
Place cells in the hippocampus: Eleven maps for
eleven rooms
Charlotte B. Almea, Chenglin Miaoa, Karel Jezeka,b, Alessandro Trevesa,c, Edvard I. Mosera, and May-Britt Mosera,1

aKavli Institute for Systems Neuroscience and Centre for Neural Computation, Norwegian University of Science and Technology, 7491 Trondheim, Norway;
bBiomedical Centre and Department of Pathophysiology, Faculty of Medicine in Pilsen, Charles University in Prague, 306 05 Pilsen, Czech Republic;
and cCognitive Neuroscience, SISSA (International School for Advanced Studies), 34136 Trieste, Italy

This contribution is part of the special series of Inaugural Articles by members of the National Academy of Sciences elected in 2014.

Contributed by May-Britt Moser, November 4, 2014 (sent for review October 14, 2014; reviewed by Gyorgy Buzsáki, David J. Foster, and Mayank R. Mehta)

The contribution of hippocampal circuits to high-capacity episodic
memory is often attributed to the large number of orthogonal
activity patterns that may be stored in these networks. Evidence
for high-capacity storage in the hippocampus is missing, however.
When animals are tested in pairs of environments, different
combinations of place cells are recruited, consistent with the
notion of independent representations. However, the extent to
which representations remain independent across larger numbers
of environments has not been determined. To investigate whether
spatial firing patterns recur when animals are exposed to multiple
environments, we tested rats in 11 recording boxes, each in a
different room, allowing for 55 comparisons of place maps in each
animal. In each environment, activity was recorded from neuronal
ensembles in hippocampal area CA3, with an average of 30 active
cells per animal. Representations were highly correlated between
repeated tests in the same room but remained orthogonal across
all combinations of different rooms, with minimal overlap in the
active cell samples from each environment. A low proportion of
cells had activity in many rooms but the firing locations of these
cells were completely uncorrelated. Taken together, the results
suggest that the number of independent spatial representations
stored in hippocampal area CA3 is large, with minimal recurrence
of spatial firing patterns across environments.
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Episodic memory is characterized by an apparently astro-
nomical storage capacity. Thousands of new experiences are

encoded every day. Days, months, or years later we may be able
to retrieve details of those experiences, such as where the event
took place, who was present, and what the attendees did. The
ability to store large numbers of experiences with minimal in-
terference is thought to depend on neural network properties of
the hippocampus, particularly those of the CA3 system, which
can be described as an autoassociative network with strong in-
trinsic connectivity (1–3). Memories may be stored in this net-
work by strengthening connections between cells that were active
at the encoding stage. These cells are then thought to be reac-
tivated during memory retrieval following stimulation of a subset
of the ensemble.
The ability to retrieve memories from inputs that are only

partly similar to the original comes at the risk of activating a
different neuronal ensemble. The hippocampus is thought to
embody several mechanisms for preventing such interference, all
ensuring that new representations overlap minimally with pre-
existing ones (2, 4, 5). By orthogonalizing representations, hip-
pocampal networks are thought not only to minimize interference
but also to maximize the number of experiences that can be stored
in the same network. Evidence for these ideas is provided by the
fact that when animals are tested in environments with common
features, representations of these environments in hippocampal
place cells, in CA3, are often no more similar than expected by
chance (6). Place cells are hippocampal cells that fire specifically
when the animal is at a certain location (7). Each place in an

environment is defined by a unique combination of active place
cells (8, 9). When a key property of the environment is changed,
such as the shape of the recording box or the nature of the ex-
perimental task, a completely new firing pattern may be elicited
(10–12). This replacement of the active ensemble is referred to
as “remapping.” The formation of orthogonal place maps in
a single room location, following only minor changes in prop-
erties of the environment, is thought to reflect mechanisms
similar to those used to disambiguate places and events in hip-
pocampal memory (13).
In a network where new ensembles can be formed from any

arbitrary combination of active cells, the storage capacity would
be very large (14). Recent observations suggest, however, that
hippocampal network activity is to some extent preconfigured.
The hippocampus contains cell populations with distinct de-
velopmental histories that interconnect selectively within as well
as between hippocampal subfields (15, 16). Such clusters of
interconnected neurons may limit the number and variability of
place-cell ensembles that can be formed when animals encounter
new environments. Functional evidence for constraints on place-
cell ensemble formation is provided by studies reporting that the
sequence of firing among a set of place cells during running on
a linear track is expressed in the resting state even before the
animal runs down the track for the first time (17). The existence
of predictive firing points to prewired networks as a possible
determinant of place-cell recruitment during formation of new
spatial representations. Developmental constraints like these
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would be in agreement with early theoretical work suggesting
that the basis of a spatial map is embedded in the hippocampal
circuit, ahead of experience (18, 19). The extent to which new
representations are shaped by genetic or developmental mech-
anisms for ensemble formation is not known, however, nor is the
impact that such mechanisms might have upon the storage ca-
pacity of the hippocampal network.
The capacity of hippocampal networks can be probed by

