1.

The instruments used in the estimation are from the 1944 National Airport Plan of the Civil

Aeronautics Administration (1944) (henceforth the “Plan”). The Plan reflected the existing airports

in 1944 and largely determined which airports were constructed or expanded in subsequent decades,

as inclusion in the Plan was a prerequisite for federal funding. The Plan specified the category for

each existing and proposed airport. The instrument is the count of the category-5 airports, which

were the largest facilities in terms of land area and physical infrastructure and were intended to be

able to handle the largest contemporary aircraft.7

4 Empirical analysis

The relationship I estimate is the following:

am = α2 +β2nm + γ2Xm + ε2,m (1)

The variable am is a measure of air traffic in metropolitan area m in 2010, α2 is a constant term,

nm is the number of airports in m in 2010, Xm is a set of physical geography, climate, and demo-

graphic variables that are intended to capture demand and supply factors other than the number of

airports, and ε2,m is an error term. The coefficient of interest in (1) is β2. The obvious problem

with estimating β2 is that the number of airports may be partly determined by the level of traffic,

or it may be correlated with some unobserved factor that influences the level of traffic. To address

these problems I use two-stage least squares (TSLS) and instrument for nm using the number of

category-5 airports in the Plan.

The main estimation equation (1) is the second-stage equation in the system. The first-stage

equation, in which the instrument n〈1944〉
m is used to generate a notional set of values of the number

7More details of the 1944 National Airport Plan and the framework for federal airport funding are explained in
Sheard (2014).
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of airports, is the following:

nm = α1 +β1n〈1944〉
m + γ1Xm + ε1,m (2)

For the instrument to be valid, two conditions must hold. The first of these is the relevance

condition, which requires that the instrument explain a substantial amount of variation in the current

number of airports, conditional on the controls. Formally, this condition requires that β1 6= 0. The

category-5 airports were the largest facilities specified in the Plan and the most likely to become

major commercial airports. They had long runways with high weight-bearing capacities, which

were more likely to be suitable for airlines in later years. Moreover, the large areas of land suitable

for airports became much scarcer in the decades following World War II, so the more sites set aside

in the Plan, the more commercial airports a metropolitan area is likely to have today.8 Furthermore,

Redding, Sturm and Wolf (2011) showed that airport operations can be highly persistent, even in

spite of changes in underlying factors. The relevance condition is empirically testable and is shown

below to be satisfied.

The second condition that must hold for the instrument to be valid is the orthogonality condition,

also known as the exogeneity condition or exclusion restriction. It requires that the instrument only

be related to the level of traffic through the number of airports, conditional on the controls, so

that Cov
(

n〈1944〉
m ,ε2,m

)
= 0. This is feasible because of the criteria used for the Plan. The Plan

included all existing airports in 1944, which had either been built by local governments before the

air network was planned at the federal level or were military airfields. Neither motivation is related

to the current demand for or operation of air traffic. Most of the category-5 airports in the Plan

were relatively large existing facilities in 1944.

The criteria stated in the Plan for selecting the locations and sizes of airports included the local

population, the airport’s importance in the air network of the time, and the residences of returning

airmen from World War II who could make use of their training by working as commercial pilots.

8As an example, the Boston and Seattle metropolitan areas are similar in terms of population, land area, and coastal
location. Logan International Airport was the only category-5 airport in Boston in the Plan and it remains the only
Primary Airport in Boston, whereas Seattle had five category-5 airports in the Plan and has three Primary Airports
today.
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The 1944 population is related to the current population, so I control for population in both 1940

and 2010, as well as population growth in the decades preceding 1940 – a reasonable proxy for

anticipated population growth after 1944. The other criteria have little relationship to the current

operation of air travel.9 The planning for the air network in 1944 was tailored to the aircraft then

in use and included provisions for refuelling stops, even on relatively short routes. It is therefore

plausible that the orthogonality condition holds.

The robustness checks presented below address a number of potential concerns about the va-

lidity of the instrument. The primary concern is that the number of airports in the Plan may be

correlated with current air traffic through channels other than the current number of airports be-

cause certain metropolitan areas are simply more advantageous for air traffic, for example the local

climate. The controls are intended to capture such factors. However, the robustness checks go fur-

ther by controlling for the overall number or value of proposed airports in the Plan, which should

reflect the overall amount of air traffic that is anticipated for each metropolitan area. Other potential

concerns include the importance of regional-level factors such as market access and climate, which

are addressed by using state fixed effects.

5 Results

The results from the estimation of the system of equations (1) and (2) using the log number of

departing flights as the measure of air traffic are presented in Table 2. Panel A presents the ordinary

least squares (OLS) results, which use only the main estimation equation (1), and Panel B presents

the TSLS results. I run Kleibergen-Paap rk Wald tests for weak instruments and display the result-

ing F-statistics at the bottom of Panel B. I also run Hausman tests on the difference between the

OLS and TSLS coefficients and display the p-values from these tests at the bottom of Panel B.10

The columns in Table 2 use different sets of CBSA-level controls. Column 2 adds a control

for the population of each CBSA in 2010, the main factor for the demand for air travel.11 Column

9In any case, the results are similar if only the existing category-5 airports in 1944 are used as the instrument.
10As there is only one instrument it is not possible to run the standard statistical tests for overidentification.
11In the robustness checks, an alternative specification is run that treats the 2010 population as an endogenous

variable and instruments for it using the 1940 population.
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3 adds log land area, log mean county size, a binary variable for coastal location, the mean and

standard deviation of land elevation, average wind speed, and heating and cooling degree days.

Column 4 adds fixed effects for the nine Census Divisions.12 Column 5 adds the populations in

1910, 1920, 1930, and 1940. Column 6 adds controls for education and income levels contemporary

to the Plan. Column 7 adds controls for the age, education, and income levels in 2010. Column 8

adds controls for the local employment shares of the manufacturing and service industries in 2010.

Due to the large number of control variables Table 2 displays only the coefficients for the number

of airports and the CBSA population in 2010. The full results are displayed in Appendix B.

