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Abstract: It is well known that the full long-term response analysis is recognized as the most 

accurate and reliable method for evaluation of the extreme response in the design of ships and 

marine structures. However, such a method is time consuming for large and complex systems. 

To improve efficiency, the environmental contour method (ECM) is frequently used to 

approximate the long-term extreme response. The ECM is based on an environmental contour, 

which is traditionally obtained by the inverse first order reliability method (IFORM) with the 

assumption that the failure surface in the U space is approximated as a tangent plane at the 

design point. However, such an approximation underestimates the true failure probability if the 

failure surface in the U space is a concave set, and then the corresponding environmental contour 

would not be conservative for possible designs. In this work, a more conservative ISORM 

(inverse second order reliability method) contour is proposed. In this method, a specific second-

order surface is applied to approximate the failure surface at the design point, and then the failure 

domain in the U space would always be overestimated since the corresponding safe domain is 

approximated and underestimated as a sphere, regardless of the shapes of the failure surfaces. 

Therefore, the generated environmental contour can be always conservative for design purposes. 

The differences of the environmental contours generated by different methods, i.e., the 

traditional IFORM and the proposed ISORM, are illustrated by relevant examples, such as the 

wave statistics, wind wave statistics, and first-year ice ridge statistics.      

 Keywords: environmental contours; IFORM; ISORM; ships and marine structures   

1. Introduction 

For marine structures subjected to environmental loads, such as wind, wave, ice forces, 

evaluation of the extreme response and the associated stresses or strains over its specific lifetime 

is necessary and important at the design stage [1]. Basically, a full long-term response analysis 

that accounts for the structural response from each short-term environmental condition and the 
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occurrence rate of each short-term condition is recognized as the most appropriate and accurate 

approach [2, 3]. However, such a long-term analysis is usually time-consuming and not efficient, 

especially for large and complex structures. In order to improve the computational efficiency, 

it can be simplified by either reducing the computation cost of each short-term analysis [4, 5] 

or developing approximate methods that require a lower number of short-term analyses, such 

as identification of the critical environmental conditions by linear analyses [6], the 

environmental contour method (ECM) [7].  

The ECM is based on the environmental contour defined in the environmental parameter 

space, i.e., a collection of environmental parameters corresponding to a given return period. In 

this method, the desired long-term extreme response can be approximately estimated on the 

basis of the critical short-term conditions on the environment contour associated with the same 

return period [3, 8]. The environment contour is identified based on relevant probability 

distributions of the environmental parameters and is given as the forms of contour line (two 

environmental parameters), contour surface (three parameters) or contour manifolds (more than 

three parameters). After this work, short-term response analyses are performed only for a few 

conditions on the environmental contour and then the highest short-term response is identified 

for application. Finally, a fractile higher than the median level is applied to the largest short-

term response statistics in order to approximate the long-term extreme response. The ECM 

offers a simplified and fast way to estimate the long-term extreme responses, and therefore, it 

has been widely used for the design of ships and marine structures, such as offshore platforms 

in waves [9, 10] and ice conditions [11], wave energy converters [12], wind turbine [13, 14], 

flexible risers [15].  

It is seen that the environmental contour with a given return period plays a fundamental role 

for application of the ECM. The traditional approach to establishing the environmental contour 

is based on the inverse first order reliability method (IFORM) and the conditional modeling 

approach for the environmental parameters [8]. By this method, the environmental variables are 

transformed into independent standard normal variables via the Rosenblatt transformation, and 

then, a sphere with the desired radius is identified in the U space. Subsequently, the 

environmental contour for a given return period is obtained by re-transforming the sphere back 

to the original physical space (i.e., the inverse Rosenblatt transformation). Furthermore, in order 

to avoid the Rosenblatt transformation, which requires the joint distribution of the 

environmental variables described by a set of conditional distributions, the environmental 

contours can also be generated by the Nataf transformation [16], Monte Carlo simulations [17] 
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and the principal component analysis [18], etc. 

The environmental contour for a given return period based on the IFORM implies that the 

contour is defined closely related to the first order reliability method (FORM) approximation. 

For the FORM, for estimating the failure probability of the system, the failure boundary is 

replaced with a tangent plane at the design point in the U space. It is known that when the true 

failure surface in the U space is a convex set, the FORM approximation gives an upper boundary 

to the true failure probability [17]. On the other hand, this approximation does underestimate 

the true failure probability if the failure surface in the U space is a concave set. Therefore, the 

generated environmental contour would not be conservative for design purpose. In order to 

avoid such a deficiency in the traditional IFORM-contour, different definitions of the 

environmental contours have been proposed, such as the alternative environmental contours 

based on direct Monte Carlo simulations [17, 19], the highest density contour (HDC) [20], the 

equi-shape contour [2]. 

In this work, the equi-shape contour is studied in detail. For development of this contour, the 

failure boundary of the system in the U space is approximated by a sphere with a radius equal 

to the distance between the origin point and the design point, and then the safe domain is 

approximated as the region covered by the sphere. By this method, the true failure probability 

will always be overestimated regardless of the shape of the failure surface since the real safe 

domain is always larger than the proposed sphere. Subsequently and inversely, for a given 

return period, the resulting environmental contours based on the sphere approximation could be 

always conservative for possible designs [2]. Because the safe domain is approximated as a 

sphere located at the origin point in the U space, the environmental contour is referred to as an 

equi-shape contour. Furthermore, the sphere approximation of the safe domain for the system 

is a type of the second order reliability method (SORM), and therefore, the developed 

environmental contour can also be referred to as the ISORM-contour. 

In this paper, the principles of the environmental contours obtained by the traditional IFORM 

and the more conservative ISORM are presented. The differences of the environmental contours 

generated by different methods are illustrated by relevant examples, such as the wave statistics 

(two environmental variables), wind wave statistics (three variables) and the first-year ice ridge 

statistics used for the design of ice-capable ships (three variables). The ISORM-contour 

proposed in this work and its application for possible designs could provide valuable 

supplements to the current ECM, which is widely used for estimating the extreme responses of 

ships and marine structures.     