comparing spatial representations across large numbers of
environments with overlapping sensory features. Here we trained
rats to forage in a total of 11 square boxes, each placed in a dif-
ferent room. Boxes and rooms had similar shape and size. Activity
was recorded from the same ensembles of CA3 place cells in
each room to determine whether elements of the place-cell
representation were reused across environments when the
number of room combinations was increased.

Results
CA3 pyramidal cells were recorded over two consecutive days in
the dorsal hippocampus of seven rats while the rats chased food
crumbles in square boxes. Activity was recorded successively in
11 different recording rooms (Fig. 1 and Fig. S1). One room was
highly familiar to the rat; the remaining 10 were novel. Five new
rooms were introduced each day. Two 15-min recording sessions
were preceded and succeeded by 15-min blocks of rest on a
pedestal near the recording box. Each room had a black 1-m-
wide square recording box placed centrally at the back end of the
room, with experimenter and recording equipment placed be-
tween the recording box and the room entrance (Fig. 1). The
recording equipment was wheeled between rooms to ensure
identical filtering and amplification. One novel room and the
familiar room were repeated each day to check for stability.
Repeated rooms were placed at the beginning and the end of the
daily trial sequence (Fig. 1A).
A total of 342 well-isolated cells were accepted for analysis.

All accepted cells were from CA3. Interneurons were excluded.
On average, 49 CA3 place cells were collected per animal, in-
cluding “silent” cells that fired only during rest or sleep. With an
activity threshold Θ = 0.10 Hz (90 spikes over 15 min), the mean

number of active CA3 cells per animal was 30. Among the total
of 342 accepted cells, 210 were active in at least one environ-
ment. The average number of active place cells per room, sum-
med over rats, was 46.1 ± 8.6 (mean ± SEM; average per rat:
6.62 ± 0.7). Electrodes were located across the entire prox-
imodistal axis of the CA3 subfield (Fig. 2 A and B). Cells had
stable firing fields across days as indicated by high spatial cor-
relation between trials in the same familiar room on different
days (mean ± SEM: 0.67 ± 0.08). This correlation was not sig-
nificantly lower than between consecutive recordings in the same
room (first vs. second half of trial: 0.73 ± 0.04; t(6) = 1.1, P = 0.30).
High spatial correlation was also observed between dispersed tests
in the same room (N1 and N6, r = 0.59 and r = 0.78, respectively;
both P < 0.01).
Nearly all cells that were active in any given environment had

spatially confined firing fields (Fig. 3A). However, in most cells,
the activity was limited to one or two of the 11 environments
(Fig. 3 A and B). At Θ = 0.10 Hz, 39% of the identified cells were
silent, 30% were active in just one room, and 13% were active in
two rooms (Fig. 3B). Only 6% (21/342) of all cells were active in
six or more rooms and fewer than 3% (10/342) were active
in eight or more rooms (Fig. S2). The probability for a cell to be
active in a given room (λ) was 0.14 (the average number of active
rooms per cell was 1.49). Mean activation probabilities with Θ =
0.10 Hz were similar across all 10 novel rooms (range across
rooms and rats: 0.03–0.32) and only slightly higher in the familiar
room (mean across rats, 0.18; range, 0.07–0.25). There was no
significant correlation between λ and the position of the room in
the test sequence (r = −0.16, P = 0.64; mean ± SEM for novel
rooms on day 1: 0.13 ± 0.10; day 2: 0.14 ± 0.10). Lowering the
activity threshold to Θ = 0.05 Hz (45 spikes over 15 min) in-
creased the percentage of cells with activity in six or more rooms
to 11%. With a threshold of Θ = 0.01Hz (nine spikes over
15 min) this percentage increased to 27% (Fig. 3B).
We next asked whether the distribution of active cells was

