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Abstract

This chapter provides the use of Bayesian inference in compressive sensing (CS), a
method in signal processing. Among the recovery methods used in CS literature, the
convex relaxation methods are reformulated again using the Bayesian framework and
this method is applied in different CS applications such as magnetic resonance imaging
(MRI), remote sensing, and wireless communication systems, specifically on multiple-
input multiple-output (MIMO) systems. The robustness of Bayesian method in incorpo-
rating prior information like sparse and structure among the sparse entries is shown in
this chapter.

Keywords: Bayesian inference, compressive sensing, sparse priors, clustered priors,
convex relaxation

1. Introduction

In order to estimate parameters in a signal, one can apply wisdoms of the two schools of
thoughts in statistics called the classical (also called the frequentist) and the Bayesian. These
methods of computing are competitive with each other at times. The definition of probability is
where the basic difference arises from. The frequentist define P(A) as a long-run relative
frequency with which A occurs in identical repeats of an experiment, whereas Bayesian defines
P(A|B) as a real number measure of the probability of a proposition A, given the truth of the
information represented by proposition B. So under Bayesian theory, probability is considered
as an extension of logic [1, 2]. Probabilities represent the investigator degree of belief—hence it
is subjective. But this is not acceptable under classical theory, making it to be not flexible. To
add on the differences, under the classical inference, parameters are not random, they are fixed
and prior information is absent. But under the Bayesian, parameters are random variables, and
prior information is an integral part, and the Bayesian has no excuse for that. Since one is free
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to invent new estimators or confidence intervals or hypothesis test, adhockery exists and hence
frequentist approach lack consistency whereas Bayesian theory is flexible and consistent [1–9].
Therefore, Bayesian inference is our main focus applied to a special paradigm in signal
processing in this chapter.

After presenting the theoretical frameworks, Bayesian theory, CS, and convex relaxation
methods in Section 2, the use of Bayesian inference in CS problem by considering two priors
modeling the sparsity and clusteredness is shown in Section 3. In Section 4, we present three
examples of applications that show the connection of the two theories, Bayesian and compres-
sive sensing. In Section 5, the conclusion is given briefly.

2. Theoretical framework

2.1. Bayesian framework

For two random variables A and B, the product rule gives

P A;Bð Þ ¼ P AjBð ÞP Bð Þ ¼ P BjAð ÞP Að Þ (1)

and the famous Bayes’ theorem provides

P BjAð Þ ¼ P AjBð ÞP Bð Þ
P Að Þ : (2)

Using the same framework, consider modelMj and a vector of parameter θ. We infer what the
model’s parameter θ might be, given the data, D, and a prior information I. Using Bayes’
theorem, the probability of the parameters θ given model Mj, data D, and information I is
given by

P θjD,Mj, I
� � ¼ P Djθ,Mj, I

� �
P θjMj, I
� �

P DjMj, I
� � ; (3)

where P(θ|D, Mj, I), is posterior probability, P(θ|Mj, I) is the non data information about θ,
called prior probability distribution function, while P(D|θ, Mj, I) is the density of the data
conditional on the parameters of the model, called likelihood. P(D|Mj, I) is called the evidence
of model Mj, or the normalizing constant, given by:

P DjMj, I
� � ¼ ð

θ
P θjMj, I
� �

P Djθ,Mj, I
� �

dθ: (4)

P(θ|D,Mj, I) is the fundamental interest for the first level of inference called model fitting. It is
the task of inferring what the model parameters might be given the model and the data.
Further, we can do inference on higher level, which is comparing models Mj. In the light of
prior information I and data D, a given set of models {M1, M2,⋯, Mn} is most likely to be the
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correct one. Now focusing on the first level of inference, we can ignore the normalizing
constant in (3) since it has no relevance at this level of inference about the parameters θ. Hence
we get:

P θjD,Mj, I
� �

∝P Djθ,Mj, I
� �

P θjMj, I
� �

: (5)

The posterior probability is proportional to the Prior probability times the Likelihood. Eq. (5) is
called Updating Rule [1, 3], in which the data allow us to update our prior views about θ, and
as a result, we get the posterior which combines both the data and non-data information of θ.
As an example for a binomial trial, let us have beta distribution as a prior and as a result we get
posterior distribution which is beta distribution. Figure 1 shows that the posterior density is
taller and narrower than the prior density. It therefore favors strongly a smaller range of θ
values, reflecting the fact that we now have more information. That is why inference based on
the posterior distribution is superior to the one only based on the likelihood.