(1) (2) (3) (4) (5) (6) (7) (8)

  Panel A. OLS estimation. Dependent variable: Log number of departing flights in 2010.

  num_airports 2010 1.68a 0.37a 0.22c 0.23c 0.24c 0.26b 0.27b 0.29b

(0.19) (0.12) (0.13) (0.13) (0.12) (0.12) (0.13) (0.13)

  ln(pop 2010) 0.98a 1.05a 1.08a 1.36a 1.37a 1.05a 0.90a

(0.04) (0.07) (0.07) (0.12) (0.12) (0.15) (0.15)

  R 2 0.22 0.73 0.77 0.77 0.79 0.80 0.81 0.82

  Panel B. TSLS estimation. Dependent variable: Log number of departing flights in 2010.

  num_airports 2010 2.71a 0.61b 0.63b 0.67b 0.76a 0.75a 0.75a 0.71a

(0.46) (0.29) (0.29) (0.29) (0.27) (0.26) (0.25) (0.24)

  ln(pop 2010) 0.94a 0.99a 1.01a 1.31a 1.34a 1.00a 0.85a

(0.06) (0.08) (0.09) (0.12) (0.12) (0.15) (0.15)

  First-stage F -statistic 39.27 37.71 35.78 33.77 34.59 35.68 34.38 34.47

  Hausman test p -value 0.00 0.25 0.06 0.04 0.01 0.02 0.02 0.02

  Physical geography, climate Y Y Y Y Y Y

  Census divisions Y Y Y Y Y
  {ln(pop t )}t {1910,...,1940} Y Y Y Y

  1940 education; 1950 income Y Y Y

  2010 age, education, income Y Y

  2010 man. and serv. shares Y

  Note: 287 observations for each regression; robust standard errors in parentheses; a , b , c  denote significance
      at 1%, 5%, 10%

Table 2: Relationship between the number of airports and the number of flights in 2010.

The OLS results in Table 2 show a positive correlation between the number of airports in a

CBSA and the level of traffic. The OLS coefficient is positive throughout and, with the inclusion of

the controls, significant at the 5% level. The TSLS coefficients are positive and significant for all

sets of controls, indicating a positive causal effect of the number of airports on the level of traffic.

12The results are similar when state fixed effects are used. These controls and the climate variables assuage an
obvious concern about the estimation: that airports may have been built before 1944 or included in the Plan because
they were in locations with better weather for aviation or market access, factors that would also contribute to am.
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The F-statistics from the Kleibergen-Paap rk Wald tests indicate that the instrument clearly satisfies

the relevance condition.13 The p-values from the Hausman tests indicate that the hypothesis that

the OLS and TSLS coefficients on nm are the same is rejected in most specifications. This suggests

that, as far as the instruments are thought to be credible, there is a bias in the OLS estimation that

necessitates the use of the instruments.

The TSLS coefficient of 0.71 implies that being randomly allocated one additional airport leads

to roughly twice the level of air traffic.14 This is a sizeable effect, which could be explained by a

high level of congestion at large airports. The result appears to contrast with those of Martín and

Voltes-Dorta (2008) and Martín and Voltes-Dorta (2011), who find that larger airports produce air

services at lower per-unit costs and infer that airport consolidation would lower overall operating

costs. All else being equal, lower operating costs would make more flights profitable for airlines

to offer, leading to higher traffic. However, there are at least three reasons why these results may

in fact be consistent. The first is that the demand for air travel may depend on the number and

locations of airports. Thus a single airport may have lower operating costs, but if local residents

and workers must travel further to access it then there may be fewer trips made by air. The second

is that the costs of constructing an airport are not necessarily reflected in the current demand for

and supply of air traffic, as these would be sunk costs, even though the costs of maintenance would

be captured. The third is that competition between the airports in metropolitan areas with multiple

airports may lead to higher traffic in spite of the higher costs.

The TSLS coefficients on the number of airports are larger than the OLS coefficients, as is com-

mon in studies that use instruments for transportation infrastructure (Duranton and Turner, 2012;

Sheard, 2014; Blonigen and Cristea, 2015). One possible explanation, as noted by Duranton and

Turner (2012), is reverse causality. Here this explanation would apply if the level of air traffic

negatively affects the actual number of airports. This could occur if either CBSAs that experi-

13As a rule of thumb, an F-statistic of more than 10 is sufficient to indicate that the instrument is relevant. The
F-statistics displayed in Table 2 clearly exceed this threshold. The first-stage results are displayed in full in Appendix
A.

14In the main estimation equation (1), having one additional airport would be represented by4nm = 1. If β2 = 0.71,
then 4nm = 1 means that the value of the right-hand side increases by β24nm = 0.71. The value of am, the variable
on the left-hand side, thus increases by 0.71. As am is the natural log of the level of traffic, the proportional change in
the level of traffic is e0.71 ≈ 2.03.
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ence increases in air traffic tend to respond by consolidating their air traffic, or if places that have

experienced declines in air traffic have airports built as a type of stimulus.

The coefficients on the log 2010 population in Table 2 indicate that, adjusting for the number

of airports, air traffic in a metropolitan area tends to increase in proportion to the population.

Table 3 estimates the relationships between the number of airports and alternative measures of

air traffic including the number of passengers, the numbers of destinations, and the concentration

of air traffic by airline. This is done by estimating (1) and (2), but with each of these alternative

measures as the dependent variable am. Each regression uses the full set of controls as in Column 8

of Table 2. The numbers of passengers and destinations are all in logs. The OLS and TSLS results

are in separate panels.

(1) (2) (3) (4) (5) (6) (7) (8) (9)
Number of HHI (airline) at HHI (airline) at

Number of passengers destinations CBSA level mean apt in CBSA
All Origin Transit All Main airl. Flights Pass. Flights Pass.

  Panel A. OLS estimation.

  num_airports 2010 0.13 −0.08 0.08 0.14 0.29b 0.08b 0.06b 0.15a 0.12a

(0.14) (0.15) (0.23) (0.12) (0.13) (0.03) (0.03) (0.03) (0.03)

  ln(pop 2010) 1.33a 1.28a 1.20a 0.89a 0.62a −0.20a −0.18a −0.19a −0.17a

(0.18) (0.20) (0.28) (0.13) (0.12) (0.04) (0.04) (0.04) (0.04)

  R 2 0.85 0.83 0.83 0.83 0.76 0.60 0.52 0.58 0.50

  Panel B. TSLS estimation.

  num_airports 2010 0.61b
0.38 0.76b 0.33c 0.51b

0.08 0.08 0.14b 0.14b

(0.27) (0.28) (0.36) (0.18) (0.21) (0.06) (0.06) (0.07) (0.07)

  ln(pop 2010) 1.27a 1.23a 1.11a 0.86a 0.59a −0.20a −0.18a −0.19a −0.17a

(0.17) (0.19) (0.26) (0.12) (0.12) (0.03) (0.04) (0.03) (0.04)

  First-stage F -statistic 34.47 33.94 33.58 33.78 33.78 34.47 34.47 34.47 34.47

  Hausman test p -value 0.03 0.03 0.02 0.21 0.19 0.95 0.74 0.89 0.80

  Number of observations 287 282 279 281 281 287 287 287 287

  Note: robust standard errors in parentheses; a , b , c  denote significance at 1%, 5%, 10%; each regression uses the full
      set of geographic, climate, and demographic controls; the dependent variables in the first five columns are in logs

Table 3: Relationships between the number of airports and the number of passengers, the number of desti-
nations, and the concentration of traffic by airline.