different from the distribution expected if all cells had the same
activation probability in each room, independently of each other
and independently across rooms. Denoting with λ(Θ) the
probability that a neuron be active in a given room, the null
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Fig. 1. Experimental setup and procedure. (A) Test protocol. On the first test day (DAY1), rats were transported into the familiar room (F), where they rested
for 15 min next to the recording arena (REST F) before foraging started in the recording box. Foraging in the familiar environment lasted for 15 min (F). After
a second 15-min rest trial (REST F), the rat was moved with the mobile recording rig to novel room 1 (N1) for 15 min of rest (rest N1) followed by 2 × 15 min of
foraging (N1) and another rest trial (REST N1). The procedure was repeated across all novel rooms (day 1: N1–N5; day 2: N6–N10). Each day, the recordings in
the novel environments were succeeded by a second test in the familiar environment to check for stability. (B) Photographs of all 11 rooms. White squares
indicate room number. The mobile recording rig including the red crane (present in all pictures) enabled continuous recording. Different 1- × 1-m recording
boxes were used in each of room. Position and location of cue card also varied across rooms.
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hypothesis was therefore that all neurons could be assigned the
same value λ (which would depend on Θ). There were C cells
(C = 342) and N rooms (N = 11). The equation

qðnÞ = λnð1− λÞðN�nÞ½N!=n!ðN− nÞ!�

gives the binomial distribution expected for the number Cq(n) of
neurons active in 0, 1, .., n, . . ., N rooms. One can set λ(Θ) equal
to the observed average fraction of rooms in which cells are
active but this model does not fit the observed numbers (Fig.
4A). Alternatively, one can set λ(Θ) to fit the first few data points
for n = 0,1,. . ., but then the fit for large n becomes even worse.
The lack of fit at the high end of the distribution was expressed in
every single animal (Fig. 4B). Thus, a model using a single bi-
nomial parameter λ is not right and the hypothesis that all cells
have similar activation probabilities can be rejected (χ2 = 364.8,
P < 0.001).
The main deviation from the binomial distribution is evident

in the small but highly significant number of cells that were active
in several rooms. For example, setting a Θ = 0.10 Hz, with λ =
0.14, the null hypothesis would predict roughly half a cell to be
active in 6 or more rooms, instead of the observed 21, and none
to be active in 8 or more, instead of the observed 10 (Fig. 4A and

Fig. S2). This discrepancy indicates that some of the cells have
a much higher probability of participating in the representation
of an environment than others. Given recent reports that the
distribution of firing rates in some cell populations is approxi-
mately log-normal, with a heavy tail toward high values (20), and
that the “propensity” of different CA1 cells to show place fields
along a 48-m track is approximately gamma-distributed (21), we
asked whether the number of cells active in n rooms could be
described by the convolution of a specific distribution P(λ) with
the binomial distribution, i.e.

qðnÞ =
Z

dλ PðλÞλnð1− λÞðN−nÞ½N!=n!ðN− nÞ!�:

The log-normal and the gamma distributions extend from 0 to
infinity and cannot serve as a model for P(λ), where λ ranges
from 0 to 1 only. We thus considered a few alternative models for
P(λ) but could not identify a continuous analytical form for P(λ),
defined by only a few free parameters, that would describe the
observed distribution satisfactorily (Materials and Methods). A
simple description, both of the overall data and for individual
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animals, can be obtained instead by just separating an extended
tail from the main distribution describing most of the cells. The
latter is itself very close to a binomial specified by the single
parameter λ0; that is, we write the form

PðλÞ = a0   δðλ− λ0Þ+TailðλÞ;

where the form of the Tail is left unspecified, and the parameters
a0 and λ0 are those that best describe most of the cells (those
active in zero, one, or two rooms; Materials and Methods). The
fraction (1 − a0) is a measure of how significant is the tail of
overactive cells. Across different animals this fraction ranged
from 9.0% to 21.1%, and was on average 13.5 ± 4.1% (mean ±
SD; Fig. 4B).
The “overactive” cells differed in several ways from the rest of

the population. The mean firing rate of these cells was higher
(correlation between mean rate in the most-active room and the
number of rooms in which the cell passed threshold: r = 0.44, P <
0.01), the place field was larger (r = 0.28 P < 0.01), the spatial
coherence was slightly weaker (r = −0.15, P = 0.03), and the
place field was less stable across repeated tests in the same room
(r = −0.14, P = 0.05; Fig. 5). There was no significant correlation
between the number of rooms that the cell was active in and the

cell’s spatial information value (r = −0.07, P = 0.34). There was
also no significant relationship between the locations of the firing
fields of the overactive cells in different rooms (maximum spatial
correlation between room pairs vs. number of rooms that the cell
was active in: r = −0.18, P = 0.7; Fig. 5). Cells that were active in
many rooms were scattered across the entire CA3, from the
distal to the proximal end. The correlation between the number
of rooms that a cell was active in and its location along the axis
from proximal to distal CA3 was negligible (r = −0.10, P > 0.05;
Fig. 2B).
To determine whether ensembles of active place cells were

