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Imaging high-speed friction at the nanometer scale
Per-Anders Thorén1, Astrid S. de Wijn2,3, Riccardo Borgani1, Daniel Forchheimer1 & David B. Haviland1

Friction is a complicated phenomenon involving nonlinear dynamics at different length and

time scales. Understanding its microscopic origin requires methods for measuring force on

nanometer-scale asperities sliding at velocities reaching centimetres per second. Despite

enormous advances in experimental technique, this combination of small length scale and

high velocity remain elusive. We present a technique for rapidly measuring the frictional

forces on a single asperity over a velocity range from zero to several centimetres per second.

At each image pixel we obtain the velocity dependence of both conservative and dissipative

forces, revealing the transition from stick-slip to smooth sliding friction. We explain

measurements on graphite using a modified Prandtl–Tomlinson model, including the damped

elastic deformation of the asperity. With its improved force sensitivity and small sliding

amplitude, our method enables rapid and detailed surface mapping of the velocity

dependence of frictional forces with less than 10 nm spatial resolution.
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M
any applications in tribology require an understanding of
frictional forces on nanometer-scale contacts1,2 moving
with a velocity of at least 1 cm s� 1. Traditional

nanoscale friction experiments use an atomic force microscope
(AFM), where the frictional force on the tip or colloidal probe is
measured while sliding on a surface at constant velocity3–7.
Friction induces a lateral force on the tip, resulting in a twist f
around the major axis of the AFM cantilever (see Fig. 1a),
which is detected by optical beam deflection. The cantilever’s
restoring torque is assumed to be in quasi-static equilibrium,
in which case the cantilever twist gives the instantaneous lateral
force on the tip. When measuring individual stick-slip events
with this method8, one typically neglects cantilever inertia and
damping, a valid approach if these events occur at low enough
frequency.

The quasi-static method is typically limited by detector noise,
where the unity signal-to-noise ratio in a 1 ms measurement time
defines a typical minimum detectable force FminB13 pN (see
Methods). With the quasi-static method, individual stick-slip
events can be resolved9 up to velocities B3 mm s� 1, at least four
orders of magnitude below the velocity scale relevant to
applications. At higher velocity stick-slip events can not be
resolved, only the mean force of sliding friction. Scan velocities as
high as 580mm s� 1 have been reached10, but at this velocity a
measurement time of 1 ms would limit spatial resolution to
580 nm.

In contrast, dynamic methods sense frictional force as a
perturbation to the cantilever’s free linear dynamics near a
high-quality factor resonance. The high frequency of a stiff
torsional resonance f0B2 MHz allows for a maximum tip velocity
vmax¼ 2pf0AB6 cm s� 1 with very small amplitude of sliding
oscillation AB5 nm. Owing to the enhanced force sensitivity of
the high Q resonance, a good AFM can see the thermal random
torque acting on the cantilever, which is resolved near resonance
as twisting Brownian motion noise, above the voltage noise floor
of the detector. In this case, force measurement is at the thermal
limit of sensitivity, which for the stiff 2 MHz cantilever gives
Fmin¼ 0.88 pN in the same 1 ms measurement time (see
Methods). While dynamic friction has been previously studied
using flexural11 and torsional12–14 resonance, thus far dynamic
methods have not been used to measure frictional force, only
changes of oscillation amplitude and phase when the tip engages a
surface.

Here we extend the force measurement methodology of
intermodulation AFM15,16 to lateral forces which are important
for understanding friction. We describe a calibrated and
quantitative dynamic method of measuring frictional force. At
every image pixel, we observe the transition from stick-slip to
smooth sliding friction as a characteristic shape in the amplitude
dependence of the dynamic force quadratures FI(A) and FQ(A). In
contrast to the quasi-static method, dynamic force quadratures do
not give the instantaneous lateral force on the tip, but rather the
conservative force FI and dissipative force FQ, integrated over one
single oscillation cycle of the tip with amplitude A (see Methods).