The TSLS coefficients in Table 3 are instructive about how the number of airports affects

CBSA-level air traffic. The effect on the number of passengers in Column 1 is positive and simi-

lar in magnitude to the effect on the number of flights. However, there is no significant effect on

the number of passengers who originate their trips in the CBSA (in Column 2), but a significant

and relatively large effect on the number of passengers who pass through in transit (in Column 3).
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Though the difference between these coefficients is not itself significant, their relative magnitudes

and levels of significance suggest that the greater amount of air traffic in CBSAs with more airports

is due largely to a greater number of transit passengers. This is not surprising as on average the

demand for transit stops should be more elastic than the demand for trip originations, because using

an alternative airport to start a trip would normally be more of an inconvenience than stopping at

a different airport en route. Therefore, if having an additional airport reduces the cost of operating

flights in a CBSA, then the resulting increase in air traffic would be due disproportionately to transit

passengers.

The numbers of transit passengers are related to the ‘hub’ status of the airports. Airlines nat-

urally offer more tickets with transfers through their own designated hubs than through airports

they do not use as hubs. This means that airports at which greater numbers of passengers transfer

are relatively likely to be hub airports. The positive and significant coefficient on the number of

airports in Column 3 of Table 3 therefore suggests that CBSAs that are randomly allocated a larger

number of airports are more likely to be used as hubs, with more connecting flights routed through

them. The transit passengers who do not actually leave the airport may provide little direct benefit

to the metropolitan area, but local residents and businesses can benefit from the greater availability

of flights.

The results for the number of destinations support the idea that the number of airports positively

affects the likelihood of a metropolitan area being used as a hub. Column 4 estimates the effect on

the log number of daily destinations for any carrier and Column 5 estimates the effect on the log

number of daily destinations for only the carrier that operates the most flights from the CBSA. The

effects of airport size on both measures of the number of destinations are positive. However, the

effect on the main carrier is somewhat larger, again suggesting that a CBSA with more airports is

more likely to host hub operations.

The positive effect of the number of airports on the number of destinations could also be driven

by the competition between airports and the airlines that operate at the airports. That is, if there

is more than one airport in a metropolitan area, then each may attempt to gain market share and

indeed market power by offering flights to exclusive destinations. The opposite may also be true,
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as airlines based at different airports could compete over flights to the same destination whereas

a single, larger airport used as a hub by a major airline could offer flights to many additional

destinations.15 Though it would be difficult to isolate the effect of competition from the costs of

operation in the data, the overall effect of the number of airports on the number of destinations is

positive.

Columns 6 to 9 of Table 3 measure the effects on two types of Herfindahl–Hirschman Index

(HHI) of air traffic by airline in each CBSA in 2010. The HHI is a measure of the concentration

of an activity, defined as H = ∑
i
s2

i where si is the proportion of the activity in category i. The

HHI indices in Columns 6 and 7 represent the degree of concentration of traffic by airline in each

CBSA, with traffic measured as the numbers of flights and passengers. The HHI indices in Columns

8 and 9 are calculated on the traffic by airline at each airport, then taking the mean for each CBSA

weighting the airports by their shares of CBSA-level traffic.

The TSLS results in Columns 6 and 7 show no significant effect of the number of airports on the

HHI indices of airline concentration, though the OLS results indicate a positive correlation. Given

the evidence presented above that a CBSA having more airports makes it more likely to have hub

activities, the lack of an effect on CBSA-level airline concentration demands explanation. It could

simply be that the coefficients on the number of airports are not significant because of measurement

error or the particular functional form of the HHI. Or the lack of an effect suggests that the airlines

concentrate their activities at different airports within the same CBSA.

The idea that having a larger number of airports in a CBSA leads airlines to concentrate at

different airports is supported by the TSLS results in Columns 8 and 9, which exhibit a positive

effect on concentration at the ‘average’ airport in a CBSA. In combination, the findings in Columns

6 through 9 suggest that having a greater number of airports causes airlines to concentrate their

traffic at different airports in a CBSA but not necessarily to become more concentrated in the

CBSAs with more airports. The controls for the log population in 2010 indicate that the degree of

concentration is generally decreasing in the size of the metropolitan area.

Table 4 tests the effects of the number of airports in a CBSA on a number of other outcome
15An example would be Hartsfield–Jackson Atlanta International Airport in Atlanta, Georgia, which is the largest

hub for Delta Air Lines and the only airport in the Atlanta-Sandy Springs-Marietta, GA CBSA in the data. The
Atlanta-Sandy Springs-Marietta CBSA had 164 daily destinations in 2010, the second most of any CBSA in the US.
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variables, namely the mean distances flown, mean fares, and mean flight delays.

(1) (2) (3) (4) (5) (6)
Mean distance Mean fare Mean flight delay

Per flight Per pass. Per ticket Per mile Carrier NAS

  Panel A. OLS estimation.

  num_airports 2010 −0.13c
−0.08 0.06b

0.01 0.01 −0.03
(0.07) (0.08) (0.03) (0.03) (0.06) (0.04)

  ln(pop 2010) 0.36a 0.39a −0.22a −0.13a 0.16c
0.00

(0.07) (0.07) (0.04) (0.03) (0.09) (0.06)

  R 2 0.51 0.52 0.38 0.43 0.33 0.47

  Panel B. TSLS estimation.

  num_airports 2010 −0.06 −0.07 0.09 −0.03 −0.07 −0.14
(0.12) (0.11) (0.06) (0.05) (0.12) (0.11)

  ln(pop 2010) 0.35a 0.39a −0.22a −0.13a 0.17b
0.02

(0.06) (0.06) (0.04) (0.03) (0.08) (0.06)

  First-stage F -statistic 34.47 34.47 34.27 34.27 29.37 29.19

  Hausman test p -value 0.48 0.96 0.56 0.38 0.42 0.25

  Number of observations 287 287 284 284 235 236

  Note: robust standard errors in parentheses; a , b , c  denote significance at 1%, 5%, 10%;
      each regression uses the full set of geographic, climate, and demographic controls; the
      dependent variable in each regression is in logs

Table 4: Relationships between the number of airports and mean flight distances, fares, and flight delays in
2010.