more similar across rooms than expected by chance, we mea-
sured the overlap of normalized firing rates between each com-
bination of rooms. Overlap was defined as the mean product,
across cells, of the mean firing rates of each cell in the two
rooms, and rates were normalized in that they were expressed as
the ratio of the cell’s mean firing rate to the maximal mean rate
of that cell across all rooms (6). The distribution of overlap
values across 55 room pairs and seven animals (385 values in all)
was similar to the distribution obtained by shuffling the rate of
each cell across rooms (Mann–Whitney u test, Z = 0.51, df =
7,383, P = 0.61; Fig. 6). Both distributions were close to log-
normal, so that their cumulative density functions (CDFs) took
a characteristic sigmoid shape when plotted on a semilogarithmic
scale. In contrast, the overlap between ensembles activated on
successive visits to the same room was distributed toward higher
values, as shown by a CDF shifted to the right (Z = 10.4, df =
477, P < 0.001; Fig. 6).
Orthogonalization can be achieved not only by recruitment of

unique cell assemblies but also by randomization of firing locations
among cells that fire in multiple environments. To investigate
whether place-cell maps were spatially uncorrelated, or whether
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spatial patterns were preserved across subsets of rooms, we
binned the rate maps of each cell in a given room into 5- × 5-cm
bins and stacked the maps on top of each other into a 3D matrix.
Population vectors were defined for each 5- × 5-cm bin (4, 22).
The procedure allowed for 55 map comparisons (Fig. 7B and Fig.
S3). Population vectors were not much correlated across com-
binations of different rooms (Fig. S3; mean population vector
correlation for all combinations of novel rooms: r = 0.08 ±
0.005). In contrast, on successive trials in the same room the
vectors were highly correlated (all rooms; average with SEM for
all rats r = 0.65 ± 0.02). High correlations were also observed
between repeated trials in the same room when these trials were
separated by multiple trials in other rooms (familiar room, room
1, and room 6: r = 0.49 ± 0.05, Fig. S3). Correlations in the same
room were significantly larger than correlations across different

rooms (successive trials: t(100) = 3.4, P < 0.001; nonsuccessive
trials: t(89) = 3.4, P < 0.001).
We finally assessed whether the entire distribution of 7 × 55 =

385 map comparisons was different from the distribution
expected by chance (see Fig. 7B for all data and Fig. S4 for in-
dividual animals). For this test, we used the average dot product
between population vectors at corresponding locations as a
measure of similarity rather than the Pearson correlation. The
average dot product is equivalent to the overlap measure ex-
tended to the spatial dimension. We compared the observed data
with the distributions obtained through distinct shuffling proce-
dures (Fig. 7C). First, shuffling was performed by randomly
assigning the spatial map of each cell to a different room and then
calculating new population vectors, resulting in a new combina-
tion of active and inactive cells at each location in the recording
box. The procedure was repeated 1,000 times. Cells with activity
below 0.10 Hz in all rooms were not included in these analyses.
The distribution of the observed data for different rooms was
again close to log-normal, matching the shuffled data almost
perfectly (Z = −0.70, df = 7,383, P = 0.44; Fig. 7C) and suggesting
that similarity between the spatial patterns of activity in two dif-
ferent rooms occurs no more frequently than expected by chance.
Similar distributions were found across individual animals (Fig.
S5B). The mean observed dot product for different rooms was
significantly smaller than the mean observed dot product for re-
peated trials in the same room (Z = −10.8, df = 476, P < 0.001;
CDF shifted to the right in Fig. 7C and Fig. S5B).
Can the lack of correlation between population vector maps

across rooms be summarized by the simple model that each
neuron is randomly recruited to participate in the representation
of a novel room? To address this issue, we finally shuffled spatial
maps both between rooms and between cells, again 1,000 times.
Now, the cumulative distribution function of the similarity values
was skewed slightly but significantly to the left compared with the
observed data and the distribution after shuffling only across
rooms (Z = 4.8, df = 13,998, P < 0.001; Fig. 7C). The median dot
product between rooms was 4.37 × 10−4 in the observed data and
4.40 × 10−4 when shuffling only across rooms, whereas it de-
creased to 3.08 × 10−4 when shuffling across rooms and cells.
This difference shows that the random recruitment model is not
quite correct (i.e., not all cells were recruited with the same
probability λ). Shuffling only across cells yields roughly the same
cumulative distribution of similarity as shuffling both rooms and
cells (Z = 1.7, df = 391,998, P = 0.07; Fig. 7C). We also asked
whether the maps of different room pairs might be more similar
after rotating one map relative to the other, because rats may
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Fig. 6. Similarity of firing rates between each of the 55 combinations of
rooms. For each pair of rooms, the overlap of activity was defined as the
mean product, across cells, of the mean firing rates of each cell in the two
rooms, divided by the maximal mean rate of that cell across all rooms.
Overlaps between different rooms (red line) are contrasted to overlaps be-
tween repeated exposures to the same room (pink line). Note the strong
similarity between observed data across rooms and distributions of shuffled
data where each rate map is assigned randomly to one of the 11 rooms
(black line), suggesting that the distribution of active cells across rooms is
close to orthogonal.

