
Doctoral theses at NTNU, 2018:57

Doctoral theses at N
TN

U, 2018:57
Andrii Shalaginov

Andrii Shalaginov
Advancing Neuro-Fuzzy Algorithm for
Automated Classification in
Largescale Forensic and Cybercrime
Investigations
Adaptive Machine Learning for Big Data
Forensic

ISBN 978-82-326-2906-0 (printed version)
ISBN 978-82-326-2907-7 (electronic version)

ISSN 1503-8181

NT
NU

N
or

w
eg

ia
n

Un
iv

er
si

ty
 o

f
Sc

ie
nc

e
an

d
Te

ch
no

lo
gy

Fa
cu

lty
 o

f I
nf

or
m

at
io

n
Te

ch
no

lo
gy

an
d

El
ec

tr
ic

al
 E

ng
in

ee
rin

g
De

pa
rt

m
en

t o
f I

nf
or

m
at

io
n

Se
cu

rit
y

an
d

Co
m

m
un

ic
at

io
n

Te
ch

no
lo

gy

Andrii Shalaginov

Advancing Neuro-Fuzzy Algorithm
for Automated Classification in
Largescale Forensic and Cybercrime
Investigations

Adaptive Machine Learning for
Big Data Forensic

Thesis for the degree of Philosophiae Doctor

Gjøvik, February 2018

Norwegian University of Science and Technology
Faculty of Information Technology
and Electrical Engineering
Department of Information Security and Communication Technology

NTNU
Norwegian University of Science and Technology

Thesis for the degree of Philosophiae Doctor

ISBN 978-82-326-2906-0 (printed version)
ISBN 978-82-326-2907-7 (electronic version)
ISSN 1503-8181

Doctoral theses at NTNU, 2018:57

© Andrii Shalaginov

Faculty of Information Technology
and Electrical Engineering
Department of Information Security and Communication
Technology

Printed by Skipnes Kommunikasjon as

Sammendrag

Etterforskere som arbeider med cyberkriminalitet blir utfordret av den store meng-
den av og kompleksiteten på digitale data som blir beslaglagt i kriminalsaker. Men-
neskelige eksperter er tilstede i retten og tar beslutninger basert på de digitale data
og bevisene som er funnet. Det er derfor nødvendig å kombinere automatiske
analyser med en representasjon av de digitale data og bevis som er forståelig for
mennesker.

Maskinlæringsmetoder, som kunstige nevrale nettverk, støttevektormaskiner og
bayesianske nettverk har blitt benyttet vellykket innenfor digital etterforsking. Ut-
fordringene er at disse metodene verken gir modeller som er lett forståelig for
mennesker, eller virker uten forkunnskap. Vår forskning er inspirert av det frem-
voksende området computational forensics. Vi fokuserer på metoden neuro-fuzzy
rule-extraction, en lovende hybrid intelligensmodell. Bidraget går til å forbedre
ytelsen av neuro-fuzzy til å finne presise fuzzy- regler som er forståelige for men-
nesker. Disse reglene kan bli presentert og forklart i retten, noe som er bedre enn
et sett med numeriske parametere tatt fra en mer abstrakt maskinlæringsmodell.

I starten av vår forskning på neuro-fuzzy metoden fant vi at dens anvendelse innen-
for digital etterforskning var lovende, men med en del ulemper. Disse inkluderer
(i) dårlig ytelse når det gjelder læring av modeller, fra den virkelige verden, sam-
menlignet med andre rådende metoder innenfor maskinlæring, (ii) en del av fuzzy-
reglene er så store at ingen menneskelig ekspert kan forstå dem, (iii) en sterk over-
tilpasning av modeller, forårsaket av den store mengden fuzzy-regler, og (iv) en
iboende læringsprosedyre som forsømmer deler av dataene og derfor blir unøyak-
tig. På bakgrunn av denne kritikken har neuro-fuzzy metodens latente potensiale
ikke blitt mye benyttet innenfor dette området enda.

Bidragene fra dette verket er som følger: (1) teoretisk i forbedring av neuro-fuzzy

iii

iv

metoden og (2) empirisk gjennom eksperimentell design ved hjelp av storskala
datasett fra domenet digital etterforskning. Hele studien ble utført 2013-2017 ved
gruppen for digital etterforskning ved NTNU.

Add. 1. Vi har revidert neuro-fuzzy metoden, og derfor først bidratt innenfor
maskinlæringsdomenet og dernest til anvendelsen innenfor storskala digital etter-
forskning. Spesielt, (i) har vi foreslått utforskende dataanalyser for å forbedre
initialisering av selvorganiserende kart og generalisering av neuro-fuzzy metoden
rettet mot storskala datasett; (ii) vi har også forbedret kompaktheten og gener-
aliseringen til fuzzy-patches, noe som resulterte i økt nøyaktighet og robusthet
av metoden ved hjelp av chi-kvadrat godhet av passformtest; (iii) vi laget en ny
medlemskapsfunksjon basert på gaussisk multinomisk fordeling som tar høyde for
representasjonen av fuzzy-patches som en statistisk estimert hyperellipsoide; (iv)
vi reformulerte anvendelsen av neuro-fuzzy til å løse multiklasseproblemer i stedet
for konvensjonelle toklasseproblemer; (v) tilslutt designet vi en ny fremgangsmåte
for å modellere ikke-lineære data ved hjelp av deep learning og neuro-fuzzy, som
resulterte i en deep neuro-fuzzy arkitektur.

Add. 2. Den eksperimentelle studien inkluderer bred evaluering av de foreslåtte
forbedringene med hensyn til de utfordringene og kravene fra den varierte an-
vendelsen fra den reelle verden, inkludert: (i) rådende datasett, som Android mal-
ware datasettet, detektering av nettverksinnbrudd i KDD CUP 1999 og datasettet
med brannmurer for web-applikasjoner, PKDD 2007. I tillegg ble det brukt an-
dre datasett som er akseptert i miljøet, inkludert storskala datasett som SUSY og
HIGGs. (ii) I tillegg ble det gjort en ny storskala innsamling av Windows Portable
Executable 32-bit skadevare filer som en del av dette PhD-arbeidet. Det består
av 328,000 merkede prøver av skadevare som representerer 10,362 familier og
35 kategorier; disse ble videre testet som ikke-trivielle multiklasseproblemer som
ikke var tilstrekkelig studert i litteraturen eller utforsket tidligere.

Abstract

Cyber Crime Investigators are challenged by the huge amount and complexity of
digital data seized in criminal cases. Human experts are present in the Court of
Law and make decisions with respect to the digital data and evidence found. There-
fore, it is necessary to combine automated analysis and human-understandable
representation of digital data and evidences.

Machine Learning methods such as Artificial Neural Networks, Support Vector
Machines and Bayes Networks have been successfully applied in Digital Investig-
ation & Forensics. The challenge however is in the fact that these methods neither
provide precise human-explainable models nor can work without prior knowledge.
Our research is inspired by the emerging area of Computational Forensics. We fo-
cus on the Neuro-Fuzzy rule-extraction classification method, a promising Hybrid
Intelligence model. The contribution goes towards the improved performance of
Neuro-Fuzzy in extracting accurate fuzzy rules that are human-explainable. These
rules can be presented and explained in a Court of Law, which is better than a set
of numerical parameters obtained from more abstract Machine Learning models.

In our initial research on the Neuro-Fuzzy method, we found that its application in
Digital Forensics was promising, but with a number of drawbacks. These include
(i) poor performance in learning from real-world in comparison to other state of the
art Machine Learning methods, (ii) a number of output fuzzy rules so large that no
human expert can understand them, (iii) a strong model overfitting caused by the
huge number of fuzzy rules, and (iv) an intrinsic learning procedure that neglects
part of the data, which therefore becomes inaccurate. Due to this criticism, Neuro-
Fuzzy method’s latent potential has not been widely applied to the area yet.

The contribution of this work is the following: (1) theoretical in the improvement
of Neuro-Fuzzy method and (2) empirical in the experimental design using large-

v

vi

scale datasets in Digital Forensics domain. The entire study was conducted during
2013-2017 at the NTNU Digital Forensics Group.

Add. 1. Neuro-Fuzzy was revised and therefore we first contributed to the Machine
Learning domain and subsequently the large-scale Digital Forensics application.
In particular, (i) we proposed exploratory data analysis to improve Self-Organizing
Map initialization and generalization of the Neuro-Fuzzy method targeting large-
scale datasets; (ii) we also improved the compactness and generalization of fuzzy
patches, resulting in the increased accuracy and robustness of the method through
a chi-square goodness of fit test; (iii) we constructed the new membership function
based on Gaussian multinomial distribution that considers fuzzy patches represent-
ation as a statistically estimated hyperellipsoid; (iv) we reformulated the applica-
tion of the Neuro-Fuzzy in solving multi-class problems rather than conventional
two classes problems; (v) finally, we designed a new approach to model non-linear
data using Deep Learning and Neuro-Fuzzy method that results in a Deep Neuro-
Fuzzy architecture.

Add. 2. The experimental study includes extended evaluation of the proposed im-
provements with respect to the challenges and requirements of a variety of differ-
ent real-world applications, including: (i) state of the art datasets like the Android
malware dataset, network intrusion detection KDD CUP 1999 and web applica-
tion firewalls PKDD 2007 datasets. Moreover, community-accepted datasets from
UCI collection were also used, including large-scale datasets such as SUSY and
HIGGS. (ii) A new, novel large-scale collection of Windows Portable Executable
32-bit malware files was also composed as a part of this PhD work. It consists
of 328,000 labelled malware samples that represent 10,362 families and 35 cat-
egories; these were further tested as non-trivial multi-class problems, neither suf-
ficiently studied in the literature nor previously explored.

Preface

This thesis is submitted in partial fulfilment of the requirements for the degree of
philosophiae doctor (PhD) at the Norwegian University of Science and Techno-
logy (NTNU). The work has been performed at the Department of Information
Security and Communication Technology, Faculty of Information Technology and
Electrical Engineering at the Norwegian University of Science and Technology
from 2013 until 2017. The research was carried under the supervision of Professor
Katrin Franke, Professor Slobodan Petrović and Professor Mario Köppen.

I feel grateful to study and be a part of the Department. I had great opportunities
and achieved many challenging goals during these four years. High level of tech-
nical and administrative support played a crucial role in conducting this research.
I gratefully acknowledge the financial support from Department, Research School
of Computer and Information Security and a travel award granted by Journal Arti-
ficial Intelligence.

I would like to express my thanks to Karl Hiramoto from VirusTotal for support
and academic access to the anti-virus databases. That made it possible to make
a contribution to the area and to compose a novel labelled multi-class Windows
malware dataset.

vii

viii

Acknowledgements

I would like to gratefully acknowledge my advisors Prof. Dr. Katrin Franke, Prof.
Dr. Slobodan Petrović and Prof. Dr. Mario Köppen for their fruitful discussions
and valuable guidance during these years. Thank you for all your support and im-
portant advices regarding my work. I am thankful to Katrin for all the motivation,
inspiration, vision, practical advices and mentoring, which made a substantial con-
tribution to my professional and personal development. In addition, I would like to
thank to members of the evaluation committee, Prof. Dr. Ajith Abraham, Prof. Dr.
Magnus Almgren, Prof. Dr. Basel Katt and head of the committee Prof. Dr. Laura
Georg, who agreed to review my PhD thesis and provide valuable comments.

I am thankful to the Department of Information Security and Communication
Technology, Faculty of Information Technology and Electrical Engineering at the
Norwegian University of Science and Technology for being able to carry out this
research and creating a highly-productive environment. This research and proof-
of-concept demonstrations would not be possible in a given time frame without
provided advanced hardware capabilities and financial support from the Depart-
ment and NTNU Digital Forensics Group.

A number of administrative staff and faculty members played an important role
in this research. I would like to thank to Kathrine Huke Markengbakken, Jingjing
Yang, Rachael McCallum, Florissa Abreu, Ingrid von Schantz Bakka, Urszula No-
wostawska, Hilde Bakke, Maria Henningsson, Jan Kåre Testad, Per David Nielsen
and Anne Aandalen who supported and gave important advices on different stages
of my PhD research. Special thanks to the Head of the Department Nils Kalstad
Svendsen and also to Laura Georg, Sofie Nystrøm and Morten Irgens. My aca-
demic experience benefited from discussions with senior faculty members, Geir
Olav Dyrkolbotn, Thomas Kemmerich, Stewart James Kowalski, Patrick Bours,

ix

x

Basel Katt, Mariusz Nowostawski, Stefan Axelsson and Stephen Wolthusen.

I have greatly benefited from collaboration and discussions at Kripos and Økokrim.
In addition, I am thankful to COINS Research School of Computer and Inform-
ation Security and in particular Hanno Langweg for organizing all the seminars,
winter and summer schools during these four years. It was a great time and ir-
replaceable contribution to my personal development, career growth and valuable
networking.

A number of researchers that played a direct role in the research and to whom
I am thankful for exciting collaboration and achievements: Gaute Wangen, Lars
Strande Grini, Ali Dehghantanha, Edgar Lopez, Christoffer V. Hallstensen, Sergii
Banin and Carl Stuart Leichter. Moreover, I am grateful to my fellow colleagues
for their ideas and time spent together, Ambika Shrestha Chitrakar, Kiran Bylappa
Raja, Vivek Agrawal, Vasileios Gkioulos, Martin Stokkenes, Guoqiang Li, Goitom
Kahsay Weldehawaryat, Martin Aastrup Olsen, Dmytro Piatkivskyi, Anastasiia
Moldavska, Oleksandr Semeniuta, Ivanna Baturynska, Kyle Andrew Porter, Ctirad
Sousedik, Jan William Johnsen, Yi-Ching Liao. Additional thanks to all my friends
and people in my life for being there for me and playing an important role in my
personal life.

At the end I am grateful to my wife Marina and my parents for their patience,
generous support and love that made this PhD possible and meaningful.

Contents

Contents xvi

List of Tables xxi

List of Figures xxvii

List of Algorithms xxix

1 Introduction 1

1.1 Motivation & Objectives . 1

1.2 Related Works & Challenges . 4

1.3 Scope & Research Questions . 5

1.4 Contributions . 10

1.5 Thesis Outline . 10

2 State of the Art 13

2.1 Forensic Science . 13

2.2 Cyber Crime Investigations . 17

2.2.1 Concepts in Digital Forensics 17

xi

xii CONTENTS

2.2.2 Automation in Investigation 22

2.2.3 Challenges & Limitations 26

2.3 Machine Learning & Advanced Analytics 31

2.3.1 Hard & Soft Computing 34

2.3.2 Decision Support using Binary & Fuzzy Logic 36

2.4 Use Cases in Information Security & Forensics 38

2.4.1 Windows Malware Analysis 39

2.4.2 Network Intrusion Detection 59

2.4.3 Application Level Security and Attacks on Web 62

2.4.4 Network Forensics Readiness 64

2.4.5 Mobile Devices Malware 68

2.4.6 Privacy Preserving and Access Control 69

2.5 Neuro-Fuzzy – A Hybrid-Intelligence Analytics 70

2.5.1 Optimization for Large-scale Data Analysis 72

2.5.2 Required Hybridization & Kosko Model 74

2.5.3 Self-Organizing Map Configuration 76

2.5.4 Fuzzy Patches Revisited 84

2.5.5 Membership Functions Basics 89

2.5.6 Tuning of Fuzzy Rules 92

2.5.7 Binomial & Multinomial Classification 94

2.5.8 Higher Level of Abstraction & Deep Neural Networks . . 99

2.5.9 Challenges with Pro-Active Training of Neural Network-
based Architectures . 102

3 The Proposed Soft Computing Algorithm for Digital Forensics Applic-
ations 111

3.1 Neuro-Fuzzy Method - 1st Stage 112

3.1.1 Inference of Self-Organizing Map Parameters 112

CONTENTS xiii

3.1.2 Fuzzy Patches Estimation 117

3.1.3 Bootstrap Learning for Generalization 119

3.2 Neuro-Fuzzy Method - 2nd Stage 120

3.2.1 Membership Function Construction 120

3.2.2 Improved Multinomial Classification 121

3.2.3 An Insight into Dynamic Expansion of Linguistic Terms Set 124

3.3 Deep Neuro-Fuzzy Architecture 128

3.3.1 Deep Mapping of Feature Space 130

3.3.2 Integration with the 1st Stage of Neuro-Fuzzy 130

3.4 A New Method of On-line MLP Training Using Genetic Algorithm 131

3.4.1 Single-step On-line Learning of MLP 132

3.4.2 An Optimal Individual Learning Rate α Prediction Using
Genetic Algorithm . 134

3.5 Analysis of Complexity of Novel Neuro-Fuzzy 136

3.5.1 Algorithm of the Proposed Novel Neuro-Fuzzy Method . . 136

3.5.2 Complexity Evaluation 138

4 Application in Digital Forensics Science 143

4.1 ML-aided Windows Malware Detection 144

4.1.1 Datasets . 144

4.1.2 Experimental Setup . 145

4.1.3 Results & Analysis . 146

4.2 Windows Portable Executable 32 Bit: A Novel Multinomial Mal-
ware Collection . 161

4.2.1 Dataset . 161

4.2.2 Static Analysis in Hard & Soft Computing Models 165

4.2.3 Improved Multi-Class Neuro-Fuzzy for Static Analysis . . 170

4.2.4 Dynamic Behavioural Analysis 182

xiv CONTENTS

4.3 Intrusion Detection . 195

4.3.1 Datasets . 196

4.3.2 Experimental Design . 196

4.3.3 Performance Metrics . 197

4.3.4 Results & Analysis . 197

4.4 Web Application Firewalls . 202

4.4.1 Datasets . 203

4.4.2 Experimental Design . 204

4.4.3 Performance Evaluation 204

4.4.4 Results & Analysis . 205

4.5 Network Forensics Readiness . 209

4.5.1 Datasets . 210

4.5.2 Experimental Design . 211

4.5.3 Performance Evaluation 213

4.5.4 Results & Analysis . 214

4.5.5 Overlap with Information Security Risk Management . . . 225

4.6 Mobile-Device Virus Analysis 239

4.6.1 Datasets . 239

4.6.2 Experimental Design . 240

4.6.3 Performance Evaluation 243

4.6.4 Results & Analysis . 243

4.6.5 Complexity . 248

4.6.6 Dynamic Feature-based Expansion of Fuzzy Sets in Neuro-
Fuzzy for Proactive Malware Detection 251

4.7 Privacy Preserving & Access Control 255

4.7.1 Dataset . 255

4.7.2 Experimental Design . 256

CONTENTS xv

4.7.3 Performance Evaluation 257

4.7.4 Results & Analysis . 257

5 Summary & Future Work 261

5.1 Summary of Findings . 261

5.1.1 Main Contributions . 262

5.1.2 Overview of Main Results 264

5.2 General Considerations . 267

5.2.1 Theoretical Implications 267

5.2.2 Practical Considerations 268

5.2.3 Future Work . 269

Bibliography 270

A Computational Setup & Used Hardware 315

A.1 Developed Software . 315

A.1.1 Implementation of Neuro-Fuzzy Method and Self-Organizing
Map Library . 315

A.1.2 Processing of PE32 malware files and VirusTotal response 316

A.2 Experimental Setups & Used Computing Environments 316

B Empirical Study of the Neuro-Fuzzy Method 321

B.1 Example of Derived Fuzzy Rules using Proposed Method 321

B.2 Accuracy of Neuro-Fuzzy with Manually-defined SOM Size . . . 322

C Multinomial Malware Classification - A Novel Dataset 327

C.1 Acquisition of Raw Characteristics 327

C.2 List of PE32 Architectures . 329

C.3 Raw Characteristics . 331

xvi CONTENTS

C.3.1 PEframe . 331

C.3.2 VirusTotal . 333

D Author’s Biography 339

D.1 Curriculum Vitae . 339

D.2 List of Publications . 340

List of Abbreviations 345

List of Glossaries 349

List of Tables

2.1 Overview of PE32 malware analysis using static characteristics
and ML methods . 53

2.2 Example of Neuro-Fuzzy output encoding schemes for 4 classes . 98

3.1 Different NF output encoding schemes for 4 classes example . . . 124

3.2 Complexity comparison of the proposed method and conventional
re-training of the Hybrid NF for adding a single term in a fuzzy set. 128

3.3 Analysis of computation complexity of three NF methods: S is for
simple, K is for Kosko, and P is for proposed 142

4.1 Characteristics of the dataset collected and used for our experi-
ments after filtering PE files . 145

4.2 Feature selection on PE32 features. Bold font denotes selected
features according to InfoGain method 147

4.3 Comparative pair-wise binary classification accuracy between be-
nign, malware_000 and malware_207 datasets based on features
from PE32 header, in %. 148

4.4 Classification accuracy based on features from bytes n-gram ran-
domness profiles, in % . 149

4.5 Feature selection on 3-gram opcode features. Bold font denotes
features that are present in both datasets that include benign samples151

xvii

xviii LIST OF TABLES

4.6 Classification accuracy based on features from opcode 3-gram, in % 152

4.7 Feature selection on 4-gram opcode features. Bold font denotes
features that present in both datasets that include benign samples . 154

4.8 Classification accuracy based on features from opcode 4-gram, in % 155

4.9 Classification accuracy based on API call 1-gram features, % . . . 155

4.10 Classification accuracy based on API call 2-gram features, % . . . 156

4.11 Description of all 37 numerical features that were extracted from
raw Windows PE32 malware characteristics 175

4.12 35 most frequent malware categories and families found among
Windows PE32 files . 176

4.13 Number of selected features out of 27 initial features for each of
the method . 176

4.14 Commonly selected features for malware families and types data-
sets using different feature selection methods 178

4.15 Accuracy of Soft Computing and selected Hard Computing meth-
ods, in % . 178

4.16 Most popular PE32 architectures found in the dataset according to
Linux ‘file‘ command . 179

4.17 Selected features for malware families and malware categories data-
sets using Information Gain . 180

4.18 Overall classification accuracy of the Neuro-Fuzzy methods and
ANN (with 1 and 2 hidden layers), in % 180

4.19 True Positive and False Positive rates of Neuro-Fuzzy for 10 mal-
ware families and 10 malware categories 181

4.20 Overview of the constructed features describing dynamic behaviour 192

4.21 Classification performance of ANN on 10 malware families . . . 194

4.22 Classification performance of ANN on 10 malware categories . . 194

4.23 Performance comparison (regression, classification) of the pro-
posed improvements . 198

4.24 Time in seconds required to learn models and inference new data
for dataset without bootstrap . 200

LIST OF TABLES xix

4.25 Ideal storage complexity of fuzzy rules for three methods. NR is a
number of rules and NF is a number of features 200

4.26 Performance of other peer-reviewed Soft Computing methods on
KDD 99 dataset . 201

4.27 Performance of peer-reviewed Hard Computing Computing meth-
ods on KDD 99 dataset . 202

4.28 Properties of the dataset. NS is a number of samples in a set,
NF is a number of features, NC is a number of classes, e0 and e1

represents the 1st and 2nd biggest eigenvalues. 204

4.29 Performance comparison of NF with a single linear output combiner206

4.30 Accuracy of binary classifiers in Weka, % 207

4.31 Accuracy of multinomial classifiers in Weka, % 207

4.32 Accuracy of MLP with respect to non-linearity in Weka (100 epochs),
% . 208

4.33 The properties of the datasets used in the experiments are based on
the data obtained from the statistical program PSPP. The columns
are: NS - number of data samples in the dataset, NF - number
of features, E0 and E1 - the 1st and the 2nd biggest eigenvalues
of the dataset, r̄ - average Pearson Correlation Coefficient, SP -
proposed optimal size of the SOM grid, and SV - an optimal size
of SOM, according to Vesanto, SV lower - the lower boundary of
the Vesanto method, and SV upper - the upper boundary of Vesanto
method. 212

4.34 Amount of time in minutes required to perform a complete exper-
iment on each dataset for the proposed improvements 212

4.35 Performance comparison (regression, classification) of the pro-
posed method with and without bootstrap aggregation on the dataset.217

4.36 Performance comparison (regression, classification) of the Vesanto
method on the KDD CUP 1999 full dataset without bootstrap ag-
gregation. 218

4.37 Performance of other peer-reviewed methods on the defined data-
sets, including Soft Computing 222

xx LIST OF TABLES

4.38 Time in seconds required to learn models and infer new data for a
different amount of fuzzy rules, using optimal SOM size without
bootstrap aggregation . 223

4.39 Example of DDoS attack magnitude distributions and probabilit-
ies, with conditional probabilities of semi-annual occurrence. . . . 230

4.40 Overview of attack severity for the case study and duration fre-
quencies. Data Source: Akamai [31] 233

4.41 Parameters extracted from different scenarios for Gaussian MF . . 236

4.42 Confidence Intervals for defined % of the DDOS attacks to be
eliminated . 238

4.43 The properties of the datasets used in the experiments based on
the data, obtained from the statistical programs PSPP [311] and
Weka [149] . 240