Now, we first find the maximum of the posterior distribution called maximum a posteriori

(MAP). It defines the most probable value for the parameters denoted bθMP. MAP is related to

Fisher’s methods of maximum likelihood estimation (MLE), bθML. If f is the sampling distribu-
tion ofD, then the likelihood function ofD:θ↦ f Djθð Þ and the maximum likelihood estimation
of θ:

θML Dð Þ ¼ arg max
θ

f Djθð Þ: (6)

But under Bayesian inference, let g be a prior distribution of θ, then the posterior distribution
of θ becomes

θML ↦
f Djθð Þg θð Þ

f Dð Þ (7)

and the maximum a posteriori estimation of θ:

bθMP ¼ f Djθð Þg θð Þð
ϑ
f Djϑð Þg ϑð Þdϑ

¼ arg max
θ

f Djθð Þg θð Þ
(8)

Inference based on the posterior is not an easy task since it involves multiple integral, which
are cumbersome to solve at times. However, it can be computed in several ways: Numerical
optimization (like Conjugate gradient method, Newton method,…), modification of an
expectation-maximization algorithm and others. As we can see it from (22) and (8), the differ-
ence between MLE and MAP is the prior distribution. The latter can be considered as a
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regularization of the former. Here we can summarize the posterior distribution by the value of
the best fit parameters θMP and error bars (confidence intervals) on the best fit parameters.
Error bars can be found from the curvatures of the posterior. To proceed further, we replace the
random variable D and θ by vectors y and x and we assume prior distributions on x in the next
section.

2.2. Compressive sensing

Compressive sensing (CS) is a paradigm to capture information at lower rate than the Nyquist-
Shannon sampling rate when signals are sparse in some domain [10–13]. CS has recently
gained a lot of attention due to its exploitation of signal sparsity. Sparsity, an inherent charac-
teristic of many natural signals, enables the signal to be stored in a few samples and subse-
quently be recovered accurately.

As a signal processing scheme, CS follows a similar fashion: encoding, transmission/storing,
and decoding. Focusing on the encoding and decoding of such a system with noisy measure-
ment, the block diagram is given in Figure 2. At the encoding side, CS combines the sampling
and compression stages of a traditional signal processing into one step by measuring few
samples that contain maximum information about the signal. This measurement/sampling is
done by linear projections using random sensing transformations as shown in the landmark
papers by the authors mentioned above. Having said this, let us define the CS problem
formally as follows:
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Figure 1. Figure showing the updating rule: the posterior synthesizes and compromises by favoring values between the
maximum of the prior density and likelihood. The prior we had is challenged to shift by the arrival of little amount of
data.
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Definition 1. (The standard CS problem)

Find the k-sparse signal vector x ∈ RN provided the measurement vector y ∈ RM, the measurement
matrix A ∈ RM�N and the under-determined set of linear equations as

y ¼ Ax; (9)

where k ≪ M ≪ N.

One can ask again two of the questions here, in relation to the standard CS problem. First, how
should we design the matrix A to ensure that it preserves the information in the signal x?
Second, how can we recover the original signal x from measurements y [14]? To address the
first question, the solution for the CS problem presented here is dependent on the design of A.
This matrix can be considered as a transformation of the signal from the signal space to the
measurement space, Figure 3 [15]. There have been different criteria that matrix A should
satisfy to have meaningful reconstruction. One of the main criteria is given in [11]. The authors
defined the sufficient condition that matrixA should satisfy for the reconstruction of the signal x.
It is called the Restricted Isometric Property (RIP) and it is defined below.

Figure 2. Blockdiagram for CS-based reconstruction.

Figure 3. Transformation from the signal-space to the measurement-space.
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Definition 2. (Restricted Isometry Property)

For all x ∈ RN so that ∥ x ∥0 ≤ k, if there exists 0 ≤ δk < 1 such that

1� δkð Þ∥x∥22 ≤ ∥Ax∥22 ≤ 1þ δkð Þ∥x∥22 (10)

is satisfied, then A fulfills RIP of order k with radius δk.