4 

 

2. FORM and IFORM for structural reliability analysis 

In this section, the derivation of the full long-term extreme response and the approximate 

manners based on the FORM and IFORM for the long-term analysis are presented. To begin 

with, assume that each short-term environmental condition has a duration of τ-hours and the 

related short-term responses can be described by stationary processes [1, 3]. The environmental 

variables are defined as an n-dimensional vector S = (S1, S2, …, Sn)
T with the joint probability 

density function (PDF), fS(s).  

Assume that 𝑌̃  denotes the short-term extreme response during a specific short-term 

condition s, and then the corresponding cumulative density function (CDF) for the short-term 

extreme response is represented as 𝐹𝑌̃|𝐒. Let the variable Y represent the long-term extreme 

response by considering the contribution from each short-term environmental condition. By 

applying the all short-term extremes method [1], the long-term CDF of the short-term extreme 

response can be approximated as:     

     ( ) ( ) ( )
nY YR

F y F y f d  SS
s s s                                                        (1) 

However, it is found that Eq. (1) is not an ergodic average, and the long-term distribution of 

the short-term extreme response should be modified as [21]:  

      ( ) exp ln ( ) ( )
nY YR

F y F y f d 
  SS

s s s                                                     (2) 

In addition to the all short-term extremes method, the long-term CDF of the short-term 

extreme response can also be obtained by the average upcrossing rate formulation in association 

with the Poisson estimation [1]. The basic assumption for this method is that upcrossings of 

high response levels are statistically independent, and finally the same expression is obtained 

as Eq. (2) [21]. Moreover, it has been found that the approximate formulation (1) tends to 

underestimate the long-term extreme response compared to the exact formulation (2) [5, 22]. In 

this work, assume that the differences between Eqs. (1) and (2) are not significant in the 

following study, and the most commonly used formulation (1) is applied for the subsequent 

derivations.  

The N-year extreme response, i.e., the response with a return period of N years, 𝑦𝑁  is 

obtained as:  

     1
(1 )

N Y f
y F P


                                                                    (3) 
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 where 𝑃𝑓 is the corresponding failure probability for the N-year return period.  

It is seen from Eq. (1) that the determination of the extreme response distribution 𝐹𝑌(𝑦) 

should be evaluated numerically. The computational effort can be reduced by applying the 

FORM in connection with the structural reliability analysis. In the following study, the 

complementary probability distribution (i.e., the exceedance probability) should be applied, 

which is written as:  

     ( ) 1 ( )
Y Y

Q y F y                                                                 (4) 

Within the FORM terminology, assume that we would like to estimate the exceedance 

probability for a given high threshold, 𝑦𝑐 and the failure function (i.e., the limit state function)  

is given as: 

    ( , )
c c

G y y Y S                                                                  (5) 

and then 

    
( , ) 0

( ) ( ) ( )
c

Y c YG y
Q y F y f d


  SSS

s s s                                                     (6) 

In order to alleviate the calculation of the integral in Eq. (6), the physical variables in the 

integral are usually transformed into a space consisting of independent and standard normal 

variables (i.e., the U space). Such a transformation is generally performed by the Rosenblatt 

transformation [23]: 

     

1

2 1

1 2

1

1 1

1

2 2 1

1 1

1 1 2, , ,

( ( ))

( ( ))

( ( , , , )) ( ( ))
n

S
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n nY S S S Y

U F s

U F s s

U F y s s s F y





 



 

 

   
S

s

                                  (7) 

where Ф denotes the CDF of the standard normal function and F represents the cumulative 

distribution function of the original random variables. In the transformed U space, the 

exceedance probability (6) is written as: 

      
( ) 0

( ) ( )
Y c

G
Q y d


 

U
U

u
u u                                                         (8) 

where the vector U=(U1, U2, …, Un+1)
T, 𝐺𝑼 represents the failure function (5) transformed in 

the U space, and 𝜙𝑼 denotes the standard multivariate normal PDF. 

The basic idea behind the FORM for the approximation of the failure probability is that the 
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failure surface is replaced with an n-dimensional hyperplane at the design point, which 

corresponds to the closest distance to the origin on the failure surface. The principle of the 

failure probability approximated by the FORM is illustrated in Fig. 1. The closest distance to 

the origin is given as: 

    
1 2

1
ˆ

n

ii
u




                                                                    (9) 

where (
1 2 1

ˆ ˆ ˆ, , ,
n

u u u


) represents the design point, and then the failure probability in Eq. (6) is 

approximated as:     

    ( ) 1  ( )
Y c

Q y                                                                  (10)    

 

Ui

Uj

FORM failure boundary 

Failure surfaceGU = 0

 

Figure 1. Illustration of the failure probability approximated by FORM in the U space 

 

It is seen in Fig.1 that FORM is a simplified method to calculate the exceedance probability 

for a given high response level yc. Different yc values correspond to different failure surfaces 

and β values, and therefore, the desired N-year extreme response corresponds to a certain 

exceedance probability, relevant iteration or interpolate schemes that should be applied. 

In addition to the abovementioned FORM in association with iteration schemes, the IFORM 

can also provide a very efficient way to obtain the long-term extreme response that corresponds 

a given return period. The main idea of the IFORM is that we first specify the exceedance 

probability and seek the corresponding extreme response level. Therefore, iteration schemes are 

not required in this method. For a given exceedance probability Pf, the corresponding reliability 

index is given as Ф-1(1- 𝑃𝑓). Then, a sphere with the radius Ф-1(1- 𝑃𝑓) is created in the U space 

and the target extreme response must be somewhere on the sphere. By transforming the sphere 



7 

 

in the U space into a physical parameter space, the target response level, 𝑦𝑁, is found as the 

highest value on the surface in the physical parameter space [24, 25].  

The main principle of the IFORM is presented as follows: first, an (n+1)-dimensional sphere 

with the radius Ф-1(1- 𝑃𝑓) is created in the U space, i.e.:  

      
1 2 1 2

1
( (1 ))

n

i fi
u P

 


                                                                      (11) 

where ui represents the values of the standard normal variables on the sphere.  