A B C

Fig. 7. Dot product between population vectors across all combinations of test rooms. (A) Definition of population vectors. The rates of all recorded CA3 cells
were stacked into 400 composite population vectors (PVs), one for each of the 20 × 20 pixels of the recording box. Population vectors with the local rates of
each neuron were defined for each pixel. (B) Color-coded matrix showing average dot product values for population vectors between rooms (all 55 room
pairs), including repeated exposures to the familiar room (F) and rooms N1 and N6, which were presented twice. Repeated trials are indicated by asterisks. (C)
Distributions of shuffled data obtained either by random assignment of rate maps across rooms (shuffle room) or by shuffling of cell identities within rooms
(shuffle cells) or by combining the two procedures (shuffle room and cells). Note the low dot product between all different pairs of rooms but significantly
higher dot products between repeated trials in the same environment (DATA same room; first and second half of recording).
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lose their absolute compass orientation when they are carried
from one room to the next. However, rotating the rate maps in
steps of 90°, in the way that generated the largest correlation, did
not lead to a distribution of similarity values that was signifi-
cantly different from the distribution obtained by applying sim-
ilar rotation on the shuffled data (Z = 0.39, df = 7,383, P = 0.70).
To determine whether the left-shift of the cell-shuffled dis-

tribution was caused by the unequal activation probabilities of
the recorded cells, we finally performed a separate shuffling
procedure where the subsets of overactive cells (defined as cells
that were active in three rooms or more) and the subset of more
sparsely active cells (one or two rooms) were shuffled only within
their own subset. This simple partition into two subsets, still
heterogeneous in terms of activation probability, yielded a less
left-shifted distribution than when cell identities were shuffled
across the entire sample (Fig. S5A). The median value for the
distribution with shuffling within subsets was 3.93 × 10−4, sig-
nificantly higher than when cells were shuffled across the entire
sample (Z = −12.6, df = 13,998, P < 0.001; Fig. S5A). Taken
together these analyses indicate that the discrepancy between
cell-shuffled data and observed data is due to the nonuniform
probability of activation in the data, where a proportion of the
cells is much more active than the rest of the population.

Discussion
The key finding of this study is that when representational ca-
pacity was challenged by exposing animals to a range of rooms
with similar sensory features, CA3 place cells continued to form
unique representations for every single environment. Unique
representations were formed within a single trial. The spatial
discharge pattern never carried over from one environment to
another. The findings are consistent with previous work showing
that CA3 place cells form independent maps for pairs of envi-
ronments (6) but extend it by demonstrating that no recurrence of
spatial firing patterns occurs when the number of environments is
increased from 2 to 11 and the number of combinations from 1 to
55. The unique firing patterns of the individual environments
were stored in memory such that when the animal was introduced
to one of the rooms a second time the spatial map from the first
exposure was reactivated.
The complete lack of overlap between spatial maps suggests

that the capacity of the CA3 network is large, despite recent
indications suggesting that hippocampal cells are not randomly
connected. Developmental studies indicate that, through direct
or indirect connections, hippocampal cells form synapses prefer-
entially with cells from the same clone (15, 16). Clustering of
connectivity might point to an architecture of discrete sub-
populations that have different functional properties. A discrete
organization of the CA3 network may give rise to preconfigured
spatial maps (18, 19), although such maps would likely serve only
as a scaffold for further refinement following experience (23, 24).
Evidence for preconfigured activity includes the report that the
sequence of place fields expressed when an animal runs along
a linear track for the first time is expressed during rest already
before the experience (17), which suggests that new repre-
sentations to some extent may be based on sequence relation-
ships already encoded in the circuit. The present work suggests
that such preconfigured spatial or temporal relationships, to the
extent that they exist, do not constrain the discreteness of CA3
representations for multiple environments with overlapping
sensory features. The orthogonal nature of the representations
may be unique to the CA3 subfield of the hippocampus; CA1
representations are known from previous work to exhibit more
overlap than expected by chance (25), although remarkable
context specificity has also been demonstrated (26). The lack
of correlation between CA3 representations may help preserve
the large storage capacity estimated for this network with
mathematical network models based on the orthogonalization