4.44 Example of collected features in mobile malware dataset 241

4.45 Performance comparison (regression, classification) of the pro-
posed method . 244

4.46 Accuracy of the other ML methods on the datasets. Highest accur-
acy is denoted with bold. 248

4.47 Time in seconds, required to learn the NF mode using different
estimations for optimal SOM and methods for fuzzy patches con-
struction on mobile malware dataset with parallel optimization . . 248

4.48 Time required to learn three types of NF models with respect to
three methods of SOM size determination using 6 parallel threads 249

4.49 Comparison of the size fuzzy rules for two types of MF using dif-
ferent architectures: 32 and 64 bits. The measurements are: Struc-
ture - size of empty rule structure, Rule - size required to store a
single rule, and Model - total size required to store all the classi-
fication rules. 250

4.50 Accuracy, required re-training, and rules selection time with and
without parallel optimization . 253

4.51 Accuracy of ML methods on the dataset, in % 253

4.52 Performance of implementations on static dataset 257

LIST OF TABLES xxi

4.53 Performance comparison of MLP on test dataset in on-line incre-
mental learning using optimized and non-optimized techniques in
data stream scenario . 258

B.1 Performance comparison of the simple rectangular, Kosko and Gaus-
sian on the Climate Model Simulation Crashes dataset 323

B.2 Performance comparison of the simple rectangular, Kosko and Gaus-
sian on the Fertility dataset . 323

B.3 Performance comparison of the simple rectangular, Kosko and Gaus-
sian on the Banknote Authentication dataset 324

B.4 Performance comparison of the simple rectangular, Kosko and Gaus-
sian on the Mobile Malware dataset 324

B.5 Performance comparison of the simple rectangular, Kosko and Gaus-
sian on the Ionosphere dataset 325

B.6 Performance comparison of the simple rectangular, Kosko and Gaus-
sian on the SPECTF Heart dataset 325

B.7 Performance comparison of the simple rectangular, Kosko and Gaus-
sian on the Madelon dataset . 326

B.8 Performance comparison of the simple rectangular, Kosko and Gaus-
sian on the QSAR bioddegradation dataset 326

C.1 PE32 architectures list from the dataset 330

xxii LIST OF TABLES

List of Figures

1.1 A challenge in modern Digital Forensics 3

1.2 Overview of Soft Computing methods 4

1.3 Contribution towards application of Soft Computing for Digital
Forensics . 9

2.1 A typical way of black box testing for software analysis 23

2.2 Details of different phases in Digital Forensics Process 24

2.3 Possible application of Soft Computing for Digital Forensics . . . 24

2.4 Dataflow in a general Machine Learning approach 33

2.5 A overview of the possible methods to be used in a general ML
approach . 34

2.6 Fuzzy Logic process . 37

2.7 Comparison of crisp and fuzzy sets 38

2.8 A general scheme of malware distribution on the Internet 41

2.9 Timeline of works since 2009 that involved static analysis of Port-
able Executable 32bit files with respect to characteristics and ML
methods for binary malware classification 49

2.10 Taxonomy of common malware detection process based on static
characteristics using Machine Learning 50

xxiii

xxiv LIST OF FIGURES

2.11 Comparison of accuracy of ML classification based on static char-
acteristics with respect to feature selection. Colour of the bubbles
shows characteristics used for detection, while the size of the bubble
denotes the achieved accuracy 54

2.12 CARO malware naming scheme [281] 57

2.13 A general example of approaches used in network attacks in the
Internet . 59

2.14 Example of Neuro-Fuzzy application in Network Firewall 62

2.15 How the Access Control mechanisms generally interact with ob-
jects and subjects, according to ABAC [188] 70

2.16 Hybridization of SC with respect to different factors 73

2.17 Neuro-Fuzzy approach that includes two stages [233] 75

2.18 A general concept of Self-Organizing Map architecture 78

2.19 A simple fuzzy patch which defines an arbitrary rectangular region 85

2.20 Ellipsoid fuzzy patches used by Kosko [233] 86

2.21 Differences in data coverage provided by simple rectangular and
elliptic fuzzy patches . 87

2.22 Extraction of elliptic fuzzy patches 88

2.23 Simple Membership Function used to defined the degree of truth
in rectangular fuzzy patches [233] 90

2.24 Representation of the membership function together with elliptic
fuzzy patches . 91

2.25 Projection of the eliptic fuzzy patches on the axis according to
Kosko [233] . 92

2.26 A general representation of Artificial Neural Network [232] 93

2.27 Comparison of Neuro-Fuzzy architecture with different output en-
coding schemes . 98

2.28 Dynamic expansion of a fuzzy set in Hybrid Neuro-Fuzzy with
two classes: benign and malicious 105

3.1 Neuro-Fuzzy approach that includes two stages [233] 112

LIST OF FIGURES xxv

3.2 Visualization of the dependencies between the features in 4 data-
sets mentioned earlier in Weka. The colors are blue and red de-
notes both classes . 113

3.3 Extraction of elliptic fuzzy patches from trained Self-Organizing
Map . 116

3.4 Examples of patches configuration: A simple, Kosko and proposed
method . 119

3.5 Examples of MF in simple rectangular, Kosko and proposed meth-
ods . 121

3.6 Comparison of output encoding schemes for Neuro-Fuzzy 123

3.7 Center of Gravity defuzzifier using natural value of the Class ID
label . 124

3.8 Conventional 5 stages of NF learning and proposed DENF stages
(boxes with dotted lines) . 126

3.9 Data representation evolution on different layers of DNN for lin-
early non-separable two class problem 129

3.10 Proposed Deep Neuro-Fuzzy approach based on classic two stages
approach accroding to Kosko [233] 131

4.1 Distribution of file size values in Bytes for three classes 150

4.2 Distribution of the frequencies of the top 20 opcode 3-grams from
the benign set in comparison to both malicious datasets 153

4.3 Distribution of the frequencies of top 20 opcode 4-grams from be-
nign set in comparison to both malicious datasets 155

4.4 frequencies of 20 most frequent API 1-grams for three different
datasets . 156

4.5 Log-scale histogram of compilation times for benign dataset . . . 158

4.6 Log-scale histogram of compilation times for malware_000 dataset 158

4.7 Log-scale histogram of compilation times for malware_207 dataset 159

4.8 Distribution in malware families and types datasets 177

xxvi LIST OF FIGURES

4.9 Distribution of samples in families and categories datasets using
different static features for 10 classes 179

4.10 Log-scaled plot of the malware compilation time frequency built
with a help of RapidMiner [14] 179

4.11 Dynamic malware analysis [251] 184

4.12 Trojan Spy creates files in System32 directory 187

4.13 Trojan Dropper activity that makes modification in Windows registry187

4.14 Trojan Downloader attempts to retrieve an executable 189

4.15 Backdoor sends encoded GET request with IP address 189

4.16 The number of samples in each node during SOM clustering using
different optimal size criteria KDDCUP 99. 199

4.17 The number of samples in each node during SOM clustering using
different optimal size criteria KDDCUP 99 10% set. 215

4.18 Allocation of the centres of fuzzy rules for the KDD 10% dataset
for both classes for training with the full dataset and bootstrap set
respectively using RapidMiner 220

4.19 Gameover Zeus infection probability distribution and timeline. Right
shows results of Q-Q plot of LogNormal distribution. Data source:
The Shadowserver Foundation. 227

4.20 The development of bandwidth consumption (Gbps) of DDoS-
attacks during the last 15 years. Data source: Arbor Networks
and media reports . 229

4.21 Bubble plot of the attack bandwidth depending on the duration for
each scenario. The size of the bubble also denotes the magnitude
of the attack. Scenarios are depicted with different colours. 232

4.22 Distribution of 12 fuzzy rules extracted automatically with respect
to data location. Centers of extracted fuzzy rules are depicted with
big bubble;, original data points with small ones. 235

4.23 Comparison of the original DDOS data and modeled distribution . 236

4.24 Mapping fuzzy logic-based Gaussian MF µ and probabilistic dens-
ity function of γ distribution . 237

LIST OF FIGURES xxvii

4.25 Visualization of the dependencies between the features in all data-
sets mentioned earlier in Weka with corresponding values of PCC.
The blue and red colors denote classes 242

4.26 Change of MAE values of three methods on the 2nd stage of NF
on mobile malware dataset over training with 100 epochs 246

4.27 Distribution of the fuzzy rules derived based on three different
SOM size estimation methods 246

4.28 Distribution of date samples per SOM node with respect to differ-
ent classes using three size determination methods. The size of
the bubble corresponds to number of samples in this node, while
colour denotes malicious or benign sample 247

4.29 Accuracy of Neuro-Fuzzy model using 10,100, 1000 epochs in
ANN training with selected number of fuzzy rules NS ≤ NC
and reference ANN accuracy . 254

4.30 Proposed method for single-step on-line learning 256

4.31 Surface of the error function showing dependency of E(W) on w1
3

and w1
9 as covariates in 3-layers MLP that was trained from the

given dataset . 259

4.32 Path traverse of the weights w1
3 and w1

9 in MLP 259

B.1 Parameters of the extracted fuzzy rules using proposed method . . 322

B.2 Visualization of fuzzy rules extracted by Neuro-Fuzzy 322

xxviii LIST OF FIGURES

List of Algorithms

1 Proposed way of training on the 1st stage of Neuro-Fuzzy method 117
2 Dynamically-Expanded Neuro-Fuzzy (DENF) method for adding

new terms in fuzzy set without complete retraining of the NF . . . 127
3 Optimization ofα-rate in single-step MLP training using real-valued

GA . 137
4 Proposed modifications of Neuro-Fuzzy method 139

xxix

xxx LIST OF ALGORITHMS

Chapter 1

Introduction

This chapter is devoted to the scope of the dissertation. In particular, Section 1.1
presents objectives and motivations behind this research, specifically why Compu-
tational Intelligence is important in the field of Digital Forensics. Next, Section 1.2
gives a brief insight into the current state of the art along with challenges that arose
in data analysis. These challenges are addressed in corresponding research ques-
tions with relevant contributions of the thesis explained in the Section 1.3. Finally,
the outline and the structure are given in the Section 1.5.

1.1 Motivation & Objectives
Forensic Science is an emerging area consisting of the application of different
methodological approaches in Crime investigation [245]. Such utilization requires
constant improvement upon previous methods in an agile environment exploited
by perpetrators. Digital Forensics is one of the major sub-fields focused on re-
vealing evidence found on digital data carriers and within ICT infrastructure [63].
Examination of found information for further representation in a Court of Law has
been largely based on manual search, pattern matching, and an analysis of found
traces. However, this comes to looking for a "needle in a haystack", which might
be infeasible despite a knowledgeable manual analysis of found evidence. As a
result, Digital Forensics is in need of automated data analytics and processing for
Decision Support.

The Big Data paradigm became inevitable in every aspect of modern digital life.
Garfinkel [159] wrote that an average computer’s HDD of a size 2TB requires
more than 7 hours to image a device alone, without even mentioning analysis or
file carving. And this not taking into account mid-class servers with a storage

1

2 Introduction

space from 10-20TB. On the other hand, mobile phones became extremely popu-
lar and have been converting from simple end-user communication terminals into
a powerful and resourceful tools capable of massive parallel computing and stor-
age of a variety of log data from various sources, including GPS and a number
of other sensors beside user’s photos and documents [239]. By the end of 2016,
Apple’s Iphone 7 or Google’s Pixel became able to store up to 128GB [126] of
personal sensitive information that could be targeted by adversaries. Naturally,
palm-sized devices were hit by a number of malware, including botnets and spy-
ware [270]. Malware (or malicious software) are software that perform unwanted
actions in a targeted system. McAfee malware zoo [271] included 440,000,000
samples by Q2 2015. Malware poses a significant threat to every device connected
to the Internet in terms of privacy and economic loss. The majority target the MS
Windows NT Operation Systems (OS) family that has been in use since the end
of the 1990s. In addition to this, the threat landscape rapidly changes under the
BYOD policy implemented by companies around the globe. Overall, the amount
of data is enormous, which complicates the work of a forensics analyst if ICT is a
tool used to commit a crime or has become the target of a crime committed.

The challenges of Big Data in Digital Forensics has been there for over decade. For
example, the Enron case back in 2001 [228] shows how the investigation recovered
619,446 emails resulting in 160GB of data, partially plain text. Traditional Arti-
ficial Intelligence methods (such as Support Vector Machines, Naive Bayes Clas-
sifier and K-Nearest Neighbor Classifier) are simply incapable of handling such
data or producing meaningful traces of evidence. Another example is the Decem-
ber 2016 discovery of Yahoo!’s second breach, resulting in the leak of a billion
accounts’ worth of user’s personal data [148]. With millions of users accessing
their services every day, it quickly becomes impossible to find whatever malicious
actions reside in the Yahoo! server logs. In their report, Ernst & Young [140] re-
vealed that Big Data is no longer necessarily an insurmountable obstacle anymore
in the field, especially when considering 5Vs [266]: volume, velocity, variety,
veracity and value. At this point distributed techniques for data storage are cap-
able of handling the volume and the velocity of newly generated data. Additionally,
the veracity and variety can be handled by Machine Learning to be able to extract
corresponding value. The goal therefore becomes to produce forensically-sound
evidence that can be presented further in a Court of Law as depicted in the Figure
1.1.

To tackle the aforementioned challenges, a strong need for automated approaches
arises. Manual analysis is no longer considered a reasonable approach, considering
the number of pieces of data that need to be processed. Since the 1950’s, ARTI-
FICIAL INTELLIGENCE has become a popular scientific field of study. One of the

1.1. Motivation & Objectives 3

Figure 1.1: A challenge in modern Digital Forensics

main approaches in AI research is COMPUTATIONAL INTELLIGENCE, which uses
nature-inspired methods to target a real-world problem and derive understandable
reasoning. Put simply, Machine Learning has shown its effectiveness in Inform-
ation Security before [60, 334, 398]. As results, these methods can be applied
to study the materials from crime scenes. Such an area of study is called COM-
PUTATIONAL FORENSICS and covers the application of computer-based methods
to Crime Investigation. Computational Intelligence is closely related to so-called
SOFT COMPUTING, a synergy of imprecision tolerance and model robustness that
are of value to Crime Investigation due to the chaotic environment and missing
pieces of information, as presented in the Figure 1.2. Contrary to the conventional
HARD COMPUTING that requires a crisp answer to a defined problem, SC derives
an inexact solution as described by Zadeh in 1994 [455]. Therefore, it leaves a
decision up to the forensics expert’s judgement.

Considering the acute need for automated data processing, Neuro-Fuzzy rule-
extraction classification methods emerge as one of the most prominent SC meth-
ods, a synergy of human-like linguistic rule-based Fuzzy Logic and brain-inspired
Neural Networks modelling. Separately, Fuzzy Logic requires thorough manual
tuning of the model’s parameters, while Neural Networks produce a rather com-
plex and hardly presentable weights-based model. The Neuro-Fuzzy method has
not yet been sufficiently studied as a methodological approach for Crime Invest-
igation. The generic Neuro-Fuzzy performs poorly on problems related to Digital
Forensic data analytics. Considering the "No free lunch theorem" by Wolpert et
al. [442] however, it appears that this method is capable of providing an optimal
trade-off between accuracy, computational complexity and interpretability of the

4 Introduction

Figure 1.2: Overview of Soft Computing methods

derived model.

1.2 Related Works & Challenges
Computational Criminology can use SC methods as a Computational Intelligence
approach to facilitate the Investigation process as stated by Franke et al. [151].
There have been several previously identified areas of forensics from which differ-
ent Computational Intelligence approaches can be drawn to perform forensically-
sound data analysis, as it can fulfill the Dauber Standards [5]. In this thesis, we
consider Soft Computing as the most promising however, since the case data may
not have an ideal match with previous cases or known criminal patterns. Za-
deh [455] that in contrast to hard computing can be employed SC in his 1994
work to unify the decision making process together with the human cognitive pro-
cess. The main difference from conventional hard computing is the flexibility in
analytical model construction that does not require precisely stated parameters and
characteristics. From the literature, we can see that significant research has been
done in the area of Cyber Crime Investigation, for example [248]. One of the main
advantages of SC is that it has output terms such as likelihood, probability, proxim-
ity score and so on. This gives flexibility to an analyst in making decisions, since
the result is not crisp and can be corrected considering other factors. Thus, the
rigorous answers are not necessarily needed, since the decision will be ultimately
made the human brain.

Furthermore, Zadeh and Dickerson et al. [120] proposed SC concept Neuro-Fuzzy
that is a synergy of Fuzzy Logic (FL) and Artificial Neural Network (ANN) with
two stages: rough, unsupervised placement of so-called fuzzy patches using Self-

1.3. Scope & Research Questions 5

Organizing Map (SOM), and tuning of the fuzzy rules using ANN. One of the ma-
jor challenges of the first stage of this approach is to define the size of the map be-
forehand, either by growing it as proposed by Alahakoon et al. [50] in 1998, or else
by applying the "rule of thumb" as elaborated by Vesanto et al. [424] in 2000. Re-
grettably, the first method demands enormous computational resources, while the
second requires an extreme number of SOM grid nodes when dealing with large
datasets. Landress [238] highlighted this peculiarity of SOM, especially when
dealing with unsupervised learning in Intrusion Detection. The application of both
methods results in an overfitted model with a high number of fuzzy rules—too
unreliable for presentation in a Court of Law. According to Kosko [233], one
uses elliptic regions for better describing the data in each SOM node, yet there are
no qualitative metrics on how to find the pseudo-radius of this hyperellipsoid. The
typical solution is to define this number empirically and apply it to all fuzzy regions
extracted using SOM, but this can result in major errors. Finally, the Membership
Function (MF) construction used in the second stage of NF challenges processing
since, according to Kosko [233], the projections of the hyperellipsoid are also used
to construct the corresponding triangular MF. This does not guarantee however that
the MF will incorporate mutual correlation between features determined by means
of the stretchiness and angle of inclination of the ellipsoid. In [171], Guillaume
studied various hybrid models and stated that NF is one of the most useful data ap-
proximation techniques. As written previously, the Neuro-Fuzzy method was used
for Network Forensics according to Anaya et al. [59] to detect suspicious flows
based only on TCP/IP LANs that have been compromised. NF method has been
neither sufficiently explored nor crafted to be best used for different applications
in Digital Forensics.

1.3 Scope & Research Questions
This project pursues multiple research objectives, including the generation of new
knowledge in the field, improvement of existing algorithms, and collection of rel-
evant large-scale data for proper testing. Therefore, the following general research
questions were formulated:

• Q1: Which Soft Computing algorithms are applicable in forensics data sci-
ences and allow one to derive forensically sound intelligent decisions from
the data without any structure or existing meta data, with respect to privacy
issues and data protection?

Cybercrime Investigation is facing multiple challenges in analysing data
from criminal cases due to the uniqueness of data and specific environment
where data is stored. Therefore, it is necessary to highlight the areas where
Soft Computing can find a successful application in contrast to classical com-

6 Introduction

puter forensics methods. There already exist several solutions for storing
and mining large-scale data, however, they may be infeasible for finding rel-
evant information. From the other side, ML works fine, but results are hardly
explainable and provide no way for one to find why the model was construc-
ted in any specific form. We performed an overview of the relevant aspects
of SC application with respect to key phases of Digital Forensics process.
Moreover, we considered the fact that SC must comply with Daubert Stand-
ards [5] to be able to demonstrate sufficient proof of evidence in a Court of
Law. The contribution and preliminary studies are published in [367, 371].

• Q2: How does hybridization improve stand-alone Soft Computing algorithms
to achieve admissibility and performance of evidence extraction for Digital
Forensics applications?

The vital task in Digital Forensics Process is not just to preserve data for
future analysis, yet also to extract meaningful evidence. So, the assumption
is to use several approaches of Soft Computing to create reliable and fast
hybrid intelligence solutions. First, from previous studies we found that the
Neuro-Fuzzy method is one of the most promising models based on fuzzy
rules that can derive human-explainable solutions. However, NF was not
originally intended to be used for such purposes due to the low accuracy and
high complexity of the model, while stand-alone usage of FL and ANN was
simply inappropriate due to the challenges described. Second, we analysed
Neuro-Fuzzy proposed by Kosko [233] and proposed an improvement by
using exploratory data analysis through the Pearson correlation coefficient
for better learning of SOM on the 1st stage of NF. This was used instead
of the "rule of thumb" and Vesanto method to achieve a higher degree of
interpretability and an agreeable trade-off between complexity and accuracy.
Finally, we were able to achieve much higher accuracy of the data described
by significantly lower number of rules. The proposed method was tested on
a number of different datasets of different dimensionality and complexity,
including Android malware samples collection. The approach and achieved
results were given in the [374, 375].

• Q3: How Big Data analysis using Soft Computing can be optimized with
respect to resources and time consumption while applying multi-objective
mathematical optimization and high-performance computing?

To answer this question, we looked into algorithms from the perspective of
the data processing demands. This elicited ways to apply the numerical op-
timization while preserving accuracy and improving response time. Despite
the successful usage of parallel optimization and GPU, data analysis may

1.3. Scope & Research Questions 7

fail if the processing model is too complex or has nonlinear dependency on
the amount. This is the case with the method proposed by Kosko. First, this
method suggests the use of large amount of rectangular fuzzy patches Π that
are intrinsically erroneous due to insufficient transition of data properties. To
mitigate this, we suggest using elliptic fuzzy patches to have better goodness
of fit to real world data. Second, the ellipsoid radius α is empirically defined,
which requires additional efforts by the data analyst to tune it. Instead, more
naive determination of the pseudo-radius α through χ2-square test of good-
ness of fit results in a better data characterization as well as the elimination
of mistaken data. Through these improvements we aim to achieve fast learn-
ing in soft computing even while dealing with Big Data. Also, we looked at
ways that on-line learning can be improved in Neural Networks to facilitate
data streams mining in Information Security. Moreover, it is important to
keep in mind that it is more computationally efficient to perform informa-
tion fusion in a dynamic environment using Neuro-Fuzzy. The approaches
are suitable for small data problems, but no more reliable for processing vast
amount of data. The method is described in the publication [373, 374].

• Q4: How can data be better incorporated in the Neuro-Fuzzy rules-extraction
classification method while using a lower number of more compact and bet-
ter located fuzzy patches?

Membership functions define how well the degree of truth is transferred
from data to new unknown samples. The original triangular or projection-
based membership function proposed by Kosko cannot incorporate all data.
On the contrary, transferring parameters of fuzzy patches to Gaussian MF
allows one to provide robust estimation of membership degree with respect
to data stretchiness and angle of rotation of fuzzy patches. So to mitig-
ate the aforementioned challenge, we proposed a new membership function
based on the hyper-ellipsoid parameters to incorporate all the variables from
multinomial Gaussian distribution. Gaussian approximation offers a better
degree of goodness of fit to the real-world data. By applying the suggested
function and parallel optimization, we were able to achieve not only better
performance, but also a significantly reduced number of fuzzy rules tuning
iterations on the 2nd stage of NF. The improvements were presented in the
papers [373, 375].

• Q5: Can Digital Forensics criminal cases with large data quantities be
managed by Soft Computing models where fast and reliable response is re-
quired?

The CyberCrime Investigation is not only about post-mortem analysis of
the log files, traces and system artifices found on digital data carriers, yet

8 Introduction

also about proactive crime prevention. For example, Internet evidence col-
lection requires interactive social media profiling with on-line adaptation of
the statistical model. The general Soft Computing framework for cyber-
crime investigation application needs not just human-understandable model,
but also an ability to be re-trained quickly while processing data travelling
at high speed. Most Intrusion Detection Systems offer signature-based de-
tection of suspicious activity, which can be inefficient in the detection of
zero-day attacks. Therefore, we improved Neuro-Fuzzy to be able to fa-
cilitate Network Forensics Readiness by applying similarity-based detec-
tion. In addition to this, we investigated how Fuzzy Logic can be used for
Information Security Risk Management, which has an inevitable overlap
with Digital Forensics Readiness. By training from million-sample datasets
such as KDD Cup 1999, the proposed model is capable of nearly real-time
packet processing, suitable for modern networks. An improvement of the
methods was described with corresponding use case analysis in contribu-
tions [372, 375, 376, 377].

• Q6: What are ways to improve the generalization and performance of the
Neuro-Fuzzy rule-extraction classification method for large-scale multino-
mial problems?