An equivalent description of the RIP is to say that all subsets of k columns taken from A are
nearly orthogonal (the columns ofA cannot be exactly orthogonal since we have more columns
than rows) [16]. For example, if a matrix A satisfies the RIP of order 2k, then we can interpret
(10) saying that A approximately preserves the distance between any pair of k-sparse vectors.
For random matrix A, the following theorem is one of the results in relation to RIP for the
noiseless CS problem, provided that the entries of the random matrix A are drawn from some
distributions which are given later.

Theorem 1. (Perfect Recovery Condition, Candes and Tao [13])

If A satisfies the RIP of order 2k with radius δ2k, then for any k-sparse signal x sensed by y=Ax, x is
with high probability perfectly recovered by the ideal program

bx ¼ arg min
x

∥x∥0

subject to y ¼ Ax
(11)

and it is unique, where ∥ x ∥0 = k� # {i ∈ {1, 2, ⋯, N}|xi 6¼ 0}.

This means, if A satisfies the RIP of order kwith radius δk, then for any k0< k, A satisfies the RIP
of order k0 with constant δk0 <δk [?]. Note that, this theorem is stated for the noiseless CS
problem and it is possible to extend it for the noisy CS system. The proof of these theorems is
deferred to the literature mentioned, [13], in for the sake of space.

Under conventional sensing paradigm, the dimension of the original signal and the measure-
ment should be at least equal. But in CS, the measurement vector can be far less than the
original. While at the decoding side, reconstruction is done using nonlinear schemes. Eventu-
ally, the reconstruction is more cumbersome than the encoding which was only projections
from a large space to a smaller space. On the other hand, finding a unique solution that
satisfies the constraint that the signal itself is sparse or sparse in some domain is complex in
nature. Fortunately, there are many algorithms to solve the CS problem, such as iterative
methods such as greedy iterative algorithms [17] and iterative thresholding algorithms [18]. This
chapter focuses merely on the convex relaxations methods [12, 13]. The regularizing terms in
these methods can be reinterpreted as prior information under Bayesian inference. We con-
sider a noisy measurement and apply convex relaxation algorithms for robust reconstruction.

2.3. Convex relaxation methods for CS

Various methods for estimating x may be used. We have the least square (LS) estimator in
which no prior information is applied:
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bx ¼ ATA
� ��1

ATy; (12)

which performs very badly for the CS estimation problem we are considering. In order to
incorporate the methods called convex relaxation, let us define an important concept first.

Definition 3. (Unit Ball)

A unit ball in lp-space of dimension N can be defined as

Bp� x∈RN : ∥x∥p ≤ 1
n o

: (13)

Unit balls corresponding to p = 0, p = 1/2, p = 1, p = 2, p = ∞, and N = 2, the balls are shown in Figure 4.

The exact solution for the noiseless CS problem is given by

min
x

∥x∥0, such that y ¼ Ax: (14)

However, minimizing l0-norm is a non-convex optimization problem which is NP-hard [19].
By relaxing the objective function to convexity, it is possible to get good approximation. That
is, replacing the l0-norm by the l1-norm, one can find a problem which is tractable. Note that it
is also possible to use other lp-norms to relax the condition given by l0. However, keeping our
focus on l1-norm, consider the minimization problem instead of (14).

min
x

∥x∥1, such that y ¼ Ax (15)

The solution of the relaxed problem (15) gives the same as that of (14) and this equivalence was
provided by Donoho and Huo in [20].