Then, transform the variables in the U space into the physical parameter space. According 

to the last equation in Eq. (7), we obtain:      

       1
( ) ( )

n Y
u F y


 

S
s                                                            (12) 

and therefore,        

       
1

1
( ( ) )

nY
y F u




 

S
s                                                           (13) 

where the vector s=(𝑠1, 𝑠2 ,…, 𝑠𝑛)T in the physical parameter space represents the transformed 

values of the vector (𝑢1, 𝑢2 ,…, 𝑢𝑛)T in the U space, which implies the requirement given by 

Eq. (11). The maximum value of y in the formulation (13) is selected as an approximation of 

the target N-year extreme response 𝑦𝑁  defined in Eq. (3). In addition, more details on the 

numerical solution to the IFORM problem, can be found in Refs. [26, 27].  

3.  Definitions of environmental contours 

3.1 ECM and environmental contours based on the IFORM   

The development of the ECM for approximating the long-term extreme response prediction 

is based on the abovementioned IFORM. To begin with, we assume that the variability of the 

τ-hours short-term extreme response 𝐹𝑌̃|𝐒(𝑦|𝒔)  is not important and can be neglected for 

estimating the failure probability. Therefore, the random variable Un+1 can be set as a fixed 

value of 0 in Eqs. (11)-(13), and then all combinations of the environmental parameters 

involved in Eq. (11) can be described by a new (n-dimensional) sphere with radius βF, i.e.: 

      
2 2

,1

n

i ECM Fi
u 


                                                                 (14) 

where βF= Ф-1(1-𝑃𝑓). 

When the n-dimensional sphere in the U space, described by Eq. (14), is transformed into 
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the physical parameter space by the inverse Rosenblatt transformation, the environmental 

contour that corresponds to the N-year return period can be obtained. Since the randomness of 

the variable Un+1 is assumed to be neglected, the median values of the short-term extremes along 

the abovementioned environmental contour are calculated. The maximum value of these 

median values [25], given by Eq. (15), would be a good approximation of the long-term extreme 

response that corresponds to an exceedance probability Pf. 

     1
max ( (0) )

ECM ECMY
y F


 

S
s                                                     (15) 

where the vector sECM represents the short-term environmental conditions on the environmental 

contour that corresponds to the N-year return period.  

In reality, for many structures and systems, the variability of the short-term extreme response 

is important, i.e., the variable Un+1 cannot be set as 0 in the U space. In order to compensate the 

omission of the variability for the short-term extreme response, an empirical fractile value, α,  

higher than 0.5 is applied to the largest short-term extreme response [24]. Then we obtain: 

    
1
( )

ECM ECMY
y F 


S

s                                                             (16) 

where 𝐹̅𝑌̃|𝐒(𝛼|𝒔𝐸𝐶𝑀) represents the CDF of the largest short-term extreme response for the 

environmental conditions on the environmental contour. The fractile value α is structure-

dependent, and relevant recommendations for this value can be found in Refs. [8, 24].  

It is seen that the ECM is a further simplified method based on the IFORM described in 

section 2 since there is a one-dimension reduction for the long-term extreme response prediction. 

In reality, this approximation method has been widely used in the early design stage due to its 

high efficiency and acceptable accuracy. In this method, a limited set of design conditions is 

selected on the environmental contour, e.g., see Fig. 2, and then, time consuming calculations 

for structural responses are only needed for these selected environmental conditions. The main 

advantage of the ECM used for structural design lies in the fact that the description of the 

environmental parameters is uncoupled from the structural response and therefore, estimating 

the long-term extreme response for a given return period can be significantly simplified by 

determining the environmental contour that corresponds to the same return period. 
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Figure 2. Environmental contour in the physical parameter space and selected environment 

design conditions 

 

In fact, transforming the sphere with radius βF in the U space, described by Eq. (14), is the 

traditional IFORM to generate the environmental contour that corresponds to the N-year return 

period. The use of the IFORM is a standard design practice for generating environmental 

contours [8]. In addition, there are also different methods and concepts for the establishment of 

the environmental contour that corresponds to a given return period, such as the ISORM, the 

highest density function method [20], direct Monte Carlo simulations [17] and the principal 

component analysis approach [18].  

 

3.2 Environmental contours based on ISORM 

In this section, the principle of the environmental contours based on the inverse SORM 

(ISORM) is described. Before generation of the ISORM contour, the SORM used for estimation 

of the failure probability is briefly described. Unlike the FORM approximating the failure 

surface by a linear function at the design point in the U space, the SORM approximates the 

failure function GU (given in Eq. 8) as a quadratic function at the same design point. This 

second-order failure boundary in the U space can be expressed as: 

     
1

2

_

1 1

( ) ( )
m n

SORM i i i i i

i i m

G a u b u c


  

    U
u                                                        (17) 

where GU_SORM represents the quadratic failure boundary in which (n+1-m) variables occur in 

linear terms only. In addition, ai, bi, δi (i=1, 2, …, n+1) and c represent relevant coefficients in 

the quadratic failure function.             
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Then, we look back to the failure probability approximation by the FORM in the U space. It 

is seen in Fig. 3a that, for the convex failure surface in the U space, the FORM approximation 

gives an upper boundary, and thus overestimates the true failure probability. However, if the 

true failure region in the U space is a convex set (e.g., view from the origin in Fig. 3b) the 

FORM approximation underestimates the failure probability. In reality, the shape of the failure 

surface might be unknown beforehand, and it becomes apparent only during the design process. 

That means, if the failure surface in the U space is a concave set, the generated environmental 

contour by the IFORM would be non-conservative for the design purpose [20].  

