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Summary

For the assessment of extreme responses needed in design of marine struc-
tures, a full long-term analysis is recognized as the most accurate approach.
However, due to the very large number of structural response analyses
traditionally needed for this approach, the computational effort is usually
considered to increase above acceptable levels for complex structures, e.g.
floating bridges. In this work, an effort is made towards more efficient, yet
accurate, full long-term analyses.

This thesis is written as a collection of four papers, where each paper is
either published or submitted for journal publication. In the first paper, a
new method is presented for efficient calculation of auto- and cross-spectral
densities in the stochastic modelling of ocean waves and wave loads. As
part of the short-term response analyses, the method contributes to more
efficient long-term response prediction. In the second paper, an exact and
an approximate formulation for the long-term extreme response of marine
structures are discussed and compared. A new method is proposed for
the numerical solution of the exact formulation, based on an inverse first
order reliability method (IFORM). In the third paper, the IFORM approach
is further developed, and the accuracy of the long-term extreme response
approximation is improved, using an inverse second order reliability method
(ISORM) approach. Finally, in the fourth paper, the developments of the
first three papers are demonstrated for a long-span pontoon bridge subjected
to wave loads, revealing that characteristic values of the long-term extreme
response can indeed be calculated in an efficient manner. Especially the
ISORM approach is seen to provide high accuracy, using only a reasonable
amount of short-term response calculations.

Hopefully, the contributions of this work will make full long-term extreme
response analyses more attractive and available for the practical design of
marine structures.
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CHAPTER1
Introduction

1.1 Background and motivation

1.1.1 Long-term design approach

For the evaluation of extreme response of marine structures due to envir-
onmental loads, a full long-term analysis is recognized as the most accurate
design approach [60]. In principle, the full long-term approach takes into ac-
count all possible combinations of environmental parameters. This means
that for straightforward methods such as full numerical integration and
crude Monte Carlo simulation, a very large number of short-term response
calculations have to be conducted. For complex structures, e.g. floating
bridges, each short-term calculation is usually very time consuming, and
the full long-term approach is often considered infeasible.

In recent years, efforts have been made to reduce the number of short-term
calculations required for full long-term extreme response evaluation. These
are based on the observation that many combinations of environmental para-
meters contribute little or nothing to the long-term extreme response. A
copula based environmental modelling approach is proposed in [80], and the
copula concept is further utilized in an adaptive refinement algorithm for
more efficient long-term integration. In [68] an inverse FORM (IFORM)
approach [79] is used to provide an estimate of the long-term extreme re-
sponse. An importance sampling Monte Carlo simulation approach, based
on the IFORM estimate, is also proposed.

The alternative to performing full long-term analyses, is to use simplified
approaches, such as the environmental contour method [29, 30]. This is a
highly efficient approach, which is widely used in practice. However, some
sort of calibration against full long-term analysis is required [60].

In order to make the full long-term approach attractive and available for

1



1 Introduction

practical design, further development of methods for carrying out full long-
term analyses with a limited amount of short-term response calculations
is important. It is believed that the very efficient IFORM method can
be further developed with respect to accuracy, which motivates the work
presented in this thesis.

1.1.2 Fjord crossings

Fjord crossing technology is currently a research topic of high interest
in Norway. The Norwegian Public Roads Administration (NPRA) has
launched the project Coastal Highway Route E39 which aims at replacing
eight ferry crossings along the west coast of Norway with fixed links. The
fjord crossings considered in this project are quite extreme, with lengths
up to 5 km and depths up to 1300 m. This calls for further development
of existing fjord crossing technologies, as well as development of new tech-
nologies. Floating bridge technology is therefore a very relevant research
topic.

The concept of floating bridges can be dated as far back as 2000 BC, but only
the last 200 years they have been used as a part of modern infrastructure
[77]. Most of the existing floating bridges are found in northern America, but
Norway is also leading in the field with its two curved pontoon bridges, the
Bergsøysund Bridge and the Nordhordland Bridge. Even though floating
bridges are by far not as common as other bridge types, e.g. suspension
bridges, they are considered cost-efficient alternatives for crossings with
unusual depth or soft bottom [52].

A chained floating bridge is a new bridge concept that has the potential to
reduce costs at wide crossings, where ferries are presently the most cost-
efficient alternative [65]. With low construction costs, this concept could
be an attractive alternative for fjord crossings in Norway and other places.
A chained floating bridge has never before been built and the realization of
such a bridge would represent a major technological advance.

The design of more extreme yet reliable fjord crossing structures motivates
further development of methods for long-term stochastic extreme response
analysis.

2



1.2 Outline of the thesis

1.2 Outline of the thesis
This thesis is based on a collection of papers, which are either published or
submitted for journal publication. The thesis is outlined as follows. Chapter
1 gives a brief introduction to the basic concepts and an overview of the
relevant theory. The research objectives and the scope of the thesis are
discussed, and the publications resulting from the work are listed and sum-
marized. Some concluding remarks are made, along with recommendations
for future work. Chapters 2-5 contain the individual papers. Chapters 2,3
and 5 contain the accepted manuscripts of the respective papers, whereas
Chapter 4 contains the preprint submitted for journal publication. Finally,
an error bound for the method developed in Chapter 2 is included in Ap-
pendix A.

1.3 Short-term response
Marine structures are subjected to environmental loads, such as wind and
wave loads, which are inherently random. In order to account for these loads
in the design of marine structures, the theory of stochastic processes has
proven to be indispensable. For most engineering purposes, a sufficiently
accurate description is obtained by modelling the environmental loads as
stationary stochastic processes for a limited period of time, referred to as
a short-term period [60]. The appropriate duration of a short-term period,
denoted T̃ , will depend on the type of environmental loads considered. For
wave loads on offshore structures, T̃ is typically chosen as three hours.
A short-term state is defined by a collection of environmental variables
W = [W1,W2, . . . ,Wn], which are the parameters of the modelled load
processes. Examples of such environmental variables are the significant wave
height and period for wave loads, and mean wind speed for wind loads.

1.3.1 Structural response

In order to evaluate the load effects corresponding to the environmental
loads, a model for the structural response is required. For complex struc-
tures, these models are usually made within the framework of the finite
element method (FEM). If the time domain approach is applied, the struc-
tural response model is used to provide response realizations corresponding
to simulated time series of the environmental loads. This approach is usu-
ally required when non-linear effects are significant. If, on the other hand,

3



1 Introduction

the dynamics of the structure can be modelled as a linear, time-invariant
system, the frequency domain approach is more efficient. The structural
response model is then completely described by a complex transfer function
matrix H(ω), where ω is the frequency variable.

Given the environmental parameters W , we consider some response pro-
cess R(t)|W corresponding to the environmental loads. Here t is the time
variable. The response process may represent e.g. an axial force or a bend-
ing moment of a critical component of the structure, or a displacement.
For given environmental variables, we assume that the load processes are
stationary and that the response process R(t)|W inherits this property.
Without loss of generality, we also assume that R(t)|W has a mean value
of zero. Thus R(t)|W is a zero mean stationary stochastic process, an
assumption which is made throughout this thesis.

1.3.2 Short-term response statistics

An important quantity for the extreme value statistics of the stationary
response process R(t)|W , is the average upcrossing frequency or mean up-
crossing rate. It is denoted ν(r|w) and is a measure of how often the process
increases above a level r for given environmental parameters W = w. An
r-upcrossing occurs if the process R(t)|W reaches the level r with a positive
derivative. The mean upcrossing rate can be estimated by simulations of
the response process, for instance using the efficient procedures presented
in [35, 36]. Alternatively, if R(t)|W is assumed to be Gaussian, the mean
upcrossing rate is given as

ν(r|w) = 1
2π

σṘ(w)
σR(w) exp

{
−1

2

(
r

σR(w)

)2
}
, (1.1)

where σR(w) and σṘ(w) are the standard deviations of the response process
and its derivative respectively [60].

The short-term extreme value distribution is given by the cumulative distri-
bution function (CDF) FR̃|W (r|w), where R̃|W = max{R(t)|W : t ∈ [0, T̃ ]}
is the random variable representing the largest response value during a short-
term period. The extreme value distribution FR̃|W (r|w) can be estimated
from simulations of the response by assuming it to be a Gumbel distribution,
or the average conditional exceedance rate (ACER) method can be applied
[56]. Alternatively, by assuming upcrossings of high levels r to be independ-

4



1.4 Long-term extreme response modelling

ent events, the extreme value distribution can be expressed in terms of the
mean upcrossing rate as

FR̃|W (r|w) = exp
{
−ν (r|w) T̃

}
, (1.2)

which will be valid for large values of r. For details we refer to Section 10.5
of [60]. If the response process is also Gaussian, Eqns. (1.1) and (1.2) can
be combined to give the expression

FR̃|W (r|w) = exp
{
− T̃

2π
σṘ(w)
σR(w) exp

{
−1

2

(
r

σR(w)

)2
}}

.

We also consider the short-term peaks distribution. A response peak is
defined as the maximum value of the response process R(t)|W between
two consecutive zero-upcrossings. The value of an arbitrary response peak,
denoted R̃p|W , is then a random variable whose CDF is FR̃p|W (r|w). Under
the assumption of a narrow banded response process, the short-term peaks
distribution can also be expressed in terms of the mean upcrossing rate. We
have then that

FR̃p|W (r|w) = 1− ν(r|w)
ν(0|w) , r ≥ 0, (1.3)

which is valid if R(t)|W is narrow banded [60]. For the case of Gaussian
response, Eqns. (1.1) and (1.3) yield

FR̃p|W (r|w) = 1− exp
{
−1

2

(
r

σR(w)

)2
}
, r ≥ 0,

which means that the peaks are Rayleigh distributed.

1.4 Long-term extreme response modelling
For the assessment of long-term extreme responses of marine structures, it is
common to model the environmental conditions as a sequence of short-term
states, during which the environmental processes are assumed stationary
[60]. The long-term situation is composed of a large number Ñ of short-
term conditions, each of duration T̃ , giving a long-term time duration of
T = Ñ T̃ .

In reality, the vector of environmental parameters W = [W1,W2, . . . ,Wn]
is a stochastic process W (t), where t denotes time. Since observation can

5



1 Introduction

only provide part of a single realization ofW (t), an ergodicity assumption is
required in order to estimate the probabilistic structure ofW (t) [59]. Under
the ergodicity assumption, observations of the environmental parameters
over time can be used to estimate the joint probability density function
(PDF) fW (w) of the environmental parameters.

Denoting the considered (zero mean) response process by R(t), the aim of
the long-term extreme response modelling is to establish a formulation for
the long-term extreme value distribution

FR̃LT (r) = P [R̃LT ≤ r].

Here R̃LT = max{R(t) : t ∈ [0, T ]} denotes the largest response value
during the entire long-term period, and FR̃LT (r) is its CDF. In the literature,
different models for the long-term extreme response can be found, resulting
in different formulations for FR̃LT (r). An overview of the most common
models can be found in [68] and in Section 12.4 of [60]. The main difference
between these models is which short-term statistics they are based on: The
peaks distribution, the extreme value distribution or the mean upcrossing
rate. In the following, we briefly introduce the different formulations.

1.4.1 Models based on all short-term peaks

Assuming that all response peaks are statistically independent, the long-
term extreme value distribution can be formulated as

FR̃LT (r) = FR̃p(r)
ν(0)T .

Here FR̃p(r) denotes the long-term distribution of an arbitrary response
peak R̃p, and ν(0) is the long-term mean frequency of zero-upcrossings,
defined as

ν(0) =
∫
w
ν (0|w) fW (w) dw.

Thus, ν(0)T represents the expected number of response peaks during the
long-term period T .

An approximate formulation for the long-term peaks distribution, based on
the short-term peaks distribution FR̃p|W (r|w), is given by

FR̃p(r) ≈
∫
w
FR̃p|W (r|w) fW (w) dw.

6



1.4 Long-term extreme response modelling

Although it may appear correct, this formulation is only an approximation
because it assumes that the number of response peaks is the same for all
environmental conditions. This is not the case, and in order to account for
this effect, the formulation known as Battjes’ formulation was proposed in
[6, 7]. The long-term peaks distribution is then given by

FR̃p(r) =
∫
w

ν(0|w)
ν(0)

FR̃p|W (r|w) fW (w) dw.

1.4.2 Models based on the short-term extreme values

Let R̃ denote the maximum response value during an arbitrary short-term
condition. Assuming that the short-term extreme values are independent,
the long-term extreme value distribution FR̃LT (r) is obtained as

FR̃LT (r) = FR̃ (r)Ñ ,

where FR̃ (r) is the long-term CDF of the short-term extreme value. This
can be obtained as an average of the short-term CDFs FR̃|W (r|w), weighted
by the distribution fW (w) of the environmental parameters. The correct
long-term CDF FR̃ (r) is obtained when an ergodic averaging is used [39,
59], see also Section 12.4.2 of [60]. This yields the formulation

FR̃ (r) = exp
{∫

w

(
lnFR̃|W (r|w)

)
fW (w) dw

}
. (1.4)

A very common approximate formulation is obtained by using the popula-
tion mean:

FR̃ (r) ≈
∫
w
FR̃|W (r|w) fW (w) dw. (1.5)

1.4.3 Model based on the short-term uppcrossing rate

As shown in [59], the long-term extreme value distribution can be expressed
directly in terms of the mean upcrossing rate ν(r|w) as

FR̃LT (r) = exp
{
−T

∫
w
ν (r|w) fW (w) dw

}
. (1.6)

This formulation assumes that upcrossings of high levels r are statistic-
ally independent, i.e. that the upcrossings are Poisson-distributed. This

7



1 Introduction

is a reasonable assumption, especially when extreme values are considered.
Furthermore, it is less restrictive than assuming independence of extreme
values or all peaks.

Under the assumption of independent upcrossings of high levels, the short-
term extreme value distribution FR̃|W (r|w) can be expressed by Eqn. (1.2).
Solving Eqn. (1.2) for the mean upcrossing rate gives the relation

ν (r|w) = − 1
T̃

lnFR̃|W (r|w) .

Inserting this expression into Eqn. (1.6) yields

FR̃LT (r) = exp
{∫

w

(
lnFR̃|W (r|w)

)
fW (w) dw

}T/T̃
= FR̃ (r)Ñ ,

since T = Ñ T̃ . Here FR̃ (r) is the long-term CDF of the short-term ex-
treme value as given by the formulation Eqn. (1.4). This shows that the
formulations represented by Eqns. (1.4) and (1.6) are the same, and the
only assumption required for either one is independent upcrossings of high
levels.

1.4.4 Characteristic values of the extreme response

When long-term extreme responses are calculated for design purposes, we
usually seek the characteristic response value rq which has a specified annual
exceedance probability q. This may also be referred to as the response value
with a return period of 1/q years, or simply the 1/q-year response. The
characteristic response rq is found by requiring

FR̃LT (rq) = 1− q,

with the long-term period T taken as one year. Alternatively, the require-
ment can be written in terms of the long-term CDF of the short-term ex-
treme value as

FR̃ (rq) = (1− q)1/Ñ ≈ 1− q

Ñ
,

where Ñ is the number of short-term periods in one year. It should be noted
that the above approximation is as good as exact, since q is a small number
and Ñ is large.
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1.5 Reliability methods

1.5.1 Reliability problem

A reliability problem in the general sense is an integral of the form∫
G(v)≤0

fV (v)dv, (1.7)

where V = [V1, V2, · · · , Vm] is a random vector with joint PDF fV (v), and
G(v) is a function referred to as the limit state function [53]. Usually the
value of the integral is small, representing the probability of failure in some
sense. It is well known that an expression of the form

F (r) =
∫
w

FY |W (r|w) fW (w) dw,

where Y is a random variable and W a random vector, can be reformu-
lated in terms of a reliability problem. Indeed, the above expression can be
rewritten as

F (r) =
∫
w

∫
y≤r

fY |W (y|w) dyfW (w) dw.

Introducing the random vector V = [W , Y ], whose joint PDF is given by
fV (v) = fY |W (y|w) fW (w), we obtain

F (r) =
∫
y≤r

fV (v) dv = 1−
∫
r≤y

fV (v) dv = 1−
∫

Gr(v)≤0

fV (v) dv.

Here the limit state function is Gr(v) = r − y, with y being the last com-
ponent of the vector v = [w, y].

1.5.2 First- and second-order reliability methods

The integral Eqn. (1.7) can be solved efficiently in an approximate manner
using the first-order reliability method (FORM). The random vector V is
then transformed into a vector U of independent standard normal variables
by the Rosenblatt transformation U = T (V ) [53], defined by the equations

9
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Φ (U1) = FV1 (V1) , (1.8a)
Φ (Ui) = FVi|V1,...,Vi−1 (Vi|V1, . . . , Vi−1) , i = 2, . . . ,m− 1, (1.8b)
Φ (Um) = FVm|V1,...,Vm−1 (Vm|V1, . . . , Vm−1) , (1.8c)

where Φ(·) denotes the standard normal CDF. Given a point u in the
standard normal space, the inverse transformation evaluated at u, i.e. v =
T−1(u), can be found by solving the equations in Eqn. (1.8) successively,
obtaining

v1 (u) = F−1
V1

(Φ (u1)) ,
vi (u) = F−1

Vi|V1,...,Vi−1
(Φ (ui) |v1 (u) , . . . , vi−1 (u)) , i = 2, . . . ,m− 1,

vm (u) = F−1
Vm|V1,...,Vm−1

(Φ (um) |v1 (u) , . . . , vm−1 (u)) .

Knowing that the Rosenblatt transformation preserves probability, Eqn.
(1.7) is then rewritten in terms of the transformed variables as∫

G(v)≤0

fV (v) dv =
∫

g(u)≤0

fU (u) du.

Here fU (u) denotes the PDF of the multivariate standard normal distribu-
tion, and g (u) = G

(
T−1 (u)

)
is the transformed limit state function.

When FORM is applied, the transformed limit state function is replaced
by its linear approximation at the most probable point (MPP) u∗, i.e. the
point on the surface g(u) = 0 closest to the origin. The MPP u∗ and the
smallest distance β is found by solving the minimization problem

β = min |u|; subject to g(u) = 0, (1.10)

and the integral Eqn. (1.7) is finally approximated by∫
G(v)≤0

fV (v) dv =
∫

g(u)≤0

fU (u) du ≈ Φ(−β). (1.11)

When SORM is applied, g(u) is replaced by its quadratic approximation
at the MPP u∗. Although an exact solution does exist for the quadratic
approximation [46], the asymptotic result of [10] is commonly used, as it
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gives a simpler expression where the FORM solution is corrected by a SORM
factor. We have then∫

G(v)≤0

fV (v) dv =
∫

g(u)≤0

fU (u) du ≈ Φ(−β)
m−1∏
i=1

(1− βκi)−
1
2 .

where κi are the main curvatures of the surface g(u) = 0 at u∗.

1.5.3 Inverse reliability methods

An inverse reliability problem arises when the value of the integral Eqn.
(1.7) is specified, and some parameter of the limit state function is to be
determined. An important example is the case where the limit state function
can be written as Gr(v) = r −H(v) for some function H(v), and we want
to determine the value rq such that∫

Grq (v)≤0

fV (v)dv = q, (1.12)

where q is a specified value. The transformed limit state function is given
as gr(u) = r −H(T−1(u)) = r − h(u).

Applying the FORM approximation Eqn. (1.11) to the inverse reliability
problem Eqn. (1.12), the target value of β is derived as β = −Φ−1(q). Thus,
conferring Eqn. (1.10), we seek the value rq such that β is the minimal
distance from the origin to the surface grq(u) = rq − h(u) = 0. According
to [17, 79] this inverse FORM (IFORM) problem can be formulated as

rq = max h(u); subject to |u| = β.

If we want to use the SORM approximation for the inverse reliability prob-
lem Eqn. (1.12), the target value for β can no longer be derived directly.
However, inverse SORM (ISORM) approaches can be derived by updating
β iteratively [49].
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1.6 Research objectives and scope

1.6.1 Research objectives

The primary objective of this work is to develop more efficient, yet accurate,
methods for full long-term extreme response analysis of marine structures,
making such analyses feasible also for complex structures such as floating
bridges. In an effort to achieve this goal, the following research objectives
have been realized in the papers presented in this thesis.

To develop an accurate and efficient method for computation of
cross-spectral densities in the stochastic modelling of waves and
wave loads. In the short-term response analysis of marine structures, the
auto- and cross-spectral densities of the wave load are important quantities,
and their evaluation may contribute significantly to the computation time,
for instance when the power spectral density method [42] is applied. The
cross-spectral densities of waves and wave loads can be formulated in terms
of an integral that requires numerical evaluation for each realization of the
environmental variables W . Therefore, it is important for the long-term
analysis that these are calculated in an accurate and efficient manner.

To study and compare models for long-term extreme response.
The basis of any computational method for the characteristic long-term
response, is some model for the long-term extreme response, cf. Section
1.4. An understanding of the different models found in the literature, and
their effect on the characteristic response, is therefore important for the
development of the computational methods.

To develop a novel IFORM method for calculation of long-term
extreme response. An IFORM method for efficient calculation of long-
term extreme response can be found in the literature [68, 79]. This IFORM
method is, however, based on the approximate formulation Eqn. (1.5). The
development of an IFORM method based on the correct formulation Eqn.
(1.4) is therefore of interest.

To develop an ISORM method for calculation of long-term ex-
treme response. By using the second-order reliability method (SORM)
instead of FORM, improved accuracy can be achieved. The development of
an ISORMmethod for calculation of long-term extreme response is therefore
of interest.
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To verify the efficiency and accuracy of the developed IFORM
and ISORM methods for a complex structure. The efficiency and
accuracy of the IFORM and ISORM methods for calculation of long-term
extreme response should be verified, when applied to a complex structure
such as a floating bridge.

To develop a computational framework for efficient long-term ex-
treme response calculations of floating bridges. Pontoon bridges
serve as the main application considered in this thesis. The examples used
to demonstrate the developed methods should therefore constitute a frame-
work for efficient long-term extreme response calculations of floating bridges.

1.6.2 Scope

For the IFORM and ISORM methods for long-term extreme response de-
veloped in this thesis, only the models based on the short-term extreme
values, cf. Section 1.4.2, are considered. The models presented in Section
1.4.1 based on all short-term peaks are not considered, as they require more
restrictive assumptions. As showed in Section 1.4.3, the model based on the
upcrossing rate is equivalent to the model represented by Eqn. (1.4).

Proper estimation of the PDF fW (w) of the environmental variables is
of major importance for accurate long-term extreme response prediction.
Also the choice of which parameters to include is important. However, the
environmental modelling is not the focus of this work, and the PDF fW (w)
will be assumed to be given.

The details of the structural modelling is also considered to be outside the
scope of this work. The structural response model for the floating bridge
considered in Paper IV is provided by Knut Andreas Kvåle, who has also
contributed with a description of the model, which is included in Paper IV.

The long-term extreme response models presented in Section 1.4 are all
global models [14], considering all environmental conditions. This is re-
cognized as an appropriate modelling approach for extratropical weather
conditions. The alternative would be an event model, or random storm
approach, where only the most severe environmental conditions are con-
sidered. Such an approach is appropriate for tropical weather conditions,
and is considered outside the scope of this thesis.
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1.7 Publications

1.7.2 Declaration of authorship

Finn-Idar G. Giske is the first author of all papers included in this thesis
(Papers I-IV). For Papers I-III, he came up with the main ideas, implemen-
ted the theory, obtained the numerical results and wrote the manuscripts.
The co-authors Bernt J. Leira and Ole Øiseth provided constructive cri-
ticism, which increased the scientific quality. For Paper IV, Finn-Idar G.
Giske came up with the main ideas, implemented the theory, obtained the
numerical results and wrote most of the manuscript. Knut Andreas Kvåle
provided the structural response model of the case study bridge and wrote
Sections 5.2.3 and 5.3. Bernt J. Leira and Ole Øiseth provided constructive
criticism and discussed the work.

1.7.3 Summary of papers

Paper I

Long-term response analyses are conducted by performing several short-
term response calculations. Hence, the efficiency of each short-term analysis
is crucial for the overall efficiency. For floating bridges, and other marine
structures, calculation of auto- and cross-spectral densities for the wave
loads may represent a bottleneck. In Paper I, a new method is presented
for efficient calculation of auto- and cross-spectral densities in the stochastic
modelling of ocean waves and wave loads. The accuracy and the efficiency
of the new method is investigated, and a comparison with the existing ap-
proach is performed. Using two floating bridge examples, it is demonstrated
that the new method provides a significant improvement in computational
efficiency.