Figure 4. Different lp-balls in different lp-spaces for N=2, only balls with p≥1 are convex.
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Theorem 2. (l0�l1 Equivalence [13])

If A satisfies the RIP of order 2k with radius δ2k <
ffiffiffi
2

p � 1, then

bx ¼ arg min
x

∥x∥1

subject to y ¼ Ax
(16)

is equivalent to (11) and will find the same unique bx.
Justified by this theorem, (15) is an optimization problem which can be solved in polynomial
time and the fact that it gives the exact solution for the problem (14) under some circumstance
has been one of the main reasons for the recent developments in CS. There is a simple
geometric intuition on why such an approach gives good approximations. Among the
lp-norms that can be used in the construction of CS related optimization problems, only those
which are convex give rise to a convex optimization problem which is more feasible than the
non-convex counter parts, which means lp-norms with only p ≥ 1 satisfy such a condition. On
the other hand, lp-norms with p > 1 do not favor sparsity, for example, l2-norm minimization
tends to spread reconstruction across all coordinates even if the true solution is sparse. But
l1-norm is able to enforce sparsity. The intuition is that l1-minimization solution is most likely
to occur at corners or edges, not faces [21, 45]. That is why l1-norm became famous for CS.
Further, in CS literature, convex relaxation is presented as either l2-penalized l1-minimization
called Basis Pursuit Denoising (BPDN) [22] or l1-penalized l2-minimization called least abso-
lute shrinkage and selection operator (LASSO) [45], which are equivalent and effective in
estimating a high-dimensional data.

Usually real world systems are contaminated with noise, w, and in this chapter, the focus is on
such problems. The noisy recovery problem becomes a simple extension of (15),

min
x

∥x∥1, such that ∥y�Ax∥2 ≤ e (17)

where E is a bound on ||w||2. The real problem for (17) is stability. Introducing small changes in
the observations should result in small changes in the recovery. We can visualize this using the
balls shown in Figure 5.

Both the l0 and l1-norms give exact solutions for the noise-free CS problem while giving a close
solution for the noisy problem. However, the l2-norm gives worst approximation in both cases
compared to the other lp-norms with p < 2 (see Figure 5). Moreover, (17) is equivalent to an
unconstrained quadratic programming problem as

min
x

1
2
∥y�Ax∥22 þ γ∥x∥1; (18)

as it will be shown later as LASSO, where γ is a tuning parameter. The equivalency of (17) and
(18) is shown in [23, 24]. In this chapter, the generalized form of the minimization problem in
(18) with different lp-norm regularization is considered, that is,
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min
x

1
2
∥y�Ax∥22 þ γ∥x∥p: (19)

Further, this chapter provides the use of Bayesian framework in compressive sensing by
incorporating two different priors modeling the sparsity and the possible structure among the
sparse entries in a signal. Basically, it is the summary of the recent works [2, 25–27].

3. Bayesian inference used in CS problem

Under Bayesian inference, consider two random variables x and y with probability density func-
tion (pdf) p(x) and p(y), respectively. The product rule gives us p(x,y) = p(x|y)p(y) = p(y|x)p(x) and
Bayes’ theorem provides

p xjyð Þ ¼ p yjxð Þp xð Þ
p yð Þ : (20)

Further, the maximum a posteriori (MAP), bxMP, is defined as

bxMP ¼ arg max
x

p yjxð Þp xð Þð
~x
pðyj~xÞpð~xÞd~x

¼ arg max
x

p yjxð Þp xð Þ
(21)

MAP is related to Fisher’s methods of maximum likelihood estimation (MLE), bxML:

bxML ¼ argmax
x

p yjxð Þ: (22)

Figure 5. lp-norm approximations: the constraints for the noise-free CS problem is given by the bold line while the shaded
region is for the noisy one.
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As we can see it from (21) and (22), the difference between MAP and MLE is the prior
distribution. The former can be considered as a regularized form of the latter. Since we apply
Bayesian inference we assume further different prior distributions on x.

3.1. Sparse prior

The estimators of x resulting from (19) for the sparse problem we consider in this chapter,
can be presented as a maximum a posteriori (MAP) estimator under the Bayesian frame-
work as in [28]. We show this by defining a prior probability distribution for x on the
form

p xð Þ ¼ e�uf xð Þð
x∈RN

e�uf xð Þdx
(23)

where the regularizing function f: χ!R is some scalar-valued, non negative function with
χ ⊆ R which can be expanded to a vector argument by

f xð Þ ¼
XN
i¼1

f xið Þ; (24)

such that for sufficiently large u, ð
x∈RN

exp �uf xð Þð Þdx

is finite. Furthermore, let the assumed variance of the noise be given by σ2 ¼ λ
u ; where λ is the

system parameter which can be taken as λ = σ2u.