Ui

Uj

Ui

Uj

Safe domain

(SORM)

FORM failure boundary 
FORM failure boundary 

Convex failure surface Concave failure surface

SORM failure boundary SORM failure boundary 

Safe domain

(SORM)

(a) (b)

 

Figure 3. Illustrations of failure probabilities approximated by the FORM and proposed SORM 

in the U space 

 

In this work, a more conservative concept of environmental contour is proposed to address 

such a shortcoming of the traditional IFORM. Instead of replacing the failure surface in the U 

space with a tangent plane at the design point, a sphere with a radius equal to the distance 

between the origin point and the design point is applied to approximate the failure surface. Then, 

the complement of the failure domain, i.e., the true safe domain is approximated as the region 

covered by the sphere. In fact, the proposed sphere in the U space, is a specific kind of second-

order failure boundary described by Eq. 17. In this case, the SORM failure boundary 

corresponds to the quadratic failure function with ai = 1, bi = 0, δi = 0 and c = β2. It is seen in 

Fig. 3 that the true failure probability is always overestimated by the proposed (specific) SORM 

regardless of the shape of the failure surface, since the real safe domain is always larger than 

the safe domain estimated by the SORM (given as the gray regions). In the specific SORM, the 

failure probability in Eq. (6) is approximated as:  
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        1 2 2

1

( ) ( )n

ii

Y c
u

Q y d







 U

u u                                                                (18)    

Similar to the IFORM, determining the environmental contour for a given return period by 

the ISORM is also an inverse problem of estimating the failure probability. That means, assume 

the failure probability Pf  is given, then we find the restrictions that impose on the environmental 

parameters. For establishment of the environmental contour for a given return period by the 

ISORM, an n-dimensional sphere with the radius βS is created at first. The value of βS is 

determined by the following equation:  

     
2 2

1

1 ( )n

i si

f
u

P d






 
 U

u u                                                         (19) 

For the standard normal variables in the U space, ∑ 𝑢𝑖
2𝑛

𝑖=1  has a χ2 distribution with n degrees 

of freedom. As a result, the radius βs is expressed as: 

2 2
( ) 1

n s f
P                                                                    (20) 

. Then βS can be obtained by the inverse function of the 𝜒𝑛
2 distribution. 

It is seen that the corresponding environmental contours obtained by the ISORM for a given 

return period can always be conservative for the design purpose compared to the environmental 

contour generated by the traditional IFORM. The sphere is the simplest second-order surface 

to approximate the failure surface shown in Fig. 3 if we have no more information about the 

failure surface. Because the principle curvature on the sphere are kept as a fixed value, the 

solution of environmental contour can be simplified as a one-dimensional problem by taking 

advantage of the chi-square function shown in Eq. 20. Furthermore, it should be mentioned that, 

for the proposed ISORM contour, the main drawback is that it tends to give even more 

conservative results than the IFORM contour if the true failure set is convex.  

After creation of the n-dimensional sphere with the radius βF or βS in the U space, the 

environmental contour is generated by transforming the independent standard normal variables 

into physical variables via the inverse Rosenblatt transformation. It is seen that for the 

environmental contours created by the IFORM or the proposed ISORM, the inverse Rosenblatt 

transformations are applied since the probabilistic distributions of the environmental variables 

are described by the conditional modeling approach. However, such a conditional modeling 

approach requires a great amount of data to establish the conditional distributions between the 

environmental variables. For the cases where only the marginal PDFs of the environmental 

variables and the correlation coefficients between the variables are known, the Nataf 
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transformation can capture these correlations [16]. Then, the environmental contours can be 

established by applying the Nataf transformation with the abovementioned available data.  

In addition to the environmental contour based on the abovementioned ISORM, there is 

another concept of the “conservative” environmental contour, namely, the highest density 

contour (HDC) [20]. In this concept, the environmental contour is defined as the boundary of a 

region that encloses a probability of 1-Pf  in the physical parameter space and the joint PDF of 

the environment parameters fS(s) is a constant value on the boundary. That means, we have to 

find a specific boundary with a constant PDF value fh in the physical parameter space and the 

region enclosed by this specific boundary is described as:  

     ( ) ( )
h h

R f f f 
S

s                                                              (21) 

then, the probability enclosed in the region R is 1-Pf, i.e.:  

    
( )

1 ( )
h

f
R f

P f d   S
s s                                                               (22) 

. Finally, the boundary of the region R, is referred to as the HDC. 

Generally, in order to find the specific boundary with a constant joint PDF value of the 

environmental parameters, the physical parameter space is discretized into a finite number of 

grid cells (see Fig. 4b) and the value of the joint PDF in each cell is evaluated by numerical 

integrations. Then, a relevant iteration scheme is applied to find the HDC, i.e., the desired 

boundary, and the associated region R, within which the enclosed probability is 1-Pf [20]. 

However, it is seen that the HDC is based on the cell-mapping method, and the computational 

burden would dramatically increase with the dimensionality of the physical space. Furthermore, 

for the traditional IFORM-contour and the proposed ISORM-contour in this work, the 

computation cost is very efficient and nearly independent of the dimensionality of the 

environmental variables since the solution to the environmental contour reduces to a one-

dimensional problem due to the Rosenblatt transformation and rational symmetry of the 

standard normal distribution.  

In fact, the environmental contour obtained by the ISORM is a similar concept to the HDC. 

In the ISORM, an n-dimensional sphere is created in the U space, and the radius of the sphere 

βS is determined in order to fulfill the requirement that the probability enclosed by the sphere is 

1-Pf. Since the environmental contour in the physical parameter space is obtained by the inverse 

Rosenblatt transformation, the constant PDF value on the environmental contour could not be 

preserved. The difference between the ISORM-contour and the HDC concept is shown in Fig. 

4.  
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Figure 4. Illustrations of the environmental contour generated by the ISORM and the concept 

of

 

4. Applications and comparisons 

4.1 Wave statistics   

In this section, the wave statistics described by the significant wave height Hs and the wave 

period Tz (zero up-crossing period) are selected for study. The joint distribution of Hs and Tz is 

obtained by the conditional modeling approach described and applied in Refs. [8, 28]. This 

probabilistic model consists of  a marginal PDF for the significant wave height and a conditional 

PDF for the wave period, which is given as                   

   ( , ) ( ) ( )
s z s z s

H T s z H s z sT H
f h t f h f t h                                                    (23) 

The marginal PDF of Hs is described by a three-parameter Weibull distribution: 

   

1

( ) exp

Hs Hs

s s s

s

s s s

H s H s H

H s

H H H

h h
f h

 

  

  

       
        

     

                                          (24) 

where 𝛼𝐻𝑠
and 𝛽𝐻𝑠

are the scale and shape parameters for the Weibull distribution, respectively. 

