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We introduce an approach to analyze collective variables regarding their predictive power for a
reaction. The method is based on already available path sampling data produced by for instance
transition interface sampling or forward flux sampling which are path sampling methods used for
efficient computation of reaction rates. By a search in collective variable space a measure of predic-
tiveness can be optimized and, in addition, the number of collective variables can be reduced using
projection operations which keep this measure invariant. The approach allows testing hypotheses
on the reaction mechanism, but could in principle also be used to construct the phase space com-
mittor surfaces without the need of additional trajectory sampling. The procedure is illustrated for
a one-dimensional double well potential, a theoretical model for an ion-transfer reaction in which
the solvent structure can lower the barrier, and an Ab Initio molecular dynamics study of water
auto-ionization. The analysis technique enhances the quantitative interpretation of path sampling
data which can provide clues on how chemical reactions can be steered in desired directions.

PACS numbers:

I. INTRODUCTION

Systematic approaches to analyze reaction mechanisms
in terms of descriptive reaction coordinates have been fo-
cused on committor analysis1–7. The committor function
tells for each phase point or configuration point what
the probability is that a dynamical trajectory launched
from that point will end up in the product state rather
than the reactant state. Points having the same commit-
tor value form iso-committor surfaces. A reaction can
then be described by a Markov process in which the sys-
tem moves from one iso-committor surface to another
one. The committor can, hence, be interpreted as a
progress coordinate and a growing number of researchers
in the field believe it should be viewed as the true reac-
tion coordinate. Literature is, however, not always con-
sistent whether the phase space or configuration space
committor should be considered. In principle only the
phase space committor gives the full mechanistic infor-
mation8,9, but the configurational committor fits better
into the original concept of reaction coordinate which is
traditionally a purely geometric function10. Moreover,
the determination of the committor surfaces is compu-
tationally intensive since it requires the release of many
trajectories from each individual phase- or configuration-
point. Although there are systematic approaches based
on genetic neural networks11 and Bayesian techniques4,5

which can reduce the computational burden, accurate de-
termination of the committor values is difficult especially
for low values. Hence, computational studies investigat-
ing the committor generally tend to focus on the surface
with committor value 1/2, the separatrix. Therefore, a
systematic analysis on the required conditions, of how
and when the system can reach the separatrix, has re-
ceived much less attention.

On one hand, the beauty of the phase-space and
configurational-space committors is that they are math-
ematically well-defined and do not require any pre-

assumptions or chemical intuition. On the other hand,
however, this also implies a disadvantage. If a divine
power would give us the full phase space committor (from
which the configurational committor can be obtained by
velocity averaging) as an exact nonlinear function of all
atom positions and velocities, it will not directly give us
a lot of insight. We would probably not be able to make
any sense out of this multi-dimensional nonlinear func-
tion unless we could simplify it, if necessary through ap-
proximations, and rewrite it in a human understandable
function of just a few parameters to which we can relate
to; i.e parameters based on well-known concepts which
are intuitive. An example of such a concept is that of
the hydrogen bond (or any chemical bond in general) and
order parameters based on it such as the number of hy-
drogen bonds that a specific molecule donates or accepts.
Although there is not a single unique microscopic defini-
tion for something like a hydrogen bond12,13, it provides
a tool which helps our understanding of solvent dynamics
and the functioning of bio-molecules such as DNA. The
knowledge that some well-ordered hydrogen-bonded wa-
ter networks are essential for reactions14,15 might even-
tually lead to rationalized approaches to steer chemical
reactions, produce new materials, or design more efficient
catalysts.

So in one way or another, we need to translate our find-
ings into intuitively understandable parameters, in other
words, gaining an understanding of the reaction mecha-
nism. In this article, we introduce an analysis method
to test hypotheses about the reaction mechanism and
to identify the essential circumstances which make a re-
action proceed or not. The analysis method uses the
path sampling data which are produced by rare event
sampling methods such as transition interface sampling
(TIS)16, replica exchange TIS (RETIS)17, and forward
flux sampling18. These methods employ a Monte Carlo
(MC) sampling of trajectories within a series of simula-
tions, each evaluating a different path ensemble.
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A trajectory belongs to an ensemble whenever it starts
at the boundary of the reactant state, moves along the
barrier up to a certain minimum progression, and then
either ends by re-entering the reactant state or enter-
ing the product state. The minimum progression re-
quirement is enforced by an interface crossing condi-
tion: associated with each path ensemble there is an
unique interface defined by the value of the progress
coordinate (“reaction coordinate”) which needs to be
crossed. The results from the different path ensembles
can be combined and allow one to obtain the reaction rate
without additional approximations, but orders of mag-
nitude faster than straight-forward molecular dynamics
(MD). Although the progress coordinate in the TIS meth-
ods16–18 is not related to the committor, some have ar-
gued that the committor as progress coordinate19 would
give the best possible efficiency for these methods. How-
ever, it should be noted that there is a crucial difference
between TIS and RETIS on the one hand and FFS on the
other hand regarding the efficiency scaling. Whereas the
efficiency of TIS and RETIS is relatively insensitive to the
choice of progress coordinate and outperforms standard
free energy based methods to compute rates whenever
both are based on a poor reaction coordinate, FFS is do-
ing worse than the standard methods in that case20,21.
It is interesting to note that Ref. 19 actually refers to
the phase space committor implying that the reaction
coordinate providing the most efficient sampling should
be momentum-dependent, something which is very un-
usual. However, as shown in Ref. 21, FFS indeed re-
quires such momentum-dependent reaction coordinate in
an underdamped one-dimensional system while it is nei-
ther needed nor more efficient for TIS and RETIS.

The aim of our analysis method is, therefore, not find-
ing the committor or a single coordinate per se. Rather,
it tries to identify which additional coordinates (possi-
bly momentum-dependent) other than the chosen reac-
tion coordinate determine the progress of the reaction.
Though, as we will show below, in principle our method
can also be used to determine the full phase-space com-
mittor just using the data of the TIS methods. Our arti-
cle is organized as follows. In Sec. II we give the theoreti-
cal definitions that are being used in our methodology. In
Sec. III we show how these theoretical measures of pre-
dictiveness can be computed using path sampling data
from TIS, RETIS or FFS. In Sec. IV, we show numeri-
cal results for a one-dimensional double well potential, a
theoretical model for an ion-transfer reaction, and an Ab
Initio molecular dynamics study of water auto-ionization.
In Sec. V we elaborate further on the possibilities of our
methodology, in particular we discuss how the number
of CVs can be reduced while maintaining the same pre-
dictive power and how that ultimately can be used to
determine the phase space committor. We end with con-
cluding remarks in Sec. VI.

II. DEFINITIONS

TIS, FFS, and RETIS are based on a partitioning of
the phase space using interfaces (from here on called TIS
interfaces). Let λ(x) be a progress coordinate which is in
principle a function of phase space point x. In many cases
it can be taken as a geometric function like the length of
a bond that needs to be broken, the largest solid cluster
in a nucleation study, the radius of gyration for protein
folding, etc. Then, the collection of phase points x hav-
ing a specific value λi form the interfaces. This implies
that {x|λ(x) = λi} comprises interface number i. In the
case of M +1 interfaces, λ0 = λA is placed within the re-
actant well, λM = λB is placed in the product well, and
the interfaces in between, λi for 0 < i < M , are placed in
the barrier region. Here, we use the subscript notation to
indicate the integer index for the TIS interfaces and a su-
perscript to indicate a specific value of the λ-parameter.
The system is then considered belonging to the overall
state A if it crossed λA more recently than λB . If there
is a clear separation of time scales, the overall states will
be insensitive to the exact positioning of λA and λB as
long as they are reasonable; it is assumed that once λA

or λB is crossed from the barrier region side the system
will relax to that respective state (commit). The other
interfaces are placed in order to maximize efficiency.