Paper II

In Paper II the focus is shifted from the short-term response calculations to
the long-term extreme response formulations and their solution. The goal
is to reduce the number of short-term calculations needed for a long-term
analysis. This can be achieved by means of the first order reliability method
(FORM), known for its computational efficiency. In the existing literature,
FORM is only applied to the approximate long-term formulation Eqn. (1.5).
In Paper II, however, the more correct long-term formulation Eqn. (1.4) is
solved in an approximate manner using FORM.

15



1 Introduction

In order to obtain characteristic values of the long-term extreme response,
an inverse FORM (IFORM) approach is applied. A new solution algorithm
for IFORM is proposed in Paper II, resolving some convergence issues of an
iteration algorithm found in the literature. Using a single-degree-of-freedom
(SDOF) example, the accuracy and efficiency of the IFORM approach is
assessed, revealing that the IFORM methods provide good estimates using
a reasonable amount of short-term response calculations.

Paper III

Although the IFORM approach proposed in Paper II represent an efficient
approximation for the long-term extreme response, there is more to gain
with respect to the accuracy of the approximation. In Paper III, the second
order reliability method (SORM) is used to improve the accuracy of the
approximation, resulting in a novel inverse SORM (ISORM) approach. Us-
ing the same SDOF example as in Paper II, the ISORM method is seen
to achieve significantly improved accuracy, yet keep the number of required
short-term response analyses within acceptable levels.

Paper IV

Due to the very large number of structural response analyses traditionally
needed for a full long-term analysis, the computational effort is usually
considered to increase above acceptable levels for complex structures such
as floating bridges. However, utilizing the IFORM and ISORM approaches
developed in Paper II and Paper III, the full long-term approach is made
feasible also for complex structures. In addition, the method proposed in
Paper I can further reduce the computational effort. In Paper IV, the
developments of the first three papers are demonstrated for a long-span
pontoon bridge subjected to wave loads.
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1.8 Conclusion

1.8.1 Concluding remarks

The work presented in this thesis has contributed to the development of
more efficient, yet accurate, methods for full long-term extreme response
analysis. Hopefully, this contribution will make full long-term analyses feas-
ible and available for the design of complex marine structures, such as e.g.
floating bridges.

In Paper I (Chapter 2), a new method was presented for the calculation
of auto- and cross-spectral densities in the stochastic modelling of ocean
waves and wave loads, based on a series expansion solution of the integral
expressing the cross-spectral density. The method was developed for first
order wave excitation loads, but it is readily extended to the computation
of other cross-spectral densities, e.g. for wave elevation, wave kinematics
or second order load. The only difference will be which transfer functions
that are used. The accuracy of the new method was verified, and using
two floating bridge examples, it was demonstrated that the new method
provides a significant improvement in computational efficiency.

In Paper II (Chapter 3), an exact and an approximate formulation for the
long-term extreme response of marine structures, cf. Eqns. (1.4) and (1.5)
respectively, were discussed and compared. It was shown that the approx-
imate formulation underestimates the long-term extreme response values.
It was also shown how both formulations can be solved in an approxim-
ate manner using FORM, and how characteristic extreme response values
can be obtained by IFORM. Furthermore, a new solution algorithm for the
IFORM problem was proposed, resolving some convergence issues of an iter-
ation algorithm given in the literature. The different approximations for the
long-term extreme response were compared for an SDOF example, reveal-
ing that the IFORM approximations give reasonably good estimates for the
long-term extreme response. The number of required short-term response
analyses for the IFORM method was found to be within acceptable limits.

In Paper III (Chapter 4), the inverse FORM solution from Chapter 3 was
improved by use of SORM, resulting in an inverse SORM method. In order
to find the extreme response using inverse reliability methods, an upper tail
approximation depending on a parameter C was introduced. Considering
the SDOF example from Paper II (Chapter 3), the ISORM method was
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seen to give significantly improved accuracy, especially with the parameter
C chosen as some large value.

Finally, in Paper IV (Chapter 5), a framework for full long-term extreme
response analysis of marine structures was demonstrated for a long-span case
study floating bridge. This framework is based on the methods developed in
Papers I-III. The presented numerical results revealed that the characteristic
extreme response could be calculated in an efficient and accurate manner.
Especially the ISORM method provided high accuracy. The full long-term
analysis was also compared with the environmental contour method, which
is much used in practical design. It was recognized that the environmental
contour method could be calibrated by comparison with the IFORM and
ISORM results.

1.8.2 Recommendations for future work

The primary goal of this work has been to develop of more efficient, yet
accurate, methods for full long-term extreme response analysis of marine
structures. The hope is that the presented methods will be put into use in
practical design. The application to floating bridges has been used as an
example throughout this thesis. However, the methodology is presented in
a general setting, and many other types of applications could benefit from
this work. It would, for instance, be interesting to see the application of the
methods to offshore wind turbines.

The presented methods have been demonstrated for a complex structure by
the case study of a long-span pontoon bridge. Still, it is relatively simple
frequency domain approaches for the short-term response that have been
used. It would be interesting to validate the efficiency of the proposed
methods in combination with e.g. time domain methods for non-linear
response.

With regard to further development of the methods presented in this thesis,
it could be interesting to investigate the use of other ISORM methods [49].
These methods are more sophisticated, using an exact expression for the
quadratic approximation rather than the asymptotic expression which is
used in Section 4.2.2. For the estimation of extreme response it is expected
that the asymptotic expression is sufficiently accurate, but other ISORM
methods could potentially further reduce the computational effort.
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CHAPTER2
Efficient computation of

cross-spectral densities in the
stochastic modelling of waves and

wave loads
Finn-Idar G. Giske, Bernt J. Leira, Ole Øiseth

Published in Applied Ocean Research 62(2017), pp. 70-88.
doi:10.1016/j.apor.2016.11.007

Abstract
A new method is presented for efficient calculation of auto- and cross-spectral dens-
ities in the stochastic modelling of ocean waves and wave loads. As part of the
short-term response analyses, the method may contribute to more efficient long-
term response prediction. Specifically the cross-spectral densities of the first order
wave excitation forces are considered, but the method is straightforwardly general-
ized to other cross-spectral densities, e.g. for wave elevation, wave kinematics or
second order loads. The method can be used with any choice of directional spreading
function, but special attention is given to the commonly used cos-2s type directional
distribution. In addition to the development of the new method, the traditional
method using the trapezoidal rule for numerical quadrature is improved by devel-
oping an adaptive way of choosing the number of integration points. The accuracy
of the adaptive method and the new method is investigated, revealing rapid conver-
gence for both methods. However, the new method appears more robust as it avoids
so-called spurious hat errors. When applied to two different pontoon type floating
bridges the adaptive method and the new method both achieve a great improvement
in computational effort compared to the traditional trapezoidal rule method. When
the dimensions of the floating bridge increase, i.e. the number of pontoons and their
relative distances increase, the new method is superior with respect to computation
time.
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2 Efficient computation of cross-spectral densities in the stochastic
modelling of waves and wave loads

2.1 Introduction
For the assessment of extreme responses needed in the design of marine
structures a full long-term response analysis is the most accurate approach
[60, 68], and for fatigue design it is usually required [51, 60]. In the long-
term approach structural response analyses have to be carried out for a
large number of sea states, which can be very time-consuming. Over the
last decade new methods have been developed making long-term analysis
more efficient, either by reducing the number of required short-term analyses
[68, 75] or by computing the relevant short-term quantities more efficiently
[58]. In the short-term response analysis of marine structures the auto- and
cross-spectral densities of the wave load are important quantities, and their
computation may contribute significantly to the computation time, for in-
stance when the power spectral density method [42] is applied. The method
proposed in this paper contributes to more efficient short-term analyses by
making the evaluation of auto- and cross-spectral densities more efficient.

When the sea surface is modelled as a stochastic process the cross-spectral
density between the wave elevations at the points (xm, ym) and (xn, yn) can
be written as

Smn (ω) =
∫ π

−π
eiκ(ω)L cos(β−θ)S(2)

ηη (θ, ω) dθ, (2.1)

where κ(ω) is the wave number and S(2)
ηη (θ, ω) denotes the directional wave

spectrum [63]. β and L are constants that depend on the spatial separations
∆x = xm−xn and ∆y = ym− yn, see Section 2.2.3 for definitions. In [66] a
series expansion solution of the integral (2.1) is found by expressing the dir-
ectional spectrum as a Fourier series and solving the integral term-by-term
using Bessel functions, see also Section 7.2.1 of [63]. This series expansion
is then used to obtain equations for the unknown Fourier coefficients of the
directional spectrum such that these can be evaluated from measured cross-
spectral densities. This paper deals with the reverse problem, as the aim
is to evaluate the cross-spectral densities when a theoretical model for the
directional spectrum is assumed.

A consistent stochastic theory of ocean waves and wave loading processes
is presented in [71], which have been applied for offshore structures [70, 72]
and floating bridges [19, 41, 42, 44, 45]. In this context calculation of the
cross-spectral densities requires computation of integrals similar to (2.1),
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which can be written in the form∫ π

−π
f(θ)eiκ(ω)L cos θdθ, (2.2)

for some function f(θ). In applications these integrals have traditionally
been evaluated using straightforward numerical quadrature [19, 44]. This
requires care with respect to the number of integration points, because too
few integration points may result in errors referred to as spurious hats [44].
The reason why these spurious hats occur is that when the factor κ(ω)L
in (2.2) is large, the integral becomes highly oscillatory. It is worth men-
tioning that general methods for numerical quadrature of highly oscillatory
integrals do exist [34, 64]. However, these methods are quite complex, espe-
cially for oscillatory integrals with stationary points like (2.2). Also, a more
specialised computation method is expected to be more efficient.

In the present paper a new method is developed for the calculation of cross-
spectral densities in the stochastic modelling of ocean waves and wave loads.
The series expansion solution of (2.1) found in [63, 66] is first generalized
to the case of cross-spectral densities of first order wave excitation forces,
and then utilized as a computational method for the cross-spectral densities.
The method may readily be generalized to other cross-spectral densities, e.g.
for wave elevation, wave kinematics or second order loads by using different
transfer functions.

The new method will apply to any directional distribution expressed as a
Fourier series. The Fourier coefficients of various theoretical models of the
directional distribution can be found in [40] or in Section 2.5 of [28]. For
the sake of completeness this paper includes a derivation of the Fourier
coefficients of the cos-2s directional distribution in the most general case
where s is any positive real number, thus providing a proof of the Fourier
coefficients stated in [28, 40].

In addition to the development of the new method, the traditional method
using the trapezoidal rule for numerical quadrature is improved by devel-
oping an adaptive way of choosing the number of integration points. This
adaptive trapezoidal rule method is developed by observing when the spuri-
ous hats occur. The accuracy and efficiency is investigated for both the
adaptive trapezoidal rule method and the new series expansion method.
Finally the performances of the methods are compared when applied to
pontoon type floating bridges.
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modelling of waves and wave loads

2.2 Review of the stochastic modelling of ocean waves

2.2.1 Cross-spectral density

A common approach when modelling wind generated waves for engineering
purposes is to assume that the sea elevation is a homogeneous stationary
stochastic process [71]. The sea elevation at the point (x, y) at time t,
denoted η(x, y, t), is then written as

η (x, y, t) =
∫ ∞
−∞

eiωt−iκ(x cos θ+y sin θ)dB (κ, ω), (2.3)

where κ = [κ cos θ, κ sin θ] is the wave number vector, ω is the frequency
and B (κ, ω) is the spectral process associated with the wave elevation. By
further assuming the existence of a dispersion relation which relates the
frequency ω and the wave number κ by a one-to-one mapping κ = κ(ω), or
equivalently ω = ω(κ), the cross-spectral density between the wave elevation
at two points (xm, ym) and (xn, yn) can be expressed by

Smn (ω) =
∫
θ
e−iκ(ω)(∆x cos θ+∆y sin θ)S(2)

ηη (θ, ω) dθ,

where ∆x = xm − xn and ∆y = ym − yn is the separation of the locations
(xm, ym) and (xn, yn) in space. S(2)

ηη (θ, ω) is the directional wave spectral
density. The details of the derivation is given in Section 2.A as well as in
[71]. According to the Airy wave theory, or linear wave theory, the dispersion
relation takes the form

ω2 = κg tanh(κd), ω, κ ≥ 0,

with water depth d and gravitational acceleration g, defining the function
κ(ω) implicitly.

The directional wave spectral density S
(2)
ηη (θ, ω) is frequently written as

S
(2)
ηη (θ, ω) = Sηη (ω) Ψ (θ, ω) and thus separated into a one-dimensional wave

spectral density Sηη(ω) and a spreading function Ψ(θ, ω). The spreading
function is sometimes assumed to be a function of the direction θ only,
but such an assumption is not done here. For an overview of the various
theoretical models for Sηη(ω) and Ψ(θ, ω) see e.g. [28, 73]. The cross-
spectral density can now be written as

Smn (ω) = Sηη (ω)
∫ π

−π
Ψ (θ, ω) e−iκ(ω)(∆x cos θ+∆y sin θ)dθ. (2.4)
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2.2 Review of the stochastic modelling of ocean waves

2.2.2 Auto-spectral density and complex coherency

If we consider the case m = n, we have that ∆x = ∆y = 0, and (2.4) gives
an expression for the auto-spectral density

Snn (ω) = Sηη (ω)
∫ π

−π
Ψ (θ, ω) dθ. (2.5)

Since the wave elevation is assumed to be homogeneous, the auto-spectral
density should be equal to the one-dimensional wave spectral density at any
point (xn, yn). This imposes the following normalization of the spreading
function: ∫ π

−π
Ψ (θ, ω) dθ = 1. (2.6)

The complex coherency is defined in terms of auto- and cross-spectral dens-
ities as

γmn(ω) = Smn(ω)√
Snn(ω)Smm(ω)

.

Combining equations (2.4), (2.5) and (2.6), we find that the complex coher-
ency is given by

γmn (ω) = Smn(ω)
Sηη(ω) =

∫ π

−π
Ψ (θ, ω) e−iκ(ω)(∆x cos θ+∆y sin θ)dθ. (2.7)

The complex coherency is favourable to deal with in computations because
it is dimensionless, independent of the one-dimensional spectral density and
it satisfies |γmn(ω)| ≤ 1. For this reason most of the derivations in this
paper will deal with the complex coherency rather than the cross-spectral
density. The cross-spectral density can always be obtained from the complex
coherency and the auto-spectral densities by

Smn(ω) = γmn(ω)
√
Snn(ω)Smm(ω).

2.2.3 Directional distribution function

The spreading function Ψ(θ, ω) is commonly given as a distribution around
a mean wave direction, in which case it is written as

Ψ(θ, ω) = D(θ − θ̄, ω), (2.8)
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where θ̄ is the mean wave direction and D(φ, ω) is the directional distri-
bution function centred around zero. The directional distribution function
is 2π-periodic and according to (2.6) it should integrate to one over one
period. By inserting (2.8) into (2.7), using the periodicity of D(φ, ω), the
complex coherency can be expressed in terms of the directional distribution
by

γmn (ω) =
∫ π

−π
D (φ, ω) e−iκ(ω)(∆x cos(φ+θ̄)+∆y sin(φ+θ̄))dφ.

The linear combination of sine and cosine in the expression above can be
written in terms of a single harmonic function as

−∆x cos
(
φ+ θ̄

)
−∆y sin

(
φ+ θ̄

)
=
√

∆x2 + ∆y2 cos
(
φ+ θ̄ + π − atan2 (∆y,∆x)

)
,

where atan2(∆y,∆x) is the generalization of arctan(∆y/∆x) that covers
the entire circular range. If we then define

L =
√

∆x2 + ∆y2,

β = θ̄ + π − atan2 (∆y,∆x) ,

we obtain

γmn (ω) =
∫ π

−π
D (φ, ω) eiκ(ω)L cos(φ+β)dφ =

∫ π+β

−π+β
D (θ − β, ω) eiκ(ω)L cos θdθ,

where the integrand is 2π-periodic. Thus the complex coherency is finally
given as

γmn (ω) =
∫ π

−π
D (θ − β, ω) eiκ(ω)L cos θdθ. (2.9)

2.2.4 Series expansion of the complex coherency

Expressing the directional distribution function D (φ, ω) as a Fourier series
in φ, the integral (2.9) can be solved in terms of Bessel functions using the
same approach as in [66], which is also given in Section 7.2.1 of [63].

Let the directional distribution function be given by the Fourier series

D (φ, ω) =
∞∑

k=−∞
ck(ω)eikφ. (2.10)
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2.2 Review of the stochastic modelling of ocean waves

Since the directional distribution is a real function, the Fourier coefficients
are required to satisfy c−k(ω) = ck(ω) for k ≥ 0, the overline denoting
complex conjugation. Using this Fourier expansion in the expression (2.9)
for the complex coherency yields

γmn (ω) =
∞∑

k=−∞
ck(ω)e−ikβ

∫ π

−π
eikθeiκ(ω)L cos θdθ (2.11)

where we have assumed that the order of summation and integration can
be interchanged. The integrals in the above expression can be solved in
terms of Bessel functions by utilizing the integral representation 9.1.21 in
[1] stating that

Jk (z)πik =
∫ π

0
eiz cos θ cos (kθ) dθ,

where Jk(z) is the Bessel function of the first kind with integer order k.
Specifically we find that∫ π

−π
eikθeiκ(ω)L cos θdθ =

∫ π

−π
eiκ(ω)L cos θ cos (kθ) dθ

+ i

∫ π

−π
eiκ(ω)L cos θ sin (kθ) dθ

= 2
∫ π

0
eiκ(ω)L cos θ cos (kθ) dθ

= 2Jk (κ(ω)L)πik,

which inserted into (2.11) yields the following series expansion of the com-
plex coherency:

γmn (ω) = 2π
∞∑

k=−∞
ck(ω)ike−ikβJk (κ(ω)L). (2.12)

2.2.5 Directional distribution of the cos-2s type

The most commonly used directional distribution is given by

D (φ, ω) = 22s(ω)Γ2 (s(ω) + 1)
2πΓ (2s(ω) + 1) cos2s(ω)φ

2 , φ ∈ [−π, π), (2.13)

where Γ(·) denotes the gamma function and s(ω) is a non-negative real
valued function. This type of directional distribution was originally pro-
posed by [50] and was developed further by [54] and [27] who investigated
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frequency dependence through the spreading parameter s(ω). Although in
applications s(ω) is frequently assumed constant, wave data reveals a strong
frequency dependence [40]. Throughout this paper the spreading parameter
s(ω) is assumed to be a function of frequency. Note, however, that the
ω-dependency will not be written explicitly as in (2.13) for simplicity of
notation.

In order to make D(φ, ω) as given by (2.13) a 2π-periodic function in φ for
any s ≥ 0, it should rather be written as

D (φ, ω) = 22sΓ2 (s+ 1)
2πΓ (2s+ 1)

(
cos2φ

2

)s
, φ ∈ R. (2.14)

If we rewrite cos2 φ
2 = 1

2(1+cosφ) it is clear that this directional distribution
is 2π-periodic. Writing D(φ, ω) in this way rather than as in (2.13) will also
ensure that D(φ, ω) is real and non-negative at any φ for any choice of
s. Now for an arbitrary non-negative real number s, the following identity
holds according to Theorem 1 in Section 2.B.

(
cos2φ

2

)s
= 1

22s
Γ (2s+ 1)
Γ2 (s+ 1) + 1

22s−1

∞∑
k=1

Γ (2s+ 1)
Γ (s− k + 1) Γ (s+ k + 1) cos (kφ),

(2.15)
Using this identity the directional distribution (2.14) can be written

D (φ, ω) = 1
2π + 1

π

∞∑
k=1

Γ2 (s+ 1)
Γ (s− k + 1) Γ (s+ k + 1) cos (kφ)

= 1
2π

∞∑
k=−∞

Γ2 (s+ 1)
Γ (s− k + 1) Γ (s+ k + 1)e

ikφ,

which is recognized as a Fourier series of the form (2.10) where

ck(ω) = 1
2π

Γ2 (s+ 1)
Γ (s− k + 1) Γ (s+ k + 1) , k ∈ {0,±1,±2, . . .} . (2.16)

These Fourier coefficients agrees with those stated in [28, 40]. This deriv-
ation of the Fourier coefficients of the directional distribution (2.13) gener-
alizes the derivation found in Section 7.2.1 of [63] which is valid for integer
s.
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2.3 Stochastic modelling of first order wave excitation loads

Figure 2.1: Local coordinate system of a rigid body and definition of wave
propagation direction.

2.3 Stochastic modelling of first order wave excita-
tion loads

2.3.1 Exciting forces and moments on a rigid body

The hydrodynamic forces on a floating body can be decomposed into two
parts, the wave excitation forces and the motion induced forces. We will
now look at how the wave excitation forces can be modelled as a stochastic
process. Consider a rigid body with a local coordinate system (x̃, ỹ) which
is located with its origin at the point (x0, y0) and rotated counterclockwise
with an angle α0 relative to the global coordinate system (x, y) as shown in
Fig. 2.1. Thus (x0, y0) and α0 specifies the location and orientation of the
body. With this definition the global and local coordinates are related by[

x
y

]
=
[
x0 + x̃ cosα0 − ỹ sinα0
y0 + x̃ sinα0 + ỹ cosα0

]
. (2.17)

Within the framework of linear potential theory, the hydrodynamic forces
on a body of arbitrary shape can be computed using a panel method as
implemented in software such as WAMIT [76] or WADAM [15]. The wave
excitation forces are then reported in terms of the complex transfer function
from the wave elevation to the wave load. This means that for a regular
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incident wave of amplitude A given in local coordinates by

η(x̃, ỹ, t) = A exp
{
iωt− iκ

(
x̃ cos β̃ + ỹ sin β̃

)}
, (2.18)

the forces and moments due to this wave will be given by Af̃0(β̃, ω)eiωt,
where f̃0(β̃, ω) is the complex transfer function. Here β̃ is the wave propaga-
tion direction given as the angle relative to the x̃-axis, see Fig. 2.1. The
vector f̃0 contains six components, the transfer functions for three forces
and three moments.

Provided the load due to any regular wave, the excitation load for the
irregular wave (2.3) can be obtained by superposition. Inserting the relation
(2.17) into (2.3) yields the sea elevation referring to the local coordinates of
the body:

η (x̃, ỹ, t) =
∫ ∞
−∞

eiωt−iκ(x̃ cos(θ−α0)+ỹ sin(θ−α0))e−iκ(x0 cos θ+y0 sin θ)dB (κ, ω).

(2.19)
Now since θ is the wave propagation direction relative to the global x-axis,
we see from Fig. 2.1 that α0 + β̃ = θ which means that θ − α0 can be
identified as the local wave propagation direction β̃ in (2.18). Thus the first
exponential in the above expression is recognized as the exponential of the
incident wave (2.18). Hence (2.19) can be considered as a linear combination
of (infinitely many) regular waves of amplitude dB(κ, ω) and, assuming the
linear operations of calculating the wave load and taking the integral can
be interchanged, we obtain an expression for the wave excitation load due
to the irregular wave (2.3):

q̃0 (t) =
∫ ∞
−∞

f̃0 (θ − α0, ω) eiωt−iκ(x0 cos θ+y0 sin θ)dB (κ, ω).

This expression gives the loads referring to the local coordinate system of the
body, but the loads referring to the global coordinates are easily obtained
by a linear transformation

q0 (t) = T 0q̃0 (t) =
∫ ∞
−∞

f0 (θ − α0, ω) eiωt−iκ(x0 cos θ+y0 sin θ)dB (κ, ω).

(2.20)
where T 0 is the transformation matrix and f0 = T 0f̃0.
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2.3 Stochastic modelling of first order wave excitation loads

2.3.2 Cross-spectral densities for wave excitation loads

We now consider the wave excitation loads for N bodies at the locations
(x1, y1), (x2, y2), . . . , (xN , yN ), with orientation angles α1, α2, . . . , αN relat-
ive to the global x-axis. The loads are conveniently organized into a total
load vector

q =
[
qT1 qT2 · · · qTN

]T
.

Here qn refers to the wave excitation loads on body number n which are
given by (2.20) using the transfer function fn corresponding to the body.
Because each vector qn contains six components, the total number of com-
ponents in q will be 6N . Each individual component can therefore be de-
noted by qν , where ν ∈ {1, 2, . . . , 6N}. Organizing the transfer functions
fn in the same manner, the individual loads are obtained from (2.20) as

qν (t) =
∫ ∞
−∞

fν (θ − αn, ω) eiωt−iκ(xn cos θ+yn sin θ)dB (κ, ω). (2.21)

The body number n corresponding to the index ν is given by n = dν/6e,
where d·e denotes the ceiling function giving the smallest integer not less
than the argument.