Results
Measurements. Intermodulation AFM is based on the detection
of high-order frequency mixing (intermodulation) near a
mechanical resonance. In this work the first torsional eigenmode
(a linear oscillator) is driven at two frequencies near resonance.
When perturbed by the nonlinear frictional force, the resonator
responds with a frequency comb of intermodulation products of
the two drive tones15. In the time domain this frequency comb
corresponds to a rapid oscillation with a slowly modulated
amplitude and phase. Extracting the modulation phase allows us
to resolve two Fourier coefficients of force, one which is in phase
with the rapidly oscillating motion and its quadrature. These two
components can be plotted as functions of the slowly varying
amplitude A. Thus, the amplitude-dependent dynamic force
quadrature FI(A) is the integrated conservative force in phase
with the cantilever motion, and FQ(A) the dissipative force,
in phase with the velocity17 (see equations (5) and (6)). The
transition from stick-slip to free-sliding dynamics of the AFM tip
is revealed by a characteristic shape of these two force quadrature
curves.

Figure 2a,b shows the measured force quadrature curves for a
graphite surface at different interaction strengths, realized in the
experiment by lowering the scanning feedback set-point, which
moves the AFM probe closer to the surface. At each interaction
strength the double curves show measurement with increasing
and decreasing amplitude. The net interaction which loads the
frictional contact is the sum of the adhesive forces and the
cantilever bending force. The latter could in principle be
measured by monitoring the vertical deflection of the cantilever.
However, with the rather stiff cantilever used in this experiment
we could barely resolve a change in static bending. With a softer
cantilever adhesive forces cause a ‘jump-to-contact’ instability,
making it very difficult to continuously regulate the load force. In
our experiment we are able to smoothly regulate the load to
observe a gradual evolution of the force quadrature curves, from
zero interaction to sufficiently large interaction, where linear
FI(A) is observed below a critical amplitude.

From simulations (see Theory section) we understand that this
low-amplitude linear dependence of FI(A) corresponds to the tip
apex being stuck to the surface. The measured cantilever motion
is the result of elastic tip deformation. Above the critical
amplitude where FI(A) has a distinct minimum, stick-slip
dynamics begins. With increasing amplitude one observes a
transition to smooth sliding, characterized by decreasing FI(A)
and asymptotic approach of FQ(A) to a constant value. One can
see how reducing the interaction force results in the gradual
disappearance of the low-amplitude sticking regime. The
horizontal scale of Fig. 2a,b also shows the maximum velocity
of the tip base relative to the surface, vmax¼ 2pf0A, occurring
when the cantilever crosses its torsional equilibrium point, twice
each single oscillation cycle.

Theory. Our interpretation of the measured force quadrature
curves in terms of stick-slip dynamics of a damped elastic asperity
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Figure 1 | A schematic of the experiment and model, not to scale. (a) The

AFM cantilever undergoes a twisting oscillation at the resonance frequency

of a high-Q torsional eigenmode. The resulting lateral motion of the tip base

xb is dampened by frictional forces acting on the tip apex, xt. (b) Schematic

of the modified Prandtl–Tomlinson (PT) model used to describe the

dynamical system. A driven support (cantilever base) is coupled to the

nonlinear surface potential via a linear oscillator (torsional resonance) and

elastic asperity (tip).
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is based on comparison of the measured data with numerical
simulation of a modified Prandtl–Tomlinson (PT) model1,18–22.
In our model (see Fig. 1b) the particle is coupled via a spring and
damper (damped elastic tip apex) to an intermediate support
(rigid base of the tip), which in turn is coupled via a linear
oscillator (cantilever torsional resonance) to a driven support
(cantilever base). The inclusion of a damped elastic tip was
necessary to explain the experimental data.