Columns 1 and 2 of Table 4 present estimates of the relationships between the number of air-

ports and the logs of the mean distances of the flights that operate from airports in the CBSA.

Column 1 uses the mean distance of flights from the CBSA and Column 2 uses the mean distance

weighted by the number of passengers. The OLS results suggest perhaps a slight negative rela-

tionship between the number of airports and the distances flown. The TSLS results do not exhibit

any effect of the number of airports on the mean distance. Although the number of airports has

positive effects on the numbers of flights and destinations, the additional flights appear not to be to

destinations that are systematically nearer or further away.

The results in Columns 3 and 4 indicate that there is no measurable effect of the number of

airports on ticket prices. This suggests that having been allocated a larger number of airports

does not significantly affect the prices of trips, even though there is an advantage in terms of the

frequency of flights. This result fits with the predictions of the theory outlined in Figure 1, which

showed that the effect on ticket prices is ambiguous even if there is an effect on the level of traffic.16

16It is also consistent with the findings of Borenstein (1989), who showed that the higher an airline’s share of traffic
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However, the effects on ticket prices are more difficult to assess than those on traffic, as the

number and composition of flights are also affected by the number of airports. The situation is

further complicated by the variation in load factors and the fact that ticket prices can vary widely

even within a single airline’s operations on a single route.17 This makes it difficult to measure ticket

prices in a way that compares actual prices with a reasonable counterfactual, so there may in fact

be an effect on ticket prices that is not revealed by the data due to measurement error. Nevertheless,

the measures of ticket prices used in the analysis were chosen to capture contrasting basic features

of the prices, presumably making it more likely for an effect to be measured. The fare per ticket is

a raw measure of the price of flying from a given airport to the destinations that passengers actually

fly to, while the fare per mile adjusts for the mean distances of the flights.

The final set of estimates presented in Table 4 are of the relationship between the number

of airports in a CBSA and two measures of the mean flight delays at those airports. Column 5

uses delays that are within the carrier’s control, such as fuelling, maintenance, and loading or

unloading the aircraft. Column 6 uses the National Aviation System (NAS) delays, which are

beyond the control of the airlines but exclude weather and security delays. Examples of NAS delays

are problems related to traffic volume and air traffic control. The signs on the TSLS coefficients

on the number of airports for both types of delays are negative but neither is significantly different

from zero. This analysis therefore does not show any evidence of an effect of the number of airports

on the lengths of the delays.18

There is a literature that connects concentration of air traffic by airline to the operation of

airports. Brueckner (2002) showed that airlines internalise the congestion costs that they impose

on their own operations, so that, in the absence of a system of congestion tolls that adjust for the

degree of concentration, a higher degree of concentration would lead to fewer or shorter delays.

Empirical studies by Ater (2012) and Greenfield (2014) have confirmed the negative relationship

between airline concentration and flight delays. Given that the results in Table 3 exhibit a positive

at an airport or on a route, the higher the prices it is able to charge. As the results in Table 3 showed that there is no
effect on the degree of airline concentration by CBSA, there would not be the resulting effect on the fares.

17Borenstein and Rose (1994) showed that the variation in ticket prices for a given airline on a given route is on
average around one third of the absolute ticket prices.

18When the estimation is run using only the delays on departing flights or only those on arriving flights, the coeffi-
cients are similar in magnitude and significance to those in Table 4.
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effect of the number of airports on the concentration of air traffic at those airports, this literature

would suggest that the effect on delays should be negative. Though the TSLS coefficients on the

number of airports in Columns 5 and 6 of Table 4 are not significant, there may in fact be some

effect that is not evident because of say measurement error or a small sample size.

Similarly, it fits with intuition that flight delays would have a negative causal effect on ticket

prices. This relationship is confirmed by Forbes (2008) using a policy change at LaGuardia Airport

as a quasi-experiment. It is plausible that flight delays and fares could form part of the mecha-

nism by which the number of airports affects air traffic. However, the relationship between these

variables is of less interest here as neither is found in Table 4 to be affected by the number of

airports.

5.1 Relative sizes of the local airports

As the airports that serve a metropolitan area may vary greatly in how much traffic they handle, it

is relevant to ask what role the sizes of the airports play in determining the level of air traffic. For

example, a metropolitan area with a major airport and a small airport that handles little traffic may

not be substantially different from a metropolitan area with only a major airport. The importance

of the sizes of the airports is investigated in Table 5.
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(1) (2) (3) (4) (5) (6) (7) (8)
No airports No CBSAs with apt

<10% of local <10% of local HHI (airport) HHI (airport) as
flights pass. flights pass. controls endog. regressor

  Panel A. OLS estimation. Dependent variable: Log number of departing flights in 2010.

  num_airports 2010 0.22 0.35c 0.40b 0.52a 0.45b 0.30c

(0.16) (0.18) (0.18) (0.19) (0.19) (0.16)

  herf_flights 2010 0.87 −0.74
(0.72) (0.48)

  herf_pass 2010 0.10 −0.92c

(0.67) (0.51)

  ln(pop 2010) 0.93a 0.92a 0.83a 0.82a 0.88a 0.90a 0.92a 0.92a

(0.15) (0.16) (0.16) (0.16) (0.15) (0.15) (0.16) (0.16)

  R 2 0.82 0.82 0.80 0.80 0.82 0.82 0.82 0.82

  Panel B. TSLS estimation. Dependent variable: Log number of departing flights in 2010.

  num_airports 2010 1.38a 1.65a 1.29a 1.86a 1.79b 1.22b

(0.53) (0.63) (0.49) (0.72) (0.77) (0.54)

  herf_flights 2010 5.70c −3.71a

(2.95) (1.27)

  herf_pass 2010 3.16 −4.36a

(2.09) (1.51)

  ln(pop 2010) 0.92a 0.90a 0.79a 0.75a 0.76a 0.81a 0.90a 0.90a

(0.16) (0.16) (0.16) (0.17) (0.17) (0.16) (0.15) (0.16)

  First-stage F -statistic 17.81 13.82 17.07 12.43 8.86 12.84 33.08 21.44

  Hausman test p -value 0.00 0.01 0.02 0.01 0.02 0.02 0.00 0.00

  Number of observations 287 287 275 272 287 287 287 287

  Note: robust standard errors in parentheses; a , b , c  denote significance at 1%, 5%, 10%; each regression uses the
      full set of geographic, climate, and demographic controls

Table 5: Relationships between the number of airports or Herfindahl–Hirschman Index of local airport sizes
and the number of flights in 2010.