assumption (14). Our study verifies that the storage capacity
of CA3 is extensive, although the capacity bound remains to
be determined.
The skewed nature of the distribution of active cells across

rooms, with many cells firing in one or few rooms and few cells
firing in many rooms, is reminiscent of the gamma-Poisson dis-
tribution of firing fields for individual CA1 place cells in a con-
tinuous environment (21) as well as the more general log-normal
nature of firing-rate distributions in a variety of systems (20).
Here we observed a nearly log-normal distribution of overlap or
dot product values, with a slightly larger shift to the right than
would be expected with strict orthogonality, reflecting the small
and distributed subset of neurons that fired in many environ-
ments. The tendency for some place cells to fire in multiple
environments is reminiscent of the similarity in ensemble activity
reported for subsets of hippocampal cells during equivalent
experiences in different environments (27–30). The function of
the overactive cells remains to be determined, but the re-
cruitment of a small number of cells to fire nonselectively across
rooms, at different locations, may enable the encoding of com-
mon elements among spatial environments, over and above the
orthogonalization emerging as a consequence of the use of
nonoverlapping cellular subpopulations for separation of spatial
environments in memory.

Materials and Methods
Subjects. Seven male Long Evans rats (∼600 g and 4–5 mo old at implantation)
were housed in a humidity and temperature-controlled environment on a 12-h
light/12-h dark cycle in individual transparent Plexiglas cages (45 × 30 × 35 cm).
Rats were kept at 95% of free-feeding body weight during the test phase. All
experiments and surgery were performed in accordance with the Norwegian
Animal Welfare Act and the European Convention for the Protection of Ver-
tebrate Animals used for Experimental and Other Scientific Purposes.

Surgery, Electrode Preparation, and Implantation. Before surgery, the ratswere
anesthetized with isoflurane [4% (vol/vol) in the induction chamber, which
was gradually lowered to 0.5–3% (vol/vol) over the course of the surgery].
Airflow was 1.4 mL·min−1. The rats were given analgesic (Temgesic and
Metacam) and received local anesthetic (xylocaine) under the skin (s.c. in-
jection) before the incision was made. The animal was placed in a Kopf ste-
reotaxic frame and ear bars were fixed to stabilize the head during surgery. A
“hyperdrive” with 14 independently movable tetrodes was implanted above
the right hippocampus at coordinates anteroposterior 3.8 and mediolateral
3.0 relative to bregma. The implant was secured with jewelers’ screws and
dental cement. Tetrodes were constructed by twisting together four 17-μm
polymide-coated platinium-iridium wires (90–100%; California Fine Wire)
plated with platinum to lower the impedance of the electrode tip to between
120–250 kΩ at 1 kHz before implantation. After the animal woke up, it was
treated orally with Metacam (Meloxicam, 0.1 mg/300 g; Boehringer Ingel-
heim) for 3 d. On the surgery day, after the animal woke up, the tetrodes
were turned about 1,000 μm to make sure they were in the brain.

During the following 4–5 wk the tetrodes were gradually lowered in
small increments (of 50 μm or less) to reach the CA3 area. Turning was
performed while the rat rested on a towel in a flowerpot placed on a ped-
estal next to the recording arena. EEG and spiking events were used as visual
references for the position of the tetrodes inside the brain, together with
the depth of the tetrodes. Two tetrodes were used to record a reference
signal from the corpus callosum and an EEG signal from the stratum lacu-
nosum-moleculare. Increasing amplitude of theta as well as phenotype of
sharp waves was monitored as indicators of distance from the CA3 pyramidal
layer. Turning stopped when large-amplitude waveforms appeared at
depths near 3.0 mm. On the days of the experiment the tetrodes were not
moved at all to ensure stable recordings and to later verify the position of
the tetrodes with histological procedures.

The hyperdrive was connected to a multichannel, impedance-matching,
unity-gain headstage (HS-54; Neuralynx). The output of the headstage was
conducted via a lightweight multiwire tether cable through an 82-channel
slip-ring commutator to a digital data acquisition system with 64 pro-
grammable amplifiers (Neuralynx). Unit activity was amplified 3,000–5,000
times and band-pass–filtered from 600 to 6,000 Hz. Spike waveforms were
time-stamped and digitized at 32 kHz. Spike thresholds set by the experi-
menter ranged from 50 to 90 μV for individual tetrodes. EEG signals were
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amplified by a factor of 1,000 and recorded continuously between 0 and
475 Hz. The animal’s movement was tracked with light-emitting diodes at a
sampling rate of 50 Hz.