Using the formulation (2.21) as starting point, the same derivation as in
Section 2.2.1 can be carried out, yielding the cross-spectral density between
the loads qµ and qν as

Sqµqν (ω)
Sηη (ω)

=
∫ π

−π
Ψ (θ, ω) fµ (θ − αm, ω)fν (θ − αn, ω)e−iκ(ω)(∆x cos θ+∆y sin θ)dθ,

(2.22)

where the overline denotes complex conjugation.
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2.3.3 Series expansion of the complex coherency

Using the same approach as in Section 2.2.3, the expression (2.22) for the
cross-spectral density can be written as

Sqµqν (ω)
Sηη (ω)

=
∫ π

−π
D(θ − β, ω)fµ

(
θ − β + θ̄ − αm, ω

)
fν
(
θ − β + θ̄ − αn, ω

)
eiκL cos θdθ.

(2.23)

Now the transfer functions are usually known only by their values at a finite
number of heading angles. Then in order to perform the integration (2.23)
we can use functions fµ(θ, ω) that interpolates the transfer functions at the
given values of the heading angle θ. For our purposes it is convenient to use
trigonometric interpolation [31, 38], which means that the transfer functions
are given by trigonometric polynomials

fµ (θ, ω) =
Nf∑

k=−Nf

aµk (ω) eikθ. (2.24)

If the transfer function values are given at heading angles uniformly distrib-
uted between 0 and 2π, the coefficients aµk(ω) can be efficiently computed
using fast Fourier transform (FFT). If the number of heading angles is Nθ

we have that Nf = bNθ/2c.

With transfer functions given by (2.24) we find that

fµ
(
φ+ θ̄ − αm, ω

)
=

Nf∑
k=−Nf

(
eik(θ̄−αm)aµk (ω)

)
eikφ

and

fν
(
φ+ θ̄ − αn, ω

)
=

Nf∑
k=−Nf

(
eik(θ̄−αn)aνk (ω)

)
e−ikφ

=
Nf∑

k=−Nf

(
e−ik(θ̄−αn)aν−k (ω)

)
eikφ.
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With a directional distribution given by (2.10) we have then available the
individual Fourier series of each of the factors in the product

D(φ, ω)fµ
(
φ+ θ̄ − αm, ω

)
fν
(
φ+ θ̄ − αn, ω

)
.

It can be shown that the Fourier coefficients of a product can be obtained
by taking the convolution of the Fourier coefficients of the factors. Thus we
are able to find coefficients Cµνk (ω) such that

D(φ, ω)fµ
(
φ+ θ̄ − αm, ω

)
fν
(
φ+ θ̄ − αn, ω

)
=

∞∑
k=−∞

Cµνk (ω) eikφ. (2.25)

Having the productD(φ, ω)fµ
(
φ+ θ̄ − αm, ω

)
fν
(
φ+ θ̄ − αn, ω

)
developed

as a Fourier series in φ makes the derivation of the series expansion (2.12)
from Section 2.2.4 directly applicable. Inserting the Fourier expansion (2.25)
into (2.23) yields the cross-spectral densities

Sqµqν (ω) = 2πSηη (ω)
∞∑

k=−∞
Cµνk (ω)ike−ikβJk (κ(ω)L). (2.26)

In the special case that the Fourier series of the directional distribution is
finite, it can be written as

D (φ, ω) =
ND∑

k=−ND

ck (ω) eikφ,

and the series expansion (2.26) will be finite. Specifically we have then that

Sqµqν (ω) = 2πSηη (ω)
Ntot∑

k=−Ntot

Cµνk (ω)ike−ikβJk (κ(ω)L),

where Ntot = 2Nf +ND.

It is worth noticing that for the cross-spectral densities between loads at
the same location we have that m = n and thus L = 0. Using the fact that
Jk(0) = 0 for k ∈ {±1,±2, . . . } and J0(0) = 1 yields the result

Sqµqν (ω) = 2πSηη (ω)Cµν0 (ω),
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which holds whenever m = n, or equivalently dµ/6e = dν/6e. The auto-
spectral densities are thus given by

Sqµqµ(ω) = 2πSηη (ω)Cµµ0 (ω), (2.27)

which gives the following formula for the complex coherencies:

γqµqν (ω) =
Sqµqν (ω)√

Sqµqµ(ω)Sqνqν (ω)
=

∞∑
k=−∞

Cµνk (ω)√
Cµµ0 (ω)Cνν0 (ω)

ike−ikβJk (κ(ω)L).

(2.28)

2.4 Computational methods for the complex coher-
encies

2.4.1 Approximation by the trapezoidal rule

By definition the complex coherencies are given by

γqµqν (ω) =
Sqµqν (ω)√

Sqµqµ(ω)Sqνqν (ω)
=

Sqµqν (ω)/Sηη(ω)√
Sqµqµ(ω)/Sηη(ω)

√
Sqνqν (ω)/Sηη(ω)

.

Inserting the expression (2.22) yields

γqµqν (ω)

=
∫ π
−π Ψ (θ, ω) fµ (θ − αm, ω) fν (θ − αn, ω)e−iκ(ω)(∆x cos θ+∆y sin θ)dθ√∫ π
−π Ψ (θ, ω) |fµ (θ − αm, ω)|2dθ

∫ π
−π Ψ (θ, ω) |fν (θ − αn, ω)|2dθ

.

(2.29)

We denote by γ̃qµqν (ω) the approximation obtained when the above expres-
sion is computed using the trapezoidal rule with Ñ integration points. Tra-
ditionally, the number of integration points Ñ is chosen to be the same for
all values of µ, ν and ω, this will be referred to as the traditional trapezoidal
rule method. As we will see the number of integration points should rather
be adapted according to the value of ω, this will be referred to as the ad-
aptive trapezoidal rule method.

We now consider two pontoons located at the points (x1, y1) = (0, 0) and
(x2, y2) = (L, 0) with orientations α1 = α2 = π/2. The indices referring
to the pontoon numbers are thus m,n ∈ {1, 2} and the global indices are
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µ, ν ∈ {1, 2, . . . , 12}. The coherency matrix will then be a 12-by-12 matrix
whose elements are γqµqν (ω). The transfer functions of the pontoons are
evaluated by the software WADAM [15] at 36 different heading angles, so the
transfer functions fµ(θ, ω) are given by (2.24) with Nf = 18. The spreading
function Ψ(θ, ω) is given by a directional distribution of the cos-2s type as
described in Section 2.2.5 with a constant spreading parameter s(w) = s.
Note, however, that the methods described will be equally applicable for
other directional distributions.

Figures 2.2 and 2.3 show the resulting coherence functions
∣∣γ̃q1q7(ω)

∣∣ when
the complex coherency γ̃q1q7(ω) is computed using the traditional trapezoidal
rule method for different distances L between the pontoons. The mean
wave direction is θ̄ = π/2 and the spreading parameter is s = 1 in Fig.
2.2, and s = 20 in Fig. 2.3. Figures 2.2 and 2.3 demonstrate that rel-
atively large errors may occur if the number of integrations points Ñ is
not large enough. These errors are the same as the spurious hats observed
in [44]. The spurious hats can be explained by observing that the factor
exp{−iκ(ω)(∆x cos θ + ∆y sin θ)} will make the upper integral in (2.29)
highly oscillatory when the value of κ(ω)

√
∆x2 + ∆y2 = κ(ω)L is large,

and therefore the trapezoidal rule with Ñ integration points will be far too
crude an approximation. Large values of κ(ω) occur when ω is large. When
we consider L ≤ 1000 m and ω ≤ 4 rad/s as in Figs. 2.2 and 2.3, we have
that the maximal value of κ(ω)L is (κL)max = 1631.5. When the number of
integration points Ñ is slightly larger than this, we observe that the spuri-
ous hats do not occur. Indeed if we plot the line defined by κ(ω)L = Ñ
along with the coherence function as in Fig. 2.4 we see that the spurious
hats starts occurring when the value of κ(ω)L becomes close to Ñ . These
observations suggest that the number of integration points used when cal-
culating the coherency by the trapezoidal rule should be adapted according
to the value of κ(ω)L. This adaptive trapezoidal rule method is implemen-
ted in MATLAB [74] by calculating all the complex coherencies γqµqν (ω),
µ, ν = 1, 2, . . . , 6N , at each frequency ω using a number of integration points
given by

Ñ = max{dα(κ(ω)Lmax)e, Ñmin}, (2.30)

where Lmax is the maximal distance between any two pontoons and α is
a factor determining the accuracy of the integration. The number Ñmin

is the number of integration points used when the value of κ(ω)Lmax is
small, meaning that the integrals are not highly oscillatory. In this paper
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Figure 2.2: The coherence function
∣∣γ̃q1q7(ω)

∣∣ computed using the traditional
trapezoidal rule method (2.29) for different distances L with spreading s = 1 and
mean wave direction θ̄ = π/2. The number of integration points are Ñ = 200 (left)
and Ñ = 1650 (right).

Figure 2.3: The coherence function
∣∣γ̃q1q7(ω)

∣∣ computed using the traditional
trapezoidal rule method (2.29) for different distances L with spreading s = 20 and
mean wave direction θ̄ = π/2. The number of integration points are Ñ = 200 (left)
and Ñ = 1650 (right).
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Figure 2.4: The coherence function
∣∣γ̃q1q7(ω)

∣∣ computed using the traditional
trapezoidal rule method (2.29) with Ñ = 200 integration points, along with the
line defined by κ(ω)L = Ñ . The shading indicates the value of the coherence,
identifying the spurious hats in the upper right corner.

the value Ñmin = 100 is used, but a larger value may be necessary if the
transfer functions fµ(θ, ω) are less well-behaved. With Ñ given by (2.30)
the number of integration points is the same for all integrals at a given
frequency. We could, however, choose Ñ according to the value of κ(ω)L for
each individual integral. This is not done here because the former method
allows for a faster implementation in MATLAB.

2.4.2 Approximation by the series expansion method

The new method proposed in this paper utilizes the series expansion (2.28)
for computing the complex coherencies. If the directional distribution is
given by a finite number of Fourier coefficients the series expansion will
be finite as shown in Section 2.3.3 and the coherency matrix can be com-
puted exactly. If the number of Fourier coefficients is infinite or excessively
large, the complex coherencies can still be approximated by truncating the
series expansion (2.28). The idea behind this approximation is that only
the terms with index |k| ≤ N̂ , for some number N̂ , will contribute to the
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total sum within the required precision. The complex coherencies are then
approximated by

γ̂qµqν (ω) =
N̂∑

k=−N̂

Cµνk (ω)√
Cµµ0 (ω)Cνν0 (ω)

ike−ikβJk (κ(ω)L). (2.31)

This will be referred to as the series expansion method.

Figures 2.5 and 2.6 show the resulting coherence functions
∣∣γ̂q1q7(ω)

∣∣ when
the complex coherency γ̂q1q7(ω) is computed using the series expansion
method (2.31) for different distances L between the pontoons. The mean
wave direction is θ̄ = π/2 and the spreading parameter is s = 1 in Fig. 2.5,
and s = 20 in Fig. 2.6. Since s is an integer we obtain the exact coherence
functions using N̂ = Ntot = 37 for the case s = 1 and N̂ = Ntot = 56 for the
case s = 20, see Section 2.3.3. Figures 2.5 and 2.6 also indicate that when
the complex coherency is approximated using the series expansion method
with N̂ < Ntot we obtain reasonable approximations even when N̂ is quite
small. Using (2.31) the coherence is approximated more smoothly, with no
spurious hats, which is an appealing feature of this method.

2.4.3 The error of the approximation methods

In order to say something about the accuracy of the different ways to ap-
proximate the complex coherencies, we compare the exact coherency matrix
obtained when the spreading parameter s is an integer with the coherency
matrices obtained using the adaptive trapezoidal rule method and the series
expansion method. The errors are measured by Ẽ = max

µ,ν,ω

∣∣γqµqν (ω)− γ̃qµqν (ω)
∣∣

and Ê = max
µ,ν,ω

∣∣γqµqν (ω)− γ̂qµqν (ω)
∣∣ for approximation by the adaptive

trapezoidal rule and the series expansion respectively.

Figure 2.7 shows how the error Ẽ of the adaptive trapezoidal rule method
varies with the integration point parameter α in (2.30) for three different
values of s and three different mean wave directions θ̄. We observe that
the convergence is extremely fast as long as α > 1, i.e. the number of
integration points Ñ is larger than κ(ω)L. This rapid convergence can be
explained by the excellent convergence properties of the trapezoidal rule for
periodic functions. Since we are using trigonometric interpolation for the
transfer functions, the integrand will be infinitely many times continuously
differentiable for integer s and geometric convergence is achieved [78]. We
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Figure 2.5: The coherence function
∣∣γ̂q1q7(ω)

∣∣ computed using the series expan-
sion method (2.31) for different distances L with spreading s = 1 and mean wave
direction θ̄ = π/2. The number of included terms are given by N̂ = 5 (left) and
N̂ = Ntot = 37 (right).

Figure 2.6: The coherence function
∣∣γ̂q1q7(ω)

∣∣ computed using the series expansion
method (2.31) for different distances L with spreading s = 20 and mean wave
direction θ̄ = π/2. The number of terms are given by N̂ = 5 (left) and N̂ = Ntot =
56 (right).
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Figure 2.7: The error Ẽ of the adaptive trapezoidal rule method as a function of
the integration point parameter α in (2.30) for different values of the spreading s
and the mean wave direction θ̄.

also observe a faster convergence when θ̄ = 0 with increasing effect as s
gets larger. This happens because for large s the directional distribution
D(θ, ω) will be practically zero except for a small band around θ = 0, thus
cancelling the rapid oscillations of the exponential factor when θ̄ = 0.

Figure 2.8 shows how the error Ê of the series expansion method varies with
N̂ for three different values of s and three different mean wave directions θ̄.
We see that it is not necessary to use all the available coefficients in order
to get a good approximation, especially for larger values of s.

For non-integer values of s the cos-2s directional distribution will not have
a finite Fourier series and we will not have an exact formula for the complex
coherencies. However, by including only the Fourier coefficients (2.16) that
are larger than e.g. 10−16 in absolute value we should obtain the exact solu-
tion up to round-off errors. Thus we can calculate the errors Ẽ and Ê of the

40



2.4 Computational methods for the complex coherencies

Figure 2.8: The error Ê of the series expansion method as a function of the
number N̂ of included terms in (2.31) for different values of the spreading s and
the mean wave direction θ̄.

two methods like before. Figure 2.9 shows how the error Ẽ of the adaptive
trapezoidal rule method varies with the integration point parameter α for
θ̄ = π/2 and different non-integer values of s. When s is not an integer
the directional distribution will no longer be infinitely many times continu-
ously differentiable and the rapid convergence demonstrated in Fig. 2.7 is
no longer guaranteed. However, it appears that the error behaves the same
as for integer valued s up to a certain point, and we see from Fig. 2.9 that
for s > 4 we have rapid convergence until round-off error dominates like
before. Figure 2.10 shows how the error Ê of the series expansion method
varies with N̂ for θ̄ = 0 and different non-integer values of s. Again we see
that the convergence is slow for small values of s. This can be explained by
observing that the Fourier coefficients (2.16) of the directional distribution
approaches zero very fast for large enough s but more and more slowly as s
decreases.
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Figure 2.9: The error Ẽ of the adaptive trapezoidal rule method as a function
of the integration point parameter α for the mean wave direction θ̄ = π/2 and
different non-integer values of the spreading s.

42



2.4 Computational methods for the complex coherencies

Figure 2.10: The error Ê of the series expansion method as a function of the
number N̂ of included terms in (2.31) for the mean wave direction θ̄ = 0 and
different non-integer values of the spreading s.
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Figure 2.11: Chained floating bridge, illustration by Multiconsult.

2.5 Wave excitation loads on pontoon type floating
bridges
The cross-spectral density matrix of wave excitation loads is often needed
as input for dynamic response analysis of floating bridges, both in the fre-
quency and time domain [41, 42, 45]. For time domain analyses simulated
realizations of the wave loading process can be obtained from the cross-
spectral density matrix using the method found in [69]. An approach for
modelling the stochastic dynamic behaviour of pontoon type floating bridges
is discussed in [42], where the structural response of the bridge is calculated
in the frequency domain using the equation

Su (ω) = H (ω)Sq (ω)H(ω)H ,

with superscript H denoting the conjugate transpose. Here Su (ω) and
Sq (ω) are the cross-spectral density matrices of the response u(t) and the
wave excitation load q(t) respectively. H (ω) is the transfer function matrix
which takes into account the structural mass, damping and stiffness of the
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bridge structure, as well as hydrostatic stiffness, added mass and added
damping due to the pontoons. The method proposed in this paper can be
used to efficiently calculate the cross-spectral density matrix Sq (ω) needed
in this approach.

In the case of pontoon type floating bridges the structure will experience
wave loads only where the pontoons are located, each pontoon is considered
a rigid body and is thus loaded in six degrees of freedom (dofs). This means
that with N pontoons the cross-spectral density matrix Sq (ω) of the wave
excitation loads will be a 6N -by-6N matrix whose elements are the cross-
spectral densities Sqµqν (ω). The calculation of the cross-spectral density
matrix must be performed for every wave situation considered, which in
applications such as long-term response analyses can be a very large amount
[68]. This motivates the need for an efficient calculation method.

In order to get some idea of how the different approximation methods per-
form with respect to computation time, the cross-spectral density matrix is
computed for two different pontoon type floating bridges, the Bergsøysund
bridge with N = 7 pontoons and a chained floating bridge with N = 18
pontoons [65]. The chained floating bridge is illustrated in Fig. 2.11. The
same pontoon type is used for both bridges, but the number of pontoons
and their locations are different. The locations of the pontoons are shown
in Figs. 2.12 and 2.13 for the Bergsøysund bridge and the chained float-
ing bridge respectively. An example of a transfer function calculated using
WADAM is given in Fig. 2.14. The transfer functions are calculated for
single pontoons, thus neglecting interaction effects among multiple bodies.
This is justified by to the fact that the distance between pontoons is large
compared to the dimensions of the pontoons. The cross-spectral density
matrix is computed by first calculating all (6N)2 coherencies γqµqν (ω) with
an approximation error less than 10−3 as measured by Ẽ and Ê, see Section
2.4.3. Then the auto-spectral densities Sqνqν (ω) are calculated using (2.27)
and the cross-spectral densities are found by the relation

Sqµqν (ω) = γqµqν (ω)
√
Sqµqµ (ω)Sqνqν (ω).

In this example the cos-2s directional distribution from Section 2.2.5 is used
with a constant spreading parameter s(ω) = s, and the one-dimensional
wave spectral density Sηη(ω) is given by the Pierson-Moskowitz spectrum
[73].
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Figure 2.12: Pontoon locations for the Bergsøysund floating bridge.

Figure 2.13: Pontoon locations for the chained floating bridge.
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Figure 2.14: The transfer function for the heave force (vertical direction) on one
pontoon, given by its real part (left) and imaginary part (right).
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Table 2.1: The computation time for the different methods of calculating the
cross-spectral density matrix. Lmax is the maximal distance between two pontoons.

s = 1 s = 20

Bergsøysund bridge – 7 pontoons, Lmax = 626 m

Traditional trapezoidal rule method 5.0 s 5.1 s
Adaptive trapezoidal rule method 1.5 s 1.6 s
Series expansion method 1.1 s 1.1 s

Chained floating bridge – 18 pontoons, Lmax = 4735 m

Traditional trapezoidal rule method 576 s 595 s
Adaptive trapezoidal rule method 171 s 176 s
Series expansion method 6.8 s 7.1 s

The approximation methods discussed in this paper are implemented in
MATLAB and the computation times for the cases s = 1 and s = 20 are
given in Table 2.1. Since the runtime in MATLAB is very sensitive to
the specific implementation, it is emphasized that the numbers in Table
2.1 are only meant to give some idea of the computational effort. It is
clear, however, that the adaptive trapezoidal rule method and the series
expansion method both achieve a great improvement in computational time,
as compared to the traditional trapezoidal rule method. We also notice
that the increase in computational effort due to larger distances between
pontoons is much smaller for the series expansion method. In Table 2.1 we
see that for the trapezoidal rule methods the computational time increases
by a factor of approximately 100, while for the series expansion method the
increase is only by a factor of approximately 6.

It should be pointed out that in many practical applications the cross-
spectral densities between points at large distances are practically zero,
making it a reasonable approximation to set them equal to zero. This will
of course greatly improve the computation time and the trapezoidal rule
methods may still be feasible. However, an assessment of whether this
approximation is reasonable must then be carried out for each particular
case. The new method proposed in this paper eliminates the need for such
an assessment.
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2.6 Conclusions
A new method has been presented for the calculation of cross-spectral dens-
ities in the stochastic modelling of ocean waves and wave loads, based on a
series expansion solution of the integral expressing the cross-spectral dens-
ity. The method is developed for first order wave excitation loads but it is
readily extended to the computation of other cross-spectral densities, e.g.
for wave elevation, wave kinematics or second order load. The only differ-
ence will be which transfer functions that are used. In addition to presenting
the new method, the traditional trapezoidal rule method has been improved
by developing an adaptive way of choosing the number of integration points.

The accuracy of the adaptive trapezoidal rule method and the series expan-
sion method has been investigated. The adaptive trapezoidal rule method
shows very rapid convergence after a certain point, before which the er-
ror is relatively large due to so-called spurious hats. The series expansion
method also displays a generally rapid convergence, in addition to avoiding
the spurious hat errors altogether.

When applied to two different pontoon type floating bridges the adapt-
ive trapezoidal rule method and the series expansion method both achieve
a great improvement in computational effort compared to the traditional
trapezoidal rule method. When the dimensions of the floating bridge in-
crease, i.e. the number of pontoons and their relative distances increase,
the series expansion method is superior with respect to computation time.
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2.A Appendix A
This section includes the derivation of the expression for the cross-spectral
density of the wave elevation given in Section 2.2.1. This derivation can
also be found in [71].

When it is modelled as a homogeneous stationary stochastic process, the
sea elevation at the point (x, y) at time t, denoted η(x, y, t), is written as

η (x, y, t) =
∫ ∞
−∞

eiωt−iκ(x cos θ+y sin θ)dB (κ, ω), (2.32)

where κ = [κ cos θ, κ sin θ] is the wave number vector, ω is the frequency
and B (κ, ω) is the spectral process associated with the wave elevation.
The assumption of homogeneity and stationarity implies that the spectral
process must have zero mean and orthogonal increments, giving the cross-
correlation function

Rmn (τ) = E
[
η (xm, ym, t+ τ) η (xn, yn, t)

]
=
∫ ∞
−∞

∫
θ

∫
κ
eiωτe−iκ(∆x cos θ+∆y sin θ)S(3)

ηη (κ, θ, ω) dκdθdω. (2.33)

Here ∆x = xm − xn and ∆y = ym − yn is the separation of the locations
(xm, ym) and (xn, yn) in space and S

(3)
ηη (κ, θ, ω) is the three-dimensional

wave spectral density. The cross-spectral density is obtained as the Fourier
transform of the cross-correlation function (2.33) with respect to the time
lag τ :

Smn (ω) = 1
2π

∫ ∞
−∞

Rmn (∆x,∆y, τ) e−iωτdτ

=
∫
θ

∫
κ
e−iκ(∆x cos θ+∆y sin θ)S(3)

ηη (κ, θ, ω) dκdθ. (2.34)

The formula for the cross-spectral density can be simplified using the dis-
persion relation which relates the frequency ω and the wave number κ by a
one-to-one mapping κ = κ(ω), or equivalently ω = ω(κ). Now κ and ω are
no longer independent variables in the integration in (2.34) and the formula
finally reduces to

Smn (ω) =
∫
θ
e−iκ(ω)(∆x cos θ+∆y sin θ)S(2)

ηη (θ, ω) dθ,

where S(2)
ηη (θ, ω) is the directional wave spectral density.
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2.B Appendix B
This section is devoted to proving the identity (2.15), which is stated in
Theorem 1 below. The proof of Theorem 1 relies upon two parts, which we
summarize in two propositions.