Computer Crime Investigation introduces a number of data analysis prob-
lems related to so-called multinomial classification problem. Contrary to
conventional binary classification (benign vs. malicious), multinomial con-
siders many sub-types of malicious. A particular subdivision is the detec-
tion of attacks in web firewalls such as described by dataset PKDD 2007;
another is malware classification. A majority of researches consider only
binary classification, yet this is neither sufficient nor relevant for modern
information security. A novel dataset containing modern Windows PE32
malware samples was used to show a prospective application of the auto-
mated multinomial malware detection. A number of malware categories
and families emerged over last decade targeting Microsoft Windows, since
it is the most attractive platform for virus developers. Static and dynamic
analysis can reveal information relevant to classification characteristics in
each malware category. To study this problem, we created a novel dataset of
PE32 executables originally consisting of 400k malware samples. First, we
proposed to use limits on a configuration of each SOM node clustering to be
able to produce statistically-sound fuzzy rules. Second, as a way to enhance
accuracy and generalization of NF, we proposed applying new single-output
architecture of the model. Third, a new output defuzzification function was
suggested that helped to improve the accuracy of the original NF method.

1.3. Scope & Research Questions 9

Finally, most of the ML approaches have considerably worse performance
on multinational problems when dimensionality is large and data has non-
linear properties. A novel Deep Neuro-Fuzzy rules-extraction classification
approach was developed to mitigate a high level of non-linearity while giv-
ing robust classification by using a higher abstraction level. The dataset,
analysis of results, and proposed improvements are contributed in the pa-
pers [167, 372, 377, 379].

Our goal was to integrate Soft Computing into the Digital Forensics process, more
specifically by building decision support models as shown in the Figure 1.3. In
addition to the different domains, the nature of the data being analysed was con-
sidered. The proposed improvements and optimization of the hybrid Neuro-Fuzzy
methods gave a prospective approach on how to ensemble both the machine learn-
ing from data and the construction of human understandable models. To sum-
marize, the contribution of the dissertation is an intelligent model that is capable
of handling a variety of large-scale problems that were validated on community-
accepted datasets, as well as newly constructed ones.

Figure 1.3: Contribution towards application of Soft Computing for Digital Forensics

10 Introduction

1.4 Contributions
The thesis provides a theoretical background in the areas of Forensics Science
and Cyber Crime Instigation. Foundations of Machine Learning, Soft and Hard
Computing are followed by the state of the art in Fuzzy Logic, Artificial Neural
Network and Neuro-Fuzzy. We focused on the in-depth study of Hybrid Intelli-
gence with respect to the needs of Cyber Crime Investigation. Finally, challenges
and limitations of current state of the art methods are given.

New computational methods that are designed to enhance the utility and perform-
ance of Neuro-Fuzzy approach. In particular, it presents an improvement to the
1st NF step by using a new optimality metric for SOM size determination. Fur-
thermore, a new fuzzy patches construction method based on the χ2-test was pro-
posed along with the corresponding membership function construction based on
the Gaussian distribution of data in a multidimensional hyper-ellipsoid. Moreover,
improvements targeting multi-class detection are given to be able to differentiate
not only conventional two-classes problem, but also sub-classes. Finally, Deep
Neuro-Fuzzy architecture supports the solution of such problems by introducing
non-linearity components.

Finally, comprehensive overview of the proposed improvements with regard to ap-
plication areas of Digital Forensics was given. We present the performance of our
methods on different problems, including malware classification and network se-
curity. Another important contribution is the collected large-scale dataset covering
modern Windows PE32 computer viruses labelled into categories and families.

1.5 Thesis Outline
The outline of the dissertation is given below:

Chapter 1 presents an overview of the research questions and challenges identi-
fied within this research work. The motivation and corresponding methodology is
given along with a critical view of the related works in the area.

Chapter 2 includes a theoretical foundations in the areas of Digital Forensics,
Machine Learning, Soft and Hard Computing are followed by the state of the art in
Fuzzy Logic, Artificial Neural Network and Neuro-Fuzzy at the end of the chapter.

Chapter 3 shows new improved computational methods with corresponding justi-
fications and analysis.

Chapter 4 contains practical results there were achieved while working on the
methodology, including data collection, results analysis and study of applicability
in real-world scenarios.

1.5. Thesis Outline 11

Chapter 5 Gives an overview of the contribution as a whole. The theoretical
implications of the work are given along with the practical considerations of the
application of Neuro-Fuzzy in Digital Forensics science. Finally, findings are sum-
marized.

12 Introduction

Chapter 2

State of the Art

This chapter gives a strong theoretical introduction into the topic that will serve
as a further basis for building new knowledge and developing new methods. First,
we focus on the overview of Forensics Science in general in the Section 2.1. Then,
we consider Digital Forensics, its principles, challenges and ethical considerations
in the Section 2.2. The idea is to give an overview of the area and sub-domains
that can facilitated from an application of Soft Computing when analysing data
seized from data carriers. Furthermore, we will introduce Machine Learning and
statistics methods that can deal with data modelling and analysis in the Section 2.3.
This includes conventional Hard and nature-inspired Soft Computing approaches.
Finally, the Section 2.5 provides a literature overview and a basis for application
of Hybrid Intelligence as a key factor for processing increased amounts of data as
well as generation of forensically-sound evidence.

2.1 Forensic Science
Forensic Science is a general field of application of scientific methodologies for
criminal investigations. Through application of such methods, one can discover
evidence that may clarify the picture of a crime and establish links between a
perpetrator and a victim. At this point, Forensic Science subdivides into many
areas (also called Sciences) depending on the pieces of information and nature of
evidence to be analysed. Below, we list the possible applications that are done in
CF to facilitate the forensically-sound data analytic. Therefore, we selected the
following forensics sub-fields:

• Anthropology / Reconstruction deals with the identification of a person in
a legal setting, in particular through facial reconstruction. There are several

13

14 State of the Art

famous works performed in the last decade. Ibáñez et al. in 2009 [195]
have studied an application of EC for craniofacial superimposition based
on several cases. Another work has been done by Campomanes-Álvarez et
al. [86] in 2013, where a similar problem was tackled using Fuzzy Logic in
addition to Genetic Algorithm for an optimization of skull alignment done
through search. Human identification by means of ears photos was proposed
by De Tre et al. in 2014 [112] based on fuzzy set theory.

• Biometrics is an area that compounds the analysis of something that a per-
son is. In the study done by Rughooputh et al. [343], a forensics application
of ANN for the determination of the traces of the Raman images for fin-
gerprints verification. Another application that was studied by Franke et al.
in 2002 [152] is forensics handwriting verification used in banking sector
and governmental organizations. They proposed to use regions on the im-
age of a signature with further learning of a hybrid ANN and FL methods
called Neuro-Fuzzy. The work produced high classification rate in addition
to extracted linguistic rules.

• Digital Forensics covers a variety of methods whose scope are computer-
related evidence. Several domains can be mentioned depending on the loca-
tion and data to be analysed.

– Malware analysis covers an examination of possible software applic-
ations with malicious intentions. According to the feasibility study
by Singh et al. [394], most of the SC methods including ANN, FL,
SVN can be applied in malware detection. Though there is a challenge
to detecting unknown samples, SC methods still perform well when
learning using a labelled dataset of known samples. The process of
malware detection distinguishes two main areas of model application.
First, static signatures are generated and detection is performed using
artifacts that are found in the system. Second, the live system is mon-
itored for behavioural patterns that malware can generate, including
created and modified files, API calls, traffic, etc. For example, dif-
ferent ensembled methods based on NN and SVM were proposed by
Veerwal et al.[114]. Shalaginov et al. [374] studied a trade-off between
accuracy and interpretability of the hybrid NF model in 2015. The res-
ults showed that a smaller number of generalized FL rules results in
better accuracy in mobile malware detection.

– Network Forensics deals with the data in a transfer, that data in flow
between computing nodes in an interconnected network. The invest-
igation has developed a great interest in this area since a lot of cy-

2.1. Forensic Science 15

bercrimes are committed using network means. Mukkamala et al. in
2003 [290] studied the features that matter for this type of forensics.
The authors studied SVN and ANN and found that SVM overcomes
ANN with respect to speed and scalability. Furthermore, in 2009 Liao
et al. [249] presented techniques for expert system construction based
on the FL. The expert systems showed great performance, for example
in the detection of multiple attacks among normal traffic packets.

– Social Network Mining and analysis is a relatively new area based
on the extraction of relevant information for crime investigation from
corresponding social media. It includes the discovery of dangerous
patterns, possible criminals and victims, etc. Lau et al. in 2014 [241]
presented how Gibbs sampling methods can be used for social me-
dia mining. In particular, the number of Twitter messages from well-
known criminals Anonymous group were analysed and classified.

– Content identification implies the approaches targeted at the detec-
tion and identification of the file types on the memory carriers. In his
thesis [178], Harris stated how ANN can be applied in the identifica-
tion of different file types, consisting of 5 image formats. Additionally,
the author used up to 20,000 epochs to train the network; there was not
much improvement however with respect to MSE1. TIFF format was
the most effectively detected when using n consecutive bits from a file.

– Mobile forensics analysis became an inseparable part of Computer
Forensics. The exponential growth of the number of mobile devices
from early 2000 onward is only further complicated by emergence of
computer-like smartphones. It became feasible to not only call and
send text messages, but also use GPS locations, mobile Internet, store
vast amount of private information, access bank services, etc. NIST
has provided guidelines on mobile device forensics [206]. Among
mobile OS, Android is the most popular platform considering open-
source applicability and possibility to install 3rd party applications that
may contain malicious payloads. Various Machine Learning meth-
ods can be used to differentiate between malicious and benign soft-
ware [346, 371].

– Network Intrusion Detection and Prevention involves analysis and
learning from the network traffic in order to detect illegal activities,
information leakage, or anomalies. According to [42] by Abraham
at al., the Evolutionary Algorithms were successfully tested as parts
of IDS. They stated that such an approach can be used in developing

1MSE - mean square error

16 State of the Art

the automated system. Survey [193] gives an insight into the usage
of Soft Computing methods in IDS. The authors stated that despite
good accuracy and performance, there is still a demand to employ
new and more advanced strategies in order to fight attacks. Further-
more, in [41], multiple paradigms including fuzzy rules and ensembled
classifiers were used as data mining to construct intelligent IDS. The
fuzzy classifier and genetic programming gave the best results in at-
tacks detection. The fuzzy clustering method c-means was also applied
in IDS [395] together with rough sets as feature selection methods.
Traffic control systems are another field where SC found application.
In the review [408], multiple approaches were named based on fuzzy
techniques that make up one of the basic SC principles.

– Access control & Privacy Preserving includes intelligent evaluation
of the access to some resources. It can be an on-line learning that
will give or deny access to some protected information and operations
based on learning from human decisions or similar data. There have
however not been many research papers on this topic. A physical ac-
cess control based on the location is introduced in [182], where mul-
tiple RBF networks were used to denote each physical location, pro-
ducing the location-aware engine.

• Evidence Discovery & Surveillance consists of the aggregation and char-
acterization of important and relevant pieces of information out of chaotic
and often agile environments. There can follow other important demands,
such as uninterrupted mining of the information and new knowledge discov-
ery and linking. In 2012 [307], researchers assembled a major collection of
research articles that describe various SC techniques applicable in Surveil-
lance Systems. Among them is the rough fuzzy method for image analysis
and fuzzy rules.

• Forensics Economics targets unusual and illegal patterns in stored or trans-
ferred information by comparing "normal" patterns against questionable ones.
Thang et al. [413] applied fuzzy inference engine was together with Neural
Network to discover firms with fraud status. In this hybrid model, the mem-
bership functions of the features from finance reports and business informa-
tion were used as inputs to construct fuzzy rules and make decisions, further
employing the NN. According to authors, such a model is successful as a de-
cision support system. Several types of credit card fraud were identified, and
the application of neural network was demonstrated by Dukhi et al. [132].
They also suggested that the implementation of rules systems may help dif-
ferentiate between specific types of fraud.

2.2. Cyber Crime Investigations 17

• Forensics Identification works to identify specific objects on a crime scene.
Objects that can be identified or characterized range from DNA blood samples
to documents. Stoffel [402] addressed a problem showing how accurate and
understandable rules can be extracted from forensics data such as robber-
ies and residential burglaries in the region of Lausanne, Switzerland. A
Mamdani-type fuzzy inference system was used for the 70 features of the
dataset. A work by De Vel et al. in 2001 [113] described how the e-mail
content could be used for author identification. In particular, SVM was
used over three authors to classify the 3 classes’ e-mails with 21 features.
Another work by Shrestha Chitrakar et al. in 2013 [101] depicted an over-
view of several ML methods, including Bayes Network and SVN, for author
identification in emails. Both methods showed a strong performance for this
task.

2.2 Cyber Crime Investigations
Digital Forensics, a sub-field of Forensic Science, covers the application of sci-
entific methodology towards an analysis of crimes where information and commu-
nications systems (ICT) are involved. Digital Forensics however specializes only
in the evidence present on the data carriers and computer-like devices that contain
data storage.

Also, there will be an overview later on of the most common cases in Digital
Forensics; since it is predominant in application of SC, we do not want it to shift
the balance of this study. These include Network Forensics Readiness, malware
analysis, etc.

2.2.1 Concepts in Digital Forensics

Digital Forensics has been heavily developed since the end of 1980’s - beginning
of 1990’s, coming as a result of ICT system integration in many aspects of life. In
1934, Edmond Locard (1877-1966) suggested the so-called "exchange principle"
defined by the assumption that there will be tiny traces of evidence found on crime
scenes where in contact with a person or a thing [10]. Similarly, if a computer
system has been involved in a crime as a tool or a target, it would most likely be
reflected in a carrier. There exist a number of best practices and tools that the
community utilizes in Crime Investigation and can be named de-facto standards.
Below, we list those standards, organizations, and tools that have been accepted by
the community during the last decade [75]. It is worth mentioning that most of the
tools use keywords of full text search. We have not yet seen the wide application
of Artificial Intelligence in these tools.

18 State of the Art

Organizations & Education

Despite the fact that departments and local entities have been established in dif-
ferent countries that take over the investigation of cybercrimes, one can still name
internationally-recognized organizations. Their main goal is to offer professional
training in the field of digital forensics, support investigations, and consult law
enforcement agencies. In addition, there are other known resources and entities
devoted to the education of digital forensics practitioners.

• SWGDE (Scientific Working Group on Digital Evidence)2 was founded in
1998 and ensembles expertise from academia, law enforcement, and private
organizations. SWGDE offers a discussion forum, issues best practices and
guidelines, though does not perform any official certification in the field.
They hold annual meetings.

• NW3C (National White Collar Crime Center)3 is a non-profit organization
that offers education in the field of digital forensics. Most of their courses
touch a variety of aspects of Cyber Investigations and economic crimes.

• IACIS (International Association of Computer Investigative Specialists)4 is
another organization devoted to the training and certification of specializa-
tion in computer forensics beginning in 1990. They offer also several types
of certifications.

• SANS Institute (Escal Institute of Advanced Technologies)5 is a private com-
pany located in the USA that has taught information security courses since
1989. They offer a variety of hands-on practice in the areas of memory, mac,
and smartphone forensics. In addition to this, they support the community
and publish various materials that can be of help in Cyber Crime Investiga-
tions6. As of Spring 2017, there are eight 6-days courses in Digital Forensics
offered by this company7

• ENISA (European Union Agency for Network and Information Security)8 is
an organization in the European Union devoted to network and information
security training located in Greece beginning in 2005.

2https://www.swgde.org/
3https://www.nw3c.org/
4http://www.iacis.com/
5https://www.sans.org/
6https://digital-forensics.sans.org/
7https://www.sans.org/courses/forensics
8https://www.enisa.europa.eu/

https://www.swgde.org/
https://www.nw3c.org/
http://www.iacis.com/
https://www.sans.org/
https://digital-forensics.sans.org/
https://www.sans.org/courses/forensics
https://www.enisa.europa.eu/

2.2. Cyber Crime Investigations 19

• DFRWS (Digital Forensic Research Workshop) 9 was started in 2001 in or-
der to create a network for law enforcement agencies, academic profession-
als, and investigators with the goal of discussing modern challenges and
possible. DFRWS happens annually in the U.S. and Europe.

• NIST (National Institute of Standards and Technology) 10 is an agency in
the U.S. that handles the standardization of various aspects of technology
and science. Particularly worth mentioning is "Digital Forensics at NIST"
by Lyle et al. [258] that gives an overview of the projects devoted to Digital
Forensics.

• European Anti-Fraud Office11 offers practical support and guidelines on Di-
gital Forensics Procedures in European Union (EU). In addition to this there
have been established a number of education programs related to Computer
Forensics in EU12.

Current Best Practices

In addition to variety of trainings performed by the companies and organizations
mentioned above, we can also find specific certifications that are currently being
offered. GIAC (Global Information Assurance Certification) was found by SANS
Institute in 1999 and offers the following certifications in a field of forensics13:

• GCFE Certified Forensic Examiner

• GCFA Certified Forensic Analyst

• GREM Certified Reverse Engineering Malware

• GNFA Certified Network Forensic Analyst

Furthermore, there are certifications by IACIS:

• CFCE Certified Forensic Computer Examiner, which was one of the first
training programs, initially introduced in 1998

9https://www.dfrws.org/
10https://www.nist.gov/
11https://ec.europa.eu/anti-fraud/investigations/digital-

forensics_en
12http://www.forensicfocus.com/computer-forensics-

education-europe
13http://www.giac.org/certifications/categories

https://www.dfrws.org/
https://www.nist.gov/
https://ec.europa.eu/anti-fraud/investigations/digital-forensics_en
https://ec.europa.eu/anti-fraud/investigations/digital-forensics_en
http://www.forensicfocus.com/computer-forensics-education-europe
http://www.forensicfocus.com/computer-forensics-education-europe
http://www.giac.org/certifications/categories

20 State of the Art

• CAWFE Certified Advanced Windows Forensic Examiner

• ICMDE Certified Mobile Device Examiner

On the other hand, we can see a number of guidelines, best practices and recom-
mendations. These are created based on previous experience, developed technolo-
gies, and need of the industry. Garfinkel [159] in 2010 sketches the possible needs
and directions that Digital Forensics will require in the next 10 years.

• Best Practices for Computer Forensics by SWGDE [406] (originally from
2005) describes how the equipment preparation, acquisition, and examina-
tion should be performed. The documents contain recommendations of how
the Digital Forensics Process can be properly documented.

• Forensic Examination of Digital Evidence: A Guide for Law Enforcement by
NIST and U.S. Department of Justice [63] covers the procedures of policy
development, evidence assessment, acquisition, examination, and reporting.
The documents contain a number of explanations and examples of case re-
ports.

• A Ten Step Process for Forensic Readiness by Rowlingson [341] from 2004
defines ten pre-emptive steps an organization may take to be able to handle
cyber incidents in a timely manner. It also describes how preparation for
digital evidence collection must be performed.

• ISO/IEC 27037:2012 14 describes different aspects of using digital data for
computer forensics evidence examination.

Benchmark Datasets

Education in Digital Forensics plays an important role in the quality and timeline
of an investigation. Therefore, besides the above-mentioned courses, there also
exist datasets used for training specialists and testing relevant tools. One of these
resources is Digital Corpora15, which includes following data:

• Cell Phone Dumps - different APK files and other examples of malicious
software that can be installed on mobile devices.

• Disk Images - a collection of images ranging from 2008 to 2014, represent-
ing different devices such as iPod and file systems like NTFS.

14http://www.iso27001security.com/html/27037.html
15http://digitalcorpora.org/

http://www.iso27001security.com/html/27037.html
http://digitalcorpora.org/

2.2. Cyber Crime Investigations 21

• Files - "Govdocs1", which is about 1 million different files sorted into 1,000
directories with 1,000 in each. The main idea is to provide the basis for the
forensic analysis of files, including carving and file type detection.

• Packet Dumps contains information about DARPA Intrusion detection data-
sets 1998-2000, which also served as a basis for now obsolete KDD Cup
1999 data contest.

• Scenarios - a collection of Encase E01 and Raw scenarios that include dif-
ferent types of crimes to be practiced with.

As for malware analysis research, the following are two publicly available datasets:

1. VX HEAVEN [20] is dedicated to distributing information about computer
viruses and contains 271,092 sorted samples dating back from 1999. The
taxonomy of the collection includes categories like Trojan and Backdoors,
and also divided by targeted operating system.

2. VIRUS SHARE [17] represents a sharing resource that offers 28,281,360
malware samples mostly unsorted as of Spring 2017. The first archive ap-
pears to be from 2012.

Types & Availability of Handled Data

We describe here another aspect related to data analysis in Forensics Science: the
types of data used in different areas of Information Security. Coming into era of
Big Data places challenges in front of the analyst in the form of multiple data
structures that need to be analysed. Static data seized from the crime scene are no
longer the only type of data involved in crimes. Dynamic behaviour data collection
is a new trend in digital forensics applications such as network traffic analysis.
This means that new knowledge paradigms have been introduced into all fields of
Forensics Science when dealing with data analytics. Therefore, the following data
type’s classification is performed. SC methods will be specified in the next section
according to this classification. Another important reason for this specification
is the unique applicability of each method, since not all of them perform well in
the same data type. According to the studied literature, we can distinguish the
following most common data paradigms:

• Static data / Constant availability represents data that do not change their
quantitative and qualitative properties during analysis. There is usually no
time limitation and CI can use it multiple times.

22 State of the Art

• Dynamic systems / Limited availability takes place when it comes to the in-
vestigation of a crime scene in a dynamic environment or ongoing crimes.
This paradigm considers a live system that has information and where differ-
ent systems state change non-deterministically under the influence of some
external factors. Moreover, such systems aggregate both data streams and
static content. In Digital Forensics, Order of Volatility is applied to preserve
as much valuable information as possible.

• Data streams / Very short availability implies an information "pipe" where
the data changes as a nondeterministic flow and there is limited storage space
to keep the old data. Data streams can be retrieved from various sensors.

Since the data available are raw, feature extraction and selection must be performed
in order to reduce the dimensionality of the analytical models. Additionally, there
might be a need to map raw values into numerical or more appropriate forms for
model constructions. Methods of data pre-processing have to be fast and reliable.
In the case of data streams, the data characteristics will change over time. Further,
5Vs of Big Data suggests that the velocity the size can be mitigated by the hard-
ware and software solutions, while incomplete and unstructured information are
to be handled by the CI methods only. As was studied by Quick et al. [329], the
volume of case data in recent years has grown extremely, meaning that the human
expert has a physical limitation when analysing it manually.

2.2.2 Automation in Investigation16

Cyber or Digital crimes is one of the recently emerging areas in Crime Investig-
ations. It’s emergence caused by the fact that the number of ICT-related devices
is growing exponentially each year with the corresponding growth of the informa-
tion being stored, processed and transferred [197]. In some cases, this leads only
to passive observation of the activities, like malicious software execution, network
traffic monitoring, and logs analysis as depicted in the Figure 2.1. This makes the
process of investigation even more cumbersome and time consuming. Therefore,
there is a need for advanced data analytics based on the compromised indicators
and previously collected historical data.

Digital Forensics process

We refer to the master thesis by Puzyriov et al. from 2013 [325], where the com-
prehensive study of the investigation tools for DF were given. Basically, it shows
the investigation phases used in Digital Forensics that can be mapped to other
Forensics Sciences. As the author studied, the most common eight phases used in

16Ideas of this subsection are published under the contribution [367]

2.2. Cyber Crime Investigations 23

Figure 2.1: A typical way of black box testing for software analysis

DF Investigation process are: Identification, Preparation, Approach Strategy, Pre-
servation, Collection, Examination, Analysis and Presentation [63]. The first four
steps may vary from case to case when considering Forensics Science in general:

• Identification - define the goal of the ongoing investigation, possible sus-
pects and victims.

• Preparation - prepare digital carriers to be seized according to chain of cus-
tody.

• Approach Strategy - specify the instruments and tools to be used in which
manner and how.

• Preservation - preserve digital evidence without its alteration.

Cases may touch DNA samples, fingerprints, economic crimes, etc. Therefore we
do not consider the aspects related to physical presense at a crime scene, since it is
out of the scope of this thesis. Furthermore, we only concentrate on the last four
phases that are considered to be data analytic-related. At this point, SC is con-
sidered as a data-driven approach to facilitate the investigation process as defined
by Franke in the PhD thesis related to signatures verification from 2005 [150].

• Collection implies standard-based collection of evidence and relevant data.

• Examination targets the identification of possible evidence of interest.

• Analysis the most comprehensive and important step in the Investigation.

• Data presentation provides a way of describing found traces in a Court of
Law.

The general perspective of the Digital Forensics process and peculiarities of each
step are given in the Figure 2.2.

24 State of the Art

Figure 2.2: Details of different phases in Digital Forensics Process

Our idea in this work is to utilize the potential of Soft Computing to solve computer-
related crimes. In the Figure 2.3, we have highlighted the fields in each of the
phases that will benefit from SC application. On can see that SC applicability is
limited mostly to phases where there is a need to analyse data, as it incorporates a
family of data-driven approaches.