Behavioral Procedures. While tetrode positions were optimized rats were
trained to forage for chocolate sprinkles in the familiar room for up to 1 h
each day in a black square box (100 × 100 × 50 cm) with a white cue card on
the north wall of the box. During the test stage of the experiment, with 10
novel rooms, a different recording box was used in each room (all boxes
100 × 100 × 50 cm except for one whose dimensions were 100 × 100 × 80 cm).
The position and the size of the cue card varied across boxes. The sequence of
novel rooms did not follow a spatial pattern (Fig. 1 and Fig. S1). Each day
comprised about 8 h of continuous recording. The rats were given access to
a water bottle between trials to prevent dehydration and to encourage
further foraging.

A mobile recording system on wheels was put together to allow contin-
uous recording of spike activity across trials in different rooms (Fig. 1B). The
recording cable was connected to a commutator and a tracking camera on
a mobile crane. When stable firing responses and potential CA3 place cells
had been identified the animal rested for 1 d. The experiment started on day
1 by exposing the animals first to the familiar environment then to five
novel rooms, and then again to the familiar room (Fig. 1A). On day 2 they
were tested in five other novel rooms, in addition to the familiar room,
which again was presented at the beginning and end of the sequence. On
each day the rats were introduced twice to one of the five novel rooms (N1
on day 1; N6 on day 2) to determine whether firing patterns were main-
tained. In each room activity was recorded while the animal foraged food
crumbles in a 100- × 100-cm square black box for two consecutive blocks of
15 min. Data were also recorded during rest on the pedestal for 15 min
before the first trial and for 5 min after the second trial in each room. After
the second rest period the experimenter transported the mobile recording
system and the rat to the next room while recording was paused. The rat
was not disconnected from the headstage at any time during the day of the
experiment, but the tether was disconnected from the commutator to ease
transportation between the rooms.

Data Analysis. Spikes were sorted offline using SpikeSort 3D (Neuralynx)
mainly in 2D projections usingwaveform energies and amplitudes to separate
out putative place cells from noise. Putative interneurons were separated
from putative place cells based on differences in average firing rate and spike
width. Interneurons were excluded from further analysis. Owing to the
continuous nature of the recording, all running trials and rest trials from five
novel rooms and the familiar room were clustered together. Rate maps were
constructed from well-isolated cells by summing the total number of spikes
that occurred in a location bin (5 × 5 cm) divided by the time the animal spent
in that bin. The rate map was smoothed with a Gaussian kernel centered on
each bin. All of the data were speed-filtered; periods with running speeds
below 5 cm/s were excluded.

A place field was defined as an area of nine or more (5 × 5 cm) adjacent
bins with firing rates exceeding 20% of the peak firing rate of the rate map.
Spatial information content in bits per spike was calculated as

X
i

pi
λi
λ
log2

λi
λ
,

where λi is the mean firing rate in the i-th bin, λ is the overall mean firing rate,
and pi is the probability of the animal’s being in the i-th bin, as described
previously (31, 32). Spatial coherence was estimated as the first-order spatial
autocorrelation of the unsmoothed place field map, that is, the mean cor-
relation between firing rate of each bin and the averaged firing rate in the
eight adjacent bins (33). Spatial correlation was calculated by binning maps
in a linearized fashion before cell pairs above threshold were correlated
across rooms or between trials from the same room. Filtered or unvisited
bins were set to NaN values, which were removed from both linearized maps
before the correlation. Spatial stability was defined as the spatial correlation
between the first and second day of testing in the familiar room, or between
dispersed tests in the same room (N1 and N6). To check whether the maximal
correlation increases as a function of number of rooms, one map was kept
constant while the other map was rotated in steps of 90° because place
fields tend to orient themselves according to the walls of the box (34). The
mean of the maximum spatial correlation across rooms was reported.

Fitting with Binomials. A specific hypothesis H about the distribution P(λ)
across cells of the probability to be active in any one room leads to a model
for the distribution of the number of cells active in n rooms. The model q(n)

is given, if the representation of each room is independent of that of others,
by the convolution of P(λ) with the binomial distribution, that is,

qðnÞ =
Z

dλ PðλÞλnð1− λÞðN−  nÞ½N!=n!ðN−nÞ!�:

To assess the relative plausibility of two “nested” hypotheses H1 and H2,
where H1 is simpler and can be obtained by imposing constraints on the free
parameters of H2, one can use Wilks’ (1938) theorem (35), which states that
the difference of their log-likelihoods, multiplied by 2, has an approximate
χ2 distribution, with degrees of freedom the number of constraints imposed.
In our case, H2 can be taken to be the true H generating the empirically
observed distribution p(n), which has n = 11 “free parameters.”