Columns 1 to 4 of Table 5 recreate the estimation of (1) and (2) from the main results in Table

2 using samples that exclude minor airports. Columns 1 and 2 exclude any airports that hosted

less than 10% of the total air traffic in their respective CBSAs in 2010 from the calculation of

the number of airports and the level of traffic. The threshold proportion of traffic is calculated

on the number of flights in Column 1 and as the number of passengers in Column 2. With each

measure, roughly half of the CBSAs with multiple airports have at least one airport that is below

the respective threshold. Columns 3 and 4 use samples that exclude the CBSAs with any airports

under the 10% thresholds for CBSA-level air traffic in 2010.

The sample selections applied in Columns 1 to 4 reduce the amount of variation in the numbers

of airports by CBSA, which is reflected in lower F-statistics on the first stage. However, the TSLS

coefficients on the number of airports are actually larger in these regressions than in the main
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results. Though there are concerns about sample selection, this suggests that if the airports in a

CBSA with multiple airports are all major facilities, then the effect of the number of airports on the

number of flights may actually be larger than that estimated in the main results.

Columns 5 and 6 of Table 5 include controls for the HHI of air traffic by airport in each CBSA

in 2010, measured as the numbers of flights and passengers. The HHI in this context is a measure

of how concentrated the traffic is in a subset of the airports. It takes values between zero and one

and the value is increasing in the degree of concentration. The HHI is equal to one by definition

if there is only one airport in a CBSA, so including it as a control naturally captures some of the

variation in the number of airports by CBSA and leads to a weaker first stage. Nevertheless, the

coefficients on the number of airports are if anything higher than in the main results.

Columns 7 and 8 of Table 5 use the two measures of the HHI for airport concentration in place of

the endogenous regressor nm in the estimation equations (1) and (2). In these cases, the instrument

– the number of planned airports in 1944 – is used to explain the variation in the HHI in the first

stage. The first-stage statistics at the bottom of the table indicate that the instrument explains a

significant amount of the variation in the HHI. The TSLS coefficients for the second stage indicate

that the HHI has a negative effect on the level of traffic, when controlling for all of the factors for

air-travel demand including the log population in 2010. As the HHI index is increasing in the level

of concentration, these results are consistent with the positive effect of the number of airports on

the level of traffic.

5.2 Controlling for the composition of flights and ticket prices

The results presented in Table 4 show no measurable effect of the number of airports on the mean

distances of flights or the prices paid for tickets. However, it would be possible for the composition

of flights or ticket prices to partly determine the level of air traffic through channels other than the

number of airports. If this were true and the flight distances and fares were not controlled for, then

the estimated coefficients on the number of airports could be biased.

Table 6 presents estimates of the effect of the number of airports on the number of departing

flights with controls for the mean distances flown per flight and per passenger and the mean fares
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per ticket and per mile flown. The OLS estimates are presented in Columns 1 to 4 and the TSLS

estimates are presented in Columns 5 to 8.

(1) (2) (3) (4) (5) (6) (7) (8)
OLS OLS OLS OLS TSLS TSLS TSLS TSLS

  num_airports 2010 0.32b 0.30b 0.22c 0.27b 0.72a 0.72a 0.56a 0.63a

(0.13) (0.13) (0.12) (0.12) (0.24) (0.24) (0.21) (0.22)

  ln(pop 2010) 0.82a 0.81a 1.06a 0.93a 0.75a 0.75a 1.01a 0.88a

(0.15) (0.15) (0.13) (0.14) (0.15) (0.15) (0.12) (0.14)

  ln(dist_per_flight 2010) 0.22 0.26c

(0.16) (0.14)

  ln(dist_per_pass 2010) 0.21 0.24b

(0.14) (0.12)

  ln(fare_per_ticket 2010) 0.75b 0.69b

(0.31) (0.29)

  ln(fare_per_mile 2010) 0.24 0.23
(0.32) (0.30)

  R 2 0.83 0.83 0.85 0.84

  First-stage F -statistic 34.59 34.49 34.75 34.06

  Hausman test p -value 0.03 0.02 0.04 0.04

  Number of observations 287 287 284 284 287 287 284 284

  Note: robust standard errors in parentheses; a , b , c  denote significance at 1%, 5%, 10%; each regression uses
      the full set of geographic, climate, and demographic controls

Table 6: Relationship between the number of airports and the number of flights in 2010 with controls for
mean flight distances and mean fares.

The results in Table 6 indicate that the controls for mean flight distances and fares make only

small differences to the estimates for the effect of the number of airports on the number of flights.

The OLS and TSLS coefficients are somewhat smaller when the controls are used, suggesting that

the distances and fares capture some of the variation in air traffic. However, in each case the

difference between the coefficients in Table 6 and the main results in Table 2 is within one standard

error. This suggests that the variation in local air traffic captured by the composition of flights or

fares, whatever its source, does not make a substantial difference to the estimated effects of the

number of airports.

5.3 Robustness checks

Table 7 presents the results from a number of robustness checks for the main TSLS results. Each

of the regressions in Table 7 uses the log number of departing flights as the measure of air traffic.
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(1) (2) (3) (4) (5) (6) (7) (8)
State State NAP imp NAP num NAP exist NAP prop NAP prop Instr for
FEs capitals val ctrls apts ctrls cat 5 cat 4-5 all airports 2010 pop

  num_airports 2010 0.73a 0.71a 0.56b 0.97b 0.76a 0.48b
0.36 0.74a

(0.25) (0.24) (0.22) (0.41) (0.28) (0.23) (0.29) (0.27)

  ln(pop 2010) 0.75a 0.85a 0.85a 0.83a 0.84a 0.87a 0.89a
0.12

(0.14) (0.15) (0.15) (0.15) (0.15) (0.15) (0.15) (0.40)

  state_capital 0.05
(0.14)

  ln(nap_imp_value 1944) 0.10
(0.07)

  nap_num_airports 1944 −0.02
(0.02)

  First-stage F -statistic 30.89 35.07 39.39 14.97 24.65 16.11 12.46 10.50

  Hausman test p -value 0.03 0.02 0.11 0.04 0.04 0.25 0.71 0.02

  Note: 287 observations for each regression; robust standard errors in parentheses; a , b , c  denote significance at 1%, 5%,
      10%; each regression uses the full set of geographic, climate, and demographic controls

Table 7: Robustness checks for the main TSLS results. The dependent variable in each regression is the log
number of departing flights.