Figure 2.3: Possible application of Soft Computing for Digital Forensics

Computers in Cyber Crime

Computers have been heavily used over the last decade with the emergence of the
Internet and Software as a Service (SaaS). One can create extensive list of the way
malicious actions and attacks can be performed [296]. Generally speaking, there
are two types of crimes involving ICT systems, computers in particular, according
to classification done by Gordon in 2006 [166]. These crimes have completely
different approaches and require a variety of skills to investigate and mitigate them.

Type I involved computer systems as a tool in Crime such as when stealing sens-

2.2. Cyber Crime Investigations 25

itive data by tricking a user, placing malicious software on the user’s machine to
perform spying or data logging activities, etc. Such crimes have mostly financial
or political interest while instrumenting the attack.

Type II differs from the previous type by the role of a computer system as being the
sole target in an attack. At this point, an attacker or any third party can use social
engineering or exploitation techniques to get access to protected information or
functionality. In this type of cybercrime, goals may angle towards getting profit as
well as performing Type I crimes.

Computational Forensics (CF), also called Computational Criminology is a sub-
field of Forensic Science that uses various scientific methods such as modelling,
analysis, pattern recognition, and data mining to facilitate the Cyber Crime In-
vestigation with the help of methodology that can deliver quantitative results in a
Court of Law. As detailed in the book [151], a number of files that benefit from
CF is given, and includes Printer identification, human identification, shoe prints
analysis, speech recognition and handwriting. Authors of the book analysed the
contemporary state of the art in the field and concluded that artificial intelligence
methods can facilitate Investigations in three ways: (i) better analysis of found
evidence, (ii) improved processing of large-scale data, and (iii) representation of
expert knowledge to be used instead of automated analysis. As a result, we see
that CF greatly benefits Crime Investigation by means of increasing awareness,
speeding up data analysis, and improving understandability of the data.

Toolset

A challenge with digital forensics is also with the growing number of file formats
that need to be carved from the disk properly, taking in mind their headers and
footers. Therefore, one can see an increase in a number of tool used for Digital
Forensics over the last few years. We can notice that the main functionality in-
cludes a string of full-text searches in the image, file carving, and extraction of
erased data. A Master Thesis by Puzyriov [325] describes a way of testing these
tools. The author identified a number of stages in testing methodology required to
verify the tools. Finally, a large number of practical tests were performed using
different tools listed below, as well as a number of datasets reflecting real case
scenarios. Another aspect of the Cyber Investigation is the so-called Order of
volatility [147] that determines the volatility of the data in the computer systems
such as disk files, registers, RAM, etc. The evidence should be collected according
to this order using corresponding tools in order to avoid the loss of any relevant
data independent from location and storage properties.

26 State of the Art

• EnCase17 is a Windows OS-oriented software for digital forensics investig-
ations focusing particularly on analysis and reporting.

• FTK (Forensic Toolkit)18 is forensic software offered by AccessData that is
designed to look through the data on HDD for traces of evidence.

• The SleuthKit/Autopsy (TSK) is a Windows/Linux software that assembles a
variety of command line tools that can facilitate the extraction of metadata,
timestamps normalization, etc.

• SIFT (SANS Investigative Forensics Toolkit)19 is a Ubuntu-based toolkit
that comes as a virtual machine image and can be deployed in a timely man-
ner with already-installed software.

2.2.3 Challenges & Limitations

Despite the advantages and variety of methods for different tasks, we can see the
general limitations of stand-alone methods that make their application challenging.

When dealing with digital forensics case data, it all usually comes down to the ana-
lysis of data collected on the crime scene in a forensically-sound manner. Since
forensics science is a mostly data-driven area of methods, the investigator decides
what methodology should be used and how. There may not be any useful inform-
ation found since manual analysis is limited and can’t overcome the limitations
circumvented by an automated one provided by CI. There have been several stud-
ies conducted by Mitra et al. [285] in 2002 and Karray et al, [216] in 2004 on the
SC models applications involving different types of data used. Though compre-
hensive studies, it does not provide an overall view on the feasibility survey of
SC in Forensics Sciences. Additionally, it can be stated that there are difficulties
in the construction of automated systems such as decision support engines. This
is because of the inexact solutions that SC provides. Franke et al. [150] presen-
ted a view on SC as the most suitable application respective to the increased Big
Data demand and trade-off between required accuracy. Despite crisp decisions, it
provides a rather fast and rough answer involving degree of likelihood of the event
or probability of the actions undertaken. Another challenge is its inability to handle
large-scale and multinomial data analysis problems that would probably result in
rather erroneous results, and is not suitable for application in DF in standard form.

17www.guidancesoftware.com
18http://accessdata.com/solutions/digital-forensics/

forensic-toolkit-ftk?/solutions/digital-forensics/ftk
19SANSInvestigativeForensicsToolkit

www.guidancesoftware.com
http://accessdata.com/solutions/digital-forensics/forensic-toolkit-ftk?/solutions/digital-forensics/ftk
http://accessdata.com/solutions/digital-forensics/forensic-toolkit-ftk?/solutions/digital-forensics/ftk
SANS Investigative Forensics Toolkit

2.2. Cyber Crime Investigations 27

To mitigate this, one of the commonly used solutions that can be found in the
literature is the combination of several stand-alone ML methods with the hope
of mitigating existing weaknesses and enforcing strength and resilience against
errors. This is work towards so-called Hybrid Intelligence (HI). Kamar stated that
the human intellect becomes an inseparable part of such systems [212]. Abraham
gave an overview of the HI employing a fuzzy inference system [40]. Inspired
by this work, we believe that application of HI for Digital Forensics can bring
benefits related to faster data processing and improved understandability of the
decision derived by Machine Learning.

In this subsection, we describe the challenges with the usage of ML for Digital
Crime Investigations.

Human Rights & Privacy Preserving

Human rights denote a set of principles and rights that belong to each human.
When dealing with Crimes Investigation however, several issues and concerns may
arise, especially when applying automated data processing. Saleem [348] invest-
igated the protection of evidence and human rights during the Digital Forensics
Investigation. The authors argued the importance of preserving basic human rights
in the trial guided by a need to guarantee proper evidence handling and follow-
ing the DF process. One of the key ideas is the need to preserve the integrity of
evidence found on a crime scene. Another work by Saleem et al. [349] described
the current state of the art and concluded that some of the published frameworks
lack proper digital evidence protection with respect to human rights preservation.
Another aspect that one should be concerned with is whether automated data pro-
cessing can infringe upon human rights. This comes from the fact that intelligence
methods can be trained using biased historical information or the expert’s know-
ledge. Chen [94] discussed the importance of Computer Forensics and a need for
law to be able incorporate technological advances with respect to human rights
principles.

Privacy is one fundamental human right. Many countries created privacy acts,
which are intended to guard data and sensitive information from being disclosed or
unlawfully used by other parties. Norwegian Personal Data Act [21] describes the
principles of data processing that should also comply with the basic human right
for privacy. The challenge with Digital Forensics comes when the investigation
is performed over the seized data, which may contain some private information
irrelevant to the case. Best practices define so-called access policies for forensics
data: private and non-private [174, 242]. A person involved shall put flags on the
data that are considered his sensitive private information, so the Forensics Invest-
igator has no right to look into such data. However, aforementioned categories

28 State of the Art

may be divided into relevant and non-relevant data meaning that it is user’s choice
to whether the data has to be collected if it is relevant and private with respect to
his right for privacy. This may be hard to deal with once an investigator employs
automated data processing methods such as Machine Learning. On the other hand,
this creates a way for cyber criminals to use variety of data encryption solutions,
resulting in the crime investigation failing to retrieve any data at all [72, 445].

Ethical Issues with Machine Learning in Digital Forensics

Another concern has to do with the extent Machine Learning can be used for de-
cision making in Digital Forensics Investigations along with human expert skills.
It might be infeasible to perform manual analysis by a human expert, even taking
into account the human resources of considerably big investigation departments
and law enforcement agencies [1]. We can see that ML can be used as a decision
support mechanism. Right now there are debates about the usage of automated
analysis of the data in Digital Forensics [204]. Because of such difficulties with
the complexity of the Big Data, the utilization of human resources becomes less
efficient. However, evidence should still be presented to the Court of Law so as to
clear one or another side. This means that if the data analysis cannot be performed
by human resources, the computer data processing power and ML should take
place to do the routine job in a faster manner. As an alternative method for Ana-
lysis and Representation of the Digital Forensics Process, we consider AI, which
is a set of methods for analysis and learning from data in order to make a decision
or represent the data in human-understandable way.

Advantages of ML usage in Digital Forensics

1. ML can help humanity by processing large-scale data. There are may pro-
spective studies that show that AI is a powerful tool that can help mankind
simplify life. One fascinating example is the British theoretical physicist
Stephen Hawking whose voice is completely generated with the support of
an AI engine developed by Google [28]. So, as AI helps in such complicated
problems related to everyday life, it can be suitable for a narrow data ana-
lytic as well. This statement is supported by a new technology based on AI
developed at Facebook AI Research lab20 that will help users in Facebook
guard their privacy and sensitive information [317]. AI seems to be useful
from a moral and ethical perspective in maintaining mankind’s wealth, and
can be ethically used for Digital Forensics. Finally, Hallevy adds to this
argument through the extensive study in his book "Liability for Crimes In-
volving Artificial Intelligence Systems" [176], in which he argues that AI

20https://research.facebook.com/ai

https://research.facebook.com/ai

2.2. Cyber Crime Investigations 29

can be plausible in imposing the liability of the AI methods in trial process.
Yet the main point was that the legislation system has to comply with mod-
ern technologies along with the secular statutes. Thus, the human cannot
be replaced by the machine or AI to make a decision regarding law-related
issues. At this point not all data analysis tasks in Digital Forensics may be
solved by human expert. Therefore, it is simply necessary to apply advanced
automated techniques in order to extract some of the meaningful evidence
from Big Data in order to be presented in a Court of Law.

2. Human experts can do more important jobs than solving complex data ana-
lytic problems that can be automated. The challenging situation arises when
it comes to the decision whether the analytic work should be done manually
with a higher degree of accuracy, or automatically with higher processing
speed, though even a hard working analyst can miss important clues that
lead to vital evidence. According to author [100] working hard and working
ethically are quite different things. Following this we can state that human
workers can misuse work and do unethical things like claiming to have per-
formed more work than was actually done. At this point, AI works as it was
programmed, and provides results which can avoid ethical problems since it
is usually a deterministic automaton.

ML can be used as a methodological approach if they are accepted and fol-
low Daubert Standards. Daubert Standards describe testing models and in-
terpreting them according to the stated requirements [146]. As law is estab-
lished in a set of commonly accepted and discussed rules, Cyber Crime In-
vestigations are based on these rules, and corresponding investigation meth-
ods are developed. Thus, one can refer to the legal precedent in the USA in
1993 that caused the emergence of the so-called Daubert Standards. These
standards define whether the testimony and derived evidence can be accep-
ted in a Court of Law as valid. The first criterion defines whether a method
is based on a testable hypothesis. It can be said that ML methods such as
classification are based on the hypothesis, while those based on the data
automatically make a decision whether to accept or reject a null-hypothesis.
The second criterion outlines that the error rates should be known for pur-
poses of the scientific method. The third criterion requires the ML method
to be peer-reviewed. As ML is actively developing and testing new meth-
ods and applications, there are plenty of publications on ML methods with
results for different areas that can be referenced. Finally, the fourth criterion
states that the scientific methods have to be accepted in the community. The
main problem lies in the need to present data analysis in a "forensically-
sound manner" as mentioned by [275] without changing the original data

30 State of the Art

properties (changing evidence). Most of the existing methods generate a
large number of rules that do not comply with Daubert Standards and do not
provide a reliable human-understandable model. When dealing with case
data, it usually comes down to the analysis of data collected on the crime
scene in a forensically-sound manner. Forensics science is mainly concerned
with data-driven methods, so investigators must decide what methodology
should be used and how. Since a manual analysis is limited and in many
cases cannot compete with an automated one provided by ML, one might
not be able to find any useful information through its use.

Considering arguments for use in a cybercrime investigation, we can say that the
numbers 2 and 3 are the strongest points for use of AI methods. Other points can
be eliminated since they do not influence ethical decisions in bringing results and
making decisions affecting human destiny.

Disadvantages of ML application in Digital Forensics

There are several strong objections to using the ML methods. Despite the fact that
such applications may bring many benefits and are scientifically accepted, we can
name multiple issues related to AI that put a big question mark on its place in the
investigation process.

1. ML methods may fail to outperform human. Beginning at the end of 1960th
the enthusiasm for application of AI in different spheres of a human life
waned. That period denoted a so-called "AI Winter" that has lasted until
now [23]. Persistent failures questioned the new technologies and reviewed
them under new and more aggressive assumptions, revealing that AI may
work under some very specific and sometimes unrealistic constraints.

2. Legislation-related positions cannot be automated and require human ex-
pert. The first major considerations regarding the place of AI in human
life were laid by Joseph Weizenbaum in his book "Computer Power and
Human Reason: From Judgment To Calculation" [435]. In his work, he
distinguished two main activities in decision making process, which are in-
herent to both humans and AI: deciding and choosing. Deciding mainly
includes AI activity that is based on some previous information and prior
factors. Choosing can be performed by human and also implies the involve-
ment of some moral factors rather than the use of purely historical data.
Weizenbaum stated that above all, the human-occupied positions of judge
and police officer cannot be replaced by a computer intellect. There are
however at least two successful applications of ML in Crime Investigations.
The branch of AI, Soft Computing, was used in face recognition based on

2.3. Machine Learning & Advanced Analytics 31

the fuzzy position of people’s heads in photos [109]. Another one is a tool
called COPLINK21 that employs AI to help police officers to find suspects
in a particular crime in a particular geographic areas.

3. ML methods result in hardly-explainable solutions. The results may be poor
and hardly explainable as it happens with Artificial Neural Network or Ge-
netic Algorithms. In these methods, nature-inspired and human brain-alike
analogies were used. The results from such methods however are almost
impossible to interpret by humans and give in an understandable format. If
it is so, it can cast doubt the AI decisions to be moral with respect to the
direction of human destiny. In order to overcome this challenge, the Hybrid
Intelligence (HI) takes places making advanced AI methods more under-
standable. For example, Artificial Neural Networks (ANN) can be combined
with Fuzzy Logic to creates Neuro-Fuzzy methods. Such methods provide
simple human-understandable rules to describe the decisions made by ANN.
Thus, the above-mentioned objection can be easily mitigated by HI.

Summary. To summarize, the use of ML methods have no moral issues in cyber-
crime investigation make the world a better and safer place, yet it should not take
over control of important aspects of everyday life from humans. We can say that
the Computational Forensics can be used as a valid set of scientific methods that
comply with Daubert Standards and provide reliable, human-understandable res-
ults. Thus, the hypothesis defined earlier is accepted. The complex data analysis
problem can be solved with the help of AI methods. It should be clearly stated
however that one can consider moral the actions done by AI as long as they do
not perform self-evolving movements uncontrolled by humans. This is a crucial
factor, since right now humans possess higher intelligence over others that allows
for ruling the world and controlling the global process. The AI cannot decide for
people, but it is ethically good to support a decision of the criminal investigator to
speed up the process and reveal as much evidence as possible on the seized data
carriers. Additionally, when the methods are approved by communities and well-
tested, they can be easily used without any additional inventions as long as they
perform deterministic actions on the presented data in a human-understandable
way.

2.3 Machine Learning & Advanced Analytics22

Machine Learning (ML) is a sub-field of Computer Science and describes the abil-
ity of a machine to learn from previously collected data (experience) E over the

21http://www-03.ibm.com/software/products/en/coplink
22The main ideas of this section are published under the contribution [367]

http://www-03.ibm.com/software/products/en/coplink

32 State of the Art

same defined set of problems T and the performance attribute P with the inevit-
ability that over the time P is improves. This is also called a well-posed problem
according to Mitchell [284]. There exist several fundamental tasks that CI can
solve as stated by Fayyad in 1995 [144]. Each specific method is applicable for
a particular task, which means that the corresponding guidelines on correct ap-
plication can be built upon. According to this, we can state that CI solves the
following problems, including their overlapping based on historical information or
information derived from a case:

• Classification arises when the data has to be separated into groups based on
their properties.

• Clustering aggregates data samples according to the similarity in properties
without any prior information about the groups.

• Regression / Forecasting makes a statement about a future or unknown event
considering available historical information.

• Rules learning / associated rules extracts common characteristics of groups
of data samples and represents them in a general form suitable for other
needs.

• Optimization gives an opportunity to look for an optimal solution based on
different criteria and defined constraints. GA and SI are considered to be
meta-heuristic optimization methods where the information is inaccurate or
incomplete.

Generally speaking, all methods use the following routine depicted in the Figure
2.4 also describe by Kononenko et al. [232]. At the same time, we have to differ-
entiate between general Statistics and Machine Learning. Statistics is intended to
help represent and interpret given data in order to understand the properties for a
proper selection of the Machine Learning method [85]. At the same time, this pro-
cess can also be called data modelling using a specific function and corresponding
tests to validate the correctness of the model [153]. Contrary to such modelling,
Machine Learning offers "algorithmic modelling", where the model is known, yet
during the learning process one seeks to find the best function that fits the data
according to the defined algorithm. When it comes to real world data analytics
however, we have to rely on preliminary data analysis using Statistical methods
for a proper selection of the ML methods and corresponding hyper-parameters.

Depending on the task to be performed, we can separate between two main stages:

2.3. Machine Learning & Advanced Analytics 33

Figure 2.4: Dataflow in a general Machine Learning approach

Training - a process of fitting the model to data under specified performance meas-
ures, showing ability of the model to represent the given raw data.

• Data preprocessing - a process of transformation of raw data/characteristics
(like network traffic, software analysis, log) into a format suitable for further
processing.

• Feature construction - a set of methods to construct features and select the
most relevant and non-redundant features

• Model selection and training - ML algorithm has to be selected with specific
parameters tuned and ready for training according to the defined ML task.

Testing - a process of model evaluation against new samples to find out a particular
group it belongs to or forecast unknown parameters.

• New data arrival - a new raw data that needs to be converted using routing
defined in the Training’s first stage.

• Features evaluation – an evaluation of the new data against a set of crafted
features.

• Classification / Regression - a model that takes previously evaluated features

In reality however, the mentioned above scheme comes to a more advanced data-
flow that requires (i) relevant expertise and (ii) data to be able to generate a model
capable of delivering the required performance on given historical data. Therefore,
it is important to understand that the correct application of ML to solve data ana-
lysis problems requires proper utilization of each particular method as shown in
the Figure 2.5. This is the key factor when we consider not only the performance
but also the trade-off between accuracy, complexity, and computational time.

34 State of the Art

Figure 2.5: A overview of the possible methods to be used in a general ML approach

2.3.1 Hard & Soft Computing

Starting from the 1990’s in the literature, we can see a specific separation between
the methods into newly formulated Soft Computing and conventional Hard Com-
puting according to work by Zadeh [455]. In this work, the author presented a
paradigm of human-alike computing capable of handling mistaken and missing
data by generating models with inexact solutions. Zadeh advocated that Soft Com-
puting may help people to solve data analysis problems related to real-life, where
it is important to produce human-understandable reasoning of the decision making
process given by ML methods. Below, we present the weaknesses and strengths of
both paradigms considering all ML methods [7, 232].

Hard Computing is a conventional paradigm, where exact values of the para-
meters are used to produce a model describing the data. It is also called precise
learning or classical artificial intelligence [304]. Advantages: produces high ac-
curacy data models; precise answers to defined questions; deterministic; operates
with binary logic (TRUE or FALSE) only. Disadvantages: requires manual tun-
ing of the parameters of the model; mostly sequential learning; cannot be used for
real-world raw data analysis; large computational requirements. Methods: C4.5,
Random Forest, Random Tree.

Soft Computing introduces approximation by utilization of inexact solutions in

2.3. Machine Learning & Advanced Analytics 35

data modelling. This set of methods can also be named as computational intel-
ligence since here we are dealing with tolerance and a trade-off between model
understandability, generalization and imprecision. The foundations of the SC and
Fuzzy Logic in particular were studied in depth by Zadeh starting from 1960th.
From the literature review we can say that there are several SC methods that
already found an application in Forensics Science. The following groups of meth-
ods were selected. PROBABILISTIC MODELLING (PM) is a set of methods that are
capable of solving multiple tasks, including explanatory data analysis, especially
when dealing with uncertainty [310]. Moreover, PM provides a flexible support in
an understandable way for decision making systems. Next important group is AP-
PROXIMATION, which covers methods capable of learning a model from data that
is an approximation of given properties [26]. Moreover, SC can not only offer reas-
oning and inference, but also optimization, in particular METAHEURISTIC. It gives
a wide range of methods that can provide mathematical optimization. We can see
that SC contains a variety of methods that can automate evidence processing and
analysis. Advantages: handles real-world data with mistaken or erroneous attrib-
utes; accepts partial truth (whole interval [0;1]); low computational cost in addition
to ability to apply parallel optimization; linguistic human-understandable answers
can be derived. Disadvantages: can produce lower precision models while dealing
with data interpolation and mistaken or noisy entries; may require precise para-
meters tuning involving human expert. Methods: Naive Bayes, Bayesian Network,
SVM, ANN, FL.

Publicly Available Tools

Today, machine learning is widely used in many areas of research, and the use of
already made tools (Software products, libraries etc.) is an important part of ML
usage.

Weka or Waikato Environment for Knowledge Analysis is a popular, free, cross
platform and open source tool for machine learning. It supports many popular ML
methods with possibility of fine tuning of the parameters and final results analysis.
It provides many features such as dataset split and graphical representation of the
results. As an output, it uses .arff file format which is specially prepared CSV
file with header. It has several shortcomings: no multi thread computations, and
problems with big dataset because of badly optimized memory usage.

Python Weka wrapper is the package which allows the use of Weka from the
Python programs. It uses javabridge to connect Java-based Weka libraries with py-
thon. It provides the same functionality as Weka, but allows the better automation
of the research process. The author maintains the community where everybody
can get fast and useful help.

36 State of the Art

LIBSVM and LIBLINEAR are open source ML libraries written in C++ and that
implement kernelized support vector machines for classification and regression,
and linear SVM. Bindings for Java, Matlab and R are also present. It uses space-
separated files as input, where zero values need not to be mentioned.

RapidMiner is a machine learning and data mining tool that is present in free and
paid versions. It provides usable GUI with support of a lot of ML and data mining
algorithms.

Dlib is a free and cross-platform C++ toolkit with support of many machine learn-
ing algorithms. It supports multi-threading and has Python API.

2.3.2 Decision Support using Binary & Fuzzy Logic

The construction of rules has been an inevitable part of the decision support pro-
cess, where expert knowledge can be transformed into mathematical terms [337].
There are several approaches for how the decision rules are built depending on
available data and required form of the decision. Below, we give an insight into
the origins of Binary Logic and Fuzzy Logic and why it is important to have a
concept of partial truth. For the simplicity of the concept explanation, let’s con-
sider an example where we need to infer the Feeling f1 measure of whether to be
outside on the street or not, based on the Temperature t1 as one of the variables.

Binary Logic is classical logic from Boolean algebra that operates with truth
measures that are either completely FALSE (0) or completely TRUE (1) [297][Chapter
3]. This type of logic is also used in Computer Systems. It is likened to a simple
switch that can have two states: either OFF (0) or ON (1). Such logic is simply
reproducible by any trigger elements based on vacuum lamps or transistors. To
create the example of the rule is given below:

IF t1 = 10C THEN f1 = Cold (2.1)

Where t1 is a numerical independent variable that is explicitly compared with a
the exact numerical value of the temperature. Furthermore, if the statement in the
antecedent part IF of the rule is True, then the consequent part THEN defines
value of dependent variable f1. One can see that in case of multiple variables and
the presence of specific intervals in the independent variable, the construction of a
large amount of equations may be required to be able to make a decision properly.

MODEL STRENGTH: avoids ambiguity and offers low computational complexity.

MODEL DISADVANTAGE: incapable of handling real-world data since the result-
ing model is too complex to be utilized.

Fuzzy Logic is a concept of logic building under the assumption that the truth can

2.3. Machine Learning & Advanced Analytics 37

have a partial value. In contrary to classical Boolean logic, Fuzzy Logic operates
with the whole interval of truth values [0; 1] instead of binary FALSE (0) and
TRUE (1). This is possible because of the concept of degree of truth or partial
truth that was described and introduced byZadeh [455]. The general form of the
Fuzzy Rules is as following:

IF t1 ∈ LOW THEN f1 ∈ Cold (2.2)

One can see a similarity to the conventional decision rules, while the difference
is that the numerical input variables are checked against specific terms of fuzzy
sets rather than single crisp numerical values. So, basically a numerical variable
is transformed into a linguistic variable. This linguistic variable represents a fuzzy
set with a finite defined number of linguistic terms. Each of the terms reflects a
specific range of numeric values from the input variable. The overall process of
fuzzy rules application by multiple steps is shown in the Figure 2.6, while the steps
are described below.