The likelihood that the observed numbers of units Cp(n) for each of the N+
1 values of n have been produced by a model with degrees of freedom,
expressing hypothesis H, can be roughly estimated as the product over n of
the Poisson factor for the probability of Cp(n) events, given expectation Cq(n):

LðfpgjHÞ = ∏ne
−CqðnÞCqðnÞCpðnÞ

.
ðCpðnÞ!Þ,

once one disregards the constraint that Σn p(n) = 1, and also that the
values of n are ordered rather than nominal categories, so the probability
of Cp(n) events would in fact be influenced by neighboring expectations,
e.g., Cq(n − 1), Cq(n + 1).

The log likelihood is then simply a sum over bins

LLðfpgjHÞ =
X

n
f−CqðnÞ+CpðnÞln½CqðnÞ�− lnðCpðnÞ!Þg:

Comparing a model H to H, which reproduces the data exactly, requires
computing (twice) the difference:

2½LLðfpgjHÞ− LLðfpgjHÞ� =
X

n
  2CfqðnÞ−pðnÞ+pðnÞln½pðnÞ=qðnÞ�g

= 2C   KLðp,qÞ,

that is, 2C times the Kullback–Leibler divergence KL between the p and q
distributions. The divergence is a positive number, approximately χ2-dis-
tributed with 11 df.

Note that P(λ) extends from 0 to 1, unlike the log-normal distribution of
firing rates and the gamma distribution of place field propensities of related
studies (20, 21), and that to serve as a model it should have few free
parameters. If written as a sum of discrete components, for example,

PðλÞ =
X
i

ai   δðλ− λiÞ

with six components it has already df = 11 free parameters and it should
reproduce the data exactly.

When trying a model P(λ) with fewer discrete components, we found
a marginally acceptable fit with three components (df = 5) for the overall
data, which however did not fit adequately all individual animals. A P(λ)
with only two components would not fit the overall data. A continuous P(λ)
requires a minimum of five free parameters to effectively reproduce those
of the three-component discrete P(λ), the position and height of three
peaks; and the additional parameters describing the width of the continu-
ous function around each peak therefore do not further improve the fit.

Overlap, Population Vector Similarity, and Shuffling. To compute overlaps
between representations, the mean activation of each cell in any particular
room was expressed as a ratio of its mean firing rate to the maximal mean
rate of that cell across all rooms. This was considered as the component of
a mean activation vector, of length the total number of cells recorded in that
session. The overlap was then calculated as the normalized dot product
between the activation vectors in two rooms (i.e., the sum of the products of
corresponding components divided by the number of components).

To compute location-specific population vectors instead, the activation of
each cell in any one location (one of the 20 × 20 spatial bins) of any particular
room was expressed as a ratio of its firing rate to the maximal rate of that
cell across rooms and locations. A full population representation of each
room by the recorded neurons was then expressed by a 3D matrix in which
one index indicates the neuron and the two others the spatial location (5 × 5
cm bins) (6). Each matrix element was in the range from 0 to 1. The similarity
between population vectors was calculated as the normalized dot product
of the matrices (i.e., the average across locations and neurons of the product
of the corresponding matrix elements). The distribution of similarity values
was accumulated for the entire set of 7 × 55 = 385 within-animal pairs of
both mean activation vectors and location-specific population vectors.
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The observed distribution was then compared with distributions obtained
through three different shuffling procedures, one in which the rate maps of
any individual cell were shuffled across rooms, a second in which rate maps
in any individual room were shuffled across cells (either across all cells or
across the cells of a predefined subset of either sparsely active or overactive
cells), and the third one combining the two first procedures. Shuffling was
always repeated 1,000 times. An activity threshold (e.g., of 0.10 Hz) was used
to exclude cells that were not active in any of the rooms.

Similarity values were also computed, for each room pair, by rotating the
map of one of the rooms in steps of 90° relative to the other map and keeping
the largest similarity value among the four comparisons thus obtained. This
rotation procedure was performed both for the observed data and the
shuffled data.

Histology and Tetrode Location. Rats were give an overdose of pentobarbital
and perfused intracardially with saline (saline 0.9 sodium chloride) followed
by 4% (vol/vol) formaldehyde. Brains were extracted and placed in formaldehyde

for at least 1 wk before 30-μm frozen coronal sections of the hippocampal
area were cut on a cryostat and stained with cresyl violet. Images were
collected with a Zeiss Axoimager-Z1 microscope equipped with a digital
camera. Tetrode positions were reconstructed and tetrode tip location de-
termined based on the position of the hyperdrive on the animal’s head
and by comparison with adjacent sections. Position of the tetrode tip
along the proximal–distal axis of CA3 was determined by defining its
position on a line through the cell layer on a coronal section (proximal
end = 0; distal end = 1).
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