Since the pdf of the noise w is gaussian, the likelihood function of y given x is given by

pyjx yjxð Þ ¼ 1

2πσð ÞN=2 e
� 1

2σ2
∥y�Ax∥22 : (25)

Together with (20) and (23), this now gives

pxjy xjy;Að Þ ¼ e�u 1
2∥y�Ax∥22þλf xð Þð Þ

2πσð ÞN=2
ð
x∈RN

e�u 1
2λ∥y�Ax∥22þλf xð Þð Þdx

:

The MAP estimator, (21), becomes

bxMP ¼ arg min
x∈RN

1
2
∥y�Ax∥22 þ λf xð Þ: (26)

Now, as we choose different regularizing function, we get different estimators as listed
below [28]:
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1. Linear estimators: when f xð Þ ¼ ∥x∥22 (26) reduces to

bxLinear ¼ AT AAT þ λI
� ��1

y; (27)

which is the LMMSE estimator. But we ignore this estimator in our analysis since the
results are not sparse. However, the following two estimators are more interesting for CS
problems since they enforce sparsity into the vector x.

2. LASSO estimator: when f(x)=||x||1 we get the LASSO estimator and (26) becomes,

x̂LASSO ¼ arg min
x∈RN

1
2
∥y�Ax∥22 þ λ∥x∥1: (28)

3. Zero-norm regularization estimator: when fx=∥x∥0, we get the zero-norm regularization
estimator and (26) becomes

x̂Zero-Norm ¼ arg min
x∈RN

1
2
∥y�Ax∥22 þ λ∥x∥0: (29)

As mentioned earlier, (29) is the best solution for estimation of the sparse vector x, but is NP-
complete. The worst approximation for the sparse problem considered is the L2-regularization
solution given by (27). However, the best approximation is given by Eq. (28) and its equivalent
forms. We have used some of the algorithms in literature in our simulation which are consid-
ered as equivalent to this approximations such as Bayesian compressive sensing (BCS) [29] and
L1-norm regularized least-squares (L1-LS) [11–13].

3.2. Clustering prior

The entries of the sparse vector x may have some special structure (clusteredness) among
themselves. This can be modeled by modifying the previous prior distribution.1 We use
another penalizing parameter γ to represent clusteredness in the data. For that we define the
clustering using the distance between the entries of the sparse vector x by

D�
XN
i¼1

jxi � xi�1j;

and we use a regularizing parameter γ. Hence, we define the clustering prior to be

q xð Þ ¼ e�γD xð Þð
x∈RN

e�γD xð Þdx
: (30)

The new posterior involving this prior under the Bayesian framework is proportional to the
product of the three pdfs:

1In [30] a hierarchical Bayesian generative model for sparse signals is found in which they have applied full Bayesian
analysis by assuming prior distributions to each parameter appearing in the analysis. We follow a different approach.
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p xjyð Þ∝ p yjxð Þp xð Þq xð Þ: (31)

By similar argument s as used in 3.1, we arrive at the clustered LASSO estimator

x̂Clu-Lasso ¼ arg min
x∈RN

1
2
∥y�Ax∥22 þ λ∥x∥1 þ γ

XN
i¼1

jxi � xi�1j: (32)

Here λ, γ are our tuning parameters for the sparsity in x and the way the entries are clustered,
respectively.

4. Bayesian inference in CS applications

Compressed sensing paradigm has been applied to many signal processing areas [31–41].
However, at this time, building the hardware that can translate the CS theory into practical
use is very limited. Nonetheless, the demand for cheaper, faster, and efficient devices will
motivate the use of CS paradigm in real-time systems in the near future.

So far, in image processing, one can mention the single-pixel imaging via compressive sam-
pling [31], in magnetic resonance imaging (MRI) for reducing scan time and improved image
quality [32], in seismic images [33], and in radar systems for simplifying hardware design and
to obtain high resolution [34, 35]. In communication and networks, CS theory has been studied
for sparse channel estimation [36], for under water acoustic channels which are inherently
sparse [37], spectrum sensing in cognitive radio networks [38], for large wireless sensor net-
works (WSNs) [39], as a channel coding scheme [40], localization [41] and so on. A good CS
application literature review is provided in [21], which basically is the summary of the bulk of
literatures given at http://dsp.rice.edu/cs.