Figure 2.6: Fuzzy Logic process

1. Data collection includes the process of the collection of data characterizing
a particular object or event to be able to extract mean values according to
the central Limit Theorem [434].

2. Exploratory analysis covers the discovery of statistical properties of the tar-
get variable based on the historical information to establish a baseline.

3. Fuzzification is the transformation of a crisp numerical variable into corres-
ponding linguistic terms of an arbitrary fuzzy set as shown in the Figure 2.7.

4. Fuzzy rules creation is the process of locating multi-variable dependencies
in the fuzzified data in order to establish an IF-THEN relationship expressed
in linguistic terms.

5. Rules selection defines the process of eliminating irrelevant and redundant
fuzzy rules to reduce the complexity of the model.

38 State of the Art

Figure 2.7: Comparison of crisp and fuzzy sets

6. Fuzzy inference describes a general process of transition from input crisp nu-
merical parameters to fuzzy output variables such that class values of other
linguistic attributes. This is done via evaluation of the rules in parallel.

7. Defuzzification is a specific process of mapping from linguistic terms back
to crisp numerical attributes in the output layer.

8. Decision making is a controlled approach of the utilization of fuzzy rules for
taking one or another action based on the numerical input parameters.

MODEL STRENGTH: handles real-world data, human-understandable, with a high
degree of generalization.

MODEL DISADVANTAGE: requires manual tuning with the parameters carefully
chosen to avoid under- or overfitting.

2.4 Use Cases in Information Security & Forensics
Over the years, researchers have developed a number of applications of Soft Com-
puting to solve and mitigate different problems not only in Digital Forensics, but
also in Information Security in general. Below, we give general examples of the
problems and possible stages where it is important to apply Computational Intel-
ligence, Soft Computing in particular, in order to gain understandability and the
ability to classify traces of evidence automatically. The general domains that can
benefit are listed below.

2.4. Use Cases in Information Security & Forensics 39

2.4.1 Windows Malware Analysis23

Taking into consideration the history of Windows malware beginning with the
2000’s, we can see that this is the period where most of the modern malware cat-
egories were discovered in addition to an almost exponential growth in the number
of Windows malware. In the first place, the proliferation was a result of the pop-
ularity of Windows NT families and its universal application in both private and
public sectors, and critical and entertainment infrastructures. According to the
study [247], around 80-95% of ATMs in the world still run Windows XP 32bit,
which can have a large number of exploitable vulnerabilities. To tackle this, Mi-
crosoft forces banks to upgrade to Windows 8, though this might not be a realistic
option due to transitional costs and the need for future support. Despite some se-
curity fixes, the Windows NT family was under attack due to outdated installed
software like Internet Explorer 6 and unpatched versions of the OS. Around 2005,
there was a peak of malware developments for Windows NT family considering
the usage of IE 6 & IE 7 explorers [9]. One of the main reasons for such a tendency
lies in user negligence and unawareness about security problems in Windows, as
well as novel approaches used by attackers to trick consciousness by any means.
There are general purpose systems as well as mobile- and server-specific editions.
We can see from Kaspersky Security Bulletin [102] published in 2014 that despite
the new versions of Windows 7 and 8, many users still use Windows XP. Moreover,
majority of such users use 32 bit versions of the OS. More specifically, Windows
XP Pro was installed by 23.7% users and Windows 7 and 7 Home by 19.74% and
5.96% respectively. The usage of Windows 8 was still under 5%, which can be
explained by overall usage of Windows XP not only by home users, but also in
corporate environments and marketing as well as some critical infrastructure such
as power plans and backing systems. The official support of the last one ended
on April 8th, 2014, forcing users to upgrade to the next versions according to the
official Microsoft page [30]. According to a recent study by Net Market Share in
September 2015, the overall usage of Windows XP went down to 12.21%, while
Windows 7 shares as many as 56.53% of installations [388]. The 64 bit (x86-64)
architecture is out of scope because its relative novelty (XP and Vista first offered
full support) and predominance among software written for them. Most malware
still use x86 architecture in order to be compatible with older OS versions. Ac-
cording to the survey, the number of installations of Windows XP 32 bit in 2010
exceeded 99%, and Windows Vista 32 bit almost 89% [244]. Additionally, it is
sometimes impossible to port old 32 bit libraries and executables to a 64 bit ver-
sion due to lost source code or tuned functionality. Finally, MS-DOS executables
and 16 bit binaries are out of our scope. All malware can be separated into different

23The ideas of this subsection are published in the contribution [382]

40 State of the Art

categories based on their functionality, targets, and goals.

Malware or malicious software is a piece of software whose intention is to bring
harm to a computer system or its users. It includes unauthorized access and the al-
teration and misuse of the information. However, malware can belong to different
categories based on their functionality, targets and goals. Generally speaking, we
can name the following categories of malware based on their internal functional-
ity [79, 136, 217, 316]:

• Boot and file viruses started appearing from the end of the 80’s and caused
much harm to Microsoft OS, including early versions of Windows 3.1, etc.
The systems were not designed to be intrinsically secured, so this caused a
raise in number of adversaries.

• Macro viruses targeted earlier versions of Microsoft Office products, in par-
ticular exploiting the usage of macro languages. Recent versions of MS
Office such that 2003 are more protected against such malware.

• Mail viruses and worms became popular with wide development of the In-
ternet in the early 2000’s when attackers attached different types of files
containing malicious payloads.

• Network viruses and worms gained popularity in the middle of the 2000’s
when adversaries exploited different vulnerabilities and weaknesses in net-
work protocols to gain access to systems.

• Spyware is software that targets information collection about a particular
person or organization in a covert way. It can include various aspects of
everyday computer usage, etc. A common way of distribution is through old
versions of Internet Explorer.

• Rootkits and RATs are more sophisticated malware angled toward gaining
remote access to a computer. We can see that many Advanced Persistent
Threats succeed due to infection by a Trojan that installed the RATs.

• Scareware or more correctly extortionware intends to scare a user in case he
uses unregistered software and explicitly forces him to download potentially
malicious program that is described as having benign functionality.

• Ransomware blocks the user’s system and requires a particular payment to
unblock, stating ‘legitimate’ reasons.

• Data stealing Trojans became recently popular since users tend to access
multiple resources in a cloud via a browser, which means that most of them
store their credentials in the settings.

2.4. Use Cases in Information Security & Forensics 41

There are many ways malware infects the computer, however the human factor
plays a crucial role in this process [136] as presented in the Figure 2.8. An example
of a general infection that one can get through the Internet is given below:

1. A user request believed-to-be-benign file from some server or web-site that
looks legitimate.

2. Request is redirected to a malicious server. This can happen when the re-
source being requested is hacked or an attacker owns this resource.

3. File that is return to user contains malicious payload or is a malware itself
and user installs it in the system, possibly granting high-level privileges.

4. Sensitive data are transferred or modified (depending on the attacker goal)
and then sent from the infected computer or devices.

5. An attacker has reached their goal by accessing the data or performing some
other malicious activity.

Figure 2.8: A general scheme of malware distribution on the Internet

Moreover, there exist a number of different platforms that can be infected, such
as Windows (32 or 64 bits), Linux, OSX, Android, etc. As a result, the range of
vulnerabilities and possible attack vectors is even larger when ICT system includes
multiple devices with the aforementioned architectures.

To combat malware, there exist several commonly-accepted detection approaches
including signature-based misuse and behavioural-based anomaly detection [196,
265]. These signatures can be MD5 hash sums of the files or more specific sys-
tem artifacts, e.g. function calls, traces or specific stored information in the re-
gistry. Such signatures are very specific and are maintained mostly by malware
analysts or reverse engineers. The antivirus software is hardly able to deal with

42 State of the Art

a dynamically changeable and proactive environment when using signature-based
detection [110]. The main reason is that the signatures are composed manually, and
therefore have little chance to deal with the possibilities of malware polymorphism
and other obfuscation techniques. By using Machine Learning (ML) technologies
over manual signature composition, generalization ability can be achieved when
building detection rules. At the same time, we know that the Neuro-Fuzzy system
has been used for defeating malware before [54]. So, we can see that malware de-
tection and protection in the dynamic environment requires an intelligent approach
to be able to mitigate risks related to data breaches.

Furthermore, a number of malware analysis techniques were developed in the years
before 2010 according to Kendall et al. [221]. In this work, we target static proper-
ties analysis for malware executables. We believe that such methods have a lot of
benefits when it comes to large-scale fast analysis of software samples using ML
techniques. Additionally, there is a natural proclivity for attackers to stick with
detection-evasion techniques that are usually used to prevent dynamic and static
behavioural analysis, i.e. debugging, execution in virtualized sandboxes, etc. as
studied by Marpaung et al. [265]. Moreover, static properties analysis does not
require the installation of a specific OS or software, and is not influenced by the
variety of software versions. Moreover, some of the tools for static analysis are
already available in the OS, though there might be some limits to which static
analysis still helps to differentiate goodware from malware according to Moser et
al. [288]. Also, this type of analysis requires a lower amount of effort to build
an environment, and eliminates a need for DMZ or other environmental precau-
tions. From the literature review, we can see that many researchers investigated
a variety of static characteristics, with the possibility of applying ML methods in
mind. There is yet however no extensive evaluation of ML methods using the same
datasets. In most cases, authors use small-scale, manually crafted collections of
malware and goodware that are not scalable. Moreover, we can see that many
works focus only on a single feature construction method and do not compare it to
others. Thus, there is a lack of comparative studies of ML-based static malware de-
tection. There are several ways of performing malware analysis depending on the
types of characteristics and corresponding tests. We can highlight the following
main approaches in malware analysis [221]:

• static properties analysis aims to study characteristics of malware files without
executing them. Different aspects of files can be investigated, such as head-
ers, possible encrypted parts, present strings, bytes, opcodes, and API n-
grams, Portable Executable header features, strings, and others [167, 356,
422, 452].

2.4. Use Cases in Information Security & Forensics 43

• dynamic behavioural analysis considers different parts of the executed mal-
ware sample influence of difference factors present in the target system as
shown by Kendall et al. [221]. Multiple activities such as network traffic,
registry keys and disk usage patterns, API-calls and instruction tracing, and
memory layout investigation are explored to find what differentiates mal-
ware from non-malware according to Egele et al. [134]. To collect such
information, one can use either specialized sandboxes like Cuckoo [170] or
utilize any Virtual Machines such as VirtualBox accompanied by monitoring
software.

The big concern about executing malware by means of dynamic behavioural and
static behavioural analysis in a safe environment is the possibility of evasion.
These two analysis methods unfortunately are susceptible to evasion by malware
that are aware of execution conditions and the computing environment. According
to Lastline Labs [240] there are several common approaches used in malware. The
most common is environmental checks, which malware performs before executing
a malicious payload. These can be checks of virtualized environment indicators
like QEMU, IP addresses, attached disk storage, etc. As a result, malware will in-
tentionally prevent itself from executing in a set of sandboxes. Another approach
is so-called stalling code that malware developers employ to delay the execution
exploiting time constraints of automated malware analysis in virtualized environ-
ments. To simplify the data extraction routine from PE, multiple tools have been
developed to assist the analysis. We consider only tools used to deal with PE file:

1. PEFRAME [57] is an open source tool specifically designed for static ana-
lysis of PE malware. It extracts various information from a PE header ran-
ging from packers to anti debug and anti vm tricks.

2. PEFILE [87] is a multi-platform tool for Python used to discover various fea-
tures, from PEiD signatures to detection packers, crypters, and compilers[12].

3. PE STUDIO [13] used to perform Malware Initial Assessment, delivering
initial indicators in human-friendly format, virus detection using Virus Total,
exploration of embedded items, etc.

4. IDA PRO [185] is a multi-processor disassembler and debugger used to gen-
erate assembly language code from machine executable code.

5. EXIFTOOL [179] is a multi-platform command line tool for reading metadata
from different types of files, including exe and dll files, which are commonly
used by malware developers.

44 State of the Art

6. HEXDUMP is a standard tool available through command line in Linux and
is used to display a file in specific format like ASCII or one-byte octal.

7. OBJDUMP is a standard tool available through command line in Linux. It
shows variety of information related to used instructions, addresses, etc.

Static analysis covers a range of techniques to dissect malware samples and to
gather as much information as possible without executing the file. One of the com-
monly used tools is the VirusTotal [18] online scanner described by Seltzer [457],
which provides output from different scanning tools, and also checks the submit-
ted sample against 65 anti-virus databases and then gives the detection ratio as
well as the names that each vendor has labelled the sample with. Another is the
PEframe [57] that is able to detect packers, anti-debug, and anti-VM techniques as
well as URLs and filenames used by the sample. PEframe and strings are some-
what redundant, the different tools can yield different information as, i.e. PEframe
gives better structured output. Reverse engineering is a growing discipline that
performs this dissection thoroughly in terms of using software to generate the as-
sembly instructions and then be able to determine the actions that sample performs
on a system as given in the Malware Cookbook by Ligh et al. [251]. We will
not use this approach in our work however. Due to increasingly used and more
complex obfuscation techniques, static malware analysis is becoming increasingly
difficult to perform, as studied by Gavrilut et al. [160] and Idika et al. [196]. The
biggest advantage of static analysis methods however are that they are consider-
ably quicker, making it scalable and environment-independent.

Additionally, some services are provided online such as VIRUS TOTAL [18] that
includes (1) analysis reports from different anti-virus vendors with detected mal-
ware names, (2) file and exif metadata, (3) comments on a particular file. However,
the collected detection information might be subjective due to false positives.

After the preliminary literature study, we performed an extensive review of relev-
ant scientific works. First, we concentrated on the malware categories applicable
to Windows NT OS family and described existing malware analysis techniques.
Then, an in-depth overview of static malware characteristics was given, includ-
ing corresponding feature construction methods. Furthermore, we created a tax-
onomy based on the comparison of the used cases of ML methods, which will be
given with guidelines for usage and utilization of available implementations. In
the second part of the work, we gave a tutorial on how these methods are applied
in real case large-scale scenarios based on the publicly available datasets for both
malware and benign software collected from Windows OS (XP, 7, 8, 10). Later on,
collected data will be pre-processed, static features will be extracted and ML meth-
ods will be applied. Finally, we discussed applicability of each particular method

2.4. Use Cases in Information Security & Forensics 45

based on the achieved accuracy. So, this work contributes as a survey of the ex-
isting state of the art in malware analysis using machine learning. We believe that
static analysis has great potential and can facilitate large-scale malware detection.

It is difficult to determine exactly who wrote a computer virus due to various reas-
ons, including the difficulty of tracing back to the developer. On the other hand,
many laboratories and other enthusiasts extract and share recent malware samples
on the Internet for community or research interests. We would like to mention the
two following publicly available datasets for Windows malware that we are going
to use in our research as per October 2015:

1. VX HEAVEN [20] is dedicated to distribution of information about the com-
puter viruses, and contains 271,092 sorted samples dating back from 1999.
The taxonomy of the collection includes categories like Trojan and Back-
doors and is also divided according to their targeted operating systems.

2. VIRUS SHARE [17] is a sharing resource that offers 23,626,011 malware
samples mostly unsorted. The first archive appears to be from 2012.

Additionally, we can mention tools that are used to collect recently appeared mal-
ware on the Internet based on daily updates from different sources. One of the
tools that can be used to harvest malware as well as categorize them is MAL-
TRIEVE [269]. The advantage of this tool is that there is a high chance of obtain-
ing a malware that has been recently developed, yet the amount of malware and
collection speed is slow compared to the earlier dumps referred to.

Dynamic behavioural malware analysis can be done either by using Sandboxes or
Virtual Machines accompanied by a debugger or other watchdog software. There
is also a likelihood of revealing an internal functional logic. Contrary to this dy-
namic, static analysis may fail to identify malicious logic because of the absence
of execution. It can be seen that multinomial malware detection by static analysis
may give either non-accurate or very complicated decision models as described by
Shalaginov et al. [381]. Therefore, we believe that behavioural characteristics can
be a better option for multinomial malware classification. Furthermore, the applic-
ation of Soft Computing methods as shown by Grini et al. [167], a field of Machine
Learning (ML), can result not only in accurate, but also human-understandable
models.

Static Characteristics of Windows PE Files

A literature study was performed with the intent of understanding how static mal-
ware analysis can create a synergy with Machine Learning methods to automate

46 State of the Art

detection. Since the field of Machine Learning is broad, many authors use their
own unique set of methods to perform classification. Therefore, we first we focus
on the common static characteristics and later go into the details of the methods
and their relevance to different characteristics. The PE file format was introduced
in Windows 3.1 as PE32 and further developed as PE32+ format for 64 bit Win-
dows Operating Systems. PE files contain a Common Object File Format (COFF)
header, standard COFF fields such as header, section and table, data directories and
Import Address Table (IAT). Beside the PE header fields, a number of other static
features can be extracted from a binary executable such as the strings, entropy, and
size of various sections.

As outlined above, a number of works have been developed that use PE32 headers
a basis for static analysis. Blount [82] explored the application of a rule-based
classifier to extract fuzzy rules for malware detection on 3,401 malware and 3,373
goodware samples. It showed a strong performance of fuzzy rules based on PE32-
based features. Markel et al. [264] used PE32 header data in malware and benign
files detection by Classification Tree, Naive Bayes, and Logistic regression. Au-
thors achieved a 0.97 F-score on binary classification. Furthermore, Shankarapani
et al. [385] applied a PE file parser to extract static features for similarity analysis
of trojans, viruses, adware, and spyware. Overall, 1,593 samples were acquired for
binary classification. As for multinomial classification, there are few works worth
mentioning. Zhang et al. [458] explored binary classification of 450 samples of the
trojan and worm virus subsets against benign files using 2-gram analysis of binary
values in PE file. Other work was done by Rieck et al. [333] who studied 14 dif-
ferent malware families extracted from 10,072 unique binaries. Authors achieved
on average 88% accuracy of family detection using separate binary SVM.

To be able to apply Machine Learning to PE32 files, static characteristics should
be converted into machine-understandable features. There are different types of
features depending on the nature of their values such as numerical that describes a
quantitative measure (can be integer, real or binary value) or nominal that describes
a finite set of categories or labels. An example of the numerical feature is CPU (in
%) or RAM (in MB) usage, while nominal can be a file type (like ∗.dll or ∗.exe)
or API function call (like write() or read()).

1. n-grams of byte sequences is a well-known method of feature construction
utilizing sequences of bytes from binary files to create features. Many tools
have been developed for this purpose, such as hexdump [268] which cre-
ated 4-grams from byte sequences of PE32 files. The features are collected
by sliding window of n bytes. This resulted in 200 million features using
10-grams for about two thousands files in overall. Moreover, feature selec-

2.4. Use Cases in Information Security & Forensics 47

tion was applied to select 500 of the most valuable features based on the
Information Gain metric. Such features achieved an accuracy of up to 97%
for malware detection. Another work on byte n-grams [332] described the
usage of 100-500 selected n-grams on a set of 250 malicious and 250 be-
nign samples. A similar approach [230] was used with 10, . . . , 10, 000 best
n-grams for n = 1, . . . , 10. Additionally, ML methods such as Naive Bayes,
C4.5, k-NN and others were evaluated for their applicability and accuracy.
Finally, a range of 1-8 n-grams [203] can result in 500 best selected n-grams
that are later used to train AdaBoost and Random Forests in addition to pre-
viously mentioned works.

2. Opcode sequences or operation codes are a set of consecutive low level
machine abstractions used to perform various CPU operations. As was
shown [366], such features can be used to train Machine Learning meth-
ods for the successful classification of malware samples. There should be a
balance however between the size of the feature set and the length of n-gram
opcode sequence. N-grams with the size of 4 and 5 result in the highest
classification accuracy, as unknown malware samples can be revealed on a
collection of 17,000 malware and 1,000 benign files with classification ac-
curacy of up to 94% [354]. Also [84] explored the reliability of malware
analysis using sequences of opcodes based on the 992 PE-files malware and
benign samples. During the experiments, about 50 millions of opcodes were
extracted. 1-gram- and 2-gram-based features showed good computational
results and accuracy. Wang et al. [429] presented that 2-tuple opcode se-
quences can be used in combination with density clustering to detect mali-
cious or benign files.

3. API calls are the function calls used by a program to execute specific func-
tionality. We have to distinguish between System API calls that are avail-
able through standard system DLLs and User API calls provided by user
installed software. These are designed to perform a pre-defined task dur-
ing invocation. Suspicious API calls, anti-VM and anti-debugger hooks and
calls can be extracted by PE analysers such as PEframe [57]. [452] studied
23 malware samples and found that some of the API calls are present only in
malware, not benign software. Function calls may be composed in graphs to
represent PE32 header features as nodes, edges and subgraphs [461]. This
work shows that ML methods achieve accuracy of 96% on 24 features ex-
tracted after analysis of 1,037 malware and 2,072 benign executables. Fur-
thermore, in [385], 20,682 API calls were extracted using PE parser for
1,593 malicious and benign samples. Such a large number of extracted fea-
tures can help to create a linearly separable model that is crucial for many

48 State of the Art

ML methods such as SVM or single-layer Neural Networks. Another work
by [352] described how API sequences can be analysed in concert with byte
n-grams and opcode n-grams to extract corresponding features in order to
classify malware and benign files. Also in this work, an array of API calls
from IAT (PE32 header filed) was processed by Fisher score to select relev-
ant features after an analysis of more than 34k samples.

4. PE header represents a collection of meta data related to a Portable Execut-
able file. Basic features that can be extracted from a PE32 header are Size
of Header, Size of Uninitialized Data, Size of Stack Reserve, which may in-
dicate whether a binary file is malicious or benign [118]. Moreover, [410]
utilized Decision Trees to analyse PE header structural information for de-
scribing malicious and benign files. [420] used 125 raw header characterist-
ics, 31 section characteristics, 29 section characteristics to detect unknown
malware in a semi-supervised approach. [431] used a dataset containing
7,863 malware samples from Vx Heaven web site in addition to 1,908 be-
nign files to develop a SVM based malware detection model with an accur-
acy of 98%. [264] used F-score as a performance metric to analyse PE32
header features of 164,802 malicious and benign samples. [223] presented
research of two novel methods related to the PE32 string-based classier that
do not require additional extraction of structural or meta-data information
from the binary files. [461] described the application of 24 features along
with API calls for the classification of malware and benign samples from
VxHeaven and Windows XP SP3 respectively. Furthermore, the ensemble
of features was explored in [353], where authors used a total 209 features
including structural and raw data from PE32 file header. Finally, Le-Khac
et al. [243] focused on Control Flow Change over the first 256 addresses to
construct n-gram features.

In addition to the study of specific features used for malware detection, we ana-
lysed articles devoted to application of ML for static malware analysis published
between 2000 and 2016, which covers the timeline of Windows NT family that are
still in use as depicted in the Figure 2.9. We can see that the number of papers that
are relevant to our study grows significantly from 2009 on, which can be justified
on the basis of the increase in the number of Windows users (potential targets) and
corresponding malware families.

Challenges. Despite the fact that some of the feature construction techniques re-
flected promise precision of 90+ % in differentiation between malicious and be-
nign executables, there are still no best static characteristic that guarantee 100%
accuracy of malware detection. This can be explained by the fact that malware

2.4. Use Cases in Information Security & Forensics 49

Figure 2.9: Timeline of works since 2009 that involved static analysis of Portable Ex-
ecutable 32bit files with respect to characteristics and ML methods for binary malware
classification

are using obfuscation and encryption techniques to subvert detection mechanisms.
In addition, more accurate approaches such as bytes N-GRAMS are quite resource
intensive and hardly practical in the real world.

Taxonomy of Malware Static Analysis using Machine Learning

Our extensive literature study as reflected in Table 2.1 resulted to proposing a tax-
onomy for malware static analysis using machine learning as shown in Figure 2.10.
Our taxonomy depicts the most common methods for the analysis of static char-
acteristics, extracting and selecting features, and utilizing machine learning classi-
fication techniques. Statistical Pattern Recognition process [202] was used as the
basis for our taxonomy modelling.

50 State of the Art

Fi
gu

re
2.