Proposition 1 For n ∈ {1, 2, 3, . . . } and φ ∈ R we have the following
Fourier series expansions for even- and odd-numbered powers of the cosine
function respectively:

cos2nφ = 1
22n

(
2n
n

)
+ 1

22n−1

n∑
k=1

(
2n
n+ k

)
cos (2kφ) (2.35a)

cos2n−1φ = 1
22n−2

n∑
k=1

(
2n− 1
n+ k − 1

)
cos ((2k − 1)φ) (2.35b)

Proof For ñ ∈ N we can use the complex representation of the cosine
function and the binomial theorem to obtain

cosñφ = 1
2ñ
(
eiφ + e−iφ

)ñ
= 1

2ñ
ñ∑
k=0

(
ñ

k

)
ei(ñ−k)φe−ikφ

= 1
2ñ

ñ∑
k=0

(
ñ

k

)
(cos (ñ− k)φ+ i sin (ñ− k)φ) (cos kφ− i sin kφ)

= 1
2ñ

ñ∑
k=0

(
ñ

k

)
(cos (ñ− k)φ cos kφ+ sin (ñ− k)φ sin kφ)

+ i
1
2ñ

ñ∑
k=0

(
ñ

k

)
(sin (ñ− k)φ cos kφ− cos (ñ− k)φ sin kφ)

= 1
2ñ

ñ∑
k=0

(
ñ

k

)
cos ((ñ− 2k)φ)− i 1

2ñ
ñ∑
k=0

(
ñ

k

)
sin ((ñ− 2k)φ).

Assuming φ ∈ R it is obvious that cosñ φ is a real number, which means
that the imaginary part of the right hand side above must vanish, resulting
in the expression

cosñφ = 1
2ñ

ñ∑
k=0

(
ñ

k

)
cos ((ñ− 2k)φ). (2.36)
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If ñ is an even number it can be written as ñ = 2n for some n ∈ {1, 2, 3, . . . }
and we have then

cos2nφ = 1
22n

2n∑
k=0

(
2n
k

)
cos (2 (n− k)φ). (2.37)

For the binomial coefficients we have the symmetry property(
2n

2n− k

)
=
(

2n
k

)
, k ∈ {0, 1, 2, . . . , 2n}, (2.38)

which along with the symmetry of the cosine function gives that term num-
ber 2n− k in the sum (2.37) is equal to term number k. Thus each term is
repeated twice, except for the middle term where k = n, and the sum can
be written as

cos2nφ = 1
22n

(
2n
n

)
+ 1

22n−1

n−1∑
k=0

(
2n
k

)
cos (2 (n− k)φ)

= 1
22n

(
2n
n

)
+ 1

22n−1

n∑
k=1

(
2n
n− k

)
cos (2kx),

where the last equality is simply a reordering of the terms. Finally (2.35a)
is obtained by again using the symmetry property (2.38) of the binomial
coefficient.

If on the other hand ñ is an odd number in (2.36) we can write ñ = 2n− 1
for some n ∈ {1, 2, 3, . . . }, and (2.35b) is obtained using the same approach
as for even ñ, observing that two and two terms are equal. �

Proposition 2 For k ∈ {0, 1, 2, 3, . . . } and s ∈ R with s ≥ 0 the following
holds:

∞∑
n=0

1
22n+k−1

(
s

2n+ k

)(
2n+ k

n+ k

)
= 1

2s−1

(
2s
s+ k

)
. (2.39)

Here the binomial coefficients are interpreted in the generalized sense, being
defined using the gamma function by(

a

b

)
= Γ(a+ 1)

Γ(a− b+ 1)Γ(b+ 1) , a, b ∈ R.
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Proof The key for calculating the series is the method of hypergeometric
summation [37]. First we use Algorithm 2.8 in [37] to write the series in
(2.39) as a hypergeometric function. Expressing the binomial coefficients
using the gamma function, the n-th term in the series can be written as

an = 1
22n+k−1

(
s

2n+ k

)(
2n+ k

n+ k

)
= 1

22n+k−1
Γ (s+ 1)

Γ (s− 2n− k + 1)n! (n+ k)! .

This gives the term ratio

an+1
an

= (s− 2n− k) (s− 2n− k − 1)
4 (n+ 1) (n+ k + 1) =

(
n+ k−s

2

) (
n+ k+1−s

2

)
(n+ 1) (n+ k + 1) ,

where we have used the property that Γ(x + 1) = xΓ(x) for any x. Thus
the term ratio is written as an+1

an
= un

vn
, where un and vn are polynomials in

n factorized in linear factors. Observing that the initial term is

a0 = 1
2k−1

Γ (s+ 1)
Γ (s− k + 1) k! = 1

2k−1

(
s

k

)
,

it follows from Algorithm 2.8 in [37] that we can rewrite the series using the
Gauss hypergeometric series as
∞∑
n=0

1
22n+k−1

(
s

2n+ k

)(
2n+ k

n+ k

)
= 1

2k−1

(
s

k

)
2F1

(
k − s

2 ,
k + 1− s

2 ; k + 1; 1
)
.

(2.40)
The Gauss hypergeometric series is defined as

2F1 (a, b; c; z) = Γ (c)
Γ (a) Γ (b)

∞∑
n=0

Γ (a+ n) Γ (b+ n)
Γ (c+ n)

zn

n! ,

and according to property 15.1.20 in [1] we have for z = 1 that

2F1 (a, b; c; 1) = Γ(c)Γ(c− a− b)
Γ(c− a)Γ(c− b)

holds whenever Re(c − a − b) > 0 and c /∈ {0,−1,−2,−3, . . . }. Using this
property (2.40) yields

∞∑
n=0

1
22n+k−1

(
s

2n+ k

)(
2n+ k

n+ k

)
= 1

2k−1

(
s

k

) Γ (k + 1) Γ
(
s+ 1

2

)
Γ
(
s+k+2

2

)
Γ
(
s+k+1

2

) ,
(2.41)

53



2 Efficient computation of cross-spectral densities in the stochastic
modelling of waves and wave loads

which is valid for Re
(
k + 1− k−s

2 −
k+1−s

2

)
= Re(s) + 1

2 > 0 and k /∈
{−1,−2,−3, . . . }. These conditions are clearly satisfied when s ∈ R with
s ≥ 0 and k ∈ {0, 1, 2, 3, . . . }. Finally we rewrite the expression obtained in
(2.41) using property 6.1.18 in [1], the duplication formula for the gamma
function, finding that

∞∑
n=0

1
22n+k−1

(
s

2n+ k

)(
2n+ k

n+ k

)
=

2s+1Γ
(
s+ 1

2

)
Γ (k + 1)

√
πΓ (s+ k + 1)

(
s

k

)

=
2s+1Γ

(
s+ 1

2

)
Γ (k + 1) Γ (s+ 1)

√
πΓ (s+ k + 1) Γ (s− k + 1) Γ (k + 1)

= 1
2s−1

Γ (2s+ 1)
Γ (s+ k + 1) Γ (s− k + 1)

= 1
2s−1

(
2s
s+ k

)
,

which concludes the proof. �

With the aid of Proposition 1 and Proposition 2 we can now prove the
identity (2.15) which we state here as a Theorem.

Theorem 1 Let s be any non-negative real number. Then for any φ ∈ R
the following equality holds:(

cos2φ

2

)s
= 1

22s

(
2s
s

)
+ 1

22s−1

∞∑
k=1

(
2s
s+ k

)
cos (kφ)

= 1
22s

Γ (2s+ 1)
Γ2 (s+ 1) + 1

22s−1

∞∑
k=1

Γ (2s+ 1)
Γ (s− k + 1) Γ (s+ k + 1) cos (kφ).

Proof Let s be any non-negative real number and define the function f :
R→ R by

f(φ) =
(

cos2φ

2

)s
= 1

2s (1 + cosφ)s, φ ∈ R.

Now f(φ) can be expanded using the binomial series as

f(φ) = 1
2s
∞∑
n=0

(
s

n

)
cosnφ, (2.42)
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which is convergent for any value of φ, since s ≥ 0. In order to further
expand f(φ) into a Fourier series we split the series (2.42) into two series
of even and odd powers of the cosine function respectively, and utilize the
formulas (2.35a) and (2.35b) from Proposition 1. This yields

2sf (φ) = 1 +
∞∑
n=1

(
s

2n

)
cos2nφ+

∞∑
n=1

(
s

2n− 1

)
cos2n−1φ

= 1 +
∞∑
n=1

1
22n

(
s

2n

)(
2n
n

)
+
∞∑
n=1

n∑
k=1

1
22n−1

(
s

2n

)(
2n
n+ k

)
cos (2kφ)

+
∞∑
n=1

n∑
k=1

1
22n−2

(
s

2n− 1

)(
2n− 1
n+ k − 1

)
cos ((2k − 1)φ).

Changing the order of summation gives

2sf (φ) = 1
2

∞∑
n=0

1
22n−1

(
s

2n

)(
2n
n

)

+
∞∑
k=1

( ∞∑
n=k

1
22n−1

(
s

2n

)(
2n
n+ k

))
cos (2kφ)

+
∞∑
k=1

( ∞∑
n=k

1
22n−2

(
s

2n− 1

)(
2n− 1
n+ k − 1

))
cos ((2k − 1)φ),

and if we change the summation index such that all sums start from n = 0
we obtain

2sf (φ) = 1
2

∞∑
n=0

1
22n−1

(
s

2n

)(
2n
n

)

+
∞∑
k=1

( ∞∑
n=0

1
22n+2k−1

(
s

2n+ 2k

)(
2n+ 2k
n+ 2k

))
cos (2kφ)

+
∞∑
k=1

( ∞∑
n=0

1
22n+2k−2

(
s

2n+ 2k − 1

)(
2n+ 2k − 1
n+ 2k − 1

))
cos ((2k − 1)φ)

= 1
2

∞∑
n=0

1
22n−1

(
s

2n

)(
2n
n

)

+
∞∑
k=1

( ∞∑
n=0

1
22n+k−1

(
s

2n+ k

)(
2n+ k

n+ k

))
cos (kφ),
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where the last equality is obtained by combining the sums with even and
odd indices. Finally the Fourier coefficients are found by computing the
series according to Proposition 2 and we end up with(

cos2φ

2

)s
= 1

22s

(
2s
s

)
+ 1

22s−1

∞∑
k=1

(
2s
s+ k

)
cos (kφ)

= 1
22s

Γ (2s+ 1)
Γ2 (s+ 1) + 1

22s−1

∞∑
k=1

Γ (2s+ 1)
Γ (s− k + 1) Γ (s+ k + 1) cos (kφ),

which is what we wanted to prove. �
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Abstract
An exact and an approximate formulation for the long-term extreme response of
marine structures are discussed and compared. It is well known that the approx-
imate formulation can be evaluated in a simplified way by using the first order
reliability method (FORM), known for its computational efficiency. In this paper it
is shown how this can be done for the exact formulation as well. Characteristic val-
ues of the long-term extreme response are calculated using inverse FORM (IFORM)
for both formulations. A new method is proposed for the numerical solution of the
IFORM problem, resolving some convergence issues of a well-established iteration
algorithm. The proposed method is demonstrated for a single-degree-of-freedom
(SDOF) example and the accuracy of the long-term extreme response approxima-
tions is investigated, revealing that the IFORM methods provide good estimates in
a very efficient manner. The reduced number of required short-term response calcu-
lations provided by the IFORM methods is expected to make full long-term extreme
response analysis feasible also for more complex systems.
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3 Full long-term extreme response analysis of marine structures using
inverse FORM

3.1 Introduction
For the evaluation of extreme responses in the design of marine structures, a
full long-term response analysis is recognized as the most accurate approach
[60, 68]. However, the computational effort is in many cases a limiting factor,
and simplified approaches such as the environmental contour methods [29,
30, 79] are frequently used in practice. Over the last decade new methods
have been proposed in an effort to make the full long-term approach more
efficient, either by reducing the required number of short-term response
calculations [68, 75, 80] or by computing the short-term quantities more
efficiently [20, 57, 58]. In this paper we continue the development of robust
and efficient methods for full long-term response analysis.

A comparison of different models for long-term extreme response can be
found in [68]. In the present paper we focus on the models based on all
short-term extreme peaks. For these models the long-term distribution of
the short-term extreme value is formulated as an average of the short-term
extreme value distributions weighted by the distribution of the environ-
mental parameters. An exact formulation is obtained when an ergodic
averaging is used, but using the population mean yields a very common
approximate formulation.

In Section 3.2 of this paper we compare the exact and the approximate for-
mulation, and show that the latter is non-conservative as it underestimates
the long-term extreme responses. Nevertheless, the approximate formula-
tion is commonly used because it readily lends itself to being solved very
efficiently in an approximate manner by the first-order reliability method
(FORM) known from structural reliability. However, as we show in Section
3.3, the exact formulation can also be solved using FORM. To the authors’
knowledge this has not been done before.

Section 3.4 deals with the numerical solution of characteristic values for the
extreme response using inverse FORM (IFORM). IFORM was introduced
in [79] for calculation of extreme response using environmental contours.
The IFORM method has also been extended to a more general reliability
context [13, 47]. In [68] the IFORM solution for the extreme response of
marine structures was found using a simple iteration algorithm proposed
in [47]. This iteration algorithm has some convergence issues though, and
these are addressed in the present paper. A new method is proposed for
dealing with the convergence issues, using a sufficient increase condition
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along with a backtracking approach for the maximization problem being
solved. It should be mentioned that an exact arc search algorithm [17]
can also be used to obtain convergence, but this approach is expected to
require a larger number of short-term response calculations. Furthermore,
the proposed method is simpler in its form and will be easier to implement.

In Sections 3.5 and 3.6 a single-degree-of-freedom (SDOF) example is given,
demonstrating the use of the proposed method. Some numerical results are
also presented in order to compare the method with the standard iteration
algorithm, and to assess the accuracy of the approximate formulation and
the IFORM approximations.

3.2 Long-term extreme response modelling
For the assessment of long-term extreme responses of marine structures, it is
common to model the environmental conditions as a sequence of short-term
states during which the environmental processes are assumed stationary [60].
Each short-term state is defined by a collection of environmental parameters
S = [S1, S2, . . . , Sn], with a joint probability density function (PDF) fS(s)
which we assume is given. We note that in order to be able to estimate
fS(s) in practice, an ergodicity assumption is required for the environmental
parameters [59]. The long-term situation is composed of a large numberN of
short-term conditions, each of duration T̃ , giving a long-term time duration
of T = NT̃ .

We denote by R̃ the largest peak of the response process during an arbitrary
short-term condition, and by R̃LT the largest peak during the entire long-
term period. Assuming that the short-term extreme values are independent,
the long-term extreme value distribution FR̃LT (r) is obtained as

FR̃LT (r) = FR̃ (r)N , (3.1)

where FR̃ (r) is the cumulative distribution function (CDF) of the short-
term extreme value R̃.

3.2.1 Formulations based on the short-term extreme peaks

Let the CDF of the largest peak during a short-term condition with envir-
onmental parameters s be given by FR̃|S (r|s). The exact long-term CDF
FR̃ (r) of the short-term extreme value is obtained when an ergodic aver-
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aging is used [39, 59], see also Section 12.4.2 of [60]. Thus we have the
formulation

FR̃ (r) = exp
{∫

s

(
lnFR̃|S (r|s)

)
fS (s) ds

}
. (3.2)

The claim of exactness for the formulation (3.2) is perhaps somewhat un-
fortunate, since e.g. the assumption of stationary environmental processes
is clearly not exact. The term "exact" is simply used here in the sense that
the formulation (3.2) is the mathematically correct approach within the
assumptions.

Usually, we are only interested in FR̃ (r) for large values of r, which means
that FR̃|S (r|s) ≈ 1. Using the linear approximations of the logarithm and
the exponential function yields

FR̃ (r) ≈ exp
{
−
∫
s

(
1− FR̃|S (r|s)

)
fS (s) ds

}
≈ 1−

∫
s

(
1− FR̃|S (r|s)

)
fS (s) ds.

From the properties of a PDF we know that the integral of fS(s) over all
values of s equals unity, and we obtain the approximation FR̃ (r) ≈ F̄R̃ (r),
where F̄R̃ (r) is the population mean

F̄R̃ (r) =
∫
s
FR̃|S (r|s) fS (s) ds. (3.3)

The formulation (3.3) is a common approximation for the long-term CDF
of the short-term extreme value, partly because it readily lends itself to
being solved very efficiently by the FORM method. Furthermore, it is easy
to mistakenly consider (3.3) as exact, because the formulation intuitively
appears to be correct.

3.2.2 Connection with the average upcrossing rate formula-
tion

If we assume that upcrossings of high levels are statistically independent,
the short-term extreme peak distribution is given by

FR̃|S (r|s) = exp
{
−ν (r|s) T̃

}
, (3.4)
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where ν(r|s) denotes the short-term mean frequency of r-upcrossings. For
details we refer to Section 10.5 of [60]. Note that the expression (3.4) is
only valid for high levels, i.e. for relatively large values of r. Inserting the
expression (3.4) into (3.2) yields

FR̃ (r) = exp
{
−T̃

∫
s
ν (r|s) fS (s) ds

}
, (3.5)

and the relation (3.1) for the long-term extreme value distribution FR̃LT (r)
gives that

FR̃LT (r) = exp
{
−T

∫
s
ν (r|s) fS (s) ds

}
, (3.6)

where T = NT̃ is the long-term period. The expression (3.6) is also a
common model for the long-term extreme response [59]. The fact that (3.2)
and (3.6) are equivalent formulations is in agreement with what is found in
[68].

3.2.3 Non-conservativity of the approximate formulation

As a simple consequence of Jensen’s inequality, it can be show that F̄R̃(r) >
FR̃(r). Indeed, since the natural logarithm is a strictly concave function,
Jensen’s inequality yields

ln
(
E
[
FR̃|S (r|S)

])
> E

[
ln
(
FR̃|S (r|S)

)]
,

where E[·] denotes the expectation operator. From (3.2) and (3.3) we realize
that ln

(
FR̃ (r)

)
= E

[
ln
(
FR̃|S (r|S)

)]
and F̄R̃ (r) = E

[
FR̃|S (r|S)

]
, which

means that ln
(
F̄R̃ (r)

)
> ln

(
FR̃ (r)

)
and hence F̄R̃(r) > FR̃(r).

From the result F̄R̃(r) > FR̃(r), it follows that exceedance probabilities
will be smaller for the approximate formulation (3.3) compared to the exact
formulation (3.2). This means that the formulation (3.3) will underestimate
the long-term extreme values, making it a non-conservative approximation.
Although the underestimation might not be significant, it is important to
be aware of such an issue.
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3.3 FORM formulations for long-term extremes
In this section we will show how the integrals of both formulations (3.2) and
(3.3) can be solved in an approximate manner using the first order reliability
method (FORM) found in connection with structural reliability analysis. In
order to employ the FORM method, the formulations have to be rewritten
in terms of a reliability problem. A reliability problem in the general sense
is an integral written in the form

pf =
∫

G(v)≤0

fV (v) dv,

where V is a random vector with joint PDF fV (v) [53]. Using reliability
analysis terminology, the function G(v) is referred to as the limit state
function and the value of the integral pf is called the failure probability.

3.3.1 Expressing the approximate formulation in terms of a
reliability problem

That the integral (3.3) can be rewritten as a reliability problem, is well
known. This is done by first rewriting

F̄R̃ (r) =
∫
s
FR̃|S (r|s) fS (s) ds =

∫
s

∫
r̃≤r

fR̃|S (r̃|s) dr̃fS (s) ds.

We then define the random vector V = [S, R̃], whose joint PDF will be
fV (v) = fR̃|S (r̃|s) fS (s). Thus we have

F̄R̃ (r) =
∫
r̃≤r

fV (v) dv = 1−
∫

r−r̃≤0

fV (v) dv,

and defining the limit state function Gr (v) = r − r̃ = r − vn+1 we end up
with

F̄R̃ (r) = 1−
∫

Gr(v)≤0

fV (v) dv = 1− pf (r), (3.7)

where pf (r) is the failure probability.

3.3.2 Expressing the exact formulation in terms of a reliab-
ility problem

The integral in (3.2) can not directly be rewritten as a reliability problem
using the same approach as in Section 3.3.1, due to the fact that the factor
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Figure 3.1: An example of the CDF FY |S(y|s) as given by (3.9), along with the
short-term extreme value distribution FR̃|S(r|s) and 1 + ln

(
FR̃|S(r|s)

)
.

(
lnFR̃|S (r|s)

)
is not a CDF. However, the expression (3.2) can be rewritten

as
FR̃ (r) = exp

{∫
s

(
1 + ln

(
FR̃|S (r|s)

))
fS (s) ds− 1

}
. (3.8)

Now, for reasonably high levels r we have that the value of FR̃|S (r|s) will be
close to one, but always less than one, and hence its logarithm is negative
and close to zero. This means that 1 + ln

(
FR̃|S (r|s)

)
can be viewed as

a CDF for values of r such that FR̃|S (r|s) ≥ exp{−1}, and for any given
short-term condition S we can introduce the random variable Y whose CDF
is given by

FY |S (y|s) = max
{

1 + ln
(
FR̃|S (y|s)

)
, 0
}
. (3.9)

An example of the CDF FY |S(y|s) is given in Fig. 3.1, demonstrating how
1 + ln

(
FR̃|S(r|s)

)
can be viewed as a CDF for sufficiently large r. When

considering long-term extreme values r, the main contribution to the integ-
ral in (3.8) will be for values of s where FY |S (r|s) = 1 + ln

(
FR̃|S (r|s)

)
,

and we obtain

FR̃ (r) ≈ exp
{∫

s
FY |S (r|s) fS (s) ds− 1

}
. (3.10)
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For long-term extreme values r, (3.10) is expected to be a much better
approximation to the exact long-term CDF than the formulation (3.3). This
is because FY |S(r|s) exactly represents 1 + ln

(
FR̃|S (r|s)

)
for the relevant

values of r, whereas FR̃|S(r|s) is an approximation also for larger values of
r as seen in Fig. 3.1. Now the integral (3.10) can be rewritten using the
same approach as in Section 3.3.1, giving

FR̃ (r) ≈ exp

−
∫

Gr(v)≤0

fV (v) dv

 = exp {−pf (r)} , (3.11)

where the failure probability pf (r) now is obtained using Vn+1 = Y instead
of Vn+1 = R̃ as in Section 3.3.1.

3.3.3 Finding the failure probability using FORM

The problem of finding the failure probability pf (r) in (3.7) and (3.11) can
be solved for a given exceedance level r using the FORM method. The
random vector V is transformed into a vector U of independent standard
normal variables by the Rosenblatt transformation U = T (V ) [53], defined
by the equations

Φ (U1) = FV1 (V1) , (3.12a)
Φ (Ui) = FVi|V1,...,Vi−1 (Vi|V1, . . . , Vi−1) , i = 2, . . . , n, (3.12b)
Φ (Un+1) = FVn+1|V1,...,Vn (Vn+1|V1, . . . , Vn) , (3.12c)

where Φ denotes the standard normal CDF. Given a point u in the standard
normal space, the inverse transformation evaluated at u, i.e. v = T−1(u),
can be found by solving the equations (3.12) successively, obtaining

v1 (u) = F−1
V1

(Φ (u1)) , (3.13a)
vi (u) = F−1

Vi|V1,...,Vi−1
(Φ (ui) |v1 (u) , . . . , vi−1 (u)) , (3.13b)

vn+1 (u) = F−1
Vn+1|V1,...,Vn

(Φ (un+1) |v1 (u) , . . . , vn (u)) . (3.13c)

The failure probability integral is then rewritten in terms of the transformed
variables as

pf (r) =
∫

Gr(v)≤0

fV (v) dv =
∫

gr(u)≤0

fU (u) du, (3.14)
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where the transformed limit state function is gr (u) = Gr
(
T−1 (u)

)
= r −

vn+1(u). Now if gr(u) is a linear function, we have that

pf (r) =
∫

gr(u)≤0

fU (u) du = Φ(−β), (3.15)

where β is the distance from the origin to the (n+1)-dimensional hyperplane
defined by gr(u) = 0.

The idea behind the FORM procedure is that, assuming that the failure
probability is small, the formula (3.15) will still hold in an approximate
sense even if gr(u) is not linear. The value β must then be found by solving
the optimization problem

β = min |u|; subject to gr(u) = 0. (3.16)

The minimizer u∗ satisfying |u∗| = β is also found in the procedure, and
the transformed point v∗ = T−1(u∗) is referred to as the design point.