Column 1 in Table 7 uses state fixed effects in place of the Census Division fixed effects in

the main results. The state fixed effects are intended to capture any region-specific factors such

as market access and climate that may not have been fully captured by the Census Division fixed

effects. For example, the location of a metropolitan area may influence current air traffic, due to

its proximity to potential destinations or because the climate is advantageous for aviation, and the

same factors would apply today. However, the results with the state fixed effects are similar to

the main results: the instrument remains strong and the coefficient on the number of airports is

practically the same. The remaining columns use the Census Division fixed effects as in the main

results.

Column 2 includes a binary control variable for the status of a metropolitan area as a state

capital. In case there is something peculiar about the airports in state capitals, for example if they

receive more funding or if the functions of the state government create additional demand for air

travel, it should be captured by this variable. Again the results barely change.

Columns 3 and 4 address further potential concerns about the relationship between current air

traffic and the anticipated need for air travel in 1944. If more large airports were proposed for

a metropolitan area in the Plan simply because more traffic is anticipated, then the orthogonality

condition could be violated. This concern is addressed by controlling for the total imputed value
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and number of all proposed airports in the Plan.19 If the number of category-5 airports in the Plan

can simply be explained by the total anticipated level of air traffic, then these controls would capture

most of the variation in the first stage. The coefficient on the number of airports is somewhat smaller

when controlling for the imputed value, but somewhat larger when controlling for the number of

proposed airports. The F-statistic for the first stage is reduced by the control for the total number

of proposed airports, but it is actually somewhat larger when controlling for the total value of the

proposed airports.

Columns 5 to 7 use alternative instruments. Column 5 uses the number of existing category-5

airports in the Plan. The coefficient on the number of airports is similar in magnitude to the main

results while the first-stage relationship remains strong. Therefore, the results would be similar if

only the major airports constructed by 1944 are used as the instrument.

Column 6 uses the proposed number of category-4 and -5 airports. This is a broader class

than only the category-5 airports and includes many more airports that are not commercial airports

today. Predictably, the F-statistic on the first stage and the coefficient on the number of airports

in the second stage are somewhat smaller. Column 7 uses the number of proposed airports in any

of the five categories. This leads to an even weaker first stage and a coefficient on the number of

airports that is not significant. These results represent further evidence that it is the number of large

airports in the Plan rather than the overall number of airports that determines how many commercial

airports a metropolitan area has today.

Column 8 uses an alternative specification in which both the number of airports in 2010 and the

log population in 2010 are instrumented for, by adding the log population in 1940 as an instrument.

This is done to address the potential concern that a greater allocation of airports may have led

to population growth, which in turn affects the current demand for air traffic. This specification

produces a weaker first stage but a coefficient on the number of airports that is practically identical

to the main results.
19The values of the proposed airports are imputed by summing the value of a typical airport of the class assigned

to each existing facility in 1944 and the projected improvement costs. The method used to calculate these values is
detailed in Sheard (2014).
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6 Conclusion

This paper estimates the effects of the number of airports in a metropolitan area on the provision

of air services, using data from the US. The results show that a metropolitan area that is randomly

allocated a larger number of airports tends to have more air traffic and services to more destinations.

The positive effect of the number of airports on air traffic is due in large part to metropolitan areas

with multiple airports being used as hubs.

One possible interpretation of these results is that the costs of congestion at US airports exceed

the scale economies of having traffic concentrated at a smaller number of facilities. This would

lead to lower marginal operating costs and therefore more traffic in metropolitan areas with more

airports. Another possible interpretation is that metropolitan areas with more airports have a greater

capacity to meet the needs of local travellers, with for example shorter trips between people’s

homes or workplaces and the local airports. Both explanations involve lower costs, though one

case involves lower costs for the airport operator and the other case involves lower direct costs for

travellers. However, given the high fixed cost of constructing an airport, it should be noted that in

the long term the cost of having an additional airport may outweigh the benefits.

The results appear to be consistent with the findings of Bazargan and Vasigh (2003), who stud-

ied US airports using financial data and found that smaller airports operate at lower cost per unit of

output than larger airports. However, Martín and Voltes-Dorta (2008) and Martín and Voltes-Dorta

(2011) studied airports from several countries using a similar technique and found that larger air-

ports operate at lower unit costs, from which they inferred that it is more efficient to have a single

airport than multiple airports serving a city. The results presented here suggest that having a larger

number of airports may lead to lower operating costs, at least for the current set of airports serving

US cities. Nevertheless, the difference between these results and the findings of Martín and Voltes-

Dorta (2008) and Martín and Voltes-Dorta (2011) may be due to the lower costs of accessing local

airports in cities where there are multiple airports, the sunk costs of constructing an airport, or the

competition between the local airports for market share. If the difference was explained by cities

with more airports having easier access for travellers or greater traffic due to competition between

the airports, then it would be due to a benefit that is not captured in the airports’ financial results.
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The potential advantages of having air traffic split between multiple airports should be a consid-

eration when designing airport policy. Public debates about how to deal with capacity-constrained

airports, such as London’s Heathrow Airport or San Diego International Airport, regularly feature

proposals to ‘relocate’ the operations to a new facility. Indeed, this was the approach adopted in

Denver, Colorado and Austin, Texas in the 1990s, where new airports were constructed and the

old airports dismantled. In some scenarios this may be preferable, but the results presented here

indicate that, at least in the context of the US, more air services would end up being provided if

capacity was simply added elsewhere without abandoning the existing airport. This in turn means

better access for local residents and firms.

The assumption that an existing airport should be closed when a new facility is opened may

result from a misunderstanding about how air travel is operated. A substantial proportion of trav-

ellers change planes during their journeys and naturally it is easier to transfer between flights that

arrive and depart at the same airport. The fact that travellers arriving on the same flight can connect

to different flights means that the benefits of each additional route are increasing in the number

of other routes at the same airport. However, as each airline mostly sells tickets with connections

between flights operated by itself or its partners, flights operated by other airlines contribute little

to the benefits of concentration. As congestion is a function of the overall traffic at an airport, oper-

ating costs are lower if flights that in any case would not be connected to one another are operated

at different airports.

An issue not addressed by this paper is the externalities that airports impose on their neighbours

such as noise and air pollution. The noise from aircraft is often an issue for airports in densely

populated areas. Schlenker and Walker (2016) showed that pollution from aircraft has a significant

negative effect on the health of people near an airport. Whether the effects are greater or smaller if

traffic is consolidated at a single airport is not studied here, though the answer will naturally depend

on how many people live or work near the airports in question.