Within the TIS theory, the rate constant kAB is de-
fined as the number of transitions from overall state A
to overall state B per time unit which can be expressed
as the flux through λA times the overall crossing proba-
bility PA(λM |λ0). The last term equals the chance that
the system will cross λM before λ0 provided that it just
crossed λ0 in the positive direction (as convention we as-
sume that the reactant state and the product state are
situated at the left and right side of the barrier, respec-
tively). This probability is generally too low to be de-
termined directly, but it can be computed by a series of
path simulations using the following relation16

PA(λM |λ0) =

M∏
i=1

PA(λi|λi−1) (1)

Here, PA(λi|λi−1) is the conditional probability that the
system coming from λ0 and then crossing λi−1 for the
first time will cross λi as well before recrossing λ0 again.
Naturally, PA(λi|λi−1) will be much larger than the over-
all crossing probability whenever λi is sufficiently close to
λi−1 and this property can be computed by Monte Carlo
walk in path space.

We denote with X a path of L+ 1 time slices

X = {x0, x1, . . . , xL} (2)

where L is the path length and xk is the k-th phase point
of the path, also called time slice. We will further refer to
the nomenclature of RETIS where the path ensemble [i+]
comprises the collection of trajectories with the following
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properties:

X ∈ [i+] if:

λ(x0) < λ0,

λ(xL) < λ0 or λ(xL) > λM ,

λ0 < λ(xk) < λM for k = 1, 2, . . . , L− 1,

λmax ≡ max[λ(x1), λ(x2), . . . , λ(xL)] > λi

(3)

We define characteristic binary functions which relate to
whether X is within [i+] or not

hi(X) = 1 if X ∈ [i+], 0 otherwise (4)

and the weight, %i(X), of a path in ensemble [i+] is given
by

%i(X) = hi(X)ρ(x0)

L−1∏
k=0

p(xk → xk+1) (5)

Here, ρ is the phase space density and p(xk → xk+1) are
the hopping probability densities; the chance that the
system moves to phase point xk+1 in a single ∆t time
step given that it is in xk. An ensemble average of an
arbitrary path function a(X) in the [i+] ensemble equals

〈a(X)〉%i =

∫
a(X)%i(X)DX∫
%i(X)DX

(6)

where the integral is formally equal to
∫
. . .DX =∑

L=1,∞
∫
. . .
∏
k=0,L dxk. In practice, however, we only

compute ratios of two path space integrals like the one
of Eq. 6 using MC in trajectory space. In this method
we collect a Markov chain of trajectories for specific path
ensembles using MC moves (like e.g. shooting22) obeying
detailed balance %i(X

(o))Pgen(X(o) → X(n))Pacc(X(o) →
X(n)) = %i(X

(n))Pgen(X(n) → X(o))Pacc(X(n) → X(o))

where X(o) and X(n) are the old and new paths, re-
spectively, and Pgen and Pacc are the generation and
acceptance probabilities of the MC algorithm. Eq. 6
is then a simple average of the simulation 〈a(X)〉%i ≈

1
Nsim

∑
n=1,Nsim

a(Xn) where Xn is the n-th path sam-
pled in the simulation and Nsim is the total number of
paths.

In the following we will focus on first crossing points
with interfaces as defined by our progress coordinate. We
define xλ

c

as the first crossing point with interface λc:

xλ
c

(X) = xk ∈ X if λ(xk) ≥ λc

while λ(xl) < λc for all l < k
(7)

Naturally λ(xλ
c

(X)) >∼ λc, but there are many
other collective variables (CVs) which can character-
ize this crossing point. Let us call these coordinates
Ψ1,Ψ2, . . . ,ΨN . For instance, if λ(x) is the bond
length between two atoms, which needs to be bro-
ken to establish the reaction, Ψ1(x) could be related
to the relative position of a catalyst, Ψ2(x) a coordi-
nate describing the solvent structure etc. For a set

of N collective variables in addition to λ(x) we de-
note ΨN (x) = {Ψ1(x),Ψ2(x), . . . ,ΨN (x)} as the vec-
tor describing the additional collective variables. Hence,
whereas λ(xλ

c

(X)) describes the interface that is being
crossed, ΨN (xλ

c

(X)) describes the position within this
surface where the crossing takes place. We will therefore
call ΨN the orthogonal coordinates, though we should
stress that this does not imply any strict orthogonality
as in a Euclidean sense. In fact, λ, Ψ1, Ψ2, . . . , or ΨN

do not even have to have the same dimensionality; these
can be a mix of distances, angles, integer values like the
number of hydrogen bonds, Boolean functions, etc. Also,
λ(x) and ΨN (x) do not necessarily have to be mutually
independent. For instance, Ψ1(x) = (λ(x))2 would be a
valid option. Of course, this Ψ1 does not add any in-
formation about the system which we could not have al-
ready known from λ. However, this is a conclusion which
should come out of our analysis method. Therefore, there
is not a strict need to think very carefully about possible
dependencies at this stage. We can choose ΨN (x) based
on our intuition; the collective variables which we think
are important for the reaction.

We will consider three interfaces, the reactant inter-
face λA, the crossing interface λc > λA, and the (partial)
reaction interface λr > λc. Considering all trajectories
coming from λA which cross λc, we can characterize “re-
active” and “unreactive” trajectories up to λr. The reac-
tive ones cross λr, the unreactive ones recross λA with-
out crossing λr. Naturally, if λr = λB the “reactive”
trajectories are then fully reactive, but for λr < λB we
get useful information about the reaction mechanism at
intermediate stages of the reaction, and probably better
statistics since crossing λr < λB is less rare than crossing
λB .

In the following methodology both λc and λr can be
shifted to the desired region at the reaction barrier. As
explained below, we can use the output of standard TIS,
RETIS, or FFS simulations to extract a statistically rep-
resentative subset of trajectories that cross λc. This sub-
set can then be used to analyze the first crossing points
in CV space: Ψ1(xλ

c

),Ψ2(xλ
c

), . . . .
By constructing a grid in the collective variable space

ΨN , we can define bins covering the full accessible surface
of the λc interface. Let q be the index of these bins. Then,
of all trajectories crossing λc let tq be the fraction of
trajectories passing through bin q in the λc surface, rq the
fraction of trajectories passing through bin q and cross
λr, and uq the fraction of trajectories passing through
bin q but do not reach λr (See Fig. 1).