Figure 2c,d shows the simulated force quadratures (see
Methods). Adjusting the parameters of the asperity, we can
achieve good qualitative agreement between the experimental and
simulated curves. Simulation allows for detailed examination of
the system dynamics during the transition from stick-slip to
sliding friction. In the frequency domain (Fig. 3a), the periodic
motion of the tip base is represented by a frequency comb. In the
time domain (Fig. 3b,c), the motion of both the tip base and
tip apex is plotted over exactly one period T¼ 1/Df, where
Df¼ f2� f1 is the frequency difference of the two drive tones.

At low drive amplitude the tip apex becomes stuck in a local
minimum of the potential. The tip base continues to oscillate
because the elastic tip can deform. With increasing drive
amplitude the tip apex begins to slip between local minima of
the potential as shown in Fig. 3d. When the drive amplitude is
large enough, well-separated slips events give way to smooth-
sliding over many minima in the surface potential.

Discussion
The experimental curves in Fig. 2a,b show how the transition
from stick-slip to smooth-sliding changes with applied load. With
sufficient interaction strength, the tip can stick to the surface and
the low amplitude slope of FI(A) gives the elastic stiffness of the
tip k (see Methods). For this probe we measure k¼ 4 N m� 1,
consistent with estimates made by other groups on similar
probes18,20. At lower load force a detailed examination of the
experimental curves shows hysteresis in the force quadratures, as
the low amplitude sticking regime (FQ¼ 0) gradually disappears
with reducing load force. The simulations in Fig. 2c,d capture the
qualitative shape of the force quadrature curves at higher load
force, but at lower load force we find that the simulations become
unstable, when the tip is just grazing the surface.

Intermodulation frictional force microscopy (ImFFM) provides
a unique ability to quantitatively probe friction at high velocity
with high spatial resolution. Only 2 ms are needed to measure the
force quadrature curves at the nN force scale and cm s� 1 velocity
scale. This time is short enough to scan at a typical rate for
dynamic AFM (1 line per second, 256 pixels per line) and create
an image of the transition from stick-slip to smooth sliding.
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Figure 2 | Force quadratures. (a,b) Experimental curves at different probe

heights showing continuous evolution from zero to finite load force. The

load force is controlled by changing the feedback setpoint, given in the inset

as % of free oscillation amplitude at the first drive frequency. With

increasing load force (lower set-point) the low-amplitude motion of the

cantilever occurs with the tip apex stuck to the surface and the slope of

FI(A) gives the tip stiffness. At higher amplitude stick-slip behavior gives

way to smooth sliding, with FI decreasing toward zero and FQ approaching a

constant value. Qualitatively similar behaviour is seen in the simulated force

quadrature curves (c,d), derived from numerical integration of a modified

Prandtl–Tomlinson model.
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Figure 3 | Simulated response. (a) Simulated frequency domain response

of the tip base xb. The discrete comb of response at intermodulation

frequencies fIMP¼ n1f1þ n2f2 results from the periodic drive and the

nonlinearity. (b,c) One period of steady-state motion in the time domain,

for both tip base xb and the tip apex xt when U0¼ 2.2, Z¼ 7.6 (orange curve

in Fig. 2). The elastic tip allows for motion of the base even when the apex

is stuck to the surface. The zoom inset (d) shows the stick-slip region.
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Figure 4a shows such a scan over a graphite surface, where the
response amplitude at drive frequency f1 is shown by colour. The
feedback adjusts the probe height to keep this amplitude constant,
and the feedback set point was changed at regular intervals during
the scan, resulting in the horizontal bands seen in the image.
Stable imaging was observed and there was no discernible
evidence that the tip was damaging the surface, even at the
highest load force.