𝛾𝐻𝑠
 is the location parameter of the distribution.  



14 

 

For the conditional distribution of the wave period with a given significant wave height, it is 

modelled by a lognormal distribution:  

   

2

ln

2

lnln

(ln( ) )1
( ) exp

22

z

z s

zz

z T

z sT H

TT z

t
f t h

t




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in which the mean value 𝜇𝑙𝑛𝑇𝑧
 and standard deviation 𝜎𝑙𝑛𝑇𝑧

 of ln(Tz) are assumed to be 

dependent on the significant wave height in the following manner: 
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In this work, the wave statistics were sampled every 6th hour in the North Atlantic Ocean 

from January 1958 to February 2002 [29, 30]. The parameters for the three-parameter Weibull 

distribution described by Eq. (24) are obtained by a least squares fit and these values are given 

as: 𝛼𝐻𝑠
= 2.776, 𝛽𝐻𝑠

= 1.471, 𝛾𝐻𝑠
= 0.889. The coefficients ai and bi (i=1, 2, 3) in Eq. (26) are 

estimated from actual data and these coefficients are obtained as: a1 = 0.100, a2 = 1.489, a3 = 

0.190, b1 = 0.040, b2 = 0.175 and b3 = -0.224 [29].  

For different return periods, the corresponding failure probabilities, Pf, are given in Table 1. 

The radiuses of the cycles in the U space, i.e., βF and βS are also shown in this Table. Since the 

ISORM has a more conservative restriction on the environmental variables, the value of βS is 

always larger than that of βF for the same return period. This difference in the U space is further 

illustrated in Fig. 5, in which the left figure shows the principle of the traditional IFORM with 

Pf = 1-Ф(βF) and the right figure presents the principle of the proposed ISORM with 𝜒2
2(𝛽𝑆

2) =

1 − 𝑃𝑓.  

 

Table 1. Different return periods and the corresponding failure probabilities, Pf 

=1/(N‧365.25‧24/τ), the radiuses of the cycles in the IFORM, βF, and in the ISORM, βS 

Return period Pf  βF βS 

10 years 6.845E-05 3.814 4.379 

25 years 2.738E-05 4.034 4.584 

50 years 1.369E-05 4.194 4.733 

    100 years 6.845E-06 4.349 4.877 
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1-pf

Ui

Uj

Ui

Uj

pf

(a)   IFORM (b)   ISORM
 

Figure 5. Differences between the IFORM and the ISORM used to generate the environmental 

contour for a given period in the U space   

 

By applying the inverse Rosenblatt transformation, the environmental contours based on the 

IFORM and the ISORM for different return periods can be obtained. As an example, the 25-

year contours generated by the IFORM and the ISORM are shown in Fig. 6. In addition, a total 

of 36525 sea state points (i.e., 25 years of 6-h samples) reproduced by Monte Carlo simulation 

is also plotted in Fig. 6 as a 25-year data set. It is seen in Fig. 6 that the environmental contours 

generated by the ISORM and the IFORM have the similar shapes, but the ISORM-contour 

covers a larger area than the IFORM-contour for the same return period since the latter has 

more conservative restrictions on the environmental variables. 

 

 

Figure 6. The 25-year environmental contours obtained by the IFORM and the ISORM, the 

HDC for the same return period, and sea states generated by Monte Caro simulation 
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Figure 7. Illustration of the inverse Rosenblatt transformation and the difference between the 

environmental contours generated by the IFORM and the ISORM for the same return period in 

the physical parameter space 

 

In order to have a detailed study for the difference between the IFORM-contour and the 

ISORM-contour for the same return period, the intersection points between the axis in the U 

space and the cycles with radiuses of βF and βS are selected. These points are denoted a, b, c 

and d (for the cycle with the radius βF), and A, B, C and D for the other cycle. The inverse 

Rosenblatt transformation is illustrated in Fig. 7, and the eight points a, b, c, d, A, B, C and D 

are mapped to the corresponding points denoted a′, b′, c′, d′, A′, B′, C′ and D′ in the physical 

parameter space by applying one-to-one mapping, i.e., the inverse Rosenblatt transformation. 

It is seen in Fig. 7 that for negative values of u1 (corresponds to the significant wave height) 

and negative values of u2 of the cycles, the difference between the IFORM-contour and the 

ISORM-contour is limited. However, such a difference becomes apparent for large values of 

the significant wave height and wave period, e.g., in the region with u1 > 0 and u2 > 0 on the left 

figure. Moreover, for different return periods, the maximum values of HS and Tz along the N-

year environmental contours generated by the IFORM and ISORM are plotted in Figs. 8 and 9, 

respectively. Since large values of Hs and/or wave period Tz are usually associated with large 

wave energy and serious structural response, such a significant difference revealed by Figs. 6-

9 in the current study should be considered in the design of ships and offshore structures.  

The environmental contour based on the highest density function, i.e., the HDC for the 25-

year return period, is shown in Fig. 6 and the maximum values of HS and Tz along the N-year 

HDC obtained from Ref. [20] are also plotted in Figs. 8 and 9, respectively. The similarity and 

difference between the HDC and ISORM-contour have been described in section 3.2. The good 
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agreements between these two contours for the same return period, shown in Figs. 6, 8 and 9, 

can be used to verify the correctness of the ISORM-contour in this work. Furthermore, the 

difference between the ISORM-contour and HDC in the left corner of Fig. 6 can be regarded as 

being caused by the inverse Rosenblatt transformation since such a nonlinear transformation 

cannot guarantee the constant value of the joint PDF on the environmental contour in the 

physical parameter space.        