If β̄r denotes the solution of the minimization problem (3.16) when Vn+1 =
R̃, we have from (3.7) and (3.15) that

F̄R̃ (r) ≈ 1− Φ(−β̄r). (3.17)

Similarly, if βr denotes the solution of the minimization problem (3.16) when
Vn+1 = Y , we have from (3.11) and (3.15) that

FR̃ (r) ≈ exp {−Φ(−βr)} . (3.18)

3.4 Solution of the extreme response by use of in-
verse FORM (IFORM)

3.4.1 Finding the design point using inverse FORM

As seen in Section 3.3, the CDFs F̄R̃(r) and FR̃(r) can be evaluated at a
given level r using FORM. However, when designing a structure one is com-
monly faced with the inverse problem of finding the characteristic response
level r corresponding to a given exceedance probability. For instance, the
M -year extreme response rM is defined as the response level with a return

67



3 Full long-term extreme response analysis of marine structures using
inverse FORM

period of M years. This is found by requiring that the exceedance probab-
ility per year is 1/M , i.e. FR̃LT (rM ) = 1 − 1/M for a long-term period of
one year. Using the relation (3.1), the equation for rM can be expressed in
terms of the short-term extreme value distribution as

FR̃ (rM ) =
(

1− 1
M

)1/N
≈ 1− 1

MN
,

since the number of short-term periods N is large. If the short-term period
T̃ is three hours and the long-term period T is one year, we have N =
365 · 8 = 2920. As an example, the 100-year extreme response r100 then
corresponds to the exceedance probability 1− FR̃ (r100) = 1/292000.

When the exceedance probability is specified, the corresponding reliability
index β in the FORM procedure is given by solving for β̄r in (3.17) or βr in
(3.18) for the approximate and exact formulations respectively. Instead we
have to find the value rM such that the limit surface defined by grM (u) =
rM − vn+1(u) = 0, where vn+1(u) is given in (3.13), has a minimal distance
β to the origin. According to [17, 79] this inverse FORM (IFORM) problem
can be formulated as

rM = max vn+1(u); subject to |u| = β. (3.19)

Using the method of Lagrange multipliers, we recognize that for both the
problems (3.16) and (3.19) an optimal point u∗ must satisfy

u∗

|u∗|
= ∇vn+1 (u∗)
|∇vn+1 (u∗)| , (3.20)

in addition to the constraint of the specific problem. Thus, if u∗ is a solution
to the problem (3.19), it satisfies (3.20) and |u∗| = β. Furthermore, rM
is given by rM = vn+1(u∗), so grM (u∗) = rM − vn+1(u∗) = 0 and the
constraint in (3.16) is also satisfied. Assuming that (3.16) has a unique
solution, this shows that u∗ is the minimizer for the problem (3.16) and β is
indeed the minimal distance from the origin to the limit surface grM (u) =
rM − vn+1(u) = 0. In other words, a solution to the problem (3.19) is a
solution to the IFORM problem.

3.4.2 Existing solution algorithms for the IFORM problem

A solution algorithm for the IFORM problem (3.19), which aims at solving
(3.20) with |u∗| = β in an iterative manner, is proposed in [47] and applied
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in [68]. This iteration is given by

uk+1 = β
∇vn+1

(
uk
)

|∇vn+1 (uk)| . (3.21)

It can be shown that this is the same as using the steepest ascent method
(equivalent to the steepest descent method for minimization) searching for
the optimal point, i.e. the maximizer of vn+1(u), on the hypersphere with
radius β. The gradient ∇vn+1(uk) is projected onto the tangent plane of
the sphere at the point uk, giving the direction on the sphere along which
the function vn+1(u) increases most rapidly. The optimal point is then
searched for along an arc on the sphere that follows this search direction.
The updated point uk+1 is found as the point that maximizes vn+1(u) along
this arc, when approximating the gradient ∇vn+1(u) as constant equal to
∇vn+1(uk). This is illustrated very nicely in [17].

The iteration (3.21) is very simple and easy to use. However, it may fail
to converge to the optimal point. Due to the approximation of constant
gradient ∇vn+1(u) along the search direction, the updated point uk+1 is
not guaranteed to give a sufficient increase of vn+1(u) and it may even
give a decrease. This problem was addressed in [17] by performing an
exact arc search whenever an iteration point given by (3.21) would give
a decrease. The exact arc search must be performed by solving a one-
dimensional optimization problem, which might require a relatively large
number of function evaluations without a significant gain in the convergence
rate. In the context of the present paper we strive to limit the number of
function evaluations, since each function evaluation corresponds to a pos-
sibly very time-consuming short-term response analysis. Hence, a simpler
method for achieving convergence is preferred.

It should be mentioned that, as an alternative, the IFORM problem (3.19)
can be recast in terms of angles, resulting in in "box-like" constraints [79].
A variety of optimization algorithms can be used to solve such a problem
efficiently. In this paper, however, we pursue a further development of the
simple iteration (3.21) which is easy to implement.

3.4.3 A new solution algorithm for the IFORM problem

A simple method that resolves the convergence issues, while keeping the
number of function evaluation to a minimum, is obtained by using a suffi-
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cient increase condition along with a backtracking approach, similar to what
is explained in Chapter 3.1 of [61]. We require that the increase of vn+1(u)
when going from uk to the updated point uk+1 is proportional to the step
length and the directional derivative at uk along the search direction, this
is known as the Armijo condition [3, 61]. In our case the sufficient increase
condition requires uk+1 to satisfy

vn+1
(
uk+1

)
− vn+1

(
uk
)
≥ cdα. (3.22)

Here c ∈ (0, 1) is a proportionality constant chosen as c = 10−4 in this paper,
d is the directional derivative at uk and α is the step length measured as the
distance between uk and uk+1 along the sphere. These are given respectively
by

d = 1
β

√
β2|∇vn+1 (uk)|2 − (uk · ∇vn+1 (uk))2

, (3.23)

and

α = βcos−1
uk · ∇vn+1

(
uk
)

β |∇vn+1 (uk)| , (3.24)

where the dot denotes the dot product of two vectors.

A solution algorithm for the IFORM problem (3.19) where the iteration
points satisfy the sufficient increase condition (3.22) is given by Algorithm 1.
At each iteration the algorithm starts by trying uk+1 as given by (3.21), and
if sufficient increase is not achieved, the backtracking approach is employed
by halving the step length successively until the sufficient increase condition
is satisfied. In Algorithm 1 choices have to be made for the initial point u1

and for the tolerance Tol of the convergence criterion |u
k+1−uk|
|uk+1| < Tol. In

this paper u1 = [0, β] and Tol = 10−3 have been used. These choices serve
to demonstrate the efficiency of the method, but other choices may be more
appropriate and give faster convergence.
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Algorithm 1 Solution algorithm for the IFORM problem (3.19) where the
iteration points satisfy the sufficient increase condition (3.22).

Choose Tol > 0 and u1 with |u1| = β;
Set Convergence← FALSE;
Set k ← 1;
while Convergence = FALSE do

Choose c ∈ (0, 1);
Evaluate vn+1(uk) and ∇vn+1(uk);
Calculate directional derivative d using (3.23);
Calculate initial step length α using (3.24);
uk+1 ← β

∇vn+1(uk)
|∇vn+1(uk)| ;

Evaluate vn+1(uk+1);
while vn+1

(
uk+1

)
− vn+1

(
uk
)
< cdα do

α← α/2;
uk+1 ← β uk+1+uk

|uk+1+uk| ;

Evaluate vn+1(uk+1);
end while
if |u

k+1−uk|
|uk+1| < Tol then
u∗ ← uk+1;
Convergence ← TRUE;

end if
Set k ← k + 1;

end while
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3.5 An SDOF example

3.5.1 The response model

As an example we consider the stochastic response R(t) of a linear, time-
invariant single-degree-of-freedom (SDOF) system due to a wave elevation
process η(t), which is assumed to be stationary and Gaussian with zero
mean for given environmental parameters s. This means that, given s, R(t)
will also be stationary and Gaussian with zero mean. The SDOF system is
described in the frequency domain by the transfer function

HηR (ω) =
(

1−
(
ω

ωn

)2
+ i2ζ ω

ωn

)−1

,

where ζ = 0.05 is the damping ratio and ωn is the natural frequency. We use
the environmental parameters S = [Hs, Tz], where Hs is the significant wave
height and Tz is the zero-crossing period, and specify the wave elevation
process by the generalized Pierson-Moskowitz spectrum [73] given by

Sη|S (ω|s) = Sη|Hs,Tz (ω|hs, tz) = hs
2tz

8π2

(
ωtz
2π

)−5
exp

{
− 1
π

(
ωtz
2π

)−4
}
.

Now the response spectrum SR|S(ω|s) is obtained by the well known rela-
tionship [60]

SR|S (ω|s) = |HηR (ω)|2Sη|S (ω|s) .

Figure 3.2 shows the wave spectrum Sη(ω) plotted in the nondimensional
scale ωTz/2π. Figure 3.3 shows the absolute value |HηR(ω)| of the transfer
function for different values of ωnTz/2π using the same scale as for the wave
spectrum.

3.5.2 The environmental model

The CDF of the significant wave heightHs is given by a 2-parameter Weibull
distribution

FHs (h) = 1− exp
{
−
(
h

α

)β}
, (3.25)

and the zero-crossing period Tz has a conditioned lognormal distribution

FTz |Hs (t|h) = Φ
( ln t− µ (h)

σ (h)

)
, (3.26)
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Figure 3.2: The generalized Pierson-Moskowitz spectrum.

Figure 3.3: The absolute value |HηR(ω)| of the transfer function.
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where µ (h) = a0 + a1h
a2 and σ (h) = b0 + b1e

b2h. This is a model for the
environmental parameters that is recommended in [14], and in this paper
we use the parameter values α = 1.76, β = 1.59, a0 = 0.70, a1 = 0.282,
a2 = 0.167, b0 = 0.07, b1 = 0.3449 and b2 = −0.2073. The PDFs fHs(h)
and fTz |Hs(t|h) can be obtained by differentiating (3.25) and (3.26) with
respect to h and t respectively, giving the joint PDF of the environmental
parameters as

fS (s) = fHs,Tz (h, t) = fHs (h) fTz |Hs (t|h) .

This way of establishing the joint environmental model is referred to as the
conditional modelling approach [8, 14]. The joint PDF fS (s) = fHs,Tz (h, t)
is presented in Fig. 3.4.

3.5.3 The short-term extreme value distribution

Since R(t)|S is stationary and Gaussian with zero mean, the mean frequency
of r-upcrossings is given by

ν (r|s) = 1
2π

√
m2 (s)
m0 (s) exp

{
− r2

2m0 (s)

}
,

where the ith moment mi(s) of the response spectrum SR|S(ω|s) is defined
as

mi (s) =
∫ ∞

0
ωiSR|S (ω|s) dω. (3.27)

Now if R̃|S denotes the largest value of the response process R(t) during a
short term period of T̃ = 3h with given environmental parameters, and we
assume independent upcrossings of high levels, then the short-term extreme
peak CDF is given by (3.4). Thus we have the expression

FR̃|S (r|s) = exp
{
−ν (r|s) T̃

}
= exp

{
− T̃

2π

√
m2 (s)
m0 (s) exp

{
− r2

2m0 (s)

}}
,

(3.28)
which holds for reasonably large values of r.

3.5.4 The FORM formulations

In this example we have that V = [S, V3] = [Hs, Tz, V3], where V3 = R̃ for
the FORM formulation (3.7) in Section 3.3.1, whereas V3 = Y for the FORM
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3.5 An SDOF example

Figure 3.4: The joint PDF of the environmental parameters presented by its
isoprobability contours.

formulation (3.11) in Section 3.3.2. Now given a point u = [u1, u2, u3] in the
standard normal space, the corresponding point v = [h(u), t(u), v3(u)] =
T−1(u) is evaluated using (3.13), which in this case takes the form

h(u) = F−1
Hs

(Φ (u1)) = α[− ln (1− Φ (u1))]1/β,
t(u) = F−1

Tz |Hs (Φ (u2) |h(u)) = exp {µ (h (u)) + σ (h (u))u2} ,

v3(u) = F−1
V3|Tz ,Hs (Φ (u3) |h(u), t(u)) .

Using (3.28) we find that when V3 = R̃ we have

v3 (u) = r̃ (u)

=

√√√√−2m0 (h (u) , t (u)) ln
(
−2π
T̃

√
m0 (h (u) , t (u))
m2 (h (u) , t (u)) ln Φ (u3)

)
,

and in the case V3 = Y we find from (3.9) that

F−1
Y |S (Φ (u3) |s) = F−1

R̃|S

(
eΦ(u3)−1|s

)
,
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which yields
v3 (u) = y (u)

=

√√√√−2m0 (h (u) , t (u)) ln
(

2π
T̃

√
m0 (h (u) , t (u))
m2 (h (u) , t (u)) (1− Φ (u3))

)
.

We note that each evaluation of the function v3(u) requires one short-term
response analysis since the response spectrum SR|S(ω|s) must be calculated
for the environmental variables s = [h(u), t(u)] in order to calculate the
required moments m0(h(u), t(u)) and m2(h(u), t(u)). Having established
the expression for v3(u) the transformed limit state function gr(u) in (3.14)
is given by

gr(u) = r − v3(u).

3.6 Numerical results
Algorithm 1 was implemented in MATLAB [74] for calculation of the IFORM
approximations to the M -year extreme response of the SDOF example de-
scribed in Section 3.5. The IFORM solutions obtained when the exact for-
mulation (3.2) and the approximate formulation (3.3) were used are denoted
by rI

M and r̄I
M respectively.

3.6.1 One-parameter environmental distribution

For illustration purposes we first consider a simplified environmental model
obtained by regarding the zero-crossing period Tz as deterministic, given by
the conditional median Tz|Hs = exp{µ(Hs)}. This means that Hs is the
only environmental variable, and the solution of the IFORM problem (3.19)
can be illustrated in two dimensions. In this case the IFORM problem (3.19)
is that of finding the maximal value of vn+1(u) when u is constrained to
the circle of radius β. When the exact formulation is used we have that
vn+1(u) = y(u). For the 100-year response rI

100 the value of β corresponds
to an exceedance probability of 1/(2920 · 100) and, as described in Section
3.4.1, β can be found from (3.18) as

β = −Φ−1
(
− ln

[
1− 1

292000

])
= 4.498.

Figure 3.5 shows how rI
100 is obtained for the case ωn = 2.0 rad/s by using

Algorithm 1. The circle of radius β is shown along with the level curves of
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3.6 Numerical results

Figure 3.5: The iteration points obtained when solving the maximization prob-
lem (3.19) for finding the 100-year response rI

100 in the case that the simplified
environmental model is used and ωn = 2.0 rad/s. The circle of radius β is shown
along with the level curves of the function y(u), with a colouring corresponding to
the value of y(u).

the function y(u), with a colouring corresponding to the value of y(u). We
observe that after six iterations we have convergence to the optimal point
u∗ where the level curve of y(u) through the point is tangent to the circle.
In this case the standard iteration (3.21) did converge, and the backtracking
part of Algorithm 1 remained idle. At u∗ = [4.17, 1.67] the function y(u)
attains its maximal value on the circle, 38.13 m, and the design point is
obtained as v∗ = T−1(u∗) = [h∗, y∗] = [8.01 m, 38.13 m]. Thus rI

100 = 38.13
m when the simplified environmental model is used.

3.6.2 The backtracking approach

In order to demonstrate the need for the backtracking approach in Al-
gorithm 1 for stabilizing the iteration (3.21), the 100-year response rI

100
was calculated for the case ωn = 2.0 rad/s. In Fig. 3.6 it is shown how
the maximization problem (3.19) is solved in an iterative manner. When
both Hs and Tz are considered as random variables in the environmental
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Figure 3.6: The iteration points obtained when solving the maximization problem
(3.19) for finding the 100-year response rI

100 in the case ωn = 2.0 rad/s. The
iteration (3.21) is used with (right) and without (left) the backtracking approach.

model, we seek the maximal value of vn+1(u) on the sphere of radius β.
The left part of Fig. 3.6 shows the iteration points obtained when the
standard iteration (3.21) was used, without applying the backtracking ap-
proach. In this case the iteration clearly diverges, failing to converge towards
the optimal point. The result of employing the backtracking approach is
shown to the right in Fig. 3.6. We observe that the backtracking prevents
the diverging behaviour and the iteration converges after ten iterations to
the optimal point u∗ = [4.09,−0.96, 1.60], which yields the design point
v∗ = T−1(u∗) = [h∗, t∗, v∗3] = [7.84 m, 2.62 s, 40.54 m] and thus rI

100 = 40.54
m.

3.6.3 The long-term extreme response approximations

In order to investigate the accuracy of the IFORM approximations rI
M and

r̄I
M for the extreme response, the formulations (3.2) and (3.3) were calcu-
lated in an exact manner using numerical integration and the exact values
rM and r̄M were obtained. Thus rM is the exact M -year extreme response,
r̄M is the extreme response given by the approximate formulation, and rI

M

and r̄I
M are the respective IFORM approximations. We would also like to

investigate how accurate the approximate formulation (3.3) is with respect
to extreme responses.
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In Table 3.1, Table 3.2 and Table 3.3 the M -year extreme response rM and
its approximations are calculated for M = 10, M = 100 and M = 1000 re-
spectively, and the relative errors of the approximations are also displayed.
The extreme response is calculated for different values of ωn, thereby varying
the characteristics of the SDOF system. Also, for the IFORM approxima-
tions the number of required short-term response calculations nst is given,
i.e. the number of evaluations of the function vn+1(u) in Algorithm 1.
For each iteration n + 2 evaluations are needed to calculate vn+1(uk) and
∇vn+1(uk) using a finite difference approximation, in addition to the eval-
uations of vn+1(uk+1) which is one for each backtracking step.

Comparing the results obtained using full numerical integration we see that
the approximate formulation (3.3) does indeed underestimate the extreme
response values, demonstrating what was shown in Section 3.2.3. However,
the error of the approximation is in most cases within a few percent, and it
decreases with increasing return period, i.e. decreasing exceedance probab-
ility.

For the IFORM approximations we notice that the difference between using
the exact and the approximate formulation is in fact very small, and both
IFORM methods give reasonably good estimates for the M -year response
rM . In most of the cases considered here, using IFORM actually improves
the estimate compared to full integration of the approximate formulation.
However, whether this is the case will be structure dependent. Regarding
the number of short-term structural response analyses nst, this appears to
be around 50, although some cases display faster or slower convergence
resulting in smaller or larger values of nst. This number of analyses is
expected to be the same if a more complex structure is considered, making
a full long-term response analysis feasible also when short-term response
calculations are time demanding.

Finally, a plot showing the design points obtained in the calculation of the
IFORM approximations rI

M is given in Fig. 3.7 along with the distribution of
the environmental parameters. This demonstrates that the IFORM solution
by Algorithm 1 also produces a set of environmental variables representing
the main contribution to the long-term extreme response, and this set can
be quite different for the different cases.
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Figure 3.7: The design points corresponding to the M -year response for M =
10 (red), M = 100 (black) and M = 1000 (blue), along with the PDF of the
environmental parameters.

3.7 Concluding remarks
An exact and an approximate formulation for the long-term extreme re-
sponse of marine structures have been discussed and compared in this paper.
It has been shown that the approximate formulation is non-conservative in
the sense that it underestimates the long-term extreme response values. It
has also been shown how both formulations can be solved in an approx-
imate manner using FORM, and extreme response values can be obtained
by IFORM. Finally, a new solution algorithm for the IFORM problem has
been proposed which resolves some convergence issues of a well-established
iteration algorithm.

Numerical results have also been presented, demonstrating the proposed
solution algorithm and comparing it with the standard iteration algorithm.
The different approximations for the long-term extreme response have been
compared for an SDOF example in order to assess the accuracy of the ap-
proximations. It is found that both IFORM approximations give reasonably
good estimates for the long-term extreme response. The number of required
short-term response analyses for the IFORM method is found to be within
acceptable limits, making a full long-term extreme response analysis feasible
also for more complex structures.
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Abstract
For the assessment of extreme load effects needed in design of marine structures, a
full long-term analysis is recognized as the most accurate approach. However, due
to the very large number of structural response analyses traditionally needed for this
approach, the computational effort is usually considered to increase above acceptable
levels for complex structures such as floating bridges. In this paper, a framework for
full long-term extreme response analysis is demonstrated for a long-span pontoon
bridge subjected to wave loads. This framework utilizes some recently developed
approaches which are based on the inverse first- and second-order reliability methods
(IFORM and ISORM). Using the IFORM and ISORM approaches, characteristic
values of the long-term extreme response are calculated in an efficient manner.
By comparing with results obtained by full numerical integration, the accuracy of
the methods is investigated. Particularly the ISORM method is seen to provide
high accuracy. The full long-term analysis is also compared with the environmental
contour method.
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5 Long-term extreme response analysis of a long-span pontoon bridge

5.1 Introduction
Fjord crossing technology is currently a research topic of high interest in
Norway. Due to the width and depth of the fjords considered, floating
bridges represent very relevant concepts as they utilize bouyancy for vertical
support. The design of more extreme yet reliable fjord crossing structures
motivates development of the methods for long-term stochastic extreme
response analysis.

For the evaluation of extreme response of marine structures due to envir-
onmental loads, a full long-term analysis is recognized as the most accurate
design approach [60]. In principle, the full long-term approach takes into ac-
count all possible combinations of environmental parameters. This means
that for straightforward methods such as full numerical integration and
crude Monte Carlo simulation, a very large number of short-term response
calculations have to be conducted. For complex structures like floating
bridges, each short-term calculation is usually very time consuming, and
the full long-term approach is often considered infeasible.

As an alternative to performing full long-term analyses, the environmental
contour method [29, 30] is a widely used simplified approach. First, environ-
mental contours corresponding to specified annual exceedance probabilities
are determined without any consideration of the structural response. Tradi-
tionally the contours are determined using an inverse first-order reliability
method (IFORM) approach [79], but alternative methods do exist [32, 33,
55]. The most critical point along the contour is then determined, and an
estimate for the long-term extreme response is finally obtained. Only a few
short-term response calculations are used, making the environmental con-
tour method highly efficient. However, some sort of calibration against full
long-term analysis is required [60]. Also, due to simplified modelling of re-
sponse variability, the environmental contour method may perform poorly
for certain types of structures [2, 48].

In recent years, efforts have been made to reduce the number of short-term
calculations required for full long-term extreme response evaluation. These
are based on the observation that many combinations of environmental para-
meters contribute little or nothing to the long-term extreme response. A
copula based environmental modelling approach is proposed in [80], and
the copula concept is further utilized in an adaptive refinement algorithm
for more efficient long-term integration. In [68] an IFORM approach [79] is
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5.1 Introduction

used to provide an estimate of the long-term extreme response. The IFORM
method also indicates where the largest contribution to the long-term re-
sponse is located, and this information is used in an importance sampling
Monte Carlo simulation approach, improving the accuracy of the extreme
response estimate. Further investigation of IFORM as a method for long-
term extreme response estimation is carried out in [21], and in [23] an inverse
second-order reliability method (ISORM) approach is proposed. These de-
velopments provide methods for carrying out full long-term analyses with a
limited amount of short-term response calculations.

IFORM and ISORM are efficient and easily implemented methods, which
is important for their practical application to long-term extreme response
analysis. Still, it should be noted that having the long-term extreme re-
sponse analysis formulated in terms of a reliability problem, as described
in [21], a variety of methods from the field of structural reliability can also
be applied. In particular, efficient simulation methods such as importance
sampling [4, 67] and subset simulation [5, 11] could be used iteratively to
calculate characteristic response values. Alternatively, efficient methods for
reliability-based design optimization (RBDO), e.g. [18], could be used for
direct calculation.

The long-term analysis can also be made more efficient by improving the ef-
ficiency of each short-term response calculation. One example is the method
described in [20], which is demonstrated in [25] for pontoon bridges.