Graphite serves as a well-studied test sample for demonstration
of ImFFM but the image is basically featureless because the
friction is so homogeneous. However, a change in the response is
observed when scanning across an atomic step, seen as a diagonal
feature in Fig. 4a. The inset Fig. 4b shows a zoom of the step
region where the colour map codes for the critical oscillation
amplitude at which FI(A) is minimum. In this region three pixels
are marked, and the FI and FQ curves are shown in Fig. 4c,d with
corresponding colour. Taking this critical amplitude for the onset

of sliding friction, one can see how the presence of the atomic
step pushes the critical amplitude to larger values. The shape of
the force quadrature curves near this step also differ considerably
from those of the simulation of a corrugated surface, which did
not include a step. We expect the presence of a step would inhibit
smooth sliding, qualitatively explaining the broad minimum
observed in FI(A) at much larger amplitude.

The zoom inset Fig. 4b is derived from the intermodulation
spectra at each pixel and it shows features that are not present in
any single amplitude or phase image. The zoom demonstrates the
remarkable detail with which high velocity friction can be studied
using ImFFM. The fact that neighbouring pixels (independent
measurements) show similar critical amplitude demonstrates the
extreme sensitivity of the method to small variations in frictional
force, with spatial resolution limited only by the extent of the
lateral tip oscillation, 2AC7.2 nm for this scan. With its high
spatial resolution, and its ability to capture the full amplitude
dependence of friction at each image point, we anticipate that
ImFFM will have large impact on our understanding of the
origins of friction on heterogeneous nano-structured surfaces.

Methods
Sample, cantilever and calibration. We scanned a freshly cleaved highly oriented
pyrolytic graphite sample under ambient conditions. The cantilever (MPP-13120
also known as Tap525, Bruker) was calibrated using the noninvasive thermal noise
method. The normal Sader method23 is used to get the flexural stiffness
kf¼ 53 N m� 1 from the resonance frequency f0,f¼ 470 kHz and quality factor
Qf¼ 384 determined by fitting the thermal noise spectrum of the first flexural
eigenmode24. Similarly, the first torsional resonance f0,t¼ 2,400 kHz, Qt¼ 704 and
the torsional Sader method23 gives a torsional stiffness kf¼ 239� 10� 9 N m rad� 1.
The Sader method together with the fluctuation-dissipation theorem gives
us the detectors inverse responsivity25 a� 1

t ¼ 1.2� 103 rad V� 1. The torsional
stiffness corresponds to a stiffness for in-plane forces acting on the tip,
K¼ kfh2

tip ¼ 827 N m� 1 (manufacturer-specified tip height htip¼ 17mm).
We formulate the equations of motion below in terms of this equivalent lateral
stiffness of the torsional eigenmode, with its associated mass M¼K(2pf0,t)� 2 and
damping coefficient MG¼K(2pf0,tQt)� 1, where G is the width of the resonance.

Force sensitivity and image resolution. The sensitivity of a cantilever as
transducer of force is enhanced by a factor Q on resonance, in comparison with the
quasi-static (zero frequency) limit. Owing to this enhancement the thermal
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Figure 4 | Friction images of a highly oriented pyrolytic graphite surface.

(a) The response amplitude at drive frequency f1, used for scanning

feedback. The horizontal bands are due to changes in the feedback set-

point during the scan, where lower amplitude (darker) corresponds to the

cantilever working closer to the surface. The diagonal feature is an atomic

step. Scalebar 200 nm. (b) A zoom of the step region, where the image

colour codes for the critical amplitude at which FI(A) is minimum. Scalebar

20 nm. (c,d) The force quadrature curves at the three pixels are marked

with the corresponding colour and marker as in the image scans.

Table 1 | Fixed parameters used for simulation of the PT
model.

Symbol Expression Value Description

M — 2.5 Tip mass
K — 3.6 Tip spring
g — 12 Tip damping
K — 40 Cantilever spring
f0

ffiffiffiffiffiffiffiffiffiffi
K=M

p
/2p 0.001 Cantilever resonance

Q 2pf0/G 500 Cantilever quality factor
Df f0/200.5 — Frequency spacing
f1 200Df — First drive frequency
f2 201Df — Second drive frequency
A1 — 0.21 First drive amplitude
A2 — 0.21 Second drive amplitude
a0 — 1 Surface periodicity
snoise — 6.1 Strength of noise

Table 2 | Adjustable parameters.