 

 

 

Figure 8. Maximum values of HS along the environmental contours for different return periods 

   

 

 

Figure 9. Maximum values of Tz along the environmental contours for different return periods   
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4.2 Wind and wave statistics   

In this section, the wind and sea states in the northern North Sea are considered [31]. The 

environmental statistics are described by a joint probabilistic model of mean wind speed Uw, 

significant wave height Hs and spectral peak period Tp, which is given as:  

     ( ) ( ) ( ) ( )
w s p w s w p s w

U H T w U w s w p s wH U T H U
f u f u f h u f t h u                                          (27) 

In this joint model, wind is characterized by 1-hour mean wind speed at 10 m above the 

average sea level and it is assumed to be described by a two-parameter Weibull distribution:         

         
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( ) exp
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w w w
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U w w U w U
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f u u u
 
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



                                              (28) 

where 𝛼𝑈𝑤
and 𝛽𝑈𝑤

are the scale and shape parameters for the Weibull distribution, respectively. 

These values were determined to be 1.708 and 8.426 on the basis of the measurements from the 

northern North Sea in the period of 1973-1999. 

The wave statistics were obtained from 3-hour stationary sea states. For the conditional 

distribution of Hs for a given wind speed Uw, it is suggested to follow a two-parameter Weibull 

distribution with the scale and shape parameters given as:   

     1.322
1.8 0.100

sH w
U                                                               (29) 

     2.0 0.135
sH w

U                                                                (30) 

Similar to the probabilistic model given by Eq. (25), the conditional distribution of the 

spectral peak period Tp for given wind speed Uw and significant wave height Hs is described by 

a lognormal distribution:   
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where 𝜇𝑙𝑛𝑇𝑝
 and 𝜎𝑙𝑛𝑇𝑝

 are the mean value and standard deviation of ln(Tp), respectively. They 

are given by the following equations:         
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where 𝜐𝑇𝑝
= 𝜎𝑇𝑝

𝜇𝑇𝑝
⁄ . The mean value and standard deviation of the spectral peak period Tp are 

assumed to be dependent on the significant wave height and wind speed by the following two 

equations:   

         
0.78

0.529

0.78

(1.764 3.426 )
(4.883 2.68 ) 1 0.19
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w s

T s

s

u h
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          3
1.7 10 0.259 exp 0.113

p pT s T
h                                                                        (35) 

In this work, the 1-hour mean wind speed is assumed to be representative for a 3-hour 

stationary condition and then the 50-year environmental contour for the 1-hour mean wind 

speed versus the 3-hour sea state is considered. This kind of environmental contour can be 

applied for the design of marine structures, such as offshore wind turbine [13], combined wind 

and wave energy devices [32]. Since the wind and wave statistics are described by the joint 

model given in Eq. (27), the inverse Rosenblatt transformation is applied to transform the three-

dimensional spheres with radiuses of βF and βS in the U space into the desired contour surfaces 

in the physical parameter space. 

 

 

Figure 10. The 50-year contour surface of the joint distribution for mean wind speed and waves 

generated by the IFORM 
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Figure 11. The 50-year contour surface of the joint distribution for mean wind speed and waves 

generated by the ISORM 

 

The 50-year environmental contour surfaces of the joint distribution for mean wind speed 

and waves generated by the IFORM and the ISORM are presented in Figs. 10 and 11, 

respectively. In the U space, the radius of the sphere for the IFORM βF is equal to 4.349 for the 

50 years return period and the corresponding radius for the ISORM βS is 5.166. It is seen in 

Figs. 10 and 11 that the contour surfaces generated by the IFORM and ISORM have similar 

shapes, but the environmental contour obtained by the ISORM method has a wider distribution, 

since the ISORM-contour has more conservative restrictions on the environmental parameters 

than the IFORM-contour for the same return period.   

In order to have a detailed study of the comparisons between the IFORM-contour and the 

ISORM-contour for the same return period, two-dimensional contour lines for different wind 

speeds are considered. The maximum values of the significant wave heights and wave spectral 

periods along the contour lines for different wind speeds are shown in Fig. 12. Then, taking the 

NREL (National Renewable Energy Laboratory) 5 MW wind turbine with a reliable floating 

supporter as an example [33], four representative wind speeds: Uw = 35 m/s (survival model), 

25 m/s (cut out wind speed), 11.4 m/s (rated wind speed) and 5 m/s (cut in wind speed), are 

selected to illustrate the differences of the two-dimensional contour lines obtained by different 

methods and the results are plotted in Fig. 13. 
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Figure 12. Maximum values of Hs and Tp of the two-dimensional contour lines for different 

wind speeds on the 50-year contour surfaces generated by the IFORM and the ISORM 

 

 

Figure 13. Two-dimensional contour lines for different wind speeds on the 50-year contour 

surfaces generated by the IFORM and the ISORM 

 

It is seen in Fig. 12 that for a given wind speed, the maximum values of Hs and Tp on the 

ISORM-contour are always larger than those values on the IFORM-contour. Meanwhile, as 

observed in Fig. 13, the two-dimensional IFORM-contour lines have similar shapes as the 
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ISORM-contour lines. Due to more conservative restrictions on the environmental parameters, 

the ISORM-contour line has a broader range than the IFORM-contour for the same wind speed. 

Moreover, it is noted in Fig. 13 that for the cut in wind speed and the rated wind speed, the 

differences between the IFORM-contour lines and the ISORM-contour lines in the regions with 

small values of Hs and Tp are not significant and such differences become apparent as 

increasing values of  Uw, Hs and Tp.  

 

4.3 First-year ice ridge statistics 

In recent years, increased plans and activities for maritime transport and for exploiting 

natural resources, such as oil and gas, minerals, in Arctic regions promoted the requirement of 

ice-capable vessels and offshore structures [34]. For ships and offshore structures in sea ice 

fields, a number of different ice types, such as level ice, broken ice, ice ridges (see Fig. 14), will 

be encountered. Ice ridges are assumed to pose the major threat to the ships and offshore 

structures in the sea ice area without icebergs, since they determine and govern the design loads 

for the structures [35].  