10
:T

ax
on

om
y

of
co

m
m

on
m

al
w

ar
e

de
te

ct
io

n
pr

oc
es

s
ba

se
d

on
st

at
ic

ch
ar

ac
te

ri
st

ic
s

us
in

g
M

ac
hi

ne
L

ea
rn

in
g

2.4. Use Cases in Information Security & Forensics 51

Year Authors Dataset Features FS ML

PE32 header

2016 Cepeda et
al. [90]

7,630 malware and
1.818 goodware

57 features from
VirisTotal

ChiSq
Selector
with 9
features
finally

SVM, RF, NN

2016 Le-Khac et
al. [243]

Malicious: 94 ;Be-
nign: 620

Control Flow
Change and 2-6
n-grams

- Naive Bayes

2014 Markel et al.
[264]

Malicious: 122,799,
Benign: 42,003

46 features use
python ’pefile’

- Naive Bayes, Logistic
Regression, Classific-
ation and Regression
Tree (CART)

2013 Khorsand et
al. [223]

Benign: 850 EXE and
750 DLL; Malware:
1600 from VX heav-
ens

eliminated - Prediction by partial
matching

2012 Devi et
al. [118]

4,075 PE files: 2954
malicious and 1121
Windows XP SP2 be-
nign

2 + 5 features - BayesNet, k-NN,
SVM, AdaBoostM1,
Decision table, C4.5,
Random Forest,
Random Tree

2011 Zhao [461] 3109 PE: 1037 viruses
from Vx Heavens and
2072 benign execut-
able on Win XP Sp3

24 features from
PE files using
Control Flow
Graph-based on
nodes

Random Forest, De-
cision Tree, Bagging,
C4.5

2011 Ugarte-
Pedrero et
al. [420]

500 benign from
WinXP and 500
non-packed from Vx-
heaven; 500 packed +
500 Zeus

166 structure fea-
tures of PE file

InfoGain Learning with Local
and Global Consist-
ency, Random Forest

2011 Santos et
al. [353]

500 benign and 500
malicious from Vx-
Heavens, also packed
and not packed

209 structural
features

InfoGain Collective Forest

2009 Tang [410] 361 executables and
449 normal trojan
files

PE header struc-
tural features

- Decision Tree

2009 Wang et
al. [431]

Benign: 1,908, Mali-
cious: 7,863

143 PE header
entries

InfoGain,
Gain
raio

SVM

bytes n-gram sequences

2011 Jain et
al. [203]

1,018 malware and
1,120 benign samples

1-8 byte, n-gram,
best n-gram by
documentwise
frequency

- NB, iBK, J48,
AdaBoost1, Random-
Forest

52 State of the Art

2007 Masud et
al. [268]

1st set - 1,435 execut-
ables: 597 of which
are benign and 838
are malicious. 2nd
set - 2,452 execut-
ables: 1,370 benign
and 1,082 malicious

500 best n-grams InfoGain SVM

2006 Reddy et
al. [332]

250 malware vs 250
benign

100-500 best n-
gram

Document
Fre-
quency,
In-
foGain

NB, iBK, Decision
Tree

2004 Kolter et
al. [230]

1971 benign, 1651
malicious from Vx
Heaven

500 best n-grams InfoGain Naive Bayes, SVM,
C4.5

opcode n-gram sequences

2016 Wang et
al. [429]

11,665 malware and
1,000 benign samples

2-tuple opcode
sequences

information
entropy

density clustering

2015 Bragen [84] 992 malware, 771 be-
nign from Windows
Vista

1-4 n-gram
opcode with
vocabulary
530-714,390

Cfs,
Chi-
sqaured,
In-
foGain,
ReliefF,
SymUn-
cert.

Random Forest, C4.5,
Naive Bayes, bayes
Net, Baggin, ANN,
SOM, k-nn

2013 Santos et
al. [354]

13,189 malware vs
13,000 benign

top 1,000 features InfoGain Random Forest, J48,
k-Nearest Neigh-
bours, Bayesian
networks, SVM

2011 Shahzad et
al. [366]

Benign: 300, Mali-
cious: 300 on Win-
dows XP

coabulary of
1,413 with
n-gram=4

tf-idf ZeroR, Ripper, C4.5,
SVM, Naive Bayes, k-
nn

API calls

2012 Zabidi et
al. [452]

23 malware and 1 be-
nign

API calls, debug-
ger features, VM
features

- -

2012 Faruki et
al. [143]

3234 benign, 3256
malware

1-4 API call-
gram

- Random Forest,
SVM, ANN, C4.5,
Naive bayes

2010 Shankarapani
et al. [385]

1593 PE files:875 be-
nign and 715 mali-
cious

API calls se-
quence

- SVM

2010 Sami et
al. [352]

34,820 PE: 31,869
malicious and 2951
benign from Windows

API calls Fisher
Score

Random Forest, C4.5,
Naive Bayes

no features / not described

2012 Baig et
al. [70]

200 packed PE and
200 unpacked from
Windows 7, Windows
2003 Server

file entropy - -

2010 Dube et
al. [130]

40,498 samples:
25,974 malware,
14,524 benign

from 32 bit files - Decision Tree

2.4. Use Cases in Information Security & Forensics 53

Table 2.1: Overview of PE32 malware analysis using static characteristics and ML meth-
ods

To get a clear picture on the application domain of each machine learning and
feature selection method, we analysed the reported performance as shown in Fig-
ure 2.11. The majority of researchers were using byte n-gram, opcode n-gram,
and PE32 header fields for static analysis while C4.5, SVM, or k-NN methods
were mainly used for malware detection. Information Gain is the predominant
method for defining malware attributes. Also, we can see that n-gram-based meth-
ods tend to use corresponding sets of feature selection (e.g. tf-idf and Symmetric
Uncertainty) that are more relevant for a large number of similar sequences. On the
other hand, PE32 header-based features tend to provide higher entropies for clas-
sification; therefore, Control-Flow graph-based and Gain Ratio are more suitable
for this task.

54 State of the Art

Fi
gu

re
2.

11
:

C
om

pa
ri

so
n

of
ac

cu
ra

cy
of

M
L

cl
as

si
fic

at
io

n
ba

se
d

on
st

at
ic

ch
ar

ac
te

ri
st

ic
s

w
ith

re
sp

ec
tt

o
fe

at
ur

e
se

le
ct

io
n.

C
ol

ou
r

of
th

e
bu

bb
le

s
sh

ow
s

ch
ar

ac
te

ri
st

ic
s

us
ed

fo
rd

et
ec

tio
n,

w
hi

le
th

e
si

ze
of

th
e

bu
bb

le
de

no
te

s
th

e
ac

hi
ev

ed
ac

cu
ra

cy

2.4. Use Cases in Information Security & Forensics 55

To conclude, one can say that the majority of authors either extract features that
offers good classification accuracy, or use conventional methods like Information
Gain. N-gram based characteristics need other FS approaches however to elimin-
ate irrelevant features. Rule-based ML is the most commonly used classification
method along with SVM. The forest-based method tends to be more applicable
for PE32 header-based features. Also, ANN is not a commonly-used technique.
While most work achieved an accuracy of 80-100%, some Bayes-based methods
offered much lower accuracy, even down to only 50%.

From a review of the literature, we found that there is a no comprehensive research
today that involves the categorization of malware into families or categories. Au-
thors generally tend to mention a few common classes such as "Benign", "Virus",
"Worm", etc. as described by Manehem et al. [276]. Despite the lack of study of
such aspects, the authors of this work still emphasize the importance of discrim-
inating between different malware types. This can be important when taking spe-
cific countermeasures against possible infection. Although some works consider
only static characteristics [381], analysis of behavioural properties may yield good
classification results. Rieck et al. [333] performed a study of 14 malware families,
including Trojan.Banker and Worm.SdBot back in 2008. In it, authors considered
the run-time observations of various activities of the files in CWSandbox. All these
families correspond to only three malware categories (one Backdoor, two Trojans
and thirteen Worms) despite a significant number of malware families studied.
One can see that the dataset is also highly imbalanced, containing 1,500 samples
of Worm.Allapte and the same number of Worm.Virut samples, while having only
91 samples of Backdoor.VanBot. Finally, the malware samples were examined in
the beginning of 2007, which is almost 10 years ago. Windows Vista was released
on the 30th of January 2007, meaning that the study included malicious software
before this and later versions. Another work on behavioural malware analysis was
done by Cheng et al. [98] and shows an application of a tf-idf scheme in malware
families’ identification. API call functions and their parameters (with values) were
utilized as a main set of behavioural characteristics. Authors collected malware
samples that belong to 2 malware types (Trojan and Worm) and 10 malware fam-
ilies. This work used only 425 malware samples, which were imbalanced in terms
of the malware families’ distribution (from 9 to 133 samples per class). A similar
problem was investigated by Lin [252] in a Xen environment with the resulting
classification of 9 malware families. One can see that the set was too diverse,
naming W32, Suspect.Trojan and Trojan as various categories. Moreover, the au-
thors also used a small corpus of benign samples from the System32 directory.
On the other hand, when it comes to static analysis, the work done by Grini et
al. [167] shows that many ML methods fail to classify multiple families. There-
fore, we believe that the utilization of behavioural analysis may help to overcome

56 State of the Art

the limitations of a static approach. In conclusion, to our knowledge there has not
been enough exploration of multinomial malware detection problems recently, es-
pecially in studying contemporary malware families and categories. Additionally,
existing studies use either highly imbalanced or very diverse malware collections.

Multinomial Malware Classification24

Previous works mostly focus on the differentiation of a file between benign or
malicious. This is a binary classification, where a heap of malware samples are
classified against a collection of goodware. Cohen [104] suggested in 1987 that
no algorithm will be able to confidently detect all computer viruses. This assertion
was strengthened by Chess et al. [99]. As a result, we can assume that no methods
can achieve 100% classification accuracy on large-scale sets. Bragen [84] applied
Machine Learning (ML) on opcode sequences and achieved 95% accuracy with
the RandomForest method. Kolter et al. [231] used 1,971 malicious files and 1,651
benign, while Bragen used only 992 malicious and 771 benign. Markel et al. [264]
used PE32 header data in malware and benign files detection on Decision Tree,
Naive Bayes, and Logistic Regression. The authors achieved a 0.97 F-score in
binary classification. Furthermore, Shankarapani et al. [385] applied PE32 file
parser to extract static features for similarity analysis. Overall, 1,593 samples were
acquired for binary classification. The limitations of the afore-mentioned research
are in the low number of files studied.

In contrary to binary, multinomial classification can be described as a detection of
whether a malware belongs to a particular family or type. Rieck et al. [333] studied
14 different malware families extracted from 10,072 unique binaries. The authors
achieved an average of 88% accuracy in family detection using an individual SVM
for each one. Additionally, Zhang et al. [458] explored binary classification us-
ing binary sub-sets of 450 viruses and goodware based on the 2-gram analysis.
Needless to say, not many works target the problem explored in this paper.

Most of the relevant works that can be found in the malware analysis community
are devoted to the classification of a file into benign or malicious. This is a
simple binary classification, where various collected malware samples are clas-
sified against a collection of goodware. Kolter et al. [231] used 1,971 malicious
files and 1,651 benign to this end, while Bragen used only 992 malicious and 771
benign. Markel et al. [264] used PE32 header data in malware and benign files
detection on Decision Tree, Naive Bayes, and Logistic Regression. The authors
achieved a 0.97 F-score on binary classification. Shankarapani et al. [385] applied
PE32 file parser to extract static features for similarity analysis. Overall, 1,593
samples were acquired for binary classification. The limitations of the aforemen-

24The ideas of this subsection are published under contributions [167, 381]

2.4. Use Cases in Information Security & Forensics 57

tioned researches are in the relatively low number of files.

In contrast to binary, multinomial classification can be described as a detection of
whether a malware belongs to a particular family or type. There exist a number of
malware categories, (trojan, backdoor, etc) and malware families, (Poison, Ramdo,
etc), which are commonly defined by the Information Security community. A mal-
ware category is a general type of malware that uses a certain kind of approach to
exploit a system and gain illegal access, such as a worm, which is a self-replicating
code that can spread over email, or ransomware that encrypts files and requires a
financial ransom to be paid [97]. On the other hand, a malware family is a spe-
cific sub-category that uses a particular vulnerability or targets specific software
versions. For example, considering the worm category, we can distinguish the
p2p worm family like Spybot from removable drive worm like Autorun!inf [11].
Cohen [104] suggested in 1987 that there are no algorithms that will be able to con-
fidently detect all possible computer viruses. This statement was strengthened by
Chess et al. [99]. Rieck et al. [333] studied 14 different malware families extracted
from 10,072 unique binaries. The authors achieved on average 88% accuracy in
family detection using individual SVM for each one. Further, Zhang et al. [458]
explored binary classification using binary sub-sets of 450 viruses and goodware
based on the 2-gram analysis.

Malware naming by anti-virus vendors

There exist a number of malware types (like trojan, backdoor, etc) and families
(like Poison, Ramdo, etc), which are commonly defined by the Information Secur-
ity community. In 1991, the Computer Antivirus Research Organization (CARO)
proposed a standardized naming scheme for malware [4]. Although CARO states
that this naming scheme is "widely accepted", we found that from all the vendors
on VirusTotal, apparently Microsoft is the only one that complies with this. It
is therefore challenging to establish a common pattern in scanner results across
anti-virus databases. An example of CARO naming is given in the Figure 2.12.

Figure 2.12: CARO malware naming scheme [281]

To the authors’ knowledge, there has been no adequately performed comprehens-

58 State of the Art

ive study that provides a complete taxonomy of malware. However, there can
be found blog entries with different malware species descriptions and dissections.
Mushtaq [291] gave an overview of the top malware samples considering only
20 species, mostly families. Another comprehensive list of families is published
by Microsoft as a part of the description of the Windows Malicious Removal
Tool [280] starting from 2005 up until July 2016. VxHeaven also offers an over-
view of computer viruses. Finally, The Malware Database offers a large collec-
tion of different pages, also properly structured for each particular malware family
and category [11]. Even in the scientific community, authors usually mix up both
families and categories, and typically consider fewer samples than exist in in the
wild [252, 333, 458].

Soft Computing in multinomial classification

For the classification of viruses, static features can be automatically extracted from
PE32 headers and the results be used to build the classification model(s). To the
authors’ knowledge, the application of SC for multinomial malware detection has
not been studied. With respect to classification problems, SC encompasses a set
of powerful methodologies that can produce generalized models, although with
inexact solutions. Some of the existing methods, such as MLP and SVM-based
classifiers, were originally designed for binary problems. Other methods such as
Naive Bayes and Bayesian Networks were designed to handle multinomial tasks.
In a prominent study by Ou et al. [303], different models of multilayer ANN were
studied with respect to multi-class problems. In a different paper by Shalaginov et
al. [372], some thoughts regarding the application of Neuro-Fuzzy for multi-class
problems were presented with a number of improvements. However, the data sets
used were small.

Limitations of anti-virus solutions

Conventional signature-based anti-virus products ascertain specific system arti-
facts that malware leaves in a system. Such a method has a series of draw-
backs however, including the inability to detect new malware or malware that
uses polymorphic code. With a growing number of new malware categories and
zero-day attacks, classical signature-based anti-virus software work is more chal-
lenging [288, 390]. This is caused by the fact that such software relies on static
signature sets, which are maintained by the developer company. Moreover, ac-
cording to [110], classical signature-based antivirus solutions fail to consider the
challenges of encryption, polymorphism, and other obfuscation methods. Another
problem which appears after signature composition is the complexity of the sig-
natures themselves, as well as the huge amount of various signatures sets. Such
problems can be approached by ML and behavioural analysis. There exist a num-

2.4. Use Cases in Information Security & Forensics 59

ber of so-called sandboxes and on-line services for dynamic malware analysis such
as Cuckoo, cwsandbox, VirtusTotal, Malwr, etc. However, these tools require file
submission to a third-party server or installation of a specifically-crafted system.
Our goal is to speed up malware detection using observed behavioural features on
a common MS Windows installation.

2.4.2 Network Intrusion Detection

Almost all devices with computational capabilities are now connected to the In-
ternet, including PCs, mobile phones, and even IoT. As a result, there might be
a number of ways attackers can exploit different vulnerabilities to gain access or
perform other illegal activities. A single wire establishes connection between a
computer system and Internet. A commonly accepted Open Systems Intercon-
nection model (OSI model) offers the standardization of network communications
without taking into consideration the used architecture. Seven layers of the OSI
model are depicted in the Figure 2.13, and show general attack vectors against a
computer system in the network.

Figure 2.13: A general example of approaches used in network attacks in the Internet

The nested layers structure of OSI model includes (down-up): Physical, Data Link,
Network, Transport, Session, Presentation, and Application layers, according to
an explanation by Zimmermann [463]. At the same time, each layer may include
vulnerabilities or specific cases that lead to particular attacks being successfully
carried on. CERT in USA described common examples of DoS attacks, their po-
tential impact, and possible ways of mitigating such attacks [29]. At the same
time, SANS explained such attacks by providing examples and a justification of
the situation being examined [405].

Network Forensics is a field of Digital Forensics that targets analysis and evid-
ence extraction from network traffic. Considering the increase in bandwidth and
amount of traffic travelling in networks over the last decades, much research has
been done on the application of Computational Intelligence to decrease the amount

60 State of the Art

of required manual work as described by Muda et al. [289]. In 2014, Al-Mahrouqi
et al. [49] presented a Network Forensics readiness and security awareness frame-
work. We can see based on that research that it is not only important to preserve
data properly, but also to analyse it meaningfully and extract relevant knowledge.
Adeyemi et al. [44] studied features that are relevant to network forensics invest-
igations with respect to different stakeholders. One can see that there are many
comprehensive characteristics that can be helpful in differentiating between nor-
mal traffic and attacks.

Fuzzy Logic in Intrusion Detection25

Since the number of data that transfers through a network has increased signi-
ficantly over the last decade, many researchers suggest using Computational In-
telligence for network traffic analysis. This may partially eliminate the need for
manual analysis, which can be a major limitation. There are a number of works in
the area of network traffic detection and classification. Singh [392] studied the per-
formance of unsupervised methods on network traffic detection such as k-means
and Expectation Maximization. In general k-means has much better accuracy in
the detection of DHCP, SMTP, ICMP, HTTP and DNS traffic considering different
features of network packets. These are flow duration, packet length, total number
of packets, and total number of bytes transferred. Using a higher level OSI model,
one can detect SQL injections according to Makiou et al. [261]. HTTP dissection
is used and the content is then compared against security rules for both detection
and prevention of the attacks against web servers.

Machine Learning methods have been studied in many works and have proven their
effectiveness. Senel-Kleine et al. [361] studied SVM and Decision Trees (DT) on
20 different sets of network traffic and showed accuracy of up to 99% on anomaly
detection. The authors stated however that to improve this result, other methods
have to be applied to get better detection results from other sources. In addition to
SVM and DT, Zhao et al. [460] also explored the Naive Bayes classifier. All three
methods give a an independent high detection accuracy of real-time anomaly de-
tection from a set of used features. Without destination and source IP however, it
is hard to achieve the best possible accuracy. Since SVM is one of the best classi-
fiers, Hong et al. [187] performed a study of how the SVM can be iteratively tuned
to anomalies in the traffic. The proposed method has the best Accuracy/Time coef-
ficient in comparison to standard configuration. Moreover, Singh et al. [393] also
presented a survey of Machine Learning for Intrusion Detection Systems (IDS),
which can cover not only attacks from outside the system, yet also from inside. In
particular, authors investigate Neural Networks and Fuzzy Logic. It was stated that

25The ideas of thi sub-subsection are published aunder contributions [375, 377]

2.4. Use Cases in Information Security & Forensics 61

the main drawbacks are overfitting and high resource consumptions respectively.
However, the synergy of these two models can bring a generalized rule that over-
comes previously mentioned constraints. In addition, Zamani et al. [456] utilized
KDD CUP 99 dataset to show the utility of Machine Learning methods for IDS,
and concluded that they conform to the requirements of efficient systems designed
to detect attacks in the networks.

Furthermore, some authors concentrated specifically on the application of the NF
approach for network security. Shafiq et al. [362] studied how the Adaptive Neuro
Fuzzy Inference System is applied for portscan detection. They used multiple
worms with a variety of UDP/TCP ports. However, the authors also used the
Takagi-Sugeno model, which is not entirely suitable for classification, but rather
for regression purpose. To further elaborate, Aguiar et al. [45] studied how the
Linux Netfilte / Iptables firewall can be fuzzified with respect to DOS protection
using fuzzy rules. The authors believed that NF has a great potential for this and,
in particular, they applied SOM to extract 4,800 clusters that characterise the set
of 150,000 9-dimensional tuples. Recently Nguyen et al. [295] developed a NF
model for online phishing detection with accuracy of up to 99.10% based on six
input characteristics. Another work done using KDD Cup 99 set was by Amiri
et al. [58] was targeted on dimensionality reduction to overcome Curse of Dimen-
sionality. The number of features was reduced to 5 from 41 original while accuracy
was still very good. However, to the authors knowledge there have not been studies
done on the trade-off between accuracy and interpretability in the fuzzy inference
model for firewall application. Moreover, the challenges with large-scale analysis
have not been raised with respect to NF overfitting by large number of clusters
from SOM clustering. Thus, we can see that the properties of network packets
can be used to detect different types of traffic and to extract classification rules as
result.

Real-World Application Scenario

Modern firewalls analyse traffic using different OSI model layers as described by
Woodall [443]. We can see that this is a dynamic area with continuous changes
in attack vectors, data intensity and technologies. In most cases the filtering rules
are used to detect whether a traffic packet falls into category of attack or normal.
From the literature review we can see that rules generated by Machine Learning
methods can play an important role in Network Security. As a real-world example
of the firewall using fuzzy rules, we suggest using the following scheme depicted
in the Figure 2.14. It includes following components: a reference set of known-to-
be malicious and benign network traffic to learn the model, a NF engine capable
of fast training, and the ability to produce a generalized model and a pool of fuzzy
rules used by firewall. This is however a decision support system, so the system

62 State of the Art

administrator has to give his analysis and tune the model when necessary.

Figure 2.14: Example of Neuro-Fuzzy application in Network Firewall

Fuzzy Logic can help to eliminate multiple problems that exist in cases with Hard
Computing methods. This is due to the fortification and a level of abstraction that
helps to tune the parameters of the rules without the need for a complete retraining
of the model. Moreover, inference from such rules is not going to take much time
and can be performed using parallel processing and RAM storage. We believe
that presented architecture can be beneficial for large organizations and can reduce
amount of efforts necessary for firewall maintainance.

2.4.3 Application Level Security and Attacks on Web26

Over the last couple decades, web applications became a popular means of service
delivery to customers. Recently, web applications have come to be considered as a
part of Cloud Computing meaning, that the data and computing power do not need
to be on the client’s side. This makes the utilization of the web extremely conveni-
ent and suitable for a number of domains, including Information Security services.
Yet despite the fact that we can protect against multiple attacks on network pro-
tocol level, this makes it more on the application level. As was studied by Shah
et al. [364] a typical web application setup includes a number of components like
web servers, databases, plugins, etc. Attacks on these parts cannot be prevented by
standard network firewalls. Scenarios of attacks were given by the OWASP Top
Ten project [305]. Prandl [319] studied web application firewall (WAF) solutions
such as ModSecurity, WebKnight, and Guardian. As can be seen, these solutions
have different performances considering malicious and benign HTTP traffic. Des-
pite the fact that ModSecurity can be considered as one of the best open source
solutions, it is designed to be used only with a small number of web servers such
as Apache, IIS, and Nginx server. It makes the utility of WAF narrow and not
scalable to other software. Prokhorenko et al. [323] performed a comprehensive
analysis of web application protection techniques. It clearly shows that the major-

26The ideas of this subsection are published under the contributions [372, 378]

2.4. Use Cases in Information Security & Forensics 63

ity of research targets the aspect of web applications, where a majority of attacks
happen due to improper data flow handling and filtering. From the other side, veri-
fication of the input is one of the most common protection techniques considering
the possibility to analyse it directly from HTTP request. Finally, there number of
attacks on web applications is large, and it is hardly possible to produce signatures
for HTTP traffic that can detect possible obfuscations.

Conventional signature-based rules do not offer as much flexibility as fuzzy rules.
We can see that fuzzy rules also might be beneficial when there are not much
statistics describing an attack. Kadiervelu et al. [210] studied how fuzzy logic
can be applied to detect unknown attacks against web applications. Authors pro-
posed C4.5-based fuzzy intelligent system to detect anomaly SQL queries. Further,
Geraily et al. [162] used Hidden Markov Model as an input to fuzzy inference to
detect malicious HTTP requests. Shiaeles recently wrote a thesis [389] on real
time detection of DDoS in web services. The authors developed a fuzzy-based de-
tector for spoofing attacks, which were predicted based on the User Agent identity,
HTTP requests, etc. Moreover, the limitations of popular KDD CUP 99 data was
described since it does not contain information about the user agent and visited
URL. Another work done by Atienzaet et al. [64] explicitly described the applic-
ation of Neural Networks architectures for attacks detection in HTTP traffic using
CSIC HTTP 2010 dataset. In particular, authors used unsupervised learning by
SOM for similarity grouping of normal and abnormal HTTP requests.