U0 g Symbol in Fig. 2b Description

2.40 7.81 Circle Strongest interaction
2.16 7.56 Square k
1.92 6.55 Triangle Weakest interaction
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Brownian motion of the cantilever can often be observed as a noise peak at
resonance, where the Brownian motion noise exceeds the detector noise. In this
case the minimum detectable lateral force acting on the tip is given by the thermal
noise force, with power spectral density,

SFF ¼ 2kBTMG ¼ 2kBT
k2
f

h2
tip2pf0Q

: ð1Þ

Note that this noise force depends on the damping coefficient, not the stiffness, but
it is convenient to express it in terms of stiffness, quality factor and resonant
frequency, as the latter two quantities are easily accessible in the experiment. For a
specified measurement bandwidth B (inverse of the measurement time), the
minimum detectable force is the force signal which just equals this noise
Fmin¼

ffiffiffiffiffiffiffiffiffi
SFF B
p

. At the first torsional eigenmode of our cantilever with B¼ 1 kHz,
we find Fmin¼ 0.88 pN.

We compare with the quasi-static sensitivity where the measurement
bandwidth is centered at zero frequency. Detector noise is typically limiting
sensitivity with a noise equivalent force given by,

Sequiv
FF ¼

SVV k2
f

a2
t h2

tip
: ð2Þ

We take voltage noise SVV¼ 8.0� 10� 12 V2 Hz� 1 and inverse responsivity
a� 1

t ¼ 1.2� 10� 3 rad V� 1 typical of our detector. Quasi-static measurements
typically use a softer cantilever6 kfB3� 10� 9 N m rad� 1 which, for the same
htip¼ 17 mm and B¼ 1 kHz, gives Fequiv

min ¼ 13 pN, a factor of 15 less sensitive than
our experiment.

For quasi-static force measurement the time B� 1 and constant sliding velocity v
determine the distance over which the force is measured, which defines a minimum
feature size d¼ vB� 1. Increasing the measurement bandwidth (decreasing the
measurement time) improves resolution, but at the expense of force sensitivity.
With dynamic force measurement the minimum feature size is independent of the
measurement bandwidth, given only by the amplitude of sliding oscillation d¼ 2A,
or in terms of the maximum velocity achieved in the oscillation d¼ vmax(pf0)� 1.
High resolution (small d), high force sensitivity (small Fmin) and high velocity
(large vmax) are all achieved with a small bandwidth measurement on resonance
using a cantilever with large f0 and large Q.

Intermodulation measurement and scanning feedback. The cantilever is excited
with a split-piezo actuator at two frequencies f1, f2 centered on torsional resonance
f0,t and separated by Df¼ f2� f1oof0,t. The drive frequencies f1 and f2 are chosen
such that they are both integer multiples of Df. The drive is synthesized, and
the response is measured with a synchronous multifrequency lockin amplifier
(Intermodulation Products AB; http://www.intermodulation-products.com/)26

which also calculates the feedback error signal used by the host AFM. A
proportional-integral feedback loop adjusts the probe height to keep the f1 response
amplitude at the set-point value. The exact type of feedback used is not critical to
the method, only that it is responsive enough to track the surface topography at the
desired scan speed. We also desire that the feedback error is small enough,
such that we can approximate the probe height as being constant during the
time T¼ (Df)� 1 needed to measure the response. This time defines one pixel of
the 42 amplitude and phase image-pairs acquired at each frequency, during a
single scan.

Model and equations of motion. A schematic representation of the model can
be seen in Fig. 1. Performing force balance on both masses results in two coupled
one-dimensional equations of motion in the lateral position of the tip apex xt, and
tip base xb.