In the present paper it is shown how these recent developments can be used
to perform full long-term extreme response analyses for a pontoon floating
bridge subjected to first-order wave loads. Specifically, the inverse reliabil-
ity approaches IFORM and ISORM [21, 23] are applied. It is demonstrated
that the efficiency of these methods make full long-term extreme response
analyses feasible, also for complex structures such as floating bridges. Fur-
thermore, the framework proposed in this paper can be used for calibration
of the environmental contour method.
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5 Long-term extreme response analysis of a long-span pontoon bridge

5.2 Modelling the stochastic dynamic response of
pontoon bridges

5.2.1 Stochastic modelling of waves

For a short-term period of duration T̃ , the sea elevation is modelled as a
homogeneous and stationary stochastic process with zero mean. The sea
elevation process is denoted η(x, y, t), where x, y are the spatial variables
and t is the time variable. Assuming linear wave theory, the wave number
κ(ω) is a function of angular frequency defined by the dispersion relation
ω2 = κg tanh(κd), and the cross-spectral density between the wave elevation
at two points (xm, ym) and (xn, yn) can be expressed in terms of a one-
dimensional wave spectrum Sη(ω) and a spreading function Ψ(θ, ω) as

Smn(ω) = Sη(ω)
∫ π

−π
Ψ (θ, ω) e−iκ(ω)(∆x cos θ+∆y sin θ)dθ.

Here ∆x = xm − xn and ∆y = ym − yn are the spatial separations of the
points. For details we refer to [20].

The sea elevation is further assumed to be a Gaussian process which means
that the cross-spectral densities provide a complete description of the pro-
cess. Hence the wave situation is completely described by the wave spectrum
Sη(ω) and the spreading function Ψ(θ, ω). Various theoretical models given
in terms of environmental parameters exist in the literature [28, 73]. In this
paper we use the generalized Pierson-Moskowitz spectrum [73] given by

Sη (ω) = Hs
2Tz

8π2

(
ωTz
2π

)−5
exp

{
− 1
π

(
ωTz
2π

)−4
}
,

where Hs is the significant wave height and Tz is the zero-crossing period.
The spreading function is of the cos-2s type, defined by a mean wave direc-
tion Θ̄ relative to the x-axis and an ω-dependent spreading parameter s(ω)
as

Ψ(θ, ω) = 22s(ω)Γ2 (s(ω) + 1)
2πΓ (2s(ω) + 1)

(
cos2 θ − Θ̄

2

)s(ω)

,

where Γ(·) is the gamma function. Figure 5.1 shows the wave spectrum
Sη(ω) plotted in the nondimensional scale ωTz/2π, and the spreading func-
tion is shown for different values of s(ω). In this paper we have used a
constant spreading s(ω) = 10, but it could equally well be defined as ω-
dependent.
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5.2 Modelling the stochastic dynamic response of pontoon bridges

(a) The generalized Pierson-Moskowitz spectrum.

(b) The cos-2s spreading function.

Figure 5.1: Definition of the directional spectrum.
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5 Long-term extreme response analysis of a long-span pontoon bridge

5.2.2 Stochastic modelling of first-order wave excitation loads

For pontoon floating bridges the structure will experience wave loads only
where the pontoons are located. Considering the pontoons as rigid bodies,
the bridge will experience loads in six degrees of freedom (DOFs) from each
pontoon, three translational DOFs and three rotational DOFs. Thus, for a
bridge with N pontoons we have loading in 6N DOFs, and we can define
a wave excitation load vector q(t) = [q1(t), q2(t), . . . , qN (t)], where qm(t)
denotes the 6-element load vector of pontoon number m. The individual
components of the load vector q(t) can be denoted by qµ(t), assigning a
global index µ ∈ {1, 2, . . . , 6N} to each DOF.

Consider pontoon m with a local coordinate system (x̃, ỹ), which is located
with its origin at the point (xm, ym) and rotated counterclockwise with an
angle αm relative to the global coordinate system (x, y) as shown in Fig.
5.2. The wave excitation loads due to a regular wave with angular frequency
ω in the direction β̃ relative to the x̃-axis of the pontoon can be computed
using linear potential theory software such as WADAM [16]. The loads are
then reported in terms of the 6-element complex transfer function vector
fm(β̃, ω). Considering only first-order wave loads, the wave excitation load
process qm(t) corresponding to the wave elevation process η(x, y, t) can be
obtained by superposition of loads from regular waves. This results in a
stationary Gaussian load process q(t) with zero mean and a 6N -by-6N
cross-spectral density matrix Sq(ω) whose elements are given by

Sqµqν (ω) =

Sη(ω)
∫ π

−π
Ψ(θ, ω)fµ(θ − αm, ω)fν(θ − αn, ω)e−iκ(ω)(∆x cos θ+∆y sin θ)dθ,

(5.1)

where the overline denotes complex conjugation. Here fµ(β̃, ω) is the µ-th
component of the total transfer function vector

f(β̃, ω) = [f1(β̃, ω),f2(β̃, ω), · · · ,fN (β̃, ω)],

i.e. the complex transfer function of the DOF µ.

A method for efficient calculation of the cross-spectral density matrix Sq(ω)
based on the expression Eqn. (5.1) is given in [20, 25]. In [20] the derivation
of the cross-spectral densities is also explained in more detail.
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5.2 Modelling the stochastic dynamic response of pontoon bridges

Figure 5.2: The local coordinate system of a pontoon.

5.2.3 Equations of motion

By employing the framework of the finite element method (FEM), the equa-
tions of motion describing the linear behaviour of a floating bridge can be
written as

M sü(t) +Csu̇(t) +Ksu(t) = qh(t),

where M s, Cs and Ks are the structural system matrices, excluding all
fluid-structure interaction contributions; u(t) is the displacement vector;
qh(t) is the total hydrodynamic action, including both wave excitation and
fluid-structure interaction contributions; t is the time variable; and u̇ ≡ ∂u

∂t .
The total hydrodynamic action may be decomposed as follows:

qh(t) =−
(∫ ∞
−∞

Mh(t− τ)ü(t)dτ +
∫ ∞
−∞

Ch(t− τ)u̇(t)dτ +Khu(t)
)

+ q(t).

Here the first term represents the fluid-structure interaction, with Mh(t)
and Ch(t) being the time-domain representations of added mass and added
damping respectively, and Kh being the hydrostatic stiffness. The second
term, q(t), is the wave excitation load. Convolution integrals in the time do-
main are equivalent to multiplication in the frequency domain, such that the
total hydrodynamic action may be written as follows by enforcing frequency
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5 Long-term extreme response analysis of a long-span pontoon bridge

domain notation:

q̂h(ω) = −
(
−ω2M̂h(ω) + iωĈh(ω) +Kh

)
û(ω) + q̂(ω).

Here hats denote the frequency domain counterparts of the different quant-
ities. Finally, the equation of motion of the system may be written on the
following compact form, in the frequency domain:(

−ω2M(ω) + iωC(ω) +K
)
û(ω) = q̂(ω)

where M(ω) = M s + M̂h(ω), C(ω) = Cs + Ĉh(ω) and K = Ks +Kh.

The second-order probabilistic properties of zero-mean response and wave
excitation processes are fully described by cross-spectral densities. The
stochastic frequency domain problem is easily solved by applying the power
spectral density method. The cross-spectral density matrix of the response
is then calculated as

Su(ω) = H(ω)Sq(ω)H(ω)H , (5.2)

where H(ω) =
(
−ω2M(ω) + iωC(ω) +K

)−1 and [·]H denotes the conjug-
ate transpose. The cross-spectral density matrix Sq(ω) of the wave excita-
tion load is found as explained in Section 5.2.2. More details on the subject
may be found in e.g. [42, 45, 60, 62, 71].

5.3 Short-term response model for the case study
bridge
The case study bridge consists of an S-shaped continuous girder box, which
is supported on 20 pontoons. Figure 5.3 depicts the most important geomet-
rical properties of the bridge. 16 symmetrically positioned cables provide
side-support by fixation to the sea bed, cf. Fig. 5.4. The cross section
of the girder is illustrated in Fig. 5.5. It is highlighted that the modelled
bridge is considered merely as a useful example for the application of the
methodology, and does not necessarily represent a feasible design.

5.3.1 Numerical response model set-up

The study carried out is performed using the approach presented in [42],
and the reader is referred to that paper for a detailed description of the
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L = 4000 m

R = 1250 m

Δ = 500 mPinned support

Pinned support

(a) Top view of main geometry.

Generalized beam cross-section

Cable

Pontoon

500 m

1500 m

Fixed connection

Pinned connection

(b) Cable geometry.

Figure 5.3: Geometry of the bridge model.

8 equidistant cables

0.45 L
0.05 L

8 equidistant cables

Figure 5.4: Position of cables. L refers to the horizontal distance, as defined in
Fig. 5.3.
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5 Long-term extreme response analysis of a long-span pontoon bridge

15 m

7 m

z

y

Figure 5.5: Main dimensions of cross section.

methodology for the numerical model set-up. The most important details
are repeated here, for the convenience of the reader.

Two different sub-structures are used to create the full bridge model:

(I) A structural sub-structure, based on an Abaqus model incorporat-
ing all structural components and also including pontoon inertia and
buoyancy.

(II) A hydrodynamic sub-structure, based on a WADAM model provid-
ing fluid-structure interaction terms, but excluding the buoyancy and
pontoon inertia which are both included in (I).

To combine the two sub-structures, a modal decomposition is carried out
in Abaqus [12]. The resulting mode shapes are referred to as the dry mode
shapes, and are used as a new coordinate basis. The mode shapes are defined
by the DOFs characterizing the rigid body motion of all pontoons. The
frequency-dependent mass and damping contributions originating from the
hydrodynamic model (II) are transformed to the coordinate basis defined by
the dry mode shapes, before they are added to the modal system matrices
from the structural model (I). It is noted that the results from the single
pontoon analysis is duplicated and used for all pontoons, but necessary
transformations and matrix book keeping are applied such that the orient-
ation and additions are correct. The wave excitation cross-spectral density
matrix Sq(ω), given by Eqn. (5.1), is transformed to the coordinate basis
given by the dry mode shapes, before the power spectral density method,
cf. Eqn (5.2), is applied to calculate the spectral density of the response.
In the final step, the response spectral density is transformed back to the
physical DOFs of the pontoons. The main reason for carrying out this basis
transformation is to avoid the extraction of all the free DOFs of the finite
element model, as static condensation is not appropriate for dynamic prob-
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5.3 Short-term response model for the case study bridge

Table 5.1: Parameters used for the generalized cross section.

Parameter Value Description

A 1.026 m2 Cross-sectional area
Iy 10.79 m4 Second moment of area about axis y
Iz 29.34 m4 Second moment of area about axis z
J 24.92 m4 Polar moment of area
zc 3736 mm Distance from bottom to neutral axis
yc 0 mm Distance from center to neutral axis

lems. It should be noted that although a reduced order model is obtained,
this is not a mode by mode approach because the modes will be coupled
due to the hydrodynamic contributions.

5.3.2 Structural model

The continuous girder box is modelled in Abaqus with beam elements, with
a generalized cross section characterized by the parameters shown in Tab.
5.1. The cables are modelled as beam elements, with circular cross sections.

In an initial static step, pre-tensioning of cables, cable bouyancy, global
gravity, and static uplift forces are applied to the structure. The cables are
pre-tensioned by assuming a constant negative temperature, which corres-
ponds to a pre-tension of approximately 5000 kN. Fluid inertial effects are
included for the cables; however, no drag damping is considered.

75 m

20 m

12 m

x

y
z

Figure 5.6: Main dimensions of pontoon and local coordinate system.
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5 Long-term extreme response analysis of a long-span pontoon bridge

5.3.3 Hydrodynamic pontoon model

A single hydrodynamic analysis, carried out in WADAM, is used to establish
all system matrix contributions from the fluid-structure interaction. The
geometry of the pontoon is depicted in Fig. 5.6. In the model set-up,
buoyancy and inertia of the pontoon itself were added as local contributions
to the bridge at the locations of the pontoons. The added hydrodynamic
mass and damping coefficients, referring to the local coordinate system of
the pontoon, are plotted in Figs. 5.7 and 5.8.

5.3.4 Modal parameters and shapes

Due to the frequency dependency of the hydrodynamic contributions, the
eigenvalue problem is solved by iteration, as described in [42]. The resulting
10 first undamped natural frequencies and critical damping ratios are shown
in Tab. 5.2, and the real part of the corresponding mode shapes are depicted
in Fig. 5.9. Figure 5.9 reveals that the first 10 modes all have lateral motion
patterns. From frequencies above the natural frequency of mode 10 and up,
numerous cable modes are present.

Table 5.2: Modal parameters from the numerical eigenvalue solution, correspond-
ing to mode shapes illustrated in Fig. 5.9. The undamped natural frequency is
denoted ωn, and ξ is the corresponding critical damping ratio.

Mode number ωn [rad/s] ξ [%]

Mode 1 (Fig. 5.9a) 0.11 1.53
Mode 2 (Fig. 5.9b) 0.15 1.28
Mode 3 (Fig. 5.9c) 0.16 1.18
Mode 4 (Fig. 5.9d) 0.18 1.02
Mode 5 (Fig. 5.9e) 0.20 0.88
Mode 6 (Fig. 5.9f) 0.24 0.79
Mode 7 (Fig. 5.9g) 0.28 0.75
Mode 8 (Fig. 5.9h) 0.33 0.81
Mode 9 (Fig. 5.9i) 0.38 1.06
Mode 10 (Fig. 5.9j) 0.45 1.87
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Figure 5.7: Translational (a) and rotational (b) damping coefficients of a single
pontoon. Dots indicate the original data from WADAM, whilst lines represent
interpolated data. The coordinates refer to the local coordinate system of the
pontoon, as shown in Fig. 5.6.
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Figure 5.8: Translational (a) and rotational (b) mass coefficients of a single
pontoon. Dots indicate the original data from WADAM, whilst lines represent
interpolated data. The coordinates refer to the local coordinate system of the
pontoon, as shown in Fig. 5.6.

122



5.3 Short-term response model for the case study bridge

(a)(a)

(d)

(g)

(j)

(b)

(e)

(h)

(c)

(f)

(i)

Figure 5.9: Mode shapes from numerical eigenvalue solution, corresponding to
natural frequencies and damping ratios presented in Tab. 5.2. Note that the eigen-
vectors are complex, and their mode shape representation is therefore a snapshot.
(a) Mode 1; (b) mode 2; (c) mode 3; (d) mode 4; (e) mode 5; (f) mode 6; (g) mode
7; (h) mode 8; (i) mode 9; (j) mode 10.
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5 Long-term extreme response analysis of a long-span pontoon bridge

5.4 Long-term extreme response
For the modelling of long-term extreme response of marine structures, the
long-term situation can be considered as a collection of Ñ short-term states,
each of duration T̃ . During each short-term state the environmental pro-
cesses are assumed stationary and defined by a set of n environmental
parameters W = [W1,W2, . . . ,Wn]. In this paper, we only consider the
sea elevation, which is defined in terms of the environmental parameters
W = [Hs, Tz, Θ̄], cf. Section 5.2.1. We will assume that the joint prob-
ability density function (PDF) of the environmental parameters, denoted
fW (w), is given. This PDF can be estimated by fitting a probabilistic
model to a scatter diagram of recorded sea states [60].

The methodology presented in this paper for the calculation of extreme
response is illustrated for a single response process. Specifically, we con-
sider the horizontal transverse displacement of pontoon number five from
the left in Fig. 5.3. This is the displacement along the local x̃-axis of
this pontoon (see Fig. 5.2), and will henceforth simply be referred to as
the response process, denoted R(t). Being the response of a linear and
time-invariant dynamical system, R(t) will be a stationary Gaussian pro-
cess with zero mean because the load process is. Hence, the response R(t)
is fully characterized by its spectral density SR(ω), which is obtained as
a diagonal element of the cross-spectral density matrix Su(ω) given by
Eqn. (5.2). Figure 5.10 shows an example of the response spectrum SR(ω)
for a short-term situation where the environmental variables are given by
W = [Hs, Tz, Θ̄] = [1 m, 6 s,−π/2].

5.4.1 Short-term extreme value distribution

The maximal value of the response process R(t) during a short-term period
with given environmental variables W will be a random variable. This
short-term extreme response is denoted by R̃|W and its cumulative distri-
bution function (CDF) is FR̃|W (r|w) = Prob[R̃ ≤ r|W = w] = Prob[R̃ ≤
r|Hs = hs, Tz = tz, Θ̄ = θ̄]. As explained in detail in [60], the short-term ex-
treme value distribution FR̃|W (r|w) can be found by assuming independent
upcrossings of high levels r as

FR̃|W (r|w) = exp
{
− T̃

2π

√
m2(w)
m0(w) exp

{
− r2

2m0(w)

}}
, (5.3)
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5.4 Long-term extreme response

Figure 5.10: The response spectrum SR(ω) when W = [Hs, Tz, Θ̄] =
[1 m, 6 s,−π/2].

which holds for reasonably large values of r. Here the i-th moment mi(w)
of the response spectrum SR(ω) is defined as

mi(w) =
∫ ∞

0
ωiSR(ω)dω.

Note that SR(ω) is dependent on the environmental parameters w, though
not written explicitly.

It should be noted that although Eqn. (5.1) and thereby Eqn. (5.3) are
based on the assumption of homogeneity, which may be questioned for
floating bridge applications, the general method presented in this paper
is readily used along with other ways of calculating the short-term CDF
FR̃|W (r|w). The only required assumption is that the response process can
be approximated as stationary for some short-term period T̃ .

5.4.2 Long-term extreme response models

The long-term CDF of the short-term extreme value is denoted FR̃(r), and
gives the distribution of the largest response value R̃ during an arbitrarily
chosen short-term condition. This can be obtained as an average of all
short-term CDFs FR̃|W (r|w) weighted by the distribution fW (w) of the
environmental parameters. In order to estimate fW (w) in the first place,
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5 Long-term extreme response analysis of a long-span pontoon bridge

an ergodicity assumption is required for the environmental parameters [59],
and hence FR̃(r) should be expressed as an ergodic average [59, 60]. This
yields the long-term extreme response formulation

FR̃ (r) = exp
{∫

w

(
lnFR̃|W (r|w)

)
fW (w) dw

}
. (5.4)

A very common approximate formulation, is given by the population mean

FR̃ (r) ≈
∫
w
FR̃|W (r|w)fW (w) dw. (5.5)

The formulations Eqns. (5.4) and (5.5) are discussed in more detail in [21,
68].

The long-term CDF FR̃(r) can be evaluated by solving the integrals in
Eqns. (5.4) and (5.5) numerically. Unfortunately, full numerical integration
requires a very large amount of short-term response calculations, since the
short-term CDF FR̃|W (r|w) must be calculated for a very large number
of environmental conditions. This motivates the use of inverse reliability
methods for calculation of long-term extreme response.

5.4.3 Writing the long-term CDF in terms of a reliability
problem

In order to use reliability methods for evaluating the long-term CDF FR̃(r),
it must be rewritten in terms of a reliability problem. A reliability problem
in the general sense [53] is an integral of the form∫

G(v)≤0

fV (v)dv,

where V is a random vector with joint PDF fV (v) and G(v) is a function
referred to as the limit state function.

For the approximate formulation Eqn. (5.5), it is well known that the long-
term CDF can be expressed in terms of a reliability problem by rewriting∫

w

FR̃|W (r|w) fW (w) dw =
∫
w

∫
r̃≤r

fR̃|W (r̃|w) dr̃fW (w) dw.
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Introducing the random vector V̄ = [W , R̃], whose joint PDF is given by
fV̄ (v̄) = fR̃|W (r̃|w) fW (w), Eqn. (5.5) yields

FR̃ (r) ≈
∫
r̃≤r

fV̄ (v̄) dv̄ = 1−
∫
r≤r̃

fV̄ (v̄) dv̄.

Finally, we obtain

FR̃ (r) ≈ 1−
∫

Gr(v̄)≤0

fV̄ (v̄) dv̄, (5.6)

where Gr(v̄) = r− r̃ = r− v̄n+1, with v̄n+1 being the (n+ 1)-th component
of the vector v̄.

The exact formulation Eqn. (5.4) can be used directly to obtain a better
approximation for the long-term CDF in terms of a reliability problem [21,
23, 24]. Equation (5.4) is rewritten by multiplying and dividing the integral
by some freely chosen constant C ≥ 1. Then unity is added and subtracted,
keeping in mind that

∫
w fW (w) dw = 1. Specifically, we obtain

FR̃ (r) = exp
{
−C

(
1−

∫
w

(
1 + 1

C
lnFR̃|W (r|w)

)
fW (w) dw

)}
.

Introducing the random variable Y defined by the CDF FY |W (y|w) =
max

{
1 + 1

C lnFR̃|W (y|w), 0
}
, the factor 1 + 1

C lnFR̃|W (r|w) in the above
integral can be replaced by FY |W (r|w). This yields the approximation

FR̃ (r) ≈ exp
{
−C

(
1−

∫
w
FY |W (r|w) fW (w) dw

)}
. (5.7)

Here the domain where 1 + 1
C lnFR̃|W (r|w) < 0 is disregarded. This is a

very good approximation for large values of r, since FR̃|W (r|w) will be close
to unity. Furthermore, by increasing the value of C, the approximation
will improve. Now the approximation Eqn. (5.7) obtained directly from the
exact formulation Eqn. (5.4) can be written in terms of a reliability problem
using the same approach as for the approximate formulation. Finally, the
long-term CDF is expressed as

FR̃ (r) ≈ exp

−C
∫

Gr(v)≤0

fV (v) dv

 , (5.8)

where V = [W , Y ] and Gr(v) = r − y = r − vn+1.
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5.4.4 Calculation of extreme response using inverse reliabil-
ity methods

When long-term extreme responses are calculated for design purposes, we
usually seek the characteristic response value rq which has a specified annual
exceedance probability q. This may also be referred to as the response value
with a return period of 1/q years, or simply the 1/q-year response. The
characteristic response rq is found by requiring

1− FR̃ (rq) = q

Ñ
,

where Ñ = 1 yr/T̃ is the number of short-term periods in one year. In this
paper we have used T̃ = 3 h, which gives Ñ = 365 · 8 = 2920. If we denote
by r̃q the long-term extreme response obtained when using the approximate
formulation Eqn. (5.5) for the long-term CDF, we have from Eqn. (5.6)
that r̃q must satisfy ∫

Gr̃q (v̄)≤0

fV̄ (v̄) dv̄ = q

Ñ
. (5.9)

Similarly, using Eqn. (5.8), which corresponds to the exact formulation
Eqn. (5.4), yields the following equation for rq:∫

Grq (v)≤0

fV (v) dv = − 1
C

ln
(

1− q

Ñ

)
. (5.10)

Now the problem of finding r̃q and rq that satisfies Eqns. (5.9) and (5.10)
can be solved in an approximate manner using inverse reliability methods.
Taking Eqn. (5.9) as an example, the random vector V̄ is transformed
into a vector U of independent standard normal random variables by the
Rosenblatt transformation U = T (V̄ ), and Eqn. (5.9) becomes∫

gr̃q (u)≤0

fU (u) du = q

Ñ
, (5.11)

where gr̃q(u) = Gr̃q(T−1(u)) = r̃q − r̃(u) is the transformed limit state
function and fU (u) is the multivariate standard normal PDF. Using the
first-order reliability method (FORM) to approximate the integral in Eqn.
(5.11), the inverse FORM (IFORM) problem can be derived as

r̃F
q = max r̃(u); subject to |u| = β, (5.12)
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where β = −Φ−1(q/Ñ) with Φ(·) being the standard normal CDF. Thus,
solving the IFORM problem Eqn. (5.12) provides an estimate r̃F

q for the
characteristic extreme response value r̃q. In this work we have used the
solution algorithm proposed in [21]. For details on the transformation to
standard normal variables and the derivation of the IFORM problem the
reader is referred to [21, 53, 79].

If, on the other hand, the second-order reliability method (SORM) is used
to approximate the integral in Eqn. (5.11), an inverse SORM (ISORM)
method can be derived. In [23] an ISORM approach is proposed where the
IFORM problem Eqn. (5.12) is solved repeatedly, updating the value of β
which is unknown in this case. The characteristic extreme response estimate
provided by the ISORM method is denoted r̃S

q .

The inverse reliability methods IFORM and ISORM can be applied to Eqn.
(5.10) using the same approach as described above, providing long-term
extreme response estimates that approximate rq. We denote these estimates
by rF

q and rS
q respectively. The only differences will be that V is transformed

instead of V̄ , and that β = −Φ−1
(
− 1
C ln

(
1− q

Ñ

))
.

It is reported in [21, 23] that the use of reliability methods appears to give
good accuracy for the calculated long-term extreme response while keeping
the number of required short-term response calculations within reasonable
levels.