The mentioned works concentrate only on the binary classification of benign and
malicious traffic rather than on detection of attack type. Also, we can see that
fuzzy rules have great potential when it comes to detection of attacks, however
multinomial classification of the type of web attack was not well studied, according
to the authors knowledge.

The advantage of fuzzy rules is that they can describe each group of similar data
that belongs to different classes separately without designing a separation hyper-
plane, as is normally done in other binary classification methods. Considering also
the area of Digital Forensics, such a model underlines the great interest in building
human-understandable and interpretable models that are also accurate. The major-
ity of the tasks in illegal activity detection denote either "malicious" or "benign"
patterns, which is a binary classification task. These can be software samples,
network traffic dumps, web pages, etc. There are studies however that require the
determination of a specific group or domain which this "malicious" pattern belongs
to, for example network attacks or malware families.

Many methods such as Multilayer Perceptron (MLP) or Support Vector Machine
(SVM) were originally designed to deal with a binary output in a form acceptable

64 State of the Art

to computers at the dawn of the ML era. The design of MLP as Neural Network
is purely based on the activation function (e.g., logistic) that either activates (state
"1") or deactivates (state "0") the output neuron. There is almost no way to use
such single-output NN architecture for multinomial classification. Thus, one must
utilize either one network with multiple outputs or multiple single-output networks
for the defined purpose according to Aly [56]. Multiple outputs are normally used
for the explicit determination of class label or per class probability. Ou et al. [303]
performed an extensive study of the multinomial classification by NN and con-
cluded that the optimal class boundaries can be found when the method separates
all classes at the same time by a single NN model.

2.4.4 Network Forensics Readiness

Due to the growth of network bandwidth and the development of new attack scen-
arios, Network Forensics faces multiple challenges related to large-scale data-
set processing and evidence extraction, as mentioned in the report by Ernst &
Young [140]. It is important not only to detect an anomaly and classify it as a likely
attack, but also to provide human-understandable Threat Intelligence through a
corresponding statistically-based analysis. Conventional Computational Intelli-
gence methods are no longer reliable as they either result in a very complex model
that is hard to understand or take too long a time to infer a meaningful model.

Computational Intelligence in Network Forensics27

Network Forensics is a field of Digital Forensics that targets the analysis of and
evidence extraction from network traffic. Considering the increase in bandwidth
and amount of traffic travelling in networks over the last decades, much research
has been done on the application of Computational Intelligences to decrease the
required amount of manual work, as described by Muda et al. [289]. On the one
hand, authors use FL as a prominent approach; e.g. Vural et al. [428] shows how
the bot-nets can be detected using FL, where email changing behaviour was used as
an output of the fuzzy system and then fed into the network forensics analysis mod-
ule. Another Fuzzy Logic-based Expert System was proposed by Kim et al. [226]
to facilitate the automated analysis of evidence in network traffic. The performance
of this system reached 93% on 1998 DARPA dataset. Recently, Rostamipouret
al. [340] also studied the application of FL for Network Forensics, in particular the
detection of the origins of buffer overflow attacks.

On the other hand, many works target the application of different types of ANN.
Huang et al. [190] suggested using growing hierarchical SOM, as it can help
identify different patterns of DDoS attacks successfully. The same authors used

27The ideas of this sub-subsection are published under the contribution [376]

2.4. Use Cases in Information Security & Forensics 65

SOM for anomaly detection in concert with SVM to explore the patterns of anom-
alous network packets [191]. Another application of SOM is in the visualisation
of Network Forensics Traffic Data, as suggested by Palomo et al. [308]. The au-
thors used manually defined sizes of SOM from 3x3 up to 7x7 on a set of 150,871
samples. Also worth mention is the work presented by Yan [447], where ANN was
applied on 10% KDD CUP 1999 dataset over a range of features such as running
state of host, communications of network, and content control domains.

Considering previous works in this area, we can see that both FL and ANN (SOM
in particular) are widely applied to detect anomalies as possible attacks. Most au-
thors don’t apply any Hybrid Intelligence however, and extract the parameters of
fuzzy rules mostly manually. To mitigate this limitation, we target Neuro-Fuzzy
that uses an unsupervised SOM method to extract these parameters without human
interaction. To the author’s knowledge, there is a single relevant research available
on Neuro-Fuzzy for Network Forensics done by Anaya et al. [59] to detect suspi-
cious flows based only on TCP/IP LAN that have been compromised. However,
this work mentioned neither the details of Neuro-Fuzzy architecture used nor the
specific fuzzy sets used for detection. We can assume, however, that the authors
used manually-crafted FL parameters.

Digital Forensics Readiness and Information Security Risk Management28

Another aspect of Digital Forensics Readiness is Information Security Risk As-
sessment (ISRA). According to Rowlingson [341] Network Forensics Readiness
should be an inseparable part of the ISRA in order to be able to predict possible
misbehaviour and plan corresponding mitigation actions. Furthermore, using his-
torical information and statistical modelling, one can enhance Cyber Threats Intel-
ligence and pro-active digital forensics for better preparation against cyber attacks
and more efficient cybercrime investigations [168, 403].

Information Security and Risk Assessment. ISO/IEC 27005:2008 defines in-
formation or ICT risk as the potential that a given threat will exploit vulnerabil-
ities of an asset or group of assets and thereby cause harm to the organization.
Probabilistic risk analysis (PRA) is the preferred approach to risk in information
security, where impact to the organization (e.g. loss if a risk occurred) and prob-
ability calculations of occurrence express risk. There are no standardized statist-
ical approaches to information risk; to calculate risk (R) we apply the definitions
provided by Aven [66] (p.229) for discussion and risk calculation. Where risk is
described by events (A), consequences (C), associated uncertainties (U) and prob-
abilities (P). U and P calculations rely on background knowledge (K). Also, model
sensitivities (S) are included to show dependencies on the variation of the assump-

28The ideas of this subsection are published unders the contributions [432, 433]

66 State of the Art

tions and conditions. Thus, R=f(A, C, U, P, S, K). A quantitative risk assessment
in this sense derives from applying statistical tools and formal methods, mainly
based on historical data (e.g. the law of large numbers), obtained distributions,
and simulations. Thus, based on the definition of risk by Aven, we will consider
applications of relevant methods for quantitative risk evaluation in terms of R. A
risk assessment is very seldom purely quantitative, as there are assumptions K un-
derlying the forecast. Finally, exposure is a crucial concept in risk management
that we define as the susceptibility of an organization to a particular risk.

Statistical methods for historical data analytic in ISRA. One makes a decision
about information security risks mostly based on previously collected data within
the company or based on the publicly available historical data about causes and
results [219]. We introduce several community-accepted methods to deal with
historical data and be able to make quantitative risk assessments possible since
qualitative risk assessment has precision limitations when it is necessary to make
predictions in numbers.

Probabilistic modeling. This type of analysis is applied when there is need for
probability estimation of a particular event x occurrence in a given historical data-
set. Initially, the model p(x) is built, and gives an estimation of the corresponding
set of parameters from the data [164]. Then, this model can be used to estimate
the probability of similar events in this very period or later on. We can state that
there are many obstacles related to probabilistic modelling. First, very few data
points from history may precipitate a wrong decision. Second, very rare events,
like in the case of Fourth Quadrant, have negligibly small probabilities. This does
not mean however that this event are not going to happen.

Numerical analysis. Numerical analysis is a broad field of data modeling, time
series in particular. The function f(x) is built using a previous period of time
x0, · · · , xt. To construct a proper model, available historical data must be decom-
posed into trends, seasonal components, and noise in order to build a precise pre-
diction model. At this point, the recent data should possess a higher degree of trust
than data from a long time before [61]. For the defined earlier research questions
that statistical models can be applied to support risk assessment within the four
quadrants, yet under some limitations, we consider the following supplementary
statistical approaches [61]:

1. Logistics function describes the process where the initial impact causes an
exponential increase until some moment in time. After this moment, growth
will decrease until it is saturated to some ceiling value. [119].

2. Conditional Probability and Bayes Theorem are the probability methods

2.4. Use Cases in Information Security & Forensics 67

used to calculate the likelihood of the occurrence of some event when an-
other dependent or independent event has already happened.

3. Gamma distribution represents a family of continuous probability distribu-
tions that can describe data with quite various characteristics. The main
parameters are shaped k, and the scale of the distribution θ.

4. Exponential growth characterizes an event that does not have an upper bound-
ary, and the observed outcome will grow more during the next period in
comparison to previous.

5. Log-normal probabilistic model defines the distribution of some historical
data under the condition that the logarithm of the data follows the Gaussian
distribution.

From our point of view, these methods are the most promising for estimation of
possible event outcomes based on previously analysed information.

Statistical hypothesis testing. Furthermore, we will justify the usage of specific
statistical methods for each case study and make a hypothesis about their applic-
ability in that particular case. At this point, we need to use statistical tests to verify
the suggested hypothesis29. The two following approaches can be applied with
probability distributions: QQ-PLOT, a Quantile-Quantile plot representing a prob-
ability plot by depicting expected theoretical quantiles E and observed practical
quantiles O against each other, and STATISTICAL TESTS that estimate the quantit-
ative metrics of how well the data fits hypothesized distributions.

Confidence Intervals or CI relates to the probabilistic estimation of whether a par-
ticular data or data sample is being placed within a hypothesized distribution. It
also means that the defined in CI % of data will be in the hypothesized distribution.
To be precise, the test evaluates the actual observed data O with the expected data
E from the hypothesized distribution.

Fuzzy Logic in Risk Management. Most risk models are developed relying on
the probabilistic data that derived from historical observation in additional to em-
pirical measures. The main drawback of such models is the difficulty in analysing
risk and making the corresponding predictions when the number of historical data
is insufficient or unreliable. On the other hand, manual analysis is required to map
specific probabilities to qualitative linguistic measures. Fuzzy Logic can be con-
sidered a solution to these problems since it may reduce the analysis complexity
while providing more meaningful models to decision makers. The main idea not

29http://www.ats.ucla.edu/stat/stata/whatstat/whatstat.htm

http://www.ats.ucla.edu/stat/stata/whatstat/whatstat.htm

68 State of the Art

only to give answers in terms of probability, as in classical probabilistic models,
but to describe cause-effect relationships and bring situational awareness that may
be useful in future intelligence. Shang et al. [384] explained in detail how fuzzy lo-
gic can be applied to both Qualitative and Quantitative analysis. Though study did
not include aspects of fuzzy rules inference. Then, their colleagues [387] presen-
ted an in-depth study with applications of a large variety of fuzzy logic models,
including fuzzy rules. Furthermore, Takacs [409] made an overview of the fuzzy
rule-based system for Risk Management. The author highlighted the scalability
of such an approach, and even the development of hierarchical systems for Risk
Management. Another significant work that pays attention to fuzzy rules is done
by Nunes et al. [298], where the authors highlighted the importance of fuzzy ex-
pert systems in handling value and incomplete data, and assisting human experts.
Even diseases was discussed as one of the major possibilities for application. Oad
et al. [299] performed a study on fuzzy rules for heart disease, fuzzifying many
conventional measures like age, blood pressure, etc. The system shows perform-
ance of at least 80% in comparison to other, more complicated models. Generally
speaking, fuzzy logic introduces the fundamentally new concept of possibility in
the event in Risk Management along with conventional likelihood-based estimat-
ors.

2.4.5 Mobile Devices Malware

Significant development in mobile devices has occurred during the last decade,
as average mobile phones have become powerful intelligent devices capable of
making intense computations, comparable to personal computers and laptops. The
absolute majority of mobile devices have installed Google Android OS due to the
fact that it is open-source and allows users to easily install third-party applications.
Another point is that most consumer electronics companies can now manufacture
phones and install their own version of Android. As a result, the Android market
share reached 81.7%, while Apple iOS is 17.9%, while both platforms make it
an overall 99.6% of the world usage of mobile devices by the end of 2016 [426].
Other platforms share a considerably lower number of devices using them, e.g.
Windows Mobile – 0.3%.

On the other hand, the ability to install third party applications on Android OS
makes it more vulnerable to malware, which is additionally helped by the fact
that user has power to accept all requested permissions. As a matter of fact, such
framework gives an attacker the freedom not only to use financial services, but also
to steal private information [365]. Following the growing amount of malicious
software and threats, Android malware analysis has become a popular topic in
Digital Forensics as well as in the Machine Learning community [48, 92, 116,
205, 246].

2.4. Use Cases in Information Security & Forensics 69

2.4.6 Privacy Preserving and Access Control30

AC is intended to limit access using different policies and models and to prevent an
unauthorized access. Sahafizadeh et al. [345] provided a comprehensive overview
of modern AC models. It studied Mandatory Access Control (MAC), Discretion-
ary Access Control (DAC), Role-Based Access Control (RBAC), Attribute-Based
Access Control (ABAC), etc. MAC relies on levels of authorization or class of a
user when evaluating its ability to perform operations on the object. DAC provides
a specific detail for each particular user or user role of where she is capable of
going. RBAC uses an access matrix of objects and subjects in order to define an
access rule. ABAC [3] is one of the initiatives from NIST towards moving from
Role-Based Access Control to a more flexible evaluation of the asset’s attributes.
Vincent [188] in the NIST guide defined a scenario that includes access control
policy, environment conditions, and Subject and Object with corresponding sets
of attributes. Similarity-Based Access Control (SBAC) as defined in the patent by
Farber et al. [142] allowed the use of similarities in access attributes. Considering
this, we can say that the application of Soft Computing can facilitate AC and is
capable of learning on-line, since off-line may require significant resources when
the organization size is large. There have also been some attempts to apply Ma-
chine Learning methods. The report [27] from NIST proposed a Risk-Adaptive
Access Control model (RAdAC) that uses historical records to determine whether
access should be granted or not. In addition, it was noted that Machine Learning,
Evolutionary Computing (EC) in particular, can be included in RAdAC to improve
the model. Furthermore, Bedi et al. [74] explored a way of applying ANN in the
access of grid resources. In particular, requests for resources are classified via
Radial Basis Function Neural Networks, because of non-linear ANN’s superior
generalization. However, to the author’s knowledge, ANN has not been widely
used in the AC models.

When talking about Mahcine Learning, Similarity-Based AC is affected by velo-
city and veracity of the access traces appearing in access logs. It means that the
data are available for a short time frame and should be processed in a fast on-line
way, rather than an iterative off-line [336]. Data streams mining is a special field
that defines such on-line models [446]. From the perspective of Information Se-
curity, be it events monitoring, traffic processing, etc. logs access in addition to
analysis [122]. Thus, the challenge with data stream mining can be formulated as
follows: At time ti, there happens some non-deterministic event Ti such as enter-
ing user credentials to access the resource, which also can be influenced by some
covert action or can be completely random. Each userXi can be described by a set
of M properties (features) Xi = {A ∈ RM}, where features a = {a0, · · · , aM}

30The main ideas of this subsection are published under the contribution [370]

70 State of the Art

can be either user- or resource-specific. So, the goal is to predict the class Yi of
this event, which defines the actions to be undertaken ("allowed" or "blocked").
This has to be done using previously collected logs and established access policies
over some past time t, as is shown in the Figure 2.15.

Figure 2.15: How the Access Control mechanisms generally interact with objects and
subjects, according to ABAC [188]

In real world tasks, the statistics are so numerous that it is not possible to re-
learn the model each time a new event Ti+1 arrives. From this point of view, we
concentrate on the data samples that have some predefined set of featuresA, where
each feature is a numerical ∀aj ∈ A : aj ∈ R. The values of each feature aj are
unknown beforehand. Similarly, the combination of the features in the given data
sample X1, · · · , Xn in this one are from an access control system sample that has
not yet appeared. Moreover, there is a need to determine a class Yi of the given
sample Xi|i=1,··· ,N , where N is the size of the training data.

2.5 Neuro-Fuzzy – A Hybrid-Intelligence Analytics
In this Section, we describe why it is important to synergize SC methods to over-
come the limitations of stand-alone ones, and what kind of optimization can be
applied to facilitate it. The crucial property of Soft Computing (SC) methods ap-
plied in malware detection is the interpretability of the model [394] used to explain
and interpret found evidence. Fuzzy Logic offers a great trade-off between the ac-
curacy of the model and its interpretability. NF is a Hybrid Intelligence method
that combines both FL and ANN. Over last decades there have been developed
multiple Fuzzy Inference Systems (FIS).

2.5. Neuro-Fuzzy – A Hybrid-Intelligence Analytics 71

Generally, we can consider the two following FIS based on the nature of fuzzy
rules [220]:

Mamdani is a type of fuzzy inference system that produces human-understandable
answers to defined problems by assigning data to one or another linguistic fuzzy set
with the possibility of retrieving the numerical measure of the assignment. Mam-
dani is classification-based, represented by Fuzzy Associative Memory (FAM),
etc [39]. The Mamdani-type fuzzy rules look like following:

IF x ∈ A AND y ∈ B THEN c ∈ Ci (2.3)

where x and y are numerical variable inputs that go through the process of fuzzi-
fication; A and B represent fuzzy sets and c is an output fuzzy variable that takes
class label Ci as its value.

Takagi-Sugeno, on the other hand, is a Fuzzy Inference System that generates a
crisp output to a system with fuzzy variables as input. Takagi-Sugeno is considered
to be a regression-based system, represented by Adaptive Neuro-Fuzzy Inference
System (ANFIS), etc [39]. This means that with this system, there is no need
to perform defuzzification as in case with Mamdani-type rules. Such an approach
however does not classify a data sample, but computes values, similar to regression
trees. The fuzzy rule has the following view:

IF x ∈ A AND y ∈ B THEN c = xi + yi (2.4)

where c represents a numerical variable that depends solely on the input variables
xi and yi. In this work, we concentrate on Mamdani-type fuzzy systems, since the
idea is to classify different activities and found information into crisp classes.

To enhance parameters extraction in Fuzzy Logic and improve the understand-
ability of Neural Network, a group of Neuro-Fuzzy methods were proposed to
be able to generate intelligent models. Neuro-Fuzzy (NF) is one of the most-
commonly used methods for fuzzy rules construction. According to the taxonomy
by Kruse [235], we can name following architectures:

Cooperative denotes a system that has neural networks and fuzzy systems, where
the operation of one does not depend on the other. This means that neural networks
either can be trained from data and provide rules parameters or extract fuzzy set
parameters that are then later put into a pre-defined fuzzy inference system.

Hybrid in contrast to a cooperative model, this model incorporates a synergy of
ANN and FL that results in an inseparable system that is trained simultaneously
and may be used as a fully integrated classifier that gives not only a classification
result, but also explains the data learned by ANN.

72 State of the Art

The original method described by Kosko [233] consists of two stages: the alloca-
tion of fuzzy rules parameters by means of Self-Organizing Maps (SOM), and tun-
ing by means of Artificial Neural Network (ANN). NF learns automatically from
data and produces human-understandable classification models based on fuzzy lo-
gic [54] similarly to different adaptive techniques like Fuzzy Adaptive Learning
Control Network (FALCON) and Adaptive Network Based Fuzzy Inference Sys-
tem (ANFIS) [39]. These systems use self-organizing methods to define the initial
parameters of the clusters used in the models.

2.5.1 Optimization for Large-scale Data Analysis31

From what we see in the literature, the fuzzy systems are in most cases the most
important components of the SC models. The main point of SC for the end user is
whether the decision made is understandable and explainable, and whether auto-
mated processes based on decisions are reliable. Following groups of users can be
named: Unaware (very limited knowledge), Limited awareness (specific and basic
usage of the systems), Experts (broad understanding of work principles). The mar-
gin of the solutions given by SC methods allows one to involve different factors in
balancing between the different decisions.

There were two main aspects that we considered when performing the literature
review. First of all, hybridization means that several SC methods are crafted to
complement one another, resulting in a better-performance model. Second, meta-
heuristic optimization can support building an intelligence system as a way of
performing multi-criteria optimization of complex tasks without human expert in-
tervention.

The availability and labelling of the data used for model training affects the learn-
ing paradigm to be used in the model as well. With respect to the structuring of the
data, we can distinguish supervised, semi-supervised, and unsupervised methods
as described in the book [177] by Han et al. From the other side, the methods can
be trained off-line, on-line incrementally, and as a batch. Furthermore, the mod-
els can be linear and non-linear that affects the complexity or required level of
the abstraction of the model. However, all SC methods may help to find a human-
understandable explanation or tentatively locate the decision as it is depicted in the
Figure 2.16. It also shows how the different aspects may influence the construction
of the DSS.

Despite the unique applicability of each method, there are disadvantages that limit
utilization. Therefore, we consider the creation of SC-based Hybrid Intelligence
models as the core consent for the decision support system in Crime Investigation

31Ideas of this subsection are published under the contribution [367, 368]

2.5. Neuro-Fuzzy – A Hybrid-Intelligence Analytics 73

Figure 2.16: Hybridization of SC with respect to different factors

when dealing with large-scale datasets. The hybridization improves quality and
understandability, yet increases arithmetical complexity of the ensembled method.
The last challenge can be mitigated by means of parallel meta-heuristic techniques
as Yang studied in 2010 in the book [448]. We can say that there already exist
several solutions for storing and mining the large-scale data such as Mahout, ML-
Base32 and Spark33. However, they are targeted only on commercial applications
such as customer recommendation systems, etc. As a result, we are sure that hy-
bridization together with parallel meta-heuristic optimization can handle multiple
challenges in Forensics Sciences.

Forensics Science and Big Data. The amount of information analysed in crim-
inal cases grows each year, especially related to computed incidents. Since con-
ventional SC methods originally are not optimized for such large-scale data, we
consider hybridization as a prominent solution for this problem. Moreover, meta-
heuristic optimization is considered to be suitable for SC.

Information Fusion. Information Fusion represents a general methodology used

32http://www.mlbase.org/
33http://spark.incubator.apache.org/

http://www.mlbase.org/
http://spark.incubator.apache.org/

74 State of the Art

to merge and combine existing data and parameters to achieve better results of
more accurate models. Torra [416] stated three possible paradigms that can be
used in Information Fusion such that: pre-processing, model building, and inform-
ation extraction. Our particular interest is model construction that is a combina-
tion of several models to achieve final module simultaneously or over time. This
is an inseparable part of Information Security community considering a number of
sensors that can retrieve information from any computer system. There has been
a variety of work that targets this area recently. Bist et al. [81] investigated how
feature fusion can be applied to computer virus detection and study its influence
on the application of pattern matching methods. Similar work was performed by
Modi et al. [287] with respect to Threats Intelligence, where they proposed a novel
framework for supplementing malware analysis with different threat sources. An-
other prominent application of Information Fusion is Intrusion Detection. Raja et
al. [330] described the collaboration of IDS system with the application of sensors
data fusion that showed good performance on the KDD dataset. Another work
on sensors information fusion was done by Pugh et al. [324]. Thus, there are ex-
amples of many applications and we believe that it is quite important to apply In-
formation Fusion with respect to growth in the amount of data and possible attack
vectors. There has not however been done much work on Information Fusion for
malware Digital Forensics, especially using Fuzzy Logic. Despite its applicability,
the NF technique possess a weakness that affects its scalability during alteration
in the fuzzy set Li. There exist several techniques to deal with the changes in the
NF model. First, the off-line re-training of the model is done from scratch [155].
This causes significant delays and infeasibility when the duration of re-training is
greater than the time between the term’s set changes. Second, the on-line incre-
mental learning over a fixed set of linguistic variables can be utilized, for example
ANFN [236] or self-organizing neuro-fuzzy OSNFS [430]. In this case, the Neural
Network is learning from the data streams. This however requires re-training of the
model to keep the changes in characteristics. Therefore, the study proposed splits
and merges in rules sets in the study [257][Chapter 5] to mitigate the challenges.

2.5.2 Required Hybridization & Kosko Model

Considering the various weaknesses of each of the methods, different types of hy-
bridization can be used in order to support and optimize the discussed SC methods.
To counter this, each method can be supplemented in a very specific manner in or-
der to comply with the "no free lunch theorem" introduced by Wolpert et al. [442].

Despite possible improvements, the implications of the wrong computational res-
ults like non-deterministic, non-optimal solutions may appear. Another challenge
is that some of the aforementioned problems can be optimized only to some levels
of complexity. Due to the inability of making them simpler, HI mitigates the chal-

2.5. Neuro-Fuzzy – A Hybrid-Intelligence Analytics 75

lenge by providing an inexact solution and using parallel meta-heuristics. As a
result, the problems solved in a faster manner using parallel computing. In this
work, we look into the Neuro-Fuzzy system initially used by Kosko [233] shown
in the Figure 2.17.