We can write down following relations

tq = uq + rq,
∑
q

tq = 1,

∑
q

rq = PA(λr|λc),
∑
q

uq = 1− PA(λr|λc)
(8)

Depending on the CVs and grid spacing we will get dif-
ferent fractions of reactive and unreactive paths in each
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FIG. 1: (color online). Visualization of reactive and unre-
active trajectories passing through bins as defined by two
orthogonal CVs Ψ1 and Ψ2. The green trajectories are re-
active up to λr while the orange trajectory is unreactive. If
we would only base our analysis on these three trajectories
we would have tq = 1/3, tq′ = 2/3 and tq′′ = 0 for any other
bin q′′. In addition, the reactive and unreactive distributions
for bins q, q′ would be rq = 1/3, uq = 0 and rq′ = uq′ = 1/3.

bin. If we would be able to partition the first crossing
points such that rq/tq = 1 or rq = 0 for each bin, the
predictive ability is optimal; each time that λc is crossed
for the first time, we check through which bin it passes
and, then, we would be able to say whether it will cross
λr or not (assuming that there is no problem with the
accuracy of our beforehand estimated distributions r and
u). In practice this might not be possible, either because
the dynamics is stochastic or because it turns out to be
too difficult to find the right CVs. In that case each bin
q can have any fractional value between zero and one for
the reactive ratio rq/tq. The overall measure of predictive
power, that can be obtained from the orthogonal coor-
dinates, must then be a weighted average of rq/tq over
q. This measure should be high if there are many bins
with rq/tq = 1. However, if only a very small fraction
of the reactive trajectories move through bin q, this will
not have a large impact on the overall predictive power.
Therefore, we introduce a measure T for the CVs regard-
ing their predictive ability which is a weighted average of
rq/tq where each bin is weighted with the fraction of re-
active trajectories passing through q:

T ≡
∑
q

(
rq∑
v rv

)
rq
tq

=
1

PA(λr|λc)
∑
q

r2
q

tq

=
1

PA(λr|λc)
∑
q

rq(tq − uq)
tq

=
1

PA(λr|λc)
∑
q

rq −
1

PA(λr|λc)
∑
q

rquq
tq

= 1− 1

PA(λr|λc)
∑
q

rquq
tq
≡ 1− S (9)

In continuous space, S is the overlap integral of the re-

active and unreactive distributions.

Sλ
c,λr

A [ΨN ] =

1

PA(λr|λc)

∫ (
rλ

c,λr (ΨN )uλ
c,λr (ΨN )

tλc(ΨN )

)
dΨN (10)

The overlap Sλ
c,λr

A will depend on the selection of CVs

which are functions of phase space x. Hence, Sλ
c,λr

A is
a functional of ΨN (x). The highest possible predictive
ability is obtained by finding the collective variables that
minimize the overlap

Sλ
c,λr

A,0 =
1

PA(λr|λc)
×

min
ΨN

[∫ (
rλ

c,λr (ΨN )uλ
c,λr (ΨN )

tλc(ΨN )

)
dΨN

]
(11)

and we call the corresponding collective variables ΨN
min

Sλ
c,λr

A [ΨN
min] = Sλ

c,λr

A,0 (12)

The ΨN
min variables are in general not unique. For in-

stance, if Ψ1(x) is a distance between two atoms, we
could as well have taken the squared distance. Simi-
larly, we could add or remove CVs to total set of CVs
which have no correlation with reactivity. These opera-
tions will not change the overlap value. However, since
our goal is to gain insight and to provide inspiration how
to steer chemical reactions, the ideal set of orthogonal

coordinates are those that minimize Sλ
c,λr

A and are also
intuitive; e.g. based on known concepts such as number
of hydrogen bonds, radii of gyration, nucleus size etc.

In the case that the CVs do not correlate with re-
activity: PA(λr|λc,ΨN ) = PA(λr|λc). In other words,
the chance to cross λr after crossing λc is independent
of where the first crossing with λc takes place in the
ΨN space. This might either indicate that the CVs
were badly chosen or because the λc surface is an iso-
committor surface with respect to λr. The former im-
plies that these specific CVs do not improve predic-
tivity, while the latter implies that there simply are
no CVs which potentially could improve the predictive
power. For both cases, the absence of correlation implies
that rλ

c,λr (ΨN ) = PA(λr|λc)tλc(ΨN ), uλ
c,λr (ΨN ) =

[1− PA(λr|λc)] tλc(ΨN ). Substitution in Eq. 10 gives

Sλ
c,λr

A [ΨN ] = 1 − PA(λr|λc) and T λ
c,λr

A = PA(λr|λc).
In other words, ΨN does not provide more information
which can help us to tell whether λr will be crossed or
not. Based on the fact that we observe an effective posi-
tive crossing with λc, we know already that the chance of
a (partial) reaction is PA(λr|λc). Any knowledge about
the orthogonal space expressed in the CVs ΨN does not
increase the quality of our predictions. Of course, if λc

is sufficiently beyond the transition state PA(λr|λc) = 1.
Hence, we can still have a high predictive power. How-

ever, ΨN does not improve it and T λ
c,λr

A /PA(λr|λc) will

be equal to one. Therefore, T λ
c,λr

A is a useful measure
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of predictive capacity using all information (both λc and

ΨN ) while T λ
c,λr

A /PA(λr|λc) is a measure of the enhance-
ment of predictive capacity due to the information of the

selected orthogonal coordinates. Note that T λ
c,λr

A ≤ 1

and T λ
c,λr

A /PA(λr|λc) ≥ 1, which basically means that
predictions can never be more than 100% correct and ad-
ditional information on ΨN can never be harmful for the
predictive power.

Since, the path sampling data allow computing the
overlap for different values of λc and λr, these functions
can be plotted for the full range, λA ≤ λc < λB and
λc ≤ λr < λB , in order to provide information about the
predictive power of the CVs ΨN at each stage of the re-
action. Numerical examples showing such plots are given
in Sec. IV.

III. PATH REWEIGHING

In this section we will show how the results from TIS,

FFS, or RETIS can be used to compute Sλ
c,λr

A [ΨN ] for a
predefined set of CVs. As mentioned above, these path
sampling methods for computing reaction rates consist
of a series of simulations. Each simulation samples a so-
called path ensemble. The [i+] path ensemble consists
of trajectories that start at λA, cross λi at least once,
and then might end at either λA or λB . In TIS, RETIS,
and FFS different path simulations sample the different
ensembles [0+], [1+], . . . [(M − 1)+]. In addition, TIS and
FFS also require a short MD simulation initiated from
the reactant state while RETIS employs an extra path
ensemble [0−]. These will not be part of our analysis and
in the following, when referring to the i-th simulation, we
mean the simulation exploring the [i+] path ensemble.

Hence, from the trajectories generated in the i-th path
ensemble, we can in principle straightforwardly deter-

mine Sλ
c,λr

A [ΨN ] for λc = λi. We simple gather the
effective crossing points with λi and from these we can
construct histograms for tλ

c

, rλ
c,λr , and uλ

c,λr in the ΨN

space choosing appropriate bin widths, and by checking
whether the trajectories cross λr or not. Once the his-
tograms are constructed, integrations of Eq. 10 can be

carried out to obtain Sλ
c,λr

A and T λ
c,λr

A .

However, we would like to determine Sλ
c,λr

A [ΨN ] or

T λ
c,λr

A [ΨN ] on the full range and not restrict λc to any
of the TIS interfaces. In addition, we would also like to
combine all data of the different path simulations to re-
duce statistical errors, especially if crossing λr from λc

is a rare event. We can achieve this by path reweight-
ing23 based on the weighted histogram analysis method
(WHAM)24–26.