In this chapter, there are examples of CS theory applications using Bayesian inference in
imaging, like magnetic resonance imaging (MRI) and, in communication, i.e., multiple-input
multiple-output (MIMO) systems, and in remote sensing. First, let us see the impact of the
estimators derived above, LASSO and clustered LASSO, in MRI.

4.1. Magnetic resonance imaging (MRI)

MRI images are usually very weak due to the presence of noise and due to the weak nature of
the signal itself. Compressed sensing (CS) paradigm can be applied in order to boost such
signal recoveries. We applied CS paradigm via Bayesian framework, that is, incorporating the
different prior information such as sparsity and the special structure that can be found in such
sparse signal recovery method is applied on different MRI images.

4.1.1. Angiogram image

Angiogram images are already sparse in the pixel representation. An angiogram image taken
from the University Hospital Rechts der Isar, Munich, Germany [42] is used for our analysis.
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The image we took is sparse and clustered even in the pixel domain. The original signal after
vectorization is x of length N = 960. By taking 746 measurements, and maximum number of
non-zero elements k = 373, we applied different reconstruction schemes and the results are
shown in Figure 6.

4.1.2. Phantom image

Another MRI image considered is the Shepp-Logan phantom which is not sparse in spatial
domain. However, we sparsified it in K-space by zeroing out small coefficients. We then
measured the sparsified image and added noise. The original signal after vectorization is x of
length N = 200. By taking 94 measurements, that is, y is of length M = 94, and maximum
number of non-zero elements k = 47, we applied different reconstruction algorithms used
above. The result shows that clustered LASSO does well compared to the others as can be seen
in Figure 7.

4.1.3. fMRI image

Another example to apply the clustered LASSO based image reconstruction using Bayesian
framework to medical images is a functional magnetic resonance imaging (fMRI), a non-
invasive technique of brain mapping, which is crucial in the study of brain activity. Taking
many slices in fMRI data, we saw how these data sets are sparse in the Fourier domain. This is

Figure 6. Comparison of reconstruction schemes together with performance comparison using mean square error (MSE)
in dB: (a) original image x; (b) LMMSE (�35.1988 dB); (c) LASSO (�53.6195 dB); and (d) clustered Lasso (�63.6889 dB).
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Figure 7. Comparison of reconstruction schemes together with performance comparison using mean square error (MSE)
in dB: (a) original image x; (b) sparcified image; (c) least square (LS) (�21.3304 dB); (d) LMMSE (�27.387 dB); (e) LASSO
(�37.9978 dB); and (f) clustered LASSO (�40.0068 dB).
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Figure 8. The five column images represent the real and imaginary parts of the Fourier transform representation of the
data set we have chosen to present further, which in general shows that the fMRI image have sparse and clustered
representation.
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shown in Figure 8. We observed the whole data in this domain for the whole brain image.
They all share the characteristics we have based our analysis, i.e., sparsity and clusteredness.
Then we took some slices which are consecutive in the slice order and took different N, k, and
M=2k, on these slices. We can see the numbers at the top of Figure 9, in which the two numbers
represent k and N, respectively.

In fMRI, results are compared using image intensity which gives a good ground for a health
practitioner to observe and decide in accordance to the available information. The more one have
prior knowledge on how the brain regions work in human beings or pets the better priors that
one incorporate to analyze the data. So this is an interesting tool for researchers in the future.

4.2. MIMO systems

Multiple-input multiple-output (MIMO) systems are integrated in modern wireless communi-
cations due to their advantage in improving performance with respect to many performance
metrics. One such advantage is the ability to transmit multiple streams using spatial
multiplexing, but channel state information (CSI) at the transmitter is needed to get optimal
system performance.