5.4.5 Environmental contour method

Even though IFORM and ISORM represent efficient methods for extreme
response evaluation, some cases may still call for a more simplified approach.
The environmental contour method has been proposed as such a simplified
approach for estimating characteristic long-term extreme response values
[29]. It is developed in [79] based on the approximate formulation Eqn.
(5.5) and the IFORM approximation. In fact, the method can be considered
as a special case of the IFORM problem Eqn. (5.12) where the short-term
extreme response is regarded as deterministic [79].

The environmental contour corresponding to a given annual exceedance
probability q is found from the joint environmental PDF fW (w) without
any consideration of the structural response. Then, the most unfavourable
combination of environmental parameters along this q-probability contour,
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referred to as the design point, is identified. In this paper the design point,
denoted by ŵ, is taken as the point along the contour where the median, i.e.
the 0.5-fractile, of the short-term distribution FR̃|W (r|w) attains its max-
imal value. This maximization problem is the same as the IFORM problem
Eqn. (5.12), but since the extreme response is regarded deterministic the
dimension is reduced by one. Nevertheless, the same solution algorithm can
be applied to obtain the design point ŵ. In order to account for the ran-
domness of the short-term extreme value, the characteristic response value
is chosen as the p-fractile, p > 0.5, of the short-term extreme value distri-
bution FR̃|W (r|ŵ) at the design point. The appropriate value for p must be
validated by a full long-term analysis [60].

It is worth mentioning that it is possible to derive an environmental con-
tour method based on the IFORM solution of the exact formulation Eqn.
(5.4). In that case, we would use the short-term distribution FY |W (y|w)
instead of FR̃|W (r|w), and the q-probability contour would be defined in
the standard normal space by a radius β = −Φ−1

(
− 1
C ln

(
1− q

Ñ

))
instead

of β = −Φ−1(q/Ñ). This would, however, introduce contours dependent on
the parameter C, and the appealing simplicity of the contour method would
be undermined.

5.5 Numerical results

5.5.1 Environmental models

The environmental parameters defining the short-term wave situation ac-
cording to Section 5.2.1 are the significant wave height Hs, the zero-crossing
period Tz and the mean wave direction Θ̄. Using the conditional modelling
approach described in [8, 14], the CDF of the significant wave height Hs is
given by a 2-parameter Weibull distribution

FHs (h) = 1− exp
{
−
(
h

α

)β}
, (5.13)

and the zero-crossing period Tz has a conditional lognormal distribution

FTz |Hs (t|h) = Φ
( ln t− µ (h)

σ (h)

)
, (5.14)

where µ (h) = a0 +a1h
a2 and σ (h) = b0 +b1eb2h. Here α, β and a0, a1, a2, b0,

b1, b2 are the parameters of the distributions. For the mean wave direction
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Θ̄, we use a distribution independent of Hs and Tz, given by the CDF

FΘ̄(θ) =



0, for θ < −π,
2
(
1 + θ

π

)2
, for − π ≤ θ < −π

2 ,

1− 2
(
θ
π

)2
, for − π

2 ≤ θ < 0,
1, for θ ≥ 0.

(5.15)

This means that the PDF fΘ̄(θ), obtained by differentiating Eqn. (5.15)
with respect to θ, is piecewise linear between −π and 0 with a peak at −π

2 .
Similarly, the PDFs fHs(h) and fTz |Hs(t|h) can be obtained by differentiating
Eqns. (5.13) and (5.14) with respect to h and t respectively, and the joint
PDF of the environmental parameters is given as

fW (w) = fHs,Tz ,Θ̄ (h, t, θ) = fHs (h) fTz |Hs (t|h) fΘ̄(θ). (5.16)

The environmental model Eqn. (5.16) where all three environmental para-
meters are random variables will be referred to as EM1. Different en-
vironmental models can be obtained by considering some of the environ-
mental parameters as deterministic. If for instance the zero-crossing period
is taken as the conditional median obtained from the CDF Eqn. (5.14), i.e.
Tz = exp{µ(Hs)}, we obtain the environmental model

fW (w) = fHs,Θ̄ (h, θ) = fHs (h) fΘ̄(θ). (5.17)

This will be referred to as EM2. We also consider an environmental model
where the mean wave direction is given as Θ̄ = −π/2. This yields

fW (w) = fHs,Tz (h, t) = fHs (h) fTz |Hs (t|h) , (5.18)

which will be referred to as EM3. The environmental models EM1, EM2
and EM3 will all have the same values for the distribution parameters. We
also consider a model EM4, which is given by Eqn. (5.18) with different
parameter values. An overview of the environmental models and their dis-
tribution parameters is provided in Tab. 5.3.

The environmental models are illustrated in Fig. 5.11 by displaying the
environmental contours corresponding to annual exceedance probabilities
q = 10−2 and q = 10−4, i.e. the 100-year and 10 000-year contours. For the
two-dimensional models EM2, EM3 and EM4, the isoprobability contours
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5.5 Numerical results

(a) EM1 (b) EM2

(c) EM3 (d) EM4

Figure 5.11: The contours corresponding to annual exceedance probabilities
q = 10−2 and q = 10−4 for the different environmental models. For the two-
dimensional models EM2, EM3 and EM4 the PDFs are illustrated by displaying
the isoprobability contours. EM2 and EM3 are obtained from EM1 by regarding
as deterministic Tz and Θ̄ respectively.

obtained from the PDFs Eqns. (5.17) and (5.18) are also shown. Note that
EM2 and EM3 are obtained from EM1 by regarding as deterministic Tz and
Θ̄ respectively. EM4 represent a different model entirely. However, for all
the models considered, the significant wave heights Hs with return periods
of 100 and 10 000 years are approximately 2.9 m and 3.5 m respectively.
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5 Long-term extreme response analysis of a long-span pontoon bridge

5.5.2 Characteristic extreme response values

5.5.2.1 Inverse reliability methods

Estimates for the characteristic response value rq were calculated using the
methods described in Section 5.4.4. The value r̃q was obtained by numeric-
ally solving the integral in the approximate formulation Eqn. (5.5), and r̃F

q

and r̃S
q denote the IFORM and ISORM approximations of r̃q. Similarly, rq

was found by applying numerical integration to the formulation Eqn. (5.4)
and the reliability method approximations are denoted rF

q and rS
q . For rF

q

and rS
q , different values of the constant C in Eqns. (5.8) and (5.10) could be

used. In this paper, C = 1 is used for rF
q , while the values C = 1, C = 104

and C = 106 are used for rS
q .

For the calculation of r̃q and rq by numerical integration, the ranges of the
integration variables were Hs ∈ [0, 10] m, Tz ∈ [0.4, 20] s, and Θ̄ ∈ [−π, 0].
The applied bin sizes were ∆Hs = 0.1 m, ∆Tz = 0.2 s, ∆Θ̄ = π/39 for
EM1, ∆Hs = 0.05 m, ∆Θ̄ = π/39 for EM2 and ∆Hs = 0.05 m, ∆Tz = 0.05
s for EM3 and EM4. It should be noted that these ranges and bin sizes are
chosen such that r̃q and rq can be regarded as exact values, and the number
of integration points may therefore be excessive.

The obtained values for the characteristic extreme response estimates are
presented in Tabs. 5.4 and 5.5 for annual exceedance probabilities q = 10−2

and q = 10−4, respectively. When compared to the values r̃q and rq, it is seen
that the reliability method approximations provide reasonable estimates for
the characteristic response value. Especially the ISORM method with C
chosen as 104 or 106 yields very good estimates.

In Tabs. 5.4 and 5.5, the characteristic response values are seen to vary
quite a lot between the different environmental models. This is a result of
the response being very sensitive to the zero-crossing period Tz. In Fig.
5.11 it is seen that large values of Tz have a larger probability of occurrence
for EM4 than for EM3, resulting in a significantly larger extreme response.
For EM2, Tz is fixed at its median value, disregarding large values of Tz.
This results in a smaller extreme response for EM2. EM1 and EM3, on the
other hand, have the same model for Tz and give quite similar results.

For each of the extreme response estimates in Tabs. 5.4 and 5.5, the cor-
responding number of executed short-term response calculations, denoted
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5.5 Numerical results

by nst or similar, is reported in Tabs. 5.6 and 5.7. It is clear that IFORM
and ISORM represent efficient methods for full long-term extreme response
analysis. ISORM roughly doubles the computational effort compared to
IFORM.

5.5.2.2 Environmental contour method

Using some common choices for the fractile level p, characteristic extreme
response estimates denoted rpq were obtained for the environmental contour
method. These estimates are presented in Tabs. 5.8 and 5.9 for annual
exceedance probabilities q = 10−2 and q = 10−4 respectively. Comparing
these results to the exact long-term extreme response rq in Tabs. 5.4 and
5.5, we observe that all the considered choices of p give reasonable rough
estimates for the long-term response.

The exact fractile levels corresponding to the full long-term estimates can
also be calculated. For the exact extreme response value rq, the correspond-
ing fractile level is given as

pq = FR̃|W (rq|ŵ).

Table 5.10 shows the fractile levels corresponding to the exact extreme re-
sponse values rq in Tabs. 5.4 and 5.5. We see that there is a large variation
in the obtained fractiles, indicating that one single fractile level does not
give accurate estimates for all the considered cases. However, as seen in
Tabs. 5.8 and 5.9, rough estimates can still be obtained. When regarded as
rough approximations, Tabs. 5.8 and 5.9 show that the extreme response
estimates are generally not overly sensitive to changing fractile levels. Still,
if the fractile level should be much larger than 0.9, which is the case for
EM3 and EM4 when q = 10−2, the environmental contour method may
underestimate the extreme response quite severely.

Considering Tabs. 5.8–5.10, reasonable choices for the fractile values are
perhaps p = 0.95 for q = 10−2 and p = 0.80 for q = 10−4. Thus, p has
a larger value for the highest annual exceedance probability. This is in
contrast to the choices of p = 0.90 for q = 10−2 and p = 0.95 for q = 10−4,
which are common for offshore structures [29]. It should also be noted that
instead of using rq, which is obtained by full numerical integration, the
IFORM and ISORM estimates can be used to determine appropriate values
for the fractile levels.
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5 Long-term extreme response analysis of a long-span pontoon bridge

Table 5.4: The characteristic extreme response values as calculated by the differ-
ent methods for an annual exceedance probability q = 10−2.

Approximate formulation Exact formulation

rS
q [cm]

r̃F
q [cm] r̃S

q [cm] r̃q[cm] rF
q [cm] C = 1 C = 104 C = 106 rq[cm]

EM1 56.4 48.7 54.4 56.8 49.6 58.7 58.5 61.8
EM2 2.52 2.39 2.42 2.54 2.42 2.55 2.55 2.58
EM3 53.3 49.7 51.6 53.7 50.6 61.0 60.8 62.1
EM4 246.8 243.4 243.4 249.2 248.3 284.9 284.6 284.6

Table 5.5: The characteristic extreme response values as calculated by the differ-
ent methods for an annual exceedance probability q = 10−4.

Approximate formulation Exact formulation

rS
q [cm]

r̃F
q [cm] r̃S

q [cm] r̃q[cm] rF
q [cm] C = 1 C = 104 C = 106 rq[cm]

EM1 97.0 83.5 85.2 97.7 85.2 92.8 92.4 92.6
EM2 3.47 3.30 3.33 3.47 3.33 3.39 3.39 3.41
EM3 97.0 87.5 87.8 97.8 89.1 96.8 96.7 97.2
EM4 406.3 398.5 398.0 408.2 403.9 420.3 420.1 420.1
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Table 5.6: The number of short-term response calculations performed for each of
the long-term extreme response estimates in Tab. 5.4.

Approximate formulation Exact formulation

nS
st

ñF
st ñS

st ñst nF
st C = 1 C = 104 C = 106 nst

EM1 19 87 399960 23 111 111 113 399960
EM2 43 81 8040 43 81 71 67 8040
EM3 61 113 78993 60 117 225 147 78993
EM4 33 67 78993 33 67 81 177 78993

Table 5.7: The number of short-term response calculations performed for each of
the long-term extreme response estimates in Tab. 5.5.

Approximate formulation Exact formulation

nS
st

ñF
st ñS

st ñst nF
st C = 1 C = 104 C = 106 nst

EM1 13 104 399960 18 110 109 126 399960
EM2 57 95 8040 57 94 89 85 8040
EM3 160 276 78993 256 384 167 155 78993
EM4 101 159 78993 105 151 82 190 78993
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Table 5.8: The characteristic extreme response values as calculated by the envir-
onmental contour method using different quantile levels p for an annual exceedance
probability q = 10−2. The corresponding design points are illustrated by diamond
markers in Figs. 5.12 and 5.13.

rpq [cm]

p = 0.80 p = 0.85 p = 0.90 p = 0.95

EM1 58.6 59.6 61.0 63.3
EM2 2.60 2.64 2.69 2.79
EM3 55.3 56.2 57.6 59.7
EM4 258.5 263.3 269.7 280.1

Table 5.9: The characteristic extreme response values as calculated by the envir-
onmental contour method using different quantile levels p for an annual exceedance
probability q = 10−4. The corresponding design points are illustrated by diamond
markers in Figs. 5.12 and 5.13.

rpq [cm]

p = 0.80 p = 0.85 p = 0.90 p = 0.95

EM1 101.0 102.9 105.4 109.5
EM2 3.50 3.56 3.63 3.76
EM3 100.9 102.8 105.4 109.5
EM4 418.1 425.9 436.5 453.4

Table 5.10: The fractile levels pq corresponding to the exact extreme response
values rq in Tabs. 5.4 and 5.5.

EM1 EM2 EM3 EM4

pq, q = 10−2 0.92 0.77 0.98 0.96
pq, q = 10−4 0.43 0.69 0.66 0.81
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5.5.3 Design points

In addition to giving an estimate for the characteristic extreme response,
the inverse reliability methods will produce a design point which represents
the most critical combination of environmental parameters for the specified
annual exceedance probability q. The design point corresponding to the
ISORM estimate rS

q (C = 106) is shown in Fig. 5.12 for EM1. In Fig. 5.13
the design points are shown for the two-dimensional environmental models
EM2, EM3 and EM4, also including the IFORM design points corresponding
to the estimates rF

q (C = 1). In addition, the contour method design points
are shown in Figs. 5.12 and 5.13. As explained in Section 5.4.5, these
have been obtained by maximizing the median value of the short-term CDF
FR̃|W (r|w) on the respective contours.

The relative contribution of different sea states to the long-term integral in
Eqn. (5.4) is illustrated in Figs. 5.12 and 5.13 by the function g(w). This
function is defined as a normalized version of the integrand in Eqn. (5.4)
for r = rq. Specifically,

g(w) = − 1
M

ln
(
FR̃|W (rq|w)

)
fW (w),

where M is chosen such that the maximal value of g(w) equals unity.

By considering Figs. 5.12 and 5.13, we observe that the main contribution
to the long-term integral is located within a rather concentrated region.
Furthermore, the design points quite successfully locate this region. The
ISORM design point (C = 106) almost exactly pinpoints the location of
the largest contribution. However, local maxima other than the main con-
tribution might occur. This can be observed in the left part of Fig. 5.12,
corresponding to q = 102 for EM1. If such a local maximum represent a
significant contribution, this may result in an underestimation of the long-
term extreme response as seen in the first row of Tab. 5.4. This is a known
shortcoming of the inverse reliability methods, and they should therefore be
used with some caution.
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Figure 5.12: The design points corresponding to the characteristic extreme re-
sponse value rS

q (ISORM, C = 106) and the environmental contour method for
annual exceedance probabilities q = 10−2 (left) and q = 10−4 (right). The contri-
bution g(w) to the long-term integral is also illustrated by displaying isosurfaces
for the values 0.9, 0.5 and 0.1.

5.6 Concluding remarks
A framework for full long-term extreme response analysis has been demon-
strated for a long-span case study bridge. Using recently developed IFORM
and ISORM approaches, the extreme response was calculated in an efficient
manner. Comparison with full numerical integration revealed that espe-
cially the ISORM method gives high accuracy. It has thus been shown that
the proposed framework can be applied successfully for complex structures.
Still, limitations do exist, e.g. in the presence of multiple local maxima for
the contribution to the long-term integral. Therefore, future work should
focus on comparison with alternative approaches and further verification of
the IFORM and ISORM methods, especially for nonlinear response.

The full long-term analysis was also compared with the environmental con-
tour method. The results show that the contour method can be used to
obtain rough estimates of the long-term extreme response. Furthermore, a
proper fractile level p could be determined by comparison with the IFORM
and ISORM results.
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(a) EM2

(b) EM3

(c) EM4

Figure 5.13: The design points corresponding to the characteristic extreme re-
sponse values rF

q (IFORM, C = 1), rS
q (ISORM, C = 106) and the environmental

contour method for annual exceedance probabilities q = 10−2 (left) and q = 10−4

(right). The contribution g(w) to the long-term integral is also illustrated in each
case.
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APPENDIXA
An error bound for the series

expansion method

In this appendix, an error bound is derived for the series expansion method
presented in Chapter 2 (Paper I). In order to establish some notation, a
slightly extended derivation of the series expansion method is included in
Section A.1. In Section A.2 the error bound is derived.

A.1 The series expansion of the complex coherency
The expression for the cross-spectral densities is given by (2.22), which is
repeated here for convenience:

Sqµqν (ω)
Sηη (ω)

=
∫ π

−π
Ψ (θ, ω) fµ (θ − αm, ω)fν (θ − αn, ω)e−iκ(ω)(∆x cos θ+∆y sin θ)dθ.

(A.1)

Now if the product Ψ (θ, ω) fµ (θ − αm, ω)fν (θ − αn, ω) is written as a Four-
ier series in θ, the integral (A.1) can be solved using the same approach as
in Section 2.2.4. Having

Ψ(θ, ω)fµ (θ − αm, ω)fν (θ − αn, ω) =
∞∑

k=−∞
Cµνk (ω) eikθ, (A.2)

yields the cross-spectral densities

Sqµqν (ω) = 2πSηη (ω)
∞∑

k=−∞
Cµνk (ω)ike−ikβJk (κ(ω)L), (A.3)
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where L and β are given as

L =
√

∆x2 + ∆y2,

β = θ̄ + π − atan2 (∆y,∆x) .

The transfer functions fµ(β̃, ω) are usually known only by their values at a
finite number of heading angles β̃. For our purposes it is convenient to ex-
tend these point values to continuous functions fµ(β̃, ω) using trigonometric
interpolation [31, 38]. This means that the transfer functions are given by
trigonometric polynomials

fµ(β̃, ω) =
Nf∑

k=−Nf

aµk (ω) eikβ̃. (A.4)

If the transfer function values are given at a number Nβ̃ of heading angles,
uniformly distributed on the interval [0, 2π), the coefficients aµk(ω) can be
efficiently computed using FFT, and we have that Nf = bNβ̃/2c. With
transfer functions given by (A.4) we find that

fµ (θ − αm, ω) =
Nf∑

k=−Nf

(
e−ikαmaµk (ω)

)
eikθ (A.5)

and

fν (θ − αn, ω) =
Nf∑

k=−Nf

(
e−ikαnaνk (ω)

)
e−ikθ =

Nf∑
k=−Nf

(
eikαnaν−k (ω)

)
eikθ.

(A.6)

It can be shown that the Fourier coefficients of a product can be obtained
by taking the convolution of the Fourier coefficients of the factors. Hence,
we have that

fµ (θ − αm, ω) fν (θ − αn, ω) =
2Nf∑

k=−2Nf

Aµνk (ω) eikθ,

where the coefficients Aµνk are computed by taking the convolution between
the coefficients in (A.5) and (A.6), i.e.

Aµνk (ω) =
Nf+min(0,k)∑

j=−Nf+max(0,k)
e−ijαmaµj (ω) ei(k−j)αnaν−(k−j) (ω).
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Finally, with a spreading function given by Ψ (θ, ω) =
∑∞
k=−∞ ck (ω) eikθ,

the Fourier coefficients Cµνk (ω) in (A.2) are given by the convolution

Cµνk (ω) =
2Nf∑

r=−2Nf

Aµνr (ω) ck−r (ω). (A.7)

If the spreading function Ψ (θ, ω) has a finite number of Fourier coefficients
{ck(ω)}Ndk=−Nd , we will have that Cµνk (ω) = 0 for k > 2Nf + Nd, and the
series expansion (A.3) will be finite. Specifically we have then that

Sqµqν (ω) = 2πSηη (ω)
Ntot∑

k=−Ntot

Cµνk (ω)ike−ikβJk (κ(ω)L),

where Ntot = 2Nf +ND.

It is worth noticing that for the cross-spectral densities between loads at
the same location we have that m = n and thus L = 0. Using the fact that
Jk(0) = 0 for k ∈ {±1,±2, . . . } and J0(0) = 1 yields the result

Sqµqν (ω) = 2πSηη (ω)Cµν0 (ω),

which holds whenever m = n, or equivalently dµ/6e = dν/6e. As a special
case, the auto-spectral densities are given by

Sqµqµ(ω) = 2πSηη (ω)Cµµ0 (ω),

which yields the following formula for the complex coherencies:

γqµqν (ω) =
Sqµqν (ω)√

Sqµqµ(ω)Sqνqν (ω)
=

∞∑
k=−∞

Cµνk (ω)√
Cµµ0 (ω)Cνν0 (ω)

ike−ikβJk (κ(ω)L).

(A.8)
The series expansion method is now obtained by truncating the above series.
Specifically, the complex coherencies are approximated by

γ̂qµqν (ω) =
N̂∑

k=−N̂

Cµνk (ω)√
Cµµ0 (ω)Cνν0 (ω)

ike−ikβJk (κ(ω)L). (A.9)
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A.2 An error bound for the series expansion method
The error that is made when the complex coherency (A.8) is approximated
by the truncated series (A.9), is given by

Êµν (ω) =
∣∣γqµqν (ω)− γ̂qµqν (ω)

∣∣
=

∣∣∣∣∣∣∣
∑

|k|≥N̂+1

Cµνk (ω)√
Cµµ0 (ω)

√
Cνν0 (ω)

ike−ikβJk (κ (ω)L)

∣∣∣∣∣∣∣ .
Using the triangle inequality and the error bound for the Bessel functions
found in [43] yields

Êµν (ω) ≤ b|N̂ + 1|−1/3√
Cµµ0 (ω)

√
Cνν0 (ω)

∑
|k|≥N̂+1

∣∣Cµνk (ω)
∣∣,

where b = 0.674886. The coefficients Cµνk (ω) are bounded using the expres-
sion (A.7), and we find that

Êµν (ω) ≤ b|N̂ + 1|−1/3√
Cµµ0 (ω)

√
Cνν0 (ω)

2Nf∑
r=−2Nf

|Aµνr (ω)|
∑

|k|≥N̂+1

|ck−r (ω)|.

Since the spreading function is a real function, we have that c−k (ω) = ck (ω)
and we have∑

|k|≥N̂+1

|ck−r (ω)| =
∞∑

k=N̂−r+1

|ck (ω)|+
∞∑

k=N̂+r+1

|ck (ω)|.

For simplicity, we assume that N̂ ≥ 2Nf such that

∑
|k|≥N̂+1

|ck−r (ω)| = 2
∞∑
k=1
|ck (ω)| −

N̂−r∑
k=1
|ck (ω)|+

N̂+r∑
k=1
|ck (ω)|

 ,
for |r| ≤ 2Nf . This yields the error bound

Êµν (ω) ≤ b|N̂ + 1|−1/3√
Cµµ0 (ω)

√
Cνν0 (ω)

2Nf∑
r=−2Nf

|Aµνr (ω)|

2
∞∑
k=1
|ck (ω)| −

N̂−r∑
k=1
|ck (ω)|+

N̂+r∑
k=1
|ck (ω)|

.
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A.2 An error bound for the series expansion method

For the total error Ê = max
µ,ν,ω

Êµν (ω) we obtain the error bound

Ê ≤ b|N̂ + 1|−1/3 max
µ,ν,ω


2Nf∑

r=−2Nf

|Aµνr (ω)|√
Cµµ0 (ω)

√
Cνν0 (ω)2

∞∑
k=1
|ck (ω)| −

N̂−r∑
k=1
|ck (ω)|+

N̂+r∑
k=1
|ck (ω)|

 .
(A.10)

The error bound (A.10) makes it possible to find a number of terms N̂ such
that the error is guaranteed to be less than a given tolerance. The absolute
sum

∑∞
k=1 |ck(ω)| of the Fourier coefficients of the spreading function must,

however, be known. For the cos-2s spreading function given by

Ψ (θ, ω) = 22s(ω)Γ2 (s(ω) + 1)
2πΓ (2s(ω) + 1) cos2s(ω) θ − θ̄

2 ,

it can be shown that

∞∑
k=1
|ck (ω)| =


2
ds(ω)e/2∑
k=1

c2k−1 (ω)− c0(ω)
2 , if ds(ω)e is even,

2
(ds(ω)e−1)/2∑

k=1
c2k (ω) + c0(ω)

2 , if ds(ω)e is odd.
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Smogeli, Øyvind Notland Control of Marine Propellers. From Normal to 

Extreme Conditions. (Dr.Ing. Thesis) 

IMT-

2007-21 

Storhaug, Gaute Experimental Investigation of Wave Induced 

Vibrations and Their Effect on the Fatigue Loading 

of Ships. (Dr.Ing. Thesis) 

IMT-

2007-22 

Sun, Hui A Boundary Element Method Applied to Strongly 

Nonlinear Wave-Body Interaction Problems. (PhD 

Thesis, CeSOS) 

IMT-

2007-23 

Rustad, Anne Marthine Modelling and Control of Top Tensioned Risers. 