For convenience, we introduce following notation for
the multidimensional Dirac delta function in CV space

δλ
c

(Ψ
′N , X) ≡

N∏
m=1

δ(Ψm(xλ
c

(X))−Ψ′m) (13)

Now, suppose that λc = λi and λr = λj are both identical
to one of TIS interfaces. Then we can write for rλi,λj :

rλi,λj (ΨN ) =
〈
hj(X)δλi(ΨN , X)

〉
%i

=

∫
%i(X)hj(X)δλi(ΨN , X)DX∫

%i(X)DX
(14)

Then, using that for j > i: hi(X)hj(X) = hj(X) or
%i(X)hj(X) = %j(X), we can rewrite the above expres-
sion to get an ensemble average in [j+] ensemble.

rλi,λj (ΨN ) =(∫
%j(X)δλi(ΨN , X)DX∫

%j(X)DX

)(∫
%i(X)hj(X)DX∫

%i(X)DX

)
=
〈
δλi(ΨN , X)

〉
%j
PA(λj |λi) (15)

Here, PA(λj |λi) is a known result from the inter-
face path sampling simulation since the computation of
the full crossing probability PA(λ|λ0) is a central out-
put to the TIS, FFS, and RETIS and PA(λj |λi) =
PA(λj |λ0)/PA(λi|λ0). In principle, also the data of the
other path ensembles can be used to obtain rλi,λj since
for any k < j:

rλi,λj (ΨN ) =
〈
δλi(ΨN , X)hj(X)

〉
%k
PA(λk|λi) (16)

The ensembles [k+] with k > j can by itself not be used to
fully compute the rλi,λj distribution, but still these data
can be used to reduce its statistical errors. WHAM24–26

provides a way to take a weighted average of the dis-
tributions which have been obtained using different bias
functions (also called windows). That is, for an arbitrary
parameter ξ(x) the most accurate distribution that can
be obtained from the different biased simulations is

ρ(ξ) =

∑Nw
i=1 ωi(ξ)ρ

unb.
i (ξ)∑Nw

j=1 ωj(ξ)
(17)

Here Nw is the number of windows and ρ(ξ)unbi is the
unbiased distribution of simulation i. This is the distri-
bution after proper rescaling to remove the effect bias.
Further, ωi are weights depending on ξ, chosen to be
proportional to inverse square of the estimated error in
each simulation.

As shown in the appendix, also the crossing probability
itself can then be expressed using WHAM:

PA(λ|λ0) =

∑K(λ)
i=0 ni[λ]∑K(λ)

j=0 nj [PA(λj |λ0)]−1
(18)

Here ni[λ] is the number of trajectories in simulation i
having a λmax > λ, nj is the total number of trajectories
in simulation j, and K(λ) is the integer which fulfills

K(λ) =

{
k if λk < λ ≤ λk+1 and λ < λB

M − 1 if λ > λB
(19)
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The maximum of M − 1 is due to the fact that there is
generally not a simulation that just considers the [M+]
ensemble since it gives the trivial unit contribution in
the product expression, Eq. 1. Eq. 18 can be solved iter-
atively and is presumably somewhat more accurate than
Eq. 1 since it is based on more data. If nj is equal for
all simulations, then Eq. 18 is identical to the crossing
probability derived by Rogal et al.23 in a different man-
ner. In our derivation (see appendix) we also provide
two refinements of the above expression. One is stan-
dard and appears also in e.g Roux26 and is related to
the effect of correlated trajectories which might be more
severe in some of the simulation than in the others. An-
other refinement, that is non-standard, is related to the
non-negligible size of the bins in the determination of
crossing probability. The use of more refined expressions
is not always preferred since they rely on the facts that
errors can be obtained accurately while, in practice, sim-
ulations which tend to get trapped for a long time can
provide artificially low standard deviations. In the re-
fined expression these simulations could get the highest
weights and overwhelm the more converged results of the
other simulations. We have therefore used the simpler
expression, Eq. 18, in the remainder of this article.

In order to obtain our distributions tλ
c

q , rλ
c,λr

q , and

uλ
c,λr

q we first compute the following ensemble averages〈
H

[λa:λb]
q,λc

〉
%0

in which H
[λa:λb]
q,λc (X) is 1 (otherwise 0) if

and only if trajectory X passes through bin q on the
λc surface while λmax(X) is inside the interval [λa : λb].
Moreover, we restrict ourselves to intervals which do not
overlap with any of the TIS interfaces. In other words
λb ≤ λK(λa)+1. Then for any i ≤ K(λa):

〈
H

[λa:λb]
q,λc

〉
%0

=

∫
H

[λa:λb]
q,λc %0(X)dX∫
%0(X)dX

=

∫
H

[λa:λb]
q,λc %i(X)dX∫
%i(X)dX

∫
%i(X)dX∫
%0(X)dX

=
〈
H

[λa:λb]
q,λc

〉
%i
PA(λi|λ0) (20)

Here we used the relation H
[λa:λb]
q,λc %0 = H

[λa:λb]
q,λc %i valid

for λi < λa. Hence, this property can be determined
using different interface ensemble simulations. As shown
in the appendix, the WHAM weights which are assumed
to minimize the error equals

ωi =
[PA(λi|λ0)]−1∑K(λa)

j=0 [PA(λj |λ0)]−1
(21)

This implies that the WHAM expression equals〈
H

[λa:λb]
q,λc

〉
%0

=

∑K(λa)
i=0 ni(q, λ

c; [λa : λb])∑K(λa)
j=0 nj [PA(λj |λ0)]−1

(22)

where ni(q, λ
c; [λa : λb]) is the number of trajectories in

simulation i moving through bin q at its first crossing
with λc and having λmax in the interval [λa : λb].

Our distributions can then be constructed from these
since

Rλ
c,λr

q =
〈
H

[λr:λK(λr)+1]

q,λc

〉
%0

+

M∑
k=K(λr)+1

〈
H

[λk:λk+1]
q,λc

〉
%0

Uλ
c,λr

q =
〈
H

[λc:λr]
q,λc

〉
%0

if λr < λK(λc)+1 or

=
〈
H

[λc:λK(λc)+1]

q,λc

〉
%0

+

K(λr)∑
k=K(λc)+1

〈
H

[λk:λk+1]
q,λc

〉
%0

+
〈
H

[λK(λr):λr]

q,λc

〉
%0

if λr > λK(λc)+1 (23)

where λM+1 = ∞. Now, by rescaling we obtain the ac-
tual distributions

rλ
c,λr

q =
Rλ

c,λr

q

PA(λc|λ0)
, uλ

c,λr

q =
Uλ

c,λr

q

PA(λc|λ0)
(24)

IV. NUMERICAL RESULTS

In this section we will give a detailed description of the
implementation for calculating the crossing probability
and distribution functions. We will also exemplify the
method by applying it to three systems we have studied
with RETIS simulations.

A. Implementation

1. The Crossing Probability

In order to obtain the distribution functions using
WHAM we need, first of all, to obtain the crossing prob-
ability. This can be done using the product expression,
Eq. 1, or the more accurate expression based on WHAM,
Eq. 18. We will discuss the last one. The first step is to
obtain the values of the crossing probability at the TIS
interfaces. Setting PA(λ0|λ0) = 1 gives directly

PA(λ1|λ0) =
n0(λ1)

n0
(25)

or simply the number of trajectories in simulation 0 cross-
ing λ1 divided by the total number of trajectories in sim-
ulation 0. The next interface gives

PA(λ2|λ0) =
n0(λ2) + n1(λ2)

n0 + n1 [PA(λ1|λ0)]
−1 (26)

and so we can continue determining PA(λ3|λ0),
PA(λ4|λ0), . . ., PA(λM |λ0). For convenience we define

Qk ≡
1∑k

j=0 nj [PA(λj |λ0)]
−1

(27)

and the crossing probability for any continuous value λ
is then obtained by a simple summation which includes
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all trajectories X in all path sampling data of ensembles
i = 0, 1, . . . ,M − 1

PA(λ|λ0) = QK(λ)