M€xb ¼ �Kxb �GM _xb þ Fc d; _d
� �

þ Fd tð Þ; ð3Þ

m€xt ¼ � Fc d; _d
� �

� Fsurf xt; _xtð Þ: ð4Þ

The coupling force Fc ¼ kdþmg _dþ Fnoise is linear in the deformation of the tip,
d¼ xt� xb, and damping linear in _d. Fnoise(t) is a random noise force with a
Gaussian distribution1,27. The strength of the noise is characterized by the
standard deviation snoise, given in Table 1. The nonlinear frictional force Fsurf ¼
� Z _xt � @

@xt
U xtð Þ is derived from damped motion in a periodic potential

U(xt)¼U0 cos(2pxt/a0). The drive force Fd¼K[A1 cos(2pf1t)þA2 cos(2pf2t)] is
applied at two frequencies as described above.

Dynamic force quadratures. We probe friction by measuring two dynamic
quadratures of the nonlinear force which is perturbing the harmonic motion of the
torsional resonance. The method was originally developed for normal forces and
flexural resonance by Platz et al.17,28 From the measured intermodulation
spectrum and the calibrated transfer function of the torsional eigenmode, we
determine the oscillation amplitude dependence of the force quadratures, without
any assumptions as to the nature of the perturbing force. For the model described
above, FI gives the integrated coupling force Fc that is in phase with the motion

of the tip base, and FQ that is quadrature to the motion, or in phase with the
velocity.

FI Að Þ ¼ 1
T

Z T

0
Fc xb; _xbð Þcos o0tð Þdt; ð5Þ

FQ Að Þ ¼ 1
T

Z T

0
Fc xb; _xbð Þsin o0tð Þdt; ð6Þ

where

xb tð Þ ¼ A cos o0tð Þ: ð7Þ
When FfriccFc, the tip apex is stuck in a minimum of the surface potential,

xtEconst, and motion of the tip base is due to tip deformation alone. In this case
we can solve the integrals in equations (5) and (6),

FI Að Þ ¼ � kA
2

and FQ ¼ �
mgvmax

2
: ð8Þ

Thus, the slope of FI(A) at low amplitude and high load gives the stiffness of the
asperity. Similarly, the slope of FQ(A) gives the damping of the asperity, which is
not resolvable in our experiment.

Simulation. We simulate the experiment by numerical integration of the model
equations (3) and (4) using CVODE29. The dynamical system is converted to four
first-order differential equations, characterized by two resonant frequencies:
o0,b¼

ffiffiffiffiffiffiffiffiffiffiffi
K=M

p
and o0,t¼

ffiffiffiffiffiffiffiffiffi
k=m

p
. When o0;t � o0;b the adaptive time-step

integrator becomes rather slow. We chose ot
0=o

b
0 � 300, which is at least one order

of magnitude smaller than experiments, but still large enough to simulate the
dynamics qualitatively so that we can explore the parameter space of the model in a
reasonable time (each simulation takes 200 s on an Intel Core i7, 3.50 GHz PC). We
simulated with normalized values where (length)¼ 1.42 Å,
(mass)¼ 4.78� 10� 25 kg and (time)¼ 4.46� 10� 13 s. The parameters are given
in Tables 1 and 2. To simulate different interaction strengths, we vary the surface
potential U0 and dissipation of the tip g as in Table 2. Our choice of simulation
parameters means that the simulated frequency of surface-induced force pulses on
the tip fsurf � A=a0ð Þf0;t is about an order of magnitude smaller than in the
experiment. Nevertheless, our simulation is able to capture the qualitative shape of
the force quadrature curves at high velocity and high interaction strength.
However, with these simulation parameters we are not able to reproduce the
experiment at low velocity and low interaction.

Data and code availability. The data, analysis and simulation code that support
the findings of this study are available from the corresponding author PAT upon
reasonable request.
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