A further issue that is beyond the scope of this paper is that the airports that serve a city may

offer different types of services. A major airport may be complemented by a less accessible airport

that operates low-cost flights, or an ‘executive’ airport may operate flights using smaller aircraft
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from a location close to downtown. In such a case the argument for having multiple airports could

be stronger, as the airports would fulfil diverse needs. Understanding the trade-offs involved in

operating airports of these types remains a potential avenue for further research.
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A First-stage results

Table 8 displays the results from the estimation of the first-stage relationship, using the same sets of

controls as in Table 2. The dependent variable in each regression is the number of Primary Airports

in the CBSA in 2010. The R-squared and the F-statistic on the instrument are displayed at the

bottom of the table. It is clear that the number of category-5 airports in the Plan is a positive and

highly significant factor for the current number of airports.

(1) (2) (3) (4) (5) (6) (7) (8)
OLS OLS OLS OLS OLS OLS OLS OLS

  nap_num_cat5_airports 1944 0.22a 0.19a 0.19a 0.19a 0.19a 0.19a 0.19a 0.19a

(0.04) (0.03) (0.03) (0.03) (0.03) (0.03) (0.03) (0.03)

  ln(pop 2010) 0.06b 0.09a 0.07a
0.05 0.05 0.09 0.11

(0.02) (0.03) (0.02) (0.04) (0.04) (0.06) (0.07)

  R 2 0.41 0.44 0.49 0.50 0.52 0.53 0.54 0.54

  F -statistic on the instrument 39.27 37.71 35.78 33.77 34.59 35.68 34.38 34.47

  Physical geography, climate Y Y Y Y Y Y

  Census divisions Y Y Y Y Y
  {ln(pop t )}t {1910,...,1940} Y Y Y Y

  1940 education; 1950 income Y Y Y

  2010 age, education, income Y Y

  2010 man. and serv. shares Y

  Note: 287 observations for each regression; robust standard errors in parentheses; a , b , c  denote significance at 1%, 5%, 10%

Table 8: Stage-1 results for the effect of the instrument on the number of Primary Airports in 2010.
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B Full sets of coefficients for main OLS and TSLS results

This appendix shows the full sets of coefficients for the OLS and TSLS estimation in Table 2. Table

9 displays the OLS results and Table 10 displays the TSLS results. The ‘Pacific coast’, ‘Atlantic

coast’, and ‘Great Lake shoreline’ variables are binary variables that indicate whether a CBSA has

a section of shoreline on the specified body or bodies of water. The ‘Census Division’ variables are

a set of fixed effects that capture factors specific to the nine Census Divisions in the US.20

20There are fixed effects for eight of the Census Divisions, as the ninth is captured by the constant in the regressions.
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(1) (2) (3) (4) (5) (6) (7) (8)

  num_airports 2010 1.68a 0.37a 0.22c 0.23c 0.24c 0.26b 0.27b 0.29b

(0.19) (0.12) (0.13) (0.13) (0.12) (0.12) (0.13) (0.13)

  ln(pop 2010) 0.98a 1.05a 1.08a 1.36a 1.37a 1.05a 0.90a

(0.04) (0.07) (0.07) (0.12) (0.12) (0.15) (0.15)

  ln(land area ) 0.22c 0.20 0.25 0.27c 0.25 0.23
(0.13) (0.13) (0.16) (0.16) (0.16) (0.15)

  ln(mean county size ) −0.07 −0.04 −0.13 −0.13 −0.06 −0.05
(0.09) (0.12) (0.15) (0.16) (0.16) (0.15)

  Pacific coast 0.97a 0.97a 0.91a 0.89a 0.59c 0.47
(0.30) (0.33) (0.31) (0.32) (0.31) (0.30)

  Atlantic coast 0.46a 0.38b 0.29c 0.27 0.24 0.23
(0.15) (0.18) (0.18) (0.18) (0.18) (0.18)

  Great Lake shoreline 0.18 0.22 0.26 0.28 0.39 0.38c

(0.19) (0.22) (0.22) (0.23) (0.24) (0.23)

  Mean land elevation ('000 feet) 0.11b 0.09 0.04 0.06 −0.02 −0.02
(0.05) (0.06) (0.07) (0.07) (0.07) (0.07)

  Standard deviation of land elevation ('000 feet) −0.08 −0.02 −0.10 −0.14 −0.01 0.07
(0.28) (0.31) (0.32) (0.31) (0.32) (0.31)

  Wind speed (mph) −0.03 0.00 −0.01 −0.02 −0.04 −0.03
(0.03) (0.05) (0.05) (0.05) (0.05) (0.05)

  Heating degree days ('000) 0.23a 0.31a 0.37a 0.34a 0.27a 0.25a

(0.07) (0.09) (0.08) (0.09) (0.09) (0.09)

  Cooling degree days ('000) 0.36a 0.43a 0.45a 0.42b 0.39b 0.31b

(0.13) (0.17) (0.16) (0.16) (0.16) (0.16)

  Census division 1 −0.37 −0.33 −0.15 −0.27 −0.13
(0.65) (0.60) (0.63) (0.65) (0.61)

  Census division 2 −0.16 −0.07 0.08 0.17 0.30
(0.34) (0.33) (0.34) (0.39) (0.38)

  Census division 3 −0.34 −0.38 −0.25 −0.11 −0.03
(0.39) (0.36) (0.38) (0.37) (0.37)

  Census division 4 −0.31 −0.40 −0.24 −0.12 −0.03
(0.36) (0.34) (0.38) (0.39) (0.39)

  Census division 5 0.14 0.09 0.26 0.29 0.22
(0.37) (0.35) (0.37) (0.39) (0.38)

  Census division 6 −0.04 −0.06 0.19 0.24 0.27
(0.38) (0.35) (0.37) (0.39) (0.38)

  Census division 7 −0.14 −0.14 0.01 0.15 0.19
(0.38) (0.35) (0.37) (0.39) (0.39)

  Census division 8 −0.16 −0.16 −0.12 0.12 0.13
(0.34) (0.34) (0.33) (0.33) (0.33)

  ln(pop 1910) 0.65a 0.66a 0.38b
0.29

(0.20) (0.21) (0.18) (0.18)

  ln(pop 1920) −1.18a −1.09a −1.05a −0.93b

(0.36) (0.37) (0.37) (0.37)

  ln(pop 1930) 0.95c 1.02c 1.20b 1.12b

(0.53) (0.55) (0.56) (0.53)

  ln(pop 1940) −0.74 −0.97c
−0.72 −0.64

(0.53) (0.52) (0.52) (0.48)

  Proportion of adults with 5 years of school in 1940 −0.21 −0.02 −0.22
(0.71) (0.72) (0.68)

  Proportion aged 7-13 enrolled in school in 1940 1.14 0.64 0.89
(1.01) (0.90) (0.99)