K(λ)∑
i=0

ni[λ] (28)

= QK(λ)

M−1∑
i=0

ni[λ]θ(λ− λi)

= QK(λ)

M−1∑
i=0

∑
X∈[i+]

θ(λmax(X)− λ)θ(λ− λi)

with θ(·) being the Heaviside step function.
In an actual computer algorithm, PA(λ|λ0) is com-

puted using a small step-size along the λ-parameter
which define a fine grid of sub-intervals. Let v(α) be
the vector for determining PA(λ|λ0) on this fine grid
such that α is an index of the sub-interface λα and
v(α) = PA(λα|λ0) after completion of the algorithm. We
can then determine the full vector v as follows:

1. Set all entries of v(α) equal to 0: v(α) = 0.

2. Loop over all data sets corresponding to the path
ensembles i = 0, 1, . . . ,M − 1, and for each trajec-
tory X in data set i:

2.1. Determine λmax(X).

2.2. For each α where λi ≤ λα < λmax(X), incre-
ment v(α): v(α) = v(α) + 1

3. For each α determineK(α) andQK(α) and multiply
this with the vector entry: v(α) = v(α)×QK(α).

2. Probability Distribution Functions

We can also determine the probability distribution
function uλ

c,λr

q , rλ
c,λr

q based on Eqs. 22-24 using a sin-
gle loop over all trajectories. Substituting Eq. 27 into
Eq. 22 yields

〈
H

[λa:λb]
q,λc

〉
%0

= QK(λa)

K(λa)∑
i=0

ni(q, λ
c; [λa : λb])

= QK(λa)

M−1∑
i=0

ni(q, λ
c; [λa : λb])

=

M−1∑
i=0

∑
X∈[i+]

QK(λmax)δq,λc

× θ(λa − λmax)θ(λmax − λb) (29)

where δq,λc is 1 (otherwise zero) whenever X has a first
crossing through bin q at the λc surface. In the second
equation we used the fact that we only consider inter-
vals [λa : λb] that are not overlapping with the TIS in-
terfaces. This implies that λb < λK(λa)+1 and, hence,

ni(q, λ
c; [λa : λb]) = 0 for any i ≥ K(λa) + 1. In the

third expression we use that whenever λmax(X) is within
this interval [λa : λb], we must have K(λa) = K(λmax).

Eq. 29 shows that
〈
H

[λa:λb]
q,λc

〉
%0

can be expressed as a

sum over all trajectories without considering the actual
simulation i it was taken from. The values to be summed
are either zero or QK(λmax). A non-zero contribution can

only occur whenever λmax is within the interval [λa : λb].
Now let us consider Eqs. 23. To calculate Rλ

c,λr

q and

Uλ
c,λr

q we need to add
〈
H

[λa:λb]
q,λc

〉
%0

for different inter-

vals and since these intervals are not overlapping, each
X can only give a contribution 0 or QK(λmax) to the total
sum as well. The non-zero contribution occurs whenever
there is a first crossing through bin q and λmax is within
[λc : λr] for Uλ

c,λr

q and whenever λmax is larger than λr

for Rλ
c,λr

q . Now, let Mu(q, α, β) and Mr(q, α, β) be the

matrices used to construct the uλ
α,λβ

q and rλ
α,λβ

q distri-
butions, respectively, where α, β are indices of the fine
grid along λ. The computational algorithm is then as
follows:

1. Set all entries of matrices Mu(q, α, β) and
Mr(q, α, β) equal to 0.

2. Loop over all data sets corresponding to path en-
sembles i = 0, 1, . . .M − 1, and for each trajectory
X in data set i:

2.1. Determine λmax and QK(λmax).

2.2. For each α such that λα < λmax:

– Determine xλ
α

and the corresponding bin q.

– For each β such that λβ > λmax, add
QK(λmax) to the entries of Mu(q, α, β):
Mu(q, α, β) = Mu(q, α, β) +QK(λmax).

– For each β such that λβ ≤ λmax,
add QK(λmax) to all entries of Mr(q, α.β):
Mr(q, α, β) = Mr(q, α, β) +QK(λmax).

3. For each α, apply for all β and q the normalizations
Mr(q, α, β) = Mr(q, α, β)/v(α) and Mu(q, α, β) =
Mu(q, α, β)/v(α). The normalized matrices Mr

and Mu are now estimates of the distributions
rλ

c,λr

q and uλ
c,λr

q , respectively.

The fine grid along λ does not have to be commensurate
with the TIS interfaces. The accuracy is not affected
by the spacing between the sub-interfaces unlike the bin-
ning in the orthogonal directions; The bins q have to be
sufficiently large in order to determine the path density
going through it, while still be sufficiently small enough
to get enough resolution in order to discriminate between
rq and uq.
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B. Numerical Example 1: 1D Double Well
Potential

The 1D double well potential, V (r) = r4−2r2, models
the transition for a single particle between two stable
states (located at r ± 1) separated by a barrier (at r =
0)21. The progress coordinate is in this case given by the
position of the particle in the potential: λ = r. We have
investigated the transition between the two stable states
using RETIS simulations under Langevin dynamics with
a friction coefficient γ = 0.3 and a reduced temperature
of 0.07 as described in Ref. 21.

Two additional collective variables have been consid-
ered for our analysis: (1) the velocity of the order pa-
rameter v = dλ/dt and (2) the random Langevin force
averaged over 9 steps (labeled “9rf”) after the crossing.
The use of the second parameter might be viewed as a
not completely ”fair” way to improve predictions since
it assumes that, after crossing λc, one already knows
which random numbers will be generated for the stochas-
tic force. Still, it is a CV that we can use in a computer
experiment in order to measure the balance of initial con-
ditions at the crossing before the reaction takes place and
the stochastic contributions during the coarse of the reac-
tion. The use of velocity is also not a common parameter
in reaction coordinate analysis studies. Notably excep-
tions are Ref. 27,28 in which not the configurational com-
mittor but the transmission coefficient selected to choose
the reaction coordinates.

The first collective variable, v, is expected to improve
the predictive capacity for small values of γ when the dy-
namics is largely deterministic, while the second, “9rf”,
may improve the predictive capacity for stochastic dy-
namics resulting from a large friction coefficient γ. In
Fig. 2, we show the crossing probability and the predic-
tive capacities for the three combinations of collective
variables ({v}, {9rf}, {v, 9rf}). These results show that
the predictive capacity is largely improved by inclusion
of the collective variable v, but only minimally with the
inclusion of 9rf. This shows that the chance for a bar-
rier crossing is much more determined by the right initial
conditions than by a rare sequence of random kicks dur-
ing the barrier crossing process. This is also the reason
that FFS is not able to predict the crossing rate in an
adequate manner21.

A closer inspection (see Fig. 3) shows that the pre-
dictive capacities can be increased by several orders of
magnitude due to the knowledge of v. The use of 9rf as
CV only improves the predictions by 4% as is shown in
the inset of the top panel.

C. Numerical Example 2: Ion Transfer Model in a
Solvent

This example models the ion transfer reaction Ax +
A→ A + Ax where an ion, x is transferred between two
molecules of the same type, A. The reaction takes place

FIG. 2: (Color online.) The crossing probability, PA(λr|λc),
and the predictive capacities, T λ

c,λr

A , for the 1D double well
potential: (top left) the crossing probability, (top right) the
predictive capacity using the velocity (v) of the progress co-
ordinate as the collective variable, (bottom left) the predic-
tive capacity using the random Langevin force averaged over
9 steps (“9rf”) as the collective variable, (bottom right) the
predictive capacity using both v and 9rf as collective vari-
ables. We used 200 sub-interfaces both for λr and λc. The
histograms in the ΨN space were constructed using 20 bins
for −2 < v < 2 and 20 bins for −3 < 9rf < 3.

in a solvent (molecules of type B) which may reduce the
barrier due to a cooperative effect. For the detailed de-
scription of the potential and the interactions, please see
Ref. 29.