(PhD Thesis, CeSOS) 

IMT-
2007-24 

Johansen, Vegar Modelling flexible slender system for real-time 
simulations and control applications 

IMT-

2007-25 

Wroldsen, Anders Sunde Modelling and control of tensegrity structures. 
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(PhD Thesis, CeSOS) 

IMT-
2007-26 

Aronsen, Kristoffer Høye An experimental investigation of in-line and 
combined inline and cross flow vortex induced 

vibrations. (Dr. avhandling, IMT) 

IMT-
2007-27 

Gao, Zhen Stochastic Response Analysis of Mooring Systems 
with Emphasis on Frequency-domain Analysis of 

Fatigue due to Wide-band Response Processes 

(PhD Thesis, CeSOS) 

IMT-

2007-28 

Thorstensen, Tom Anders Lifetime Profit Modelling of Ageing Systems 

Utilizing Information about Technical Condition. 

(Dr.ing. thesis, IMT) 

IMT-

2008-29 

Refsnes, Jon Erling Gorset Nonlinear Model-Based Control of Slender Body 

AUVs (PhD Thesis, IMT) 

IMT-

2008-30 

Berntsen, Per Ivar B. Structural Reliability Based Position Mooring. 

(PhD-Thesis, IMT) 

IMT-

2008-31 

Ye, Naiquan Fatigue Assessment of Aluminium Welded Box-

stiffener Joints in Ships (Dr.ing. thesis, IMT) 

IMT-

2008-32 

Radan, Damir Integrated Control of Marine Electrical Power 

Systems. (PhD-Thesis, IMT) 

IMT-
2008-33 

Thomassen, Paul Methods for Dynamic Response Analysis and 
Fatigue Life Estimation of Floating Fish Cages. 

(Dr.ing. thesis, IMT) 

IMT-
2008-34 

Pákozdi, Csaba A Smoothed Particle Hydrodynamics Study of 
Two-dimensional Nonlinear Sloshing in 

Rectangular Tanks. (Dr.ing.thesis, IMT/ CeSOS) 

IMT-
2007-35 

Grytøyr, Guttorm A Higher-Order Boundary Element Method and 
Applications to Marine Hydrodynamics. 

(Dr.ing.thesis, IMT) 

IMT-

2008-36 

Drummen, Ingo Experimental and Numerical Investigation of 

Nonlinear Wave-Induced Load Effects in 

Containerships considering Hydroelasticity. (PhD 
thesis, CeSOS) 

IMT-

2008-37 

Skejic, Renato Maneuvering and Seakeeping of a Singel Ship and 

of Two Ships in Interaction. (PhD-Thesis, CeSOS) 

IMT-

2008-38 

Harlem, Alf An Age-Based Replacement Model for Repairable 

Systems with Attention to High-Speed Marine 

Diesel Engines. (PhD-Thesis, IMT) 

IMT-

2008-39 

Alsos, Hagbart S. Ship Grounding. Analysis of Ductile Fracture, 

Bottom Damage and Hull Girder Response. (PhD-

thesis, IMT) 

IMT-

2008-40 

Graczyk, Mateusz Experimental Investigation of Sloshing Loading 

and Load Effects in Membrane LNG Tanks 

Subjected to Random Excitation. (PhD-thesis, 
CeSOS) 

IMT-

2008-41 

Taghipour, Reza Efficient Prediction of Dynamic Response for 

Flexible amd Multi-body Marine Structures. (PhD-
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thesis, CeSOS) 

IMT-
2008-42 

Ruth, Eivind Propulsion control and thrust allocation on marine 
vessels. (PhD thesis, CeSOS) 

IMT-

2008-43 

Nystad, Bent Helge Technical Condition Indexes and Remaining Useful 

Life of Aggregated Systems. PhD thesis, IMT 

IMT-

2008-44 

Soni, Prashant Kumar Hydrodynamic Coefficients for Vortex Induced 

 Vibrations of Flexible Beams,  PhD 

thesis, CeSOS 

IMT-

2009-45 

Amlashi, Hadi K.K. Ultimate Strength and Reliability-based Design of 

Ship Hulls with Emphasis on Combined Global and 

Local Loads. PhD Thesis, IMT 

IMT-
2009-46 

Pedersen, Tom Arne Bond Graph Modelling of Marine Power Systems. 
PhD Thesis, IMT 

IMT-

2009-47 

Kristiansen, Trygve Two-Dimensional Numerical and Experimental 

Studies of Piston-Mode Resonance. PhD-Thesis, 
CeSOS 

IMT-

2009-48 

Ong, Muk Chen Applications of a Standard High Reynolds Number   

Model and a Stochastic Scour Prediction Model for 

Marine Structures. PhD-thesis, IMT 

IMT-
2009-49 

Hong, Lin Simplified Analysis and Design of Ships subjected 
to Collision and Grounding. PhD-thesis, IMT 

IMT-

2009-50 

Koushan, Kamran Vortex Induced Vibrations of Free Span Pipelines, 

PhD thesis, IMT 

IMT-
2009-51 

Korsvik, Jarl Eirik Heuristic Methods for Ship Routing and 
Scheduling. PhD-thesis, IMT 

IMT-

2009-52 

Lee, Jihoon Experimental Investigation and Numerical in 

Analyzing the Ocean Current Displacement of 
Longlines. Ph.d.-Thesis, IMT. 

IMT-

2009-53 

Vestbøstad, Tone Gran A Numerical Study of Wave-in-Deck Impact usin a 

Two-Dimensional Constrained Interpolation Profile 

Method, Ph.d.thesis, CeSOS. 

IMT-
2009-54 

Bruun, Kristine Bond Graph Modelling of Fuel Cells for Marine 
Power Plants. Ph.d.-thesis, IMT 

IMT 
2009-55 

Holstad, Anders Numerical Investigation of Turbulence in a Sekwed 
Three-Dimensional Channel Flow, Ph.d.-thesis, 

IMT. 

IMT 

2009-56 

Ayala-Uraga, Efren Reliability-Based Assessment of Deteriorating 

Ship-shaped Offshore Structures, Ph.d.-thesis, IMT 

IMT 

2009-57 

Kong, Xiangjun A Numerical Study of a Damaged Ship in Beam 

Sea Waves. Ph.d.-thesis, IMT/CeSOS. 

IMT 

2010-58 

Kristiansen, David Wave Induced Effects on Floaters of Aquaculture 

Plants, Ph.d.-thesis, CeSOS. 
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IMT 

2010-59 

Ludvigsen, Martin An ROV-Toolbox for Optical and Acoustic 

Scientific Seabed Investigation. Ph.d.-thesis IMT. 

IMT 

2010-60 

Hals, Jørgen Modelling and Phase Control of Wave-Energy 

Converters. Ph.d.thesis, CeSOS. 

 

IMT 

2010- 61 

Shu, Zhi Uncertainty Assessment of Wave Loads and 

Ultimate Strength of Tankers and Bulk Carriers in a 

Reliability Framework. Ph.d. Thesis, IMT/ CeSOS 

IMT 
2010-62 

Shao, Yanlin Numerical Potential-Flow Studies on Weakly-
Nonlinear Wave-Body Interactions with/without 

Small Forward Speed, Ph.d.thesis,CeSOS.  

IMT 

2010-63 

Califano, Andrea Dynamic Loads on Marine Propellers due to 

Intermittent Ventilation. Ph.d.thesis, IMT. 

IMT 

2010-64 

El Khoury, George Numerical Simulations of Massively Separated 

Turbulent Flows, Ph.d.-thesis, IMT 

IMT 
2010-65 

Seim, Knut Sponheim Mixing Process in Dense Overflows with Emphasis 
on the Faroe Bank Channel Overflow. Ph.d.thesis, 

IMT 

IMT 

2010-66 

Jia, Huirong Structural Analysis of Intect and Damaged Ships in 

a Collission Risk Analysis Perspective. Ph.d.thesis 
CeSoS. 

IMT 

2010-67 

Jiao, Linlin Wave-Induced Effects on a Pontoon-type Very 

Large Floating Structures (VLFS). Ph.D.-thesis, 
CeSOS. 

IMT 

2010-68 

Abrahamsen, Bjørn Christian Sloshing Induced Tank Roof with Entrapped Air 

Pocket. Ph.d.thesis, CeSOS. 

IMT 
2011-69 

Karimirad, Madjid Stochastic Dynamic Response Analysis of Spar-
Type Wind Turbines with Catenary or Taut 

Mooring Systems. Ph.d.-thesis, CeSOS. 

IMT -

2011-70 

Erlend Meland Condition Monitoring of Safety Critical Valves. 

Ph.d.-thesis, IMT. 

IMT – 

2011-71 

Yang, Limin Stochastic Dynamic System Analysis of Wave 

Energy Converter with Hydraulic Power Take-Off, 

with Particular Reference to Wear Damage 
Analysis, Ph.d. Thesis, CeSOS. 

IMT – 

2011-72 

Visscher, Jan Application of Particla Image Velocimetry on 

Turbulent Marine Flows, Ph.d.Thesis, IMT. 

IMT – 
2011-73 

Su, Biao Numerical Predictions of Global and Local Ice 
Loads on Ships. Ph.d.Thesis, CeSOS. 

IMT – 
2011-74 

Liu, Zhenhui Analytical and Numerical Analysis of Iceberg 
Collision with Ship Structures. Ph.d.Thesis, IMT. 

IMT – 

2011-75 

Aarsæther, Karl Gunnar Modeling and Analysis of Ship Traffic by 

Observation and Numerical Simulation. 
Ph.d.Thesis, IMT. 
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Imt – 

2011-76 

Wu, Jie Hydrodynamic Force Identification from Stochastic 

Vortex Induced Vibration Experiments with 

Slender Beams. Ph.d.Thesis, IMT. 

Imt – 

2011-77 

Amini, Hamid Azimuth Propulsors in Off-design Conditions. 

Ph.d.Thesis, IMT. 

 

 

IMT – 

2011-78 

Nguyen, Tan-Hoi Toward a System of Real-Time Prediction and 

Monitoring of Bottom Damage Conditions During 
Ship Grounding. Ph.d.thesis, IMT. 

IMT- 

2011-79 

Tavakoli, Mohammad T. Assessment of Oil Spill in Ship Collision and 

Grounding, Ph.d.thesis, IMT. 

IMT- 

2011-80 

Guo, Bingjie Numerical and Experimental Investigation of 

Added Resistance in Waves. Ph.d.Thesis, IMT. 

IMT- 
2011-81 

Chen, Qiaofeng Ultimate Strength of Aluminium Panels, 
considering HAZ Effects, IMT 

IMT- 

2012-82 

Kota, Ravikiran S. Wave Loads on Decks of Offshore Structures in 

Random Seas, CeSOS. 

IMT- 

2012-83 

Sten, Ronny Dynamic Simulation of Deep Water Drilling Risers 

with Heave Compensating System, IMT. 

IMT- 

2012-84 

Berle, Øyvind Risk and resilience in global maritime supply 

chains, IMT. 

IMT- 

2012-85 

Fang, Shaoji Fault Tolerant Position Mooring Control Based on 

Structural Reliability, CeSOS. 

IMT- 

2012-86 

You, Jikun Numerical studies on wave forces and moored ship 

motions in intermediate and shallow water, CeSOS. 

IMT- 

2012-87 

Xiang ,Xu Maneuvering of two interacting ships in waves, 

CeSOS 

IMT- 

2012-88 

Dong, Wenbin Time-domain fatigue response and reliability 

analysis of offshore wind turbines with emphasis on 
welded tubular joints and gear components, CeSOS 

IMT- 

2012-89 

Zhu, Suji Investigation of Wave-Induced Nonlinear Load 

Effects in Open Ships considering Hull Girder 
Vibrations in Bending and Torsion, CeSOS 

IMT- 

2012-90 

Zhou, Li Numerical and Experimental Investigation of 

Station-keeping in Level Ice, CeSOS 

IMT- 

2012-91 

Ushakov, Sergey Particulate matter emission characteristics from 

diesel enignes operating on conventional and 
alternative marine fuels, IMT 

IMT- 

2013-1 

Yin, Decao Experimental and Numerical Analysis of Combined 

In-line and Cross-flow Vortex Induced Vibrations, 
CeSOS 
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IMT- 

2013-2 

Kurniawan, Adi Modelling and geometry optimisation of wave 

energy converters, CeSOS 

IMT- 
2013-3 

Al Ryati, Nabil Technical condition indexes doe auxiliary marine 
diesel engines, IMT 

IMT-

2013-4 

Firoozkoohi, Reza Experimental, numerical and analytical 

investigation of the effect of screens on sloshing, 
CeSOS 

IMT- 

2013-5 

Ommani, Babak Potential-Flow Predictions of a Semi-Displacement 

Vessel Including Applications to Calm Water 
Broaching, CeSOS 

IMT- 

2013-6 

Xing, Yihan Modelling and analysis of the gearbox in a floating 

spar-type wind turbine, CeSOS 

IMT-7-

2013 

Balland, Océane Optimization models for reducing air emissions 

from ships, IMT 

IMT-8-
2013 

Yang, Dan Transitional wake flow behind an inclined flat 
plate-----Computation and analysis,  IMT 

IMT-9-

2013 

Abdillah, Suyuthi Prediction of Extreme Loads and Fatigue Damage 

for a Ship Hull due to Ice Action, IMT 

IMT-10-
2013 

Ramìrez, Pedro Agustìn Pèrez Ageing management and life extension of technical 
systems- 

Concepts and methods applied to oil and gas 

facilities, IMT 

IMT-11-

2013 

Chuang, Zhenju Experimental and Numerical Investigation of Speed 

Loss due to Seakeeping and Maneuvering. IMT 

IMT-12-

2013 

Etemaddar, Mahmoud Load and Response Analysis of Wind Turbines 

under Atmospheric Icing and Controller System 
Faults with Emphasis on Spar Type Floating Wind 

Turbines, IMT 

IMT-13-
2013 

Lindstad, Haakon Strategies and measures for reducing maritime CO2 
emissons, IMT 

IMT-14-

2013 

Haris, Sabril Damage interaction analysis of ship collisions, IMT 

IMT-15-

2013 

Shainee, Mohamed Conceptual Design, Numerical and Experimental 

Investigation of a SPM Cage Concept for Offshore 
Mariculture, IMT 

IMT-16-

2013 

Gansel, Lars Flow past porous cylinders and effects of 

biofouling and fish behavior on the flow in and 
around Atlantic salmon net cages, IMT 

IMT-17-

2013 

Gaspar, Henrique Handling Aspects of Complexity in Conceptual 

Ship Design, IMT 

IMT-18-

2013 

Thys, Maxime Theoretical and Experimental Investigation of a 

Free Running Fishing Vessel at Small Frequency of 
Encounter, CeSOS 

IMT-19-

2013 

Aglen, Ida VIV in Free Spanning Pipelines, CeSOS 
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IMT-1-

2014 

Song, An Theoretical and experimental studies of wave 

diffraction and radiation loads on a horizontally 

submerged perforated plate, CeSOS 

IMT-2-

2014 

Rogne, Øyvind Ygre Numerical and Experimental Investigation of a 

Hinged 5-body Wave Energy Converter, CeSOS 

IMT-3-
2014 

Dai, Lijuan  Safe and efficient operation and maintenance of 
offshore wind farms ,IMT 

IMT-4-

2014 

Bachynski, Erin Elizabeth Design and Dynamic Analysis of Tension Leg 

Platform Wind Turbines, CeSOS 

IMT-5-
2014 

Wang, Jingbo Water Entry of Freefall Wedged – Wedge motions 
and Cavity Dynamics, CeSOS 

IMT-6-

2014 

Kim, Ekaterina Experimental and numerical studies related to the 

coupled behavior of ice mass and steel structures 
during accidental collisions, IMT 

IMT-7-

2014 

Tan, Xiang Numerical investigation of ship’s continuous- mode 

icebreaking in leverl ice, CeSOS 

IMT-8-

2014 

Muliawan, Made Jaya Design and Analysis of Combined Floating Wave 

and Wind Power Facilities, with Emphasis on 
Extreme Load Effects of the Mooring System, 

CeSOS 

IMT-9-
2014 

Jiang, Zhiyu Long-term response analysis of wind turbines with 
an emphasis on fault and shutdown conditions, IMT 

IMT-10-

2014 

Dukan, Fredrik ROV Motion Control Systems, IMT 

IMT-11-
2014 

Grimsmo, Nils I. Dynamic simulations of hydraulic cylinder for 
heave compensation of deep water drilling risers, 

IMT 

IMT-12-

2014 

Kvittem, Marit I. Modelling and response analysis for fatigue design 

of a semisubmersible wind turbine, CeSOS 

IMT-13-
2014 

Akhtar, Juned The Effects of Human Fatigue on Risk at Sea, IMT 

IMT-14-

2014 

Syahroni, Nur Fatigue Assessment of Welded Joints Taking into 

Account Effects of Residual Stress, IMT 

IMT-1-

2015 

Bøckmann, Eirik Wave Propulsion of ships, IMT 

IMT-2-

2015 

Wang, Kai Modelling and dynamic analysis of a semi-

submersible floating vertical axis wind turbine, 

CeSOS 

IMT-3-

2015 

Fredriksen, Arnt Gunvald A numerical and experimental study of a two-

dimensional body with moonpool in waves and 

current, CeSOS 

IMT-4-
2015 

Jose Patricio Gallardo Canabes Numerical studies of viscous flow around bluff 
bodies, IMT 
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IMT-5-

2015 

Vegard Longva Formulation and application of finite element 

techniques for slender marine structures subjected 

to contact interactions, IMT 

IMT-6-

2015 

Jacobus De Vaal Aerodynamic modelling of floating wind turbines, 

CeSOS 

IMT-7-
2015 

Fachri Nasution Fatigue Performance of Copper Power Conductors, 
IMT 

IMT-8-

2015 

Oleh I Karpa Development of bivariate extreme value 

distributions for applications in marine 

technology,CeSOS 

IMT-9-

2015 

Daniel de Almeida Fernandes An output feedback motion control system for 

ROVs, AMOS 

IMT-10-

2015 

Bo Zhao Particle Filter for Fault Diagnosis: Application to 

Dynamic Positioning Vessel and Underwater 

Robotics, CeSOS 

IMT-11-

2015 

Wenting Zhu Impact of emission allocation in maritime 

transportation, IMT 

IMT-12-

2015 

Amir Rasekhi Nejad Dynamic Analysis and Design of Gearboxes in 

Offshore Wind Turbines in a Structural Reliability 
Perspective, CeSOS 

IMT-13-

2015 

Arturo Jesùs Ortega Malca Dynamic Response of Flexibles Risers due to 

Unsteady Slug Flow, CeSOS 

IMT-14-
2015 

Dagfinn Husjord Guidance and decision-support system for safe 
navigation of ships operating in close proximity, 

IMT 

IMT-15-
2015 

Anirban Bhattacharyya Ducted Propellers: Behaviour in Waves and Scale 
Effects, IMT 

IMT-16-
2015 

Qin Zhang Image Processing for Ice Parameter Identification 
in Ice Management, IMT 

IMT-1-
2016 

Vincentius Rumawas Human Factors in Ship Design and Operation: An 
Experiential Learning, IMT 

IMT-2-
2016 

Martin Storheim Structural response in ship-platform and ship-ice 
collisions, IMT 

IMT-3-
2016 

Mia Abrahamsen Prsic Numerical Simulations of the Flow around single 
and Tandem Circular Cylinders Close to a Plane 

Wall, IMT 

IMT-4-
2016 

Tufan Arslan Large-eddy simulations of cross-flow around ship 
sections, IMT 
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IMT-5-

2016 

Pierre Yves-Henry Parametrisation of aquatic vegetation in hydraulic 

and coastal research,IMT 

IMT-6-

2016 

Lin Li Dynamic Analysis of the Instalation of Monopiles 

for Offshore Wind Turbines, CeSOS 

IMT-7-

2016 

Øivind Kåre Kjerstad Dynamic Positioning of Marine Vessels in Ice, IMT 

IMT-8-

2016 

Xiaopeng Wu Numerical Analysis of Anchor Handling and Fish 

Trawling Operations in a Safety Perspective, 
CeSOS 

IMT-9-

2016 

Zhengshun Cheng Integrated Dynamic Analysis of Floating Vertical 

Axis Wind Turbines, CeSOS 

IMT-10-

2016 

Ling Wan Experimental and Numerical Study of a Combined 

Offshore Wind and Wave Energy Converter 

Concept 

IMT-11-

2016 

Wei Chai Stochastic dynamic analysis and reliability 

evaluation of the roll motion for ships in random 
seas, CeSOS 

IMT-12-

2016 

Øyvind Selnes Patricksson Decision support for conceptual ship design with 

focus on a changing life cycle and future 
uncertainty, IMT 

IMT-13-

2016 

Mats Jørgen Thorsen Time domain analysis of vortex-induced vibrations, 

IMT 

IMT-14-

2016 

Edgar McGuinness Safety in the Norwegian Fishing Fleet – Analysis 

and measures for improvement, IMT 

IMT-15-

2016 

Sepideh Jafarzadeh Energy effiency and emission abatement in the 

fishing fleet, IMT 

IMT-16-

2016 

Wilson Ivan Guachamin Acero Assessment of marine operations for offshore wind 

turbine installation with emphasis on response-
based operational limits, IMT 

IMT-17-

2016 

Mauro Candeloro Tools and Methods for Autonomous  Operations on 

Seabed and Water Coumn using Underwater 
Vehicles, IMT 

IMT-18-

2016 

Valentin Chabaud Real-Time Hybrid Model Testing of Floating Wind 

Tubines, IMT 

IMT-1-

2017 

Mohammad Saud Afzal Three-dimensional streaming in a sea bed boundary 

layer 

IMT-2-

2017 

Peng Li A Theoretical and Experimental Study of Wave-

induced Hydroelastic Response of a Circular 
Floating Collar 

IMT-3-

2017 

Martin Bergström A simulation-based design method for arctic 

maritime transport systems 
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IMT-4-

2017 

Bhushan Taskar The effect of waves on marine propellers and 

propulsion 

IMT-5-

2017 

Mohsen Bardestani A two-dimensional numerical and experimental 

study of a floater with net and sinker tube in waves 
and current 

IMT-6-

2017 

Fatemeh Hoseini Dadmarzi Direct Numerical Simualtion of turbulent wakes 

behind different plate configurations 

IMT-7-

2017 

Michel R. Miyazaki Modeling and control of hybrid marine power 

plants 

IMT-8-

2017 

Giri Rajasekhar Gunnu Safety and effiency enhancement of anchor 

handling operations with particular emphasis on the 
stability of anchor handling vessels 

IMT-9-

2017 

Kevin Koosup Yum Transient Performance and Emissions of a 

Turbocharged Diesel Engine for Marine Power 
Plants 

IMT-10-

2017 

Zhaolong Yu Hydrodynamic and structural aspects of ship 

collisions 

IMT-11-

2017 

Martin Hassel Risk Analysis and Modelling of Allisions between 

Passing Vessels and Offshore Installations 

IMT-12-

2017 

Astrid H. Brodtkorb Hybrid Control of Marine Vessels – Dynamic 

Positioning in Varying Conditions 

IMT-13-

2017 

Kjersti Bruserud Simultaneous stochastic model of waves and 

current for prediction of structural design loads 

IMT-14-

2017 

Finn-Idar Grøtta Giske Long-Term Extreme Response Analysis of Marine 

Structures Using Inverse Reliability Methods 

   

                         

 
           

             

        