Consider a frequency division duplex (FDD) MIMO system consisting of Nt transmit and Nr

receive antennas. Assume that the channel is a flat-fading, temporally correlated channel denoted
by a matrix H n½ �∈CNr�Nt where n indicates a channel feedback time index with block fading
assumed during the feedback interval. The singular value decomposition (SVD) ofH[n] gives

H n½ � ¼ U n½ �Σ n½ �VH n½ �;

where U∈CNr�r and V∈CNt�r are unitary matrices and Σ ∈ Cr�r is a diagonal matrix
consisting of r = min(Nt, Nr) singular values. In the presence of perfect channel state informa-
tion (CSI), a MIMO system model can be given by the equation

~y ¼ UH n½ �H n½ �V n½ �~x þUH n½ �n (33)

where ~x ∈Cr�1 is transmitted vector, V[n] is used as precoder at the transmitter, UH[n] is used
as decoder at the receiver, n∈CNr�1 denotes a noise vector whose entries are i.i.d. and distrib-
uted according to CN 0; 1ð Þ and ~y ∈CNr�1 is the received vector.

Channel adaptive transmission requires knowledge of channel state information at the trans-
mitter. In temporally correlated MIMO channels, the correlation can be utilized to reduce
feedback overhead and improve performance. CS methods and rotative quantization are used
to compress and feedback the CSI for MIMO systems [43]. This was done as an extension work
of [44]. It is shown that the CS-based method reduces feedback overhead while delivering the
same performance as the direct quantization scheme, using simulation.

Three methods are compared in the simulations, perfect CSI, without CS and with CS using
matched filter (MF) and minimum mean square error estimator (MMSE) receivers for different
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total feedback bits B = 10 and B = 5. In Figure 10, sum rates are compared against signal-
to-noise-ratio (SNR). Using CS, half of the number of bits can be saved. In Figure 11, where the
bit-error-rate is plotted against SNR, the CS method has a better bit error rate performance
using same number of bits for the CS and without CS cases. These two figures demonstrate the
clear advantage of using CS in feedback of singular vectors in rotative based method. The
detail is deferred to [43].

4.3. Remote sensing

Remote sensing satellites provide a repetitive and consistent view of the Earth and they offer a
wide range of spatial, spectral, radiometric, and temporal resolutions. Image fusion is applied
to extract all the important features from various input images. These images are integrated to
form a fused image which is more informative and suitable for human visual perception or
computer processing. Sparse representation has been applied to fuse image to improve the
quality of fused image [45].

Figure 9. Application of sparse and cluster prior, LASSO and clustered LASSO (CL. LASSO), on a fMRI data analysis for
N = 80, k > 50 for σ2 = 0.1 and λ = 0.1, where LMMSE is with L2-regularised one.
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Figure 10. Sum rate vs. SNR for a 2�2 MIMO system with and without CS with two streams. We can observe that the
performance of the CS method is almost equal to that of the method without using CS while saving half the number
of bits.
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To improve the quality of the fused image, a remote sensing image fusion method based on
sparse representation is proposed in [46]. In these methods, the source images were
represented with sparse coefficients first. Then, the larger values of sparse coefficients of
panchromatic (Pan) image are set to 0. Thereafter, the coefficients of panchromatic (Pan) and
multispectral (MS) image are combined with the linear weighted averaging fusion rule. Finally,
the fused image is reconstructed from the combined sparse coefficients and the dictionary. The
proposed method is compared with intensity-hue-saturation (IHS), Brovey transform
(Brovey), discrete wavelet transform (DWT), principal component analysis (PCA) and fast
discrete curvelet transform (FDCT) methods on several pairs of multifocus images. The pro-
posed method using sparse representation outperforms, see Figure 12, better than the usual
methods listed here. We believe that our method of clustered compressed sensing can also
further improve this result.

5. Conclusions

In this chapter, a Bayesian way of analyzing data on CS paradigm is presented. The method
assumes prior information like the sparsity and clusteredness of signals in the analysis of the
data. Among the different reconstruction methods, the convex relaxation methods are
redefined using Bayesian inference. Further, three CS applications are presented: MRI imag-
ing, MIMO systems, and remote sensing. For MRI imaging, the two different priors are
incorporated, while for MIMO systems and remote sensing, only the sparse prior is applied in

Figure 12. Comparison of image fusion methods for remote sensing applications using Brovey, DWT, PCA, FDCT, and
the sparse representation methods [46].
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the analysis. We suggest that including the special structure among the sparse elements of the
data can be included in the analysis to further improve the results.
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