The ion is initially bound to one of the A molecules
(labeled “A1“) and it is transferred to the other (labeled
A2) over the course of the reaction. The progress coor-
dinate, λ, is defined using the distance, rx,A2

, between x
and A2:

λ = −rx,A2
(30)

where the minus sign ensures that the progress coordi-
nate changes from a low value to a high value while the
ion transfer advances. The reactant state is defined by
λA = −0.7 and the product state by λB − 0.4.

For our analysis we have defined two additional collec-
tive variables: (1) the velocity, v, of the progress coordi-
nate (v = dλ/dt), and (2) the coordination number, CN ,
for solvent molecules surrounding the ion, defined by

CN =
∑

j∈{type B}

1

1 + exp [Nd (rx,j −Rcoop)]
(31)

where rx,j is the distance between the ion and solvent
molecule j and Rcoop and Nd are parameters of the po-
tential29. Like in the previous example, we expect the ve-
locity v to be important if the crossing process is largely
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FIG. 3: (Color online.) The crossing probability, PA(λr|λc),
and the predictive capacities, T λ

c,λr

A , for the double well po-
tential at (top) λc = −0.9 and (bottom) λr = 1. The posi-
tion of the interfaces used in the RETIS simulations are in-
dicated with dotted vertical lines. In both cases we find that
T λ

c,λr

A [v, 9rf] > T λ
c,λr

A [v] >> PA(λr|λc) and T λ
c,λr

A [9rf] >
PA(λr|λc) and in the inset in the top figure we show the en-

hancement of the predictive capacity, T λ
c,λr

A [9rf]/PA(λr|λc),
when using 9rf alone as the collective variable.

non-stochastic. This would be the case if the typical col-
lision time with solvent molecules is larger than the time
required to cross the reaction barrier. For dense systems,
we expect that the second collective variable will be more
important as it’s directly linked to the height of the bar-
rier29.

In Fig. 4 we show the crossing probability and the
predictive capacity for the three combinations of collec-
tive variables ({v}, {CN}, {v, CN}) using results from a
RETIS simulation carried out as described in Ref. 29.
In this case, we see that both variables improve the pre-
dictive capacity. However, the coordination number im-
proves the predictive capacity more than the velocity of
the progress coordinate. The distributions tλ

c,λr (CN),
rλ

c,λr (CN), and uλ
c,λr (CN) for some of the λc, λr val-

ues are shown in Figs. 5 and 6. Fig. 5 shows the distri-
butions with λc = λA and different values for λr, while
Fig 6 shows the distributions for λr fixed at λB and dif-
ferent values for λc. The values correspond to the black
dots in the left-bottom panel of Fig. 4. Fig. 5 shows a
clear cross-over for increasing λr. For λr values close to
λc = λA, the reactive distribution rλ

c,λr (CN) is almost
identical to the total distribution tλ

c,λr (CN). However,
when λr is moved towards λB the unreactive distribution
increases at the expense of the reactive distribution. De-
spite, as shown by the insets, the reactive distribution is
always higher at the large coordination numbers.

Fig. 6 shows an opposite trend regarding the height of
the distributions. The unreactive distribution is initially
the largest but for increasing λc the reactive distribution
rises at the expense of uλ

c,λr (CN). At large coordination
numbers, the reactive distribution is always the largest
just as in Fig. 5.

FIG. 4: (Color online.) The crossing probability, PA(λr|λc),
and the predictive capacities, T λ

c,λr

A , for the ion transfer po-
tential: the crossing probability (top left), the predictive ca-
pacity using the velocity (v) of the progress coordinate as
the collective variable (top right), the predictive capacity us-
ing the coordination number (CN) as the collective variable
(bottom left), the predictive capacity using both v and CN as
collective variables (bottom right). We used 85 sub-interfaces
both for λr and λc. The histograms in the ΨN space were
constructed using 20 bins for 0 < CN < 3 and 20 bins for
−45 < v < 25. The circles placed on the λr and λc axes in
the bottom left figure indicate points where we have obtained
the distributions in the CN space, shown in Fig. 5 and 6

Fig. 7 shows the intersections of Fig. 4 correspond-
ing to a fixed λc = −0.7 and a fixed λr = −0.4. The
results clearly show that the coordination number is a
much better indicator for the ion-transfer reaction than
the velocity along the reaction coordinate λ. Still, having
knowledge of both parameters will improve the predictive
capacity slightly more compared to the situation in which
one only knows CN .

D. Numerical Example 3: Ab Initio MD of Water
Dissociation

For this example, we have performed RETIS simula-
tions of dissociation of water at a low density. Water was
modeled with the BLYP functional30,31 and a DZVP-
MOLOPT basis set32. A plane-wave cut-off of 300 Ry
was used and the simulations were performed at a low
density with 8 water molecules in a cubic simulation box

of 9.85 × 9.85 × 9.85 Å
3
. Periodic boundary conditions
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FIG. 5: (Color online.) Distribution of tλ
c,λr , rλ

c,λr and

uλ
c,λr using the coordination number (CN) as the collec-

tive variable for λc = −0.7 and λr = −0.66 (top-left), λr =
−0.63 (top-right), λr = −0.60 (bottom-left) and λr = −0.4
(bottom-right). For the analysis, we used 22 sub-interfaces
both for λr and λc, and the distributions shown here were
obtained using 50 bins for 0 < CN < 3.

FIG. 6: (Color online.) Distribution of tλ
c,λr , rλ

c,λr and

uλ
c,λr using the coordination number (CN) as the collec-

tive variable for λr = −0.4 and λc = −0.70 (top-left), λc =
−0.60 (top-right), λc = −0.53 (bottom-left) and λc = −0.40
(bottom-right). For the analysis, we used 22 sub-interfaces
both for λr and λc, and the distributions shown here were
obtained using 50 bins for 0 < CN < 3.

were employed in all directions. The DFT-based MD
simulations were carried out using the CP2K program
package33 with a time step of 0.5 fs and NVE dynamics.
Shooting moves were performed by randomly reselecting
the velocities at the shooting point from a Maxwellian

FIG. 7: (Color online.) The crossing probability, PA(λr|λc),
and the predictive capacities, T λ

c,λr

A , for the ion transfer po-
tential at (top) λc = −0.7 and (bottom) λr = −0.4. The
position of the interfaces used in the RETIS simulations are
indicated with dotted vertical lines.

distribution corresponding to a temperature of 600 K.

The progress coordinate was defined using the dis-
tances between oxygen and hydrogen atoms. We first
assign each hydrogen to the oxygen atom it is clos-
est to. This allows us to classify molecules, e.g. as
H2O, H3O+ or OH−, and calculate bond lengths be-
tween hydrogen and oxygen. If the system only contains
H2O molecules, the progress coordinate is defined as the
longest hydrogen-oxygen bond length. If the system con-
tains H3O+ and OH− species, the order parameter is
taken as the shortest distance from the oxygen in OH−

to a hydrogen in H3O+.