29/28

www.ntnu.no Wei Chai, Bernt J. Leira – Department of Marine Technology

Level ice

Ice ridges

Open water 

with thin ice

 

Figure 14. An example of different ice conditions in the Arctic region   

 

A ridge is a line or wall of broken ice features forced up by pressure or shear. More 

specifically, ice ridges are formed from ice sheets/floes as they break under compression or 

shear due to wind and current. When first formed, an ice ridge is simply a pile of unconsolidated 

ice blocks. Then, these blocks may become consolidated to some extent by refreezing processes 

and form the ice ridge. Fig. 15 illustrates a typical ice ridge, which consists of two parts: the 

sail and the keel. The sail part is above the water and has pores filled with air and snow. The 
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keel is the underwater part and can be further separated into an upper completely frozen layer 

called the consolidated layer, which is always thicker than the surrounding level ice thickness, 

and a lower unconsolidated part that has loose blocks partially refrozen together with water 

trapped between the blocks [36].  

Basically, ice ridges are divided into the first-year (e.g. Fig. 15), second-year, and multi-year 

ice ridges. During its first winter and summer, an ice ridge is called a first-year ridge.  The 

consolidation process in the keel part progresses with time and the keel part is close to being 

fully consolidated if the ridge has survived one summer’s melt. The ridges that survive one or 

more summers are called second-year and multi-year ridges, respectively. In this work, the first- 

year ridge is considered for the design of ice-capable vessels. For one thing, the ice conditions 

along the commercial Arctic shipping routes, such as the Northern Sea Route, are mostly first-

year and few ice appears in summer seasons. For another, fewer studies have been made on 

second- and multi-year ice ridges than first-year ice ridges, and information on the physical and 

mechanical properties is very limited for second- and multi-year ice ridges.  

 

hk

Waterline hcl Consolidated layer hl

wk

hs

ws

Rubble blocks

Sail blocks
Sail

Keel

 

Figure 15. First-year ice ridge with some key parameters: sail draft hs, sail width ws, level ice 

thickness hl, consolidated layer thickness hcl, keel draft hk and keel width wk   

 

In this section, the concept of environmental contours is applied in order to provide an 

efficient method to estimate the long-term extreme response of ice-capable vessels sailing along 

the Arctic routes. Since the ice ridges govern the design loads for these ice-capable vessels, the 

key parameters of the first-year ice ridges that determine the response of a vessel should be 

identified at first, and then relevant statistical distributions for these key parameters should be 

applied in order to build the environmental contours for a given return period. In addition, for 

the ship-ice ridge interaction process with a given set of environmental parameters for the ice 
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ridge, the variability of the short-term extreme response is assumed not to be important and can 

be regarded as a fixed value. Then, Eq. (15) is applied to estimate the long-term extreme 

response by applying the ECM. 

For the scenario of an ice-capable ship interacting with a first-year ice ridge, the ship 

structure can be simplified as a downward sloping structure. The effects of ridge sail for the 

first-year ice ridge can be neglected since the volume of the sail is small compared to that of 

the keel part [37]. On the other hand, failure of the consolidated layer is the dominant part in 

determining the keel loads due to the ice ridge interaction with slope structure. This has been 

confirmed in Ref. [38] with relevant studies on ice ridges failure against a confederation bridge, 

whose piers are designed as (slope) ice-breaking cones. In addition, there is no correlation 

between the keel depth hk and the keel loads. For the action due to the consolidated layer, it can 

be approximated as level ice with an equal thickness that interacts with the slope structure and 

the mechanical properties of the consolidated layer are assumed to be close to those of level ice 

[35, 37].  

Consolidated layer

Unconsolidated layer

Ship

Original outline of keel
Flow rubbles

 

Figure 16. Illustration of a ship interacting with a typical first-year ice ridge  

 

Based on the former studies for first-year ice ridges interacting with slope structures, the 

ship-ice ridge interaction process is illustrated in Fig. 16. Flow rubbles from the unconsolidated 

layer would be cleared by the local water current. As a preliminary design, the interaction 

process can be simplified as a ship-level ice interaction event, which has been studied 

extensively. Generally, the ship-level ice interaction process is initiated by a localized crushing 

of the ice edge, and then the contact area between the ship and the ice sheet as well as the 

crushing force increase with the ship advancing and penetrating the ice features. The ice sheet 

eventually deflects and the bending stresses promote a flexural failure at a certain breaking 

distance from the crushing region [39]. Therefore, the thickness, crushing strength and flexural 

strength of the consolidated layer are considered as the most important parameters for 
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determining the response of the vessel due to the ship-ice ridge interaction at the early design 

stage.   

In order to build environmental contours used for the design purpose, statistical models 

should be applied to describe the abovementioned key parameters. The consolidated layer 

thickness is believed to depend on geographical location and season. In this work, the first-year 

ice ridges in the Barents Sea are considered, since many field experiments have been performed 

in this sea area by relevant Norwegian and Russian research institutes. A gamma distribution, 

Eq. (36), is applied to model the average thicknesses of the consolidated layers, which are 

collected by mechanical drilling [36]:   

     11
( ) exp( )

( )

k cl

cl clk

h
f h h

k  


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

                                                     (36) 

where k and θ are the shape and scale parameters for the gamma distribution, respectively. 

Based on the experimental data, these two values are determined to be 2.97 and 0.54. 

Experimental data for the flexural strength and crushing strength of the consolidated layer 

are limited and the mechanical properties of the surrounding level sea ice can be applied as an 

effective alternative [40]. The flexural strength of the level sea ice depends on the average 

temperature and salinity. On the basis of the experimental data for the flexural strength of the 

level ice in the Barents Sea in Refs. [41, 42], the marginal PDF of the flexural strength is 

described by a two-parameter Weibull distribution:    
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                                             (37) 

where the scale parameter 𝛼𝜎𝑓
= 0.274 and the shape parameter 𝛽𝜎𝑓

= 3.167 are obtained from 

actual data. 

The crushing (or compressive) strength of level sea ice is related to the ice salinity, 

temperature, density and loading direction [43]. Full-scale measurements have been performed 

to collect the data of the uniaxial compressive strength of the first-year level ice in the Barents 

Sea, and the distribution of the crushing strength for the vertically loaded samples can be 

described by the gamma distribution given in Eq. (36) with a shape parameter of 4.70 and a 

scale parameter of 0.40 [44]. From the abovementioned measured data obtained by in situ 

experiments and the probabilistic models given by Eqs. (34) and (35), the probability 
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distributions of the consolidated layer thickness, flexural strength and crushing strength are 

presented in Figs. 17, 18 and 19, respectively. 