  Proportion aged 14-17 enrolled in school in 1940 −0.19 −0.05 −0.03
(0.36) (0.41) (0.37)

  ln(median_income 1950) 0.44 0.23 0.11
(0.36) (0.39) (0.35)

  Proportion aged 0-18 in 2010 0.57 −2.49
(2.99) (3.06)

  Proportion aged 65+ in 2010 −1.83 −2.79
(2.51) (2.45)

  Proportion of adults high-school educated in 2007 −1.05 −1.94
(2.11) (2.13)

  Proportion of adults college educated in 2007 1.53 −1.10
(1.77) (1.92)

  ln(mean_income 2007) 1.11b 0.95c

(0.56) (0.57)

  Proportion of employment in manufacturing in 2010 −1.53
(1.32)

  Proportion of employment in services in 2010 5.44a

(1.42)

  R 2 0.22 0.73 0.77 0.77 0.79 0.80 0.81 0.82

  Note: 287 observations for each regression; robust standard errors in parentheses; a , b , c  denote significance at 1%, 5%, 10%

Table 9: OLS results for the relationship between the number of airports and the number of flights in 2010.
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(1) (2) (3) (4) (5) (6) (7) (8)

  num_airports 2010 2.71a 0.61b 0.63b 0.67b 0.76a 0.75a 0.75a 0.71a

(0.46) (0.29) (0.29) (0.29) (0.27) (0.26) (0.25) (0.24)

  ln(pop 2010) 0.94a 0.99a 1.01a 1.31a 1.34a 1.00a 0.85a

(0.06) (0.08) (0.09) (0.12) (0.12) (0.15) (0.15)

  ln(land area ) 0.21c 0.18 0.22 0.25c 0.23 0.21
(0.13) (0.13) (0.15) (0.15) (0.15) (0.14)

  ln(mean county size ) −0.11 −0.08 −0.15 −0.16 −0.07 −0.06
(0.10) (0.12) (0.15) (0.16) (0.15) (0.15)

  Pacific coast 0.78a 0.74b 0.64b 0.64b 0.35 0.26
(0.28) (0.32) (0.29) (0.29) (0.30) (0.29)

  Atlantic coast 0.35b 0.27 0.17 0.15 0.13 0.13
(0.16) (0.20) (0.19) (0.20) (0.19) (0.18)

  Great Lake shoreline 0.15 0.16 0.20 0.21 0.33 0.33
(0.19) (0.23) (0.23) (0.23) (0.23) (0.22)

  Mean land elevation ('000 feet) 0.11b 0.08 0.05 0.06 −0.01 −0.01
(0.05) (0.06) (0.07) (0.07) (0.07) (0.06)

  Standard deviation of land elevation ('000 feet) −0.11 −0.03 −0.13 −0.17 −0.05 0.04
(0.28) (0.31) (0.31) (0.30) (0.30) (0.29)

  Wind speed (mph) −0.03 0.00 −0.02 −0.02 −0.04 −0.03
(0.03) (0.04) (0.05) (0.05) (0.05) (0.04)

  Heating degree days ('000) 0.22a 0.30a 0.35a 0.32a 0.25a 0.23a

(0.07) (0.09) (0.08) (0.09) (0.09) (0.09)

  Cooling degree days ('000) 0.33a 0.39b 0.40b 0.37b 0.34b 0.26c

(0.13) (0.16) (0.16) (0.16) (0.15) (0.15)

  Census division 1 −0.41 −0.38 −0.18 −0.32 −0.16
(0.63) (0.58) (0.60) (0.61) (0.56)

  Census division 2 −0.22 −0.14 0.03 0.11 0.26
(0.34) (0.32) (0.33) (0.37) (0.36)

  Census division 3 −0.33 −0.35 −0.21 −0.08 0.00
(0.38) (0.35) (0.37) (0.35) (0.35)

  Census division 4 −0.34 −0.43 −0.25 −0.14 −0.05
(0.37) (0.34) (0.37) (0.38) (0.38)

  Census division 5 0.16 0.11 0.29 0.33 0.25
(0.37) (0.35) (0.38) (0.38) (0.37)

  Census division 6 −0.04 −0.05 0.23 0.29 0.31
(0.38) (0.36) (0.38) (0.39) (0.37)

  Census division 7 −0.09 −0.05 0.10 0.23 0.27
(0.37) (0.35) (0.36) (0.38) (0.37)

  Census division 8 −0.17 −0.21 −0.17 0.06 0.08
(0.33) (0.33) (0.32) (0.32) (0.31)

  ln(pop 1910) 0.66a 0.67a 0.39b 0.29c

(0.19) (0.20) (0.18) (0.17)

  ln(pop 1920) −1.05a −0.96a −0.93a −0.82b

(0.35) (0.35) (0.35) (0.34)

  ln(pop 1930) 1.05b 1.14b 1.32b 1.22b

(0.50) (0.51) (0.51) (0.48)

  ln(pop 1940) −1.00b −1.26a −1.00b −0.87b

(0.50) (0.48) (0.48) (0.44)

  Proportion of adults with 5 years of school in 1940 −0.32 −0.15 −0.35
(0.65) (0.66) (0.62)

  Proportion aged 7-13 enrolled in school in 1940 1.30 0.87 1.11
(0.88) (0.79) (0.87)

  Proportion aged 14-17 enrolled in school in 1940 −0.15 −0.06 −0.06
(0.34) (0.41) (0.36)

  ln(median_income 1950) 0.50 0.31 0.18
(0.34) (0.37) (0.33)

  Proportion aged 0-18 in 2010 1.92 −1.42
(2.89) (2.84)

  Proportion aged 65+ in 2010 −0.93 −2.02
(2.25) (2.15)

  Proportion of adults high-school educated in 2007 −0.57 −1.56
(2.03) (2.02)

  Proportion of adults college educated in 2007 2.24 −0.54
(1.68) (1.76)

  ln(mean_income 2007) 1.11b 0.94c

(0.51) (0.52)

  Proportion of employment in manufacturing in 2010 −1.47
(1.21)

  Proportion of employment in services in 2010 5.62a

(1.37)

  First-stage F -statistic 39.27 37.71 35.78 33.77 34.59 35.68 34.38 34.47

  Hausman test p -value 0.00 0.25 0.06 0.04 0.01 0.02 0.02 0.02

  Note: 287 observations for each regression; robust standard errors in parentheses; a , b , c  denote significance at 1%, 5%, 10%

Table 10: TSLS results for the effect of the number of airports on the number of flights in 2010.
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