For this example, we have considered one addi-
tional collective variable defined as the length, w, of
the shortest hydrogen bond wire connecting 4 water
molecules/species where one of the species contain the
oxygen atom used for the progress coordinate. Hassanali
et al.34 highlighted the importance of compression of such
wires for the recombination reaction and hypothesized
that a similar phenomena is likely to be the rate-limiting
step for autoionization. In order to obtain the hydrogen
bond wire length, we first obtained all hydrogen bonds
(defined as in Ref. 35) in the system and used this to cre-
ate a graph of hydrogen-bond connected water molecules.
The relevant hydrogen bond wire was obtained using the
following criteria: (i) The wire should contain the oxy-
gen atom used for the order parameter (identified as ex-
plained above) when the order parameter first crossed
the 1.15 interface, (ii) the wire should contain 4 water
molecules, (iii) the wire should be the shortest of the
wires where criterion (i) and (ii) is met. The length of
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the wire was defined as the sum of the oxygen-oxygen
distances of consecutive molecules in the wire.

The results of including this additional collective vari-

able are shown in Fig. 8. The values of T λ
c,λr

A [w], show
that the dissociation reaction involves rare fluctuations
in the hydrogen bonded network and as shown in the
bottom-left and bottom-right figures, including the hy-
drogen bond wire length improves the predictive capacity
compared by several orders of magnitude.

FIG. 8: (Color online.) The crossing probability, PA(λr|λc),
and the predictive capacity, T λ

c,λr

A , for the ab initio water
simulations: (top left) the crossing probability, (top right)
the predictive capacity using the hydrogen bond wire length
(w) the collective variable (see the main text for the defini-
tion of this quantity), (bottom left) the enhancement of the

predictive capacity, T λ
c,λr

A [w]/PA(λr|λc), (bottom right) the
predictive capacity and crossing probability as a function of
λr for λc = 1.05 (positioned at the leftmost interface; the po-
sition of the interfaces used in the RETIS simulations are indi-
cated with dotted vertical lines). We used 200 sub-interfaces
both for λr and λc. The histograms in the ΨN space were
constructed using 50 bins for 7 < w < 50.

V. REDUCTION OF CVS AND RELATION TO
THE ISOCOMMITTOR

Whenever a predictive set of CVs is obtained with a

relatively low overlap value Sλ
c,λr

A [ΨN ] for a certain set
of interfaces λc, λr, one can attempt to reduce the num-
ber of CVs without raising the overlap value. The idea is
graphically illustrated in Fig. 9 where we show how a two-
dimensional CV-space can be projected on a single coor-
dinate. In the figure the best possible one-dimensional
coordinate is given as a linear combination of the previ-
ously examined coordinates Ψ1 and Ψ2. This approach
can also be used to construct coordinates that are non-
linear functions of the original CVs. However, in some
cases it might be preferred to project on a more simple

FIG. 9: (color online). Reduction of a set of CVs having a

low overlap. Let red represent the distribution rλ
c,λr (Ψ1,Ψ2)

and blue uλ
c,λr (Ψ1,Ψ2) where Ψ1,Ψ2 are two CVs. By se-

lecting Ψ1 as a single one-dimensional coordinate the pro-
jected distributions still show little overlap while the coordi-
nate Ψ2 is a much poorer choice since the projected distri-
butions rλ

c,λr (Ψ2) and uλ
c,λr (Ψ2) will almost fully overlap.

The optimal coordinate is shown by a yellow arrow and cor-
responds to the linear combination c1Ψ1 + c2Ψ2 where c1 and
c2 are two constants.

coordinate even if it is not the best one in terms of min-
imizing the overlap since the more complex functional
form might be less intuitive.

The projection procedure can, in principle, also be used
to find the committor, at least if sufficient path data is
available. Suppose that we use the full phase space as
orthogonal coordinates (ΨN = x) and take λr = λB . In

that case rλ
c,λB (x)/tλi(x) = PB(x) where PB(x) is the

phase space committor. For the overlap integral we get

Sλ
c,λB

A [x] =
1

PA(λB |λc)

∫
λc

dx tλ
c

(x)PB(x)(1− PB(x))

(32)

Suppose we bin the full phase space such that the integral
can be solved numerically as

Sλ
c,λB

A [x] =
dx

PA(λB |λc)
∑
q

s(xq) (33)

where

s(xq) =
rλ

c,λB (xq)u
λc,λB (xq)

tλc(xq)

= tλ
c

(xq)PB(xq)(1− PB(xq)) (34)

is the unnormalized contribution of bin q belonging to
phase point xq. Naturally, the contribution to Eq. 33 of
two bins corresponding to phase points x1 and x2 is given
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as

s(x1) + s(x2) = (1− PB(x1))PB(x1)t(x1)

+ (1− PB(x2))PB(x2)t(x2) (35)

Now, our projection operations can basically be viewed
as a process in which two or more bins are merged into a
single bin in the reduced coordinate space. After merging
these two bins we can write for the collective bin

s(x1 + x2) =
(r(x1) + r(x2)) (u(x1) + u(x2))

t(x1) + t(x2)
(36)

=

(
(1− PB(x1))t(x1) + (1− PB(x2))t(x2)

t(x1) + t(x2)

)
×
(
PB(x1)t(x1) + PB(x2)t(x2)

t(x1) + t(x2)

)
(t(x1) + t(x2))

The difference between Eq. 36 and Eq. 35 is

s(x1 + x2)− s(x1)− s(x2) =(
(PB(x1)− PB(x2))2t(x1)t(x2)

t(x1) + t(x2)

)
(37)

Naturally, this difference is always positive except if
PB(x1) = PB(x2), then it is zero. Therefore, any pro-
jection will increase the overlap unless it is done such
that phase points having the same committor end up in
the same bin after the projection. In other words, if after
the projection only a single orthogonal coordinate is left
while the overlap has not increased, then all points hav-
ing the same value for this orthogonal coordinate must
have the same committor value. As such, we basically ob-
tain an intersection of the committor surfaces with the
λc plane and the final one-dimensional Ψ is a descriptor
of this committor.

VI. CONCLUSIONS

We devised a quantitative analysis method for identi-
fying reaction mechanisms and initiation conditions for
reactive events. The analysis is performed on the path
sampling data that are already produced by path sam-
pling simulations for computing reaction rates such as
TIS16, RETIS17, and FFS18. Hence, a big advantage of
our technique is that it does not require additional simu-
lations which is generally needed for other analysis meth-
ods such a committor analysis. Also, our method does
not require intensive iterations such as in the FFS-least-
square estimation for determining the committor on-the-
fly as linear or a polynomial function of predefined CVS
during a FFS simulation. In contrast, our approach is a
pure a posteriori method that can be applied after the
simulation is finished, which allows for testing any pos-
sible set of CVs, which could either come from intuition
after analyzing molecular trajectories or even from ma-
chine learning techniques.