 

 

 

Figure 17. Probability distribution for the consolidated layer thickness hcl  

 

 

 

Figure 18. Probability distribution for the flexural strength σf  
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Figure 19. Probability distribution for the crushing strength σc 

 

It is seen in sections 3 and 4 that developing the environmental contour requires the joint 

distribution of the environmental parameters based on the conditional modeling approach. A 

great amount of sampled data is required to build such a joint distribution for the environmental 

variables. However, due to the limitation of experimental data for the ice ridge statistics, only 

the marginal PDFs of the abovementioned key parameters can be obtained. Nevertheless, the 

joint distribution of the environmental parameters with consideration of the correlations 

between these environmental variables can be approximated by the Nataf distribution model, 

and then, the environmental contours can also be obtained by the Nataf transformation [16]. 

Moreover, it should be noted the Nataf transformation model is essentially a type of copula 

approach and such simple copula models may fail to describe the data well in some cases [45].      

As a simple case for demonstrating the development of environmental contours used for the 

design of ice-capable vessels, a set of coefficients are introduced for the following study. In this 

case, the variables S1, S2 and S3 represent the consolidated layer thickness, flexural strength and 

crushing strength, respectively. The symbols ρ12, ρ13 and ρ23 represent the correlation 

coefficients between these variables. Based on the Nataf transformation and the probabilistic 

distributions of the environmental parameters, the following expressions can be obtained:  
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where U1, U2 and U3 represent independent standard normal variables. The coefficients ρ′ij (i, j 

=1, 2, 3; i ≠ j) are the corresponding (equivalent) correlation coefficients used in the Nataf 

transformation, and their relationships with ρij can be approximated by a semi-empirical 

equation, which is given as:      

     
ij ij

                                                                           (41) 

Relevant descriptions for determining the function ζ can be found in Ref. [46].  

It is seen from Eqs. (38)-(41) that, when a three-dimensional sphere with radius βF or βS is 

created in the U space, the environmental contour for a given return period can be obtained by 

the IFORM or the ISORM based on the Nataf transformation. Assume that the desired ice-

capable ship mainly sails and operates in the Barents Sea with 5000 km of the annual voyage 

in the ice ridge field and the ice ridge density is 2/km along the route [47]. In addition, the 

correlation coefficients ρij (i, j =1, 2, 3; i ≠ j) are assumed to be 0.5 in this case study. Therefore, 

for a 50-year return period, the failure probability is determined by Eq. (42), which is given as: 

     1 (50 5000 2)
f

P                                                                 (42) 

Correspondingly, the radius of the sphere in the U space used for generating the IFORM contour 

βF is determined as 4.611 according to Eq. (14). Similarly, according to Eq. (20), radius βS = 

5.407 is obtained for developing the ISORM-contour for the same return period.  

The 50-year contour surfaces generated by the IFORM and the ISORM are plotted in Figs. 

20 and 21, respectively. The transformations of the three-dimensional spheres in the U space to 

the contour surfaces are executed by the Nataf model, in which the statistics of the three key 

parameters of the first-year ice ridge used for the design of a desired ice-capable vessel are all 

incorporated. Moreover, in order to present a detailed comparison of these two environmental 

contours, two-dimensional contour lines for different consolidated layer thicknesses are plotted 

in Fig. 21. In these four selected consolidated layer thicknesses, hcl = 1.59 m is the mean value 

of the collected samples.  
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Figure 20. The 50-year contour surface of the consolidated layer thickness, flexural strength 

and crushing strength generated by the IFORM 

 

 

 

 

Figure 21. The 50-year contour surface of the consolidated layer thickness, flexural strength 

and crushing strength generated by the ISORM 
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Figure 22. Two-dimensional contour lines for different consolidated layer thicknesses on the 

50-year contour surfaces generated by the IFORM and the ISORM 

 

In this case, similar to the examples given in sections 3 and 4, the main difference between 

the IFORM-contour and the ISORM-contour is that βF < βS due to the different principles behind 

the IFORM and ISORM for generating environmental contours. It is easily seen in Figs. 20 and 

21 that these two contour surfaces have similar shapes and that the ISORM-contour has more 

conservative restrictions on the three key ice-ridge parameters than the IFORM-contour for the 

same return period. These findings are consistent with the observations described in section 4. 

For the noticeable differences between the two-dimensional contour lines shown in Fig. 22, a 

reliable numerical model is required in order to investigate the difference between the extreme 

response estimations based on different environmental contours.  

Moreover, the correlation coefficients in this simple case are chosen somewhat arbitrarily 

since there are no former studies for the correlation between these parameters of the sea ice 

material. Therefore, a relevant study for this could promote the development of the reliability-

based design of ships and offshore structures in Arctic regions.           
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5. Conclusions 

In this work, the ECM used for estimating the long-term extreme response in the design of 

ships and offshore structures was described. The principles behind the traditional IFORM and 

the proposed ISORM for generating environmental contours to be used in the ECM were 

presented. Relevant examples, such as the wave statistics, wind wave statistics and first-year 

ice ridge statistics were applied in order to study the difference between the IFORM-contour 

and the ISORM-contour.  

Based on the abovementioned examples, it is found that the ISORM-contour and the 

IFORM-contour have similar shapes. However, the ISORM-contour has more conservative 

restrictions on the environmental parameters than the IFORM-contour, since the former is based 

on the assumption that the true failure surface of the environmental parameters in the U space 

is approximated as a specific second-order surface at the design point and the failure domain 

would be always overestimated regardless of the shape of the failure surface. Therefore, the 

result of the ISORM-contour is always conservative for the design purpose, which cannot be 

guaranteed by the traditional IFORM-contour. 

Furthermore, noticeable differences between the IFORM-contour and the ISORM-contour 

for the same return period have been observed in sections 4-6. Therefore, reliable numerical 

models or experiments are required to study and compare the performance of these two 

environmental contours used in the ECM for estimating the extreme response of ships and 

offshore structures at the early design stage. This could be a future work beyond current study.        
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