Another advantage is that it is very flexible and also
allows identifying momenta dependent variables which

might be crucial steps in the reaction mechanism. The
main idea is to determine probability distributions of first
crossing points along order parameters orthogonal to the
chosen reaction coordinate. Each plane with points hav-
ing the same value of the reaction coordinate, also called
interface, can be used to collect the first crossing points.
Another plane further towards the product state can be
used to set a condition of partial reactivity. Trajecto-
ries from the first crossing points with the first plane
might or might not cross the plane defining partial reac-
tivity. Based on this, the first crossing points are cate-
gorized and define “reactive” and “unreactive” distribu-
tions. Then, a simple overlap integral defines how well
the orthogonal coordinates can help in the prediction of
reactivity or not. Since crossing the full barrier can be a
rare event, we showed how reweighting techniques can be
used based on WHAM24–26 to improve statistics. More-
over, the number of orthogonal coordinates can be re-
duced by applying projection operations which keep the
overlap to its minimum. The latter approach, in prin-
ciple, can also be applied to determine the phase space
committor. We are aware that the analysis method de-
scribed here, possibly with some adaptations, could be
used in a wide range of different scientific fields such as
economics and social sciences. Certainly, this is not the
first method that tries, based on available data, to early
identify events or parameters which possibly could pre-
dict whether something happens or not. One of such
techniques is determination of receiver operator charac-
teristic curves36,37 which is a common method in signal
detection theory. These methods, although having sim-
ilar aims, are based on a rather different mathematical
formulations to measure the quality of predictiveness of
some parameters. In addition, it would be very instruc-
tive to compare the kind of information that can be sub-
tracted from the predictive power method, described in
this article, and the information obtained from likelihood
maximization4,5. We plan to analyze possible analogies
of these approaches in a future study.

The approach presented here allows one to get more
valuable data from path sampling simulations and pro-
vides a mean to analyze reaction mechanism in a quanti-
tative way. This output is likely to unravel hidden initi-
ation events. Knowledge of these can then be exploited
for designing new synthesis routes in which either new
products are made or existing chemicals are generated
with a lower energy cost or impact on the environment.

Appendix A: WHAM Approach for Path Sampling

The WHAM methodology is well explained in previous
publications24–26 and also the WHAM approach applied
on path sampling simulations have been reported before.
The derivation that we give here is, however, slightly dif-
ferent than reported elsewhere. We give it here for com-
pleteness and to show that the WHAM weights can be
optimized using non-standard terms. These terms come
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in addition to the terms depending on the correlation
number, which are standard but often omitted. Whether
these more refined weights should be applied or not will
mainly depend on the accuracy of the path simulations.

The WHAM approach is based on the idea that when-
ever different simulations produce the same output, the
best numerical result should be a weighted average of
these outputs in which the weights have to chosen in or-
der to minimize the overall error. One way to derive
these weights is to write an general expression of the
overall error for arbitrary weights. The optimizing set
of weights can then be found by minimizing this expres-
sion with respect to the weights under the condition that
the sum of weights must be equal to one. Intuitively
we can, however, also use the following argument. Sup-
pose there are two simulations with different simulation
lengths computing the same average. If the two simu-
lations are equally efficient, it is obvious that the best
overall result is obtained by taking a weighted average
in which the weights are taken to be proportional to the
simulation length. Reversely, since the error scales as
the inverse square root of the simulation length, it makes
sense to weight different types of simulations, possibly us-
ing different algorithmic approaches or biases, with the
inverse square of their error: ωi ∝ ε−2

i .

Now, consider a certain probability p(ξ) which is for
instance the probability that the system is within a bin
as defined by the order parameter ξ. To improve the
statistics we can apply biases in the sampling and unbias
the results using a proper rescaling.

punb.
i (ξ) = Yi(ξ)p

b.
i (ξ) (A1)

where pb.
i is the biased distribution of simulation i and

Yi is the ξ-dependent scaling factor to obtain the i-th re-
alization of the unbiased distribution punb.

i . If we assume
that Yi(ξ) can be viewed as a constant not bearing any
error, then the error in punb.

i is simply ε(punb.
i ) = Yiε(p

b.
i ).

Moreover, since the calculation of punb.
i (ξ) is generally re-

lated to the average of a binary function (being 1 if the
system visits the bin at ξ and zero otherwise), we can use
the well known expression for its error (see e.g.20,38)

ε(pb.
i (ξ)) =

√
pb.
i (ξ)

(
(1− pb.

i (ξ)
)

ni/Ni

=

√
punb.
i (ξ)

n′iYi(ξ)
(A2)

Here, Ni is the effective correlation (also called statis-
tical inefficiency) and n′i = n1/[Ni

(
(1− pb.

i (ξ
)
]. Then,

by taking the weights proportional to ε−2
i

(
punb.
i (ξ)

)
with

the condition
∑
i ω(ξ) = 1 we get

ωi(ξ) =

[
Yi (ξ) ε

(
pb.
i (ξ)

)]−2∑
j

[
Yj (ξ) ε

(
pb.
j (ξ)

)]−2

=

1
Y 2
i (ξ)

n′
iYi(ξ)

punb.i (ξ)∑
j

1
Y 2
j (ξ)

n′
jYj(ξ)

punb.j (ξ)

≈ n′iY
−1
i (ξ)∑

j n
′
jY
−1
j (ξ)

(A3)

where we used Eqs. A1 and A2 and the fact that punb.
i (ξ)

should be similar for all i since these values should con-
verge for each simulation to the true unbiased distribu-
tion ρ(ξ).

Hence, the weighted average, Eq. 17, equals

ρ(ξ) =

∑
i=1 n

′
iρ

b.
i (ξ)∑

j n
′
jY
−1
j (ξ)

=

∑
i=1 n

′
i[ξ]∑

j n
′
jY
−1
j (ξ)

(A4)

where n′i[ξ] is the effective number of cycles in simulation
i that visit bin ξ. Here, effective means that one counts
all the cycles visiting bin ξ but finally divides this num-
ber by Ni

(
(1− pb.

i (ξ)
)
. The reduction of ni and ni[ξ]

with the correlation is standard though often omitted.
Although Ni can be large, it cancels out in Eq A4 if the
correlation number is similar for all i. The other fac-
tor

(
(1− pb.

i (ξ)
)

can generally be omitted whenever the

bin-width is small enough such that pb.
i (ξ)� 1.

Now let us come back to the crossing probability. For
PA(λ|λ0) we can write:

PA(λ|λ0) = 〈θ(λmax(X)− λ)〉%0 (A5)

= 〈θ(λmax(X)− λ)〉%i PA(λi|λ0) for any i < K(λ)

where, in the second step, we applied a similar mathe-
matical operation as the one in Eq. 20. Now, we can use
Eq. A4 in which we replace Yi with PA(λi|λ0) and re-
place the bin around ξ with an extended interval [λ :∞]
for λmax:

PA(λ|λ0) =

∑K(λ)
i=0 n′i[λ]∑K(λ)

j=0 n′j [PA(λj |λ0)]−1
(A6)

where

n′i =
ni

Ni[1− 〈θ(λmax(X)− λ)〉%i ]

=
ni

Ni 〈θ(λ− λmax(X))〉%i
(A7)

is the number of generated path in simulation i reduced
by a factor proportional to the statistical inefficiency and
the fraction of trajectories with λmax < λ. Similarly,

n′i[λ] = n′i 〈θ(λmax(X)− λ)〉%i (A8)

is the number of trajectories in simulation i with λmax >
λ scaled by the same factor. The bin at position ξ is
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here replaced by the region λmax > λ. The small bin-
width assumption can, hence, not be made. In other
words, we can’t assume that [1− 〈θ(λmax(X)− λ)〉%i ] =

〈θ(λ− λmax(X))〉%i ≈ 1 for all i. In fact, it can even be
zero which, unless it is based on bad statistics, implies
that the crossing probability has reached a plateau. How-
ever, if it is based on bad statistics the infinite weight of
1/ 〈θ(λ− λmax(X))〉%i will influence the results in a neg-
ative way. We, therefore, used the simpler expression of
Eq. 18 which involves ni and n[λ] instead of n′i and n′[λ].
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