Figure 2.17: Neuro-Fuzzy approach that includes two stages [233]

Neuro-Fuzzy is a Hybrid Intelligence method that assembles FL and ANN into a
classification model. The major data operations of NF are divided into two logical
stages [233]:

1st NF stage is an unsupervised procedure that is aimed at grouping samples ac-
cording to their similarity. The input data sample is a real-valued vector X =
{xi ∈ R,≤ i ≤M−1}, as in a corresponding set of featuresX = {x0, . . . , xM−1},
and it characterizes a point in M -dimensional space (number of features in input
data). SOM is trained, resulting in groups of samples to be later used for fuzzy

76 State of the Art

patch construction. As can be seen, the main challenge is the determination of the
number of SOM nodes, e.g. width and height of the map. The peculiarities of ex-
isting approaches for SOM training will be described in a later section. The result
of this stage is a set of clusters that each form a fuzzy patch based on the statistical
parameters inherent in each group. These patches are either rectangular or elliptic.
2nd NF stage is a supervised procedure. On this stage, a set of fuzzy rules (based
on fuzzy patches) are fed to ANN with their corresponding weights assigned. The
iterative training procedure results in an accurate classification model employing
the discussed fuzzy rules.

2.5.3 Self-Organizing Map Configuration34

Self-Organizing Map (SOM) or Self-Organizing Feature Map (SOFM) or Kohonen
map is one of the most powerful Neural Network-based unsupervised models.
Among various applications, it is used for 2D data representations and data group-
ing. The main difference from clustering is that the data samples are grouped
according to their similarity, not just by distance between a cluster center and any
of the samples. This model was originally proposed by Teuvo Kohonen [229],
where he described self-organizing systems as a one- or two-dimensional matrix
that has a feedback connection between neighbouring nodes in the map. Most of
the presented interactions were based on one-dimensional output representation
of the input. The resulting formation depends on the feedback level and order of
the samples being fed into the map making, possibly automated formation of the
similarities from map topology.

In this subsection, we focus on the peculiarities of SOM and what is their influence
on the Neuro-Fuzzy model. The main challenge is the results SOM clustering. As
per today, this unsupervised procedure mostly follows the structure of the grid
defined by the analyst. Alternatively, the SOM size changes iteratively over learn-
ing like it is done in Growing SOM [50]. This is an important issue in Digital
Forensics application since this has to be done without manual support. Moreover,
the size of SOM influence the fuzzy rules construction that needs to be understand-
able and easy interpretable that will be shown later

SOM can be organized as fixed-size or growing topology according to Valova in the
"SOMs for Machine Learning" [459, Chater 2] in order to find an optimal size, that
better fits presented data. We will concentrate our attention on the fixed-size SOM
since it does not require additional knowledge about heuristics in data [186]. Also,
the amount of computational resources is lower when the fixed-size rectangular
SOM is used. There exist several challenges to finding an optimal size since this
has a direct influence on the set of the fuzzy rules. Each rule is a characterisation

34The main ideas of this subsection are published under the contribution [374, 376]

2.5. Neuro-Fuzzy – A Hybrid-Intelligence Analytics 77

of similar data samples derived by means of SOM. Too general clusters will cause
underfitting, while too specific clusters will cause underfitting of the model [93].
From the other side, well-packed clusters will give more empty clusters when the
size of SOM is big. The author in [137] stated that the maximum grid size should
be equal to 5 ·

√
N , where N is the size of the dataset. This can be defined as

a "rule of thumb" is SOM size definition. With such a metric, the number of
nodes converges to infinity when dealing with Big Data. The data modification
is not favourable due to the loss of original properties through the addition of
abstraction levels or transformation [394]. Furthermore, a smaller set of rules is
more appropriate for data representation in a Court of Law.

Since the most commonly used empirical measure 5 ·
√
N is SOM toolbox35 ac-

cording to Vesanto [423], there is a need for more precise definition of the number
of nodes. At this point there are several options how the proper size can be estim-
ated. The Growing SOM [459, Chater 2] learns from data iteratively, adding new
nodes. This process might however give too big a topology of SOM resulting in
overfitting [93]. Moreover, the SOM can be run several times to estimate the aver-
age number of clusters after learning as a simple approach. Since the SOM learn-
ing process is based on a random component, it gives similar results that slightly
differ from the optimal size. Finally, we in the research [180], the biggest eigenval-
ues of the dataset were used to tune these parameters. The eigenvalues ratio shows
how well the data flattened and elongated [137]. In other words, the SOM grid
needs to be spanned respectively. This is used in Factor Analysis to determine the
proper number of factors to be used with respect to the covariance fraction, though
it does incorporate the information about structure and dependency in the data.
Thus, estimation of optimal SOM size is done mostly empirically. The optimal
heuristic boundary of empty nodes is 5-10% after the SOM is learned.

Fundamentals

The training principle of SOM follows standard routine of ANN training, making
some additional abstract layers required in mapping from multidimensional data to
Cartesian coordinate systems containing two pseudo-axes SOM1, and SOM2 for
simpler representation. One can use different colouring schemes for visualization
to show various clusters in the data. Generally speaking, SOM network has a
format that is depicted in the Figure 2.18. SOM also reduces the dimensionality
of input data only two dimensions. SOM consists of so-called nodes (denoted as a
circle), where each node is bound with all features in the input vector by means of
weighted connections, as was described in early work by Kohonen [229].

SOM training is done through assigning each input sample to its most similar node

35http://www.cis.hut.fi/somtoolbox/

http://www.cis.hut.fi/somtoolbox/

78 State of the Art

Figure 2.18: A general concept of Self-Organizing Map architecture

on the grid [115]. The goal is to have a stack/vector of similar input data samples
grouped in a corresponding node. Say we have multiple input data samples or a
formatXi = {A ∈ RM}with a corresponding set of featuresA = {x0, . . . , aM−1},
and it can be characterized as a point in M -dimensional space. Each node (m, k)
on the SOM network will have a set of M corresponding weightsWmk = {w0, . . . , wM−1}
connected to the input of the network. The process of training (weights adjustment
and input data assignment) can be described by the following [163]:

1. Weights initialization is done by assigning a small random value to each of
the weights in the model.

2. Training process consists of several important steps. At this point, input data
samples X are fed into the network randomly or based on some predefined
order.

(a) Calculation of Best Matching Unit (BMU) based on the Euclidean dis-
tance between the input dataXi and a node weights vectorWmk. Input
data will be assigned to a node with the smallest distance:

DBMU = ||Xi −Wmk|| (2.5)

(b) Updating neighbourhood means that the influence of the node on other
nodes will be reduced based on the exponential decay function h(t)

2.5. Neuro-Fuzzy – A Hybrid-Intelligence Analytics 79

over time (number of iterations) t. This region of influence will be
reduced over time according to [115]:

h(t) = σ · e−
Nt
λ (2.6)

where σ is a radius of the initial neighbourhood around each node,
considering it to be a circle with a size no more than the size of the
SOM grid:

σ =
max{SOMwidth, SOMheight}

2
(2.7)

λ is a speed or a time constant that indicates how fast the region will
be reducing over time or a defined number of iterations Nsom, and a
current iteration Nt. λ is calculated on each iteration according to the
following equation:

λ =
Nsom

log(σ)
(2.8)

(c) Learning rate adjustment is performed using constant initial rate L0,
as normally done in the general ANN training:

L(t) = L0 · e−
Nt
λ (2.9)

(d) Weights update is performed with the aforementioned parameters for
each node (m, k) in SOM:

W t
mk = W t−1

mk + L(t) · θ(t) · (Xi −W t
mk) (2.10)

where θ denotes the effect of the distance from a node to BMU:

θ(t) = e
−DBMU

2·h2(t) (2.11)

3. Final data representation is the extraction of the samples grouped around
each node in SOM, meaning that they are similar.

SOM becomes integrated in the NF model on the 1st stage described by Kosko [233],
since the main task is to learn the relation and properties of data in order to be able
to build fuzzy rules automatically on the 2nd stage.

80 State of the Art

Interpretability Concerns

The biggest challenge in building a fuzzy rules model lies in finding an optimal
trade-off between accuracy and interpretability. In the research, [199], Ishibuchi
stated it as a multi-objective problem as follows for the fuzzy-based system F and
size of the SOM grid S (number of nodes):

max
S

(Accuracy(F), Interpretability(F)) (2.12)

It is not always easy for forensics analysts to define the appropriate parameters,
especially when dealing with Big Data. Thus, we consider that the fuzzy-based
method in the range from 2x2 to 5x5 can be reasonable based on the complexity
of the model. Moreover, any kind of optimization can be used in the Equation
2.12. There are many obstacles, and no unique solutions are available for the op-
timal size of the fuzzy-based systems. A more extensive study of interoperability
measures was done by Gacto et al. [156]. The authors highlighted the need for
a trade-off between accuracy and interpretability. The accuracy can be measured
easily, while the interpretability measures are not easy to define. Some of the main
features used to study their interpretability were the number of rules, number of
MF, etc. The number of conditions in the rules should not exceed 7± 2, which is a
boundary that the human brain can handle. The number of features can sometimes
however be much more than this limit. Therefore, the only way to limit the com-
plexity of the model is to shorten the number of rules. Another work [183] on the
trade-off between accuracy and interpretability is done by Herrera et al. The au-
thors tried to lower the number of rules by means of a Taylor series approximation.
The authors showed that usage of up to 3 MF in each dimension can be considered
as sufficient for a better accuracy on a dataset. The drop of accuracy in the fuzzy
systems with higher number of rules is caused by a spread and over-fitting of the
training data. According to Alonso [53], the maximum number of rules accept-
able by user should be greater than or equal to 103 times the number of classes.
Castellano [89] presented A Priori Pruning for the human-understandable rules se-
lection from NF. Only 66 rules were extracted from more than 200 thousand of
the rules produced by the grid partition. So, there is a need to bound the grid size
to improve the generalization, and it is reasonable to use less than 52 rules for the
human-understandable model.

Estimation of the SOM Size

In this work, we consider the rectangular topology of SOM that gives rectangular
mapping of the region, which is more appropriate for the fuzzy terms extraction.
The reason for this is that it provides more abrupt clusters, grouping the samples
within edges rather than overlapping with better connectivity as was studied by

2.5. Neuro-Fuzzy – A Hybrid-Intelligence Analytics 81

Baltimore [73]. Below, we give an insight into existing methods and schemes.
To the authors awareness, there is not yet a method for find an optimal size of
SOM that complies with the Daubert Standards for the models to be tested and
interpreted according to the stated requirements [146]. The main problem is in
presenting fuzzy rules from SOM clustering without altering the original data in a
forensically-sound manner. Most of the existing methods generate a big number
of specific rules.

Modification of topology

One of the possible techniques to finding an optimal size of SOM (number of
nodes) is the iterative process of topology modification. In most methods, this
process starts with a small number of nodes, while constantly adding new nodes
until some quality stopping criteria is fulfilled. One of the first modification of Ko-
honen SOM was described by Alahakoon et al. in 1998 in the research [50]. In this
work, the problem of optimal size definition was first addressed by introducing the
Growing SOM (GSOM). Authors proposed the use of additional growing phases
that add new nodes with specific coordinates until the growing conditions are no
longer satisfied. New nodes are added to the boundary while the entire structure is
preserved. Then, the weights of this node are given from the bounded values. The
method has a good speed on the small dataset since the initial number of nodes in
the topology is only 4. Further analysis of this method for knowledge discovery
was performed in 2000 through the introduction of the Growing Hierarchical SOM
(GHSOM) [51]. In the paper, it was stated that the general guideline is to generate
a smaller map first and then expand the analysis process in each cluster. Yet it is
necessary to define the growth threshold GT and the spread factor SF . This re-
quires additional knowledge and work done by the data analyst. Thus, this method
requires specific knowledge of the dataset that the malware analyst may not have.
Another challenge is that the fuzzy relationships cannot be represented properly
since the boundaries on the different layers are crisp. To deal with this challenge,
several other methods were proposed for fuzzy rules derivation while using SOM
in the modification of the topology. The first one, Adaptive Self-Organizing Neural
Network (GSFNN) was proposed by Qiao in 2007 [145]. This method requires an
intense computation process together with a bunch of additional parameters that
need to be defined empirically by an additional data analytic. Our concern is with
the complexity of the methods mentioned above; since growth is not bound, the
structure may be too complex. As a result, this would take too much time to tune
the parameters on the 2nd stage of the NF method. At this point, we will consider
fixed-size models to be more suitable for use in NF methods than changing the
topology, since then we will not be able to control the granularity of the fuzzy sets.

Based on the dataset size

82 State of the Art

Another approach can be used when the SOM topology is fixed and the size of
the map is fixed too. It was mentioned that the number of nodes should be no
more than the number of samples in dataset. Thus, a non-empty SOM node should
consist of at least one sample. In [137, 423, 358], the applicability of the quantity
metric defined by Vesanto in 2000 for the SOM Toolbox in Mathlab [424] sug-
gested that the optimal size of the SOM is empirically determinable. The next
definition of the grid size refers to the dataset size.

S = 5 ·
√
N (2.13)

Definition 1: The initial size of the SOM is equal to S = 5 ·
√
N . The boundaries

of the size are defined as follows, according to SOM Toolbox:

Slower = 0.25 · S = 2.5 ·N0.54321 (2.14)

Supper = 4 · S = 20 ·N0.54321 (2.15)

Furthermore, the number of nodes in each of 2 dimensions of the rectangular SOM
are calculated as following mapping to integer numbers:

Sa =
⌈√

S
⌉
, Sb =

⌊
S

Sa

⌋
(2.16)

This is according to SOM toolbox documentation [424], and was measured empir-
ically. We can see the following problems with this measure: initially, when the
number of data samples is huge, the size of SOM will grow infinitely:

lim
N→∞

S =∞ (2.17)

Thus, this SOM likely would give most of the nodes in the empty state. Finally,
with the huge number of derived regions we cannot make a simple and understand-
able classification model.

Using variance

The last possible way of determining the best SOM size is the analysis of the
spread of the data, for example the measure of variance. Principle Component
Analysis extracts the components that can be characterised by the distribution of
variance [396]. It means that by means of eigenvalues for each corresponding
eigenvector, the characteristics of the distribution can be measured. This technique
is used in Factor Analysis [47] to see how well the factors fit the model and whether
they influence it at all. As defined in the Equation 2.13, the size of the SOM may

2.5. Neuro-Fuzzy – A Hybrid-Intelligence Analytics 83

be changed in case of variance on the first components with the biggest eigenvalues
take the majority of the variance in the dataset [137, 423].

Definition 2: The distribution of the data along the principle components char-
acterise the way that most correlated components are distributed in the data. By
applying the following formula:

S
′

= 5 ·
√
N · e1

e2
(2.18)

where e1 and e2 are two eigenvalues with the biggest values from the work by
Vesanto [423]. This can be interpreted as following data spanning. If both vectors
are nearly equal, then the more general cluster will be composed by the number of
nodes S. Otherwise, more nodes will be used in S

′
if the data are stretched along

one of the components, which implies significant correlation.

Role of correlation

One of the main factors that influences the goodness of fit of the fuzzy model to the
data is the correlation between the features [209]. If there is a correlation between
the features present in the data, then a larger amount of fuzzy patches is required
to cover the area. However, this amount is still lower than in the case when all
possible combinations of MFs are constructed. The basic linear dependencies can
be easily revealed by means of the widely-used Pearson Correlation Coefficient
(PCC) r. It is applied when fast and tentative information about the relations in
the dataset is necessary. The PCC between two variables is calculated as is shown
in the Equation 2.19.

r =
Cov(XY)

σX , σY
(2.19)

where σ denotes the standard deviation for each attribute, and Cov(X,Y) the co-
variance between two attributes. The complexity can be defined as follows. It
requires 1 · N computations of the mean x̄, N computations for the covariance
between them, and 2 · N computations for the variance. Overall computational
complexity is O(M · N) on the M -dimensional dataset with N samples. Addi-
tionally, this does not require the storage of any supplementary matrices.

The Big Data that needs to be analysed in Digital Forensics has complex depend-
encies [169]. Different correlation techniques can be employed to incorporate the
outlined challenges, including confounding variables and non-monotonic depend-
encies. According to the study [103], there are several metrics of the correlation
such as PCC, Spearman, Distance Correlation (DC), and Maximal Information
Coefficient (MIC). The DC is a new measure that was proposed in [407] by Szekely

84 State of the Art

et al. in 2007, and is based on the Euclidean distance covariance between the vari-
ables. The Spearman and PCC correlations are defined as linear. Spearman does
not differ much from PCC, though more iterations are required to find and store
ranking meta-data. On the other hand, DC and MIC have been defined as non-
linear metrics. PCC, DC, and MIC metrics were successfully used in the associ-
ations discovery in large astrophysical databases by Martinez-Gomez et al. [267].
According to the work, DC is more effective than MIC and better reveals associ-
ations in the datasets.

dCorr =
dCov(X,Y)√
dV arX · dV arY

(2.20)

The distance covariance dCov(X,Y) and variance dV ar2
X are defined as the fol-

lowing measure of the element-wise Euclidean distance matrix A(aij = ||Xi −
Xj ||) and B(bij = ||Yi − Yj ||) [407]:

dCov(X,Y)2 =
1

N2

N∑
i,j=1

AijBij , dV ar
2
X =

1

N2

N∑
i,j=1

A2
ij (2.21)

Considering the complexity, this method needs N2 Euclidean distance compu-
tations between every sample’s attribute value, N2 computations for covariance
and 2 · N2 computations for variance. Overall, the complexity can be defined as
O(M ·N2) for the input data. Also, it requires 2·N2 of memory structures required
to store distance matrices, A and B on every iteration. Despite the fact that DC
is a non-linear measure, it was shown in [267] that there is also a sharp depend-
ency between it and the PCC. It makes DC overhead O(M · N) < O(M · N2)
less reasonable when employed in Big Data analytics in comparison to the PCC
results.

Thus, PCC and DC are the most promising measures used in the determination of
optimal SOM size. Even considering that PCC was defined as a linear one, it has
a strong compliance with the defined non-linear DC. At this point, we can also
state that DC is less efficient on huge datasets due to computational complexity.
Moreover, DC takes more space for meta data when N >> M than for the data-
set itself. In this light, it is more efficient to use PCC for the estimation of the
dependencies in the dataset.

2.5.4 Fuzzy Patches Revisited36

So-called fuzzy patches ΠXY define the relationship between an input fuzzy set
X and output fuzzy set Y . As a result, the outcome of the SOM clustering can

36The main ideas of this subsection are published under the contributions [373, 376]

2.5. Neuro-Fuzzy – A Hybrid-Intelligence Analytics 85

be represented by a set of clusters or groups of similar instances. Each cluster or
patch will result in a corresponding fuzzy rule with a particular class label, since
these are Mamdani-type rules. Therefore, an arbitrary fuzzy patch Πij represents
an input-output mapping of the input feature vectorXi = {A ∈ RNF }with feature
set a = {a0, · · · , aNF }, and output class vector Yi. Below, we discuss the different
most commonly used types of fuzzy patches and how they are constructed from
SOM clusters according to Kosko [233].

Definition 3: The simple rectangular patch represents a NF -dimensional hyper-
rectangle (NF features in the dataset) that contains inscribed instances of a partic-
ular cluster as shown in the Figure 2.19. The boundaries of the patch are derived
using 1st and nth order statistics for each of the features ai:

Bak
min = min{Πk

i , · · · ,Πk
i } (2.22)

Bak
max = max{Πk

i , · · · ,Πk
i } (2.23)

Figure 2.19: A simple fuzzy patch which defines an arbitrary rectangular region

Considering that the patch is a simple rectangular, we can define the center and the
length of each side that corresponds to a particular feature ak space:

Lak = Bak
max −B

ak
min (2.24)

Cak =
Bak
max +Bak

min

2
(2.25)

Definition 4: The elliptic patch in the Figure 2.20 used by Kosko back in 1997 [233]
has a M -dimensional hyperellipsoid form that is circumscribed around the data in
a cluster:

(x− c)T (x− c) = α2 (2.26)

86 State of the Art

where α is a pseudo-radius of the fuzzy patch for orthogonal uncorrelated features,
and ci is a centroid of a particular feature in the cluster. It can be explained as a set
of N data samples, and is therefore contained in an NF -dimensional ellipsoid (hy-
perelipsoid) with a radius α, of general form

∑NF−1
n=0 x2

i = α2. This is the shape
of the multidimensional spread of data around some central tendencies caused by
Gaussian distribution. This is the distribution that defines most real-world pro-
cesses.

Figure 2.20: Ellipsoid fuzzy patches used by Kosko [233]

Remark 1. It was assumed that the data in the cluster was distributed so that a
fuzzy patch Πij forms a multivariate distribution. Such fitting will reduce error
of the data from outside the patch and provide better data-fitting, as stated by
Bertoni [78]. The difference between simple rectangular and elliptic patches is
shown in the Figure 2.21. As can be seen, there is a much higher degree of error
when using rectangular patches.

However, this equation does not incorporate the information about any correla-
tion in the data that will result in the rotation and stretching of the hyperellipsoid.
Therefore, an inverse covariance matrix Σ−1 will be incorporated.

(x− c)T P Λ P T (x− c) = α2 (2.27)

At this point Σ−1 = P Λ P T represents a positive definite symmetric matrix,
which is factorized using eigendecomposition as described by Abdi [36] into the
diagonal matrix of eigenvalues Λ = (λ1, . . . , λNF) and orthogonal matrix of ei-
genvectors P = (e1, . . . , eNF) that rotates the ellipsoid. It should be noted that
according to the Eigen decomposition theorem described by Abdi [36], the covari-

2.5. Neuro-Fuzzy – A Hybrid-Intelligence Analytics 87

Figure 2.21: Differences in data coverage provided by simple rectangular and elliptic
fuzzy patches

ance matrix is transformed into decomposition Σ−1 = P Λ P T since eigenvectors
are orthogonal.

Remark 2. We can then refer to Principle Component Analysis (PCA) presented by
Smith [396]. On the initial step of PCA, the eigendecomposition is performed to
find out the components with highest degrees of variance. Then, the initial eigen-
values from the ordered vector represents the components with the highest lengthi-
ness along the eigenvectors. This information can be used to find out whether the
amount of required SOM nodes should be increased to cover the stretched region,
as was mentioned earlier. Furthermore, the radius of each corresponding ellipsoid
axis is equal to α/

√
λi due to λi · (xi− ci)2 = α2 according to Kosko [233], since

for the orthogonal matrix P T = P−1, which would eliminate the eigenvectors
values in Equation 2.27. As can be seen, the definition of α2 in Equation 2.27
determines the efficiency of the method. So far, this parameter has been defined
empirically from data.

To summarize, clustering is done by trained SOM based on the features similar-
ities to convert an M -dimensional feature vector into a 2D-lattice that consists
of H ×W nodes. After training each node, Si,j includes cluster of similar data
samples as depicted in the Figure 2.22. One can see that a single SOM node can
contain samples belonging to one or more clusters that characterize a particular
class (samples of A or B classes in the Figure).

88 State of the Art

Fi
gu

re
2.

22
:E

xt
ra

ct
io

n
of

el
lip

tic
fu

zz
y

pa
tc

he
s

2.5. Neuro-Fuzzy – A Hybrid-Intelligence Analytics 89

The construction of elliptic regions is done to improve the Kosko method. We
make a hypothesis that the multivariate distribution defines the model [383] for the
data clustered in the node Si,j in SOM (referring to the Figure of histograms from
different features from the dataset):

g(x) =
1√

(2 · π)M |
∑
|
· e−

1
2

(x−x̄)T
∑

(x−x̄) (2.28)

Based on the this assumption and the properties of Gaussian multivariate distribu-
tion, there need to be defined corresponding parameters {x̄′ , σ̄′ ,

∑
} for the given

data. The distribution model represents an n-dimensional elliptic region or fuzzy
patch for the cluster in Euclidean geometry.

2.5.5 Membership Functions Basics37

MF in a fuzzy set usually takes the values [0; 1] and is used to define the degree of
truth to which the samples belong to a particular rule. Since the rule is composed
from many transformed feature linguistic terms, we need to define the MF for each
of the feature spaces. There are two definable membership functions from before
that were used in Neuro-Fuzzy, according to Kosko [233]:

Definition 5: The triangular MF is used together with rectangular fuzzy patches
and has the following form:

µj(X) =

1− |xj − cj |
pj

, |x− cj | ≤
pj
2

0, otherwise

(2.29)

where cj defines a center of the triangle for the i-th feature and pj is the corres-
ponding length of the base of the triangle.

Remark 3. The triangular MF is derived from the rectangular fuzzy patches and
has the following parameters used in the Equation 2.29:

cj = Caj ; pj = Laj (2.30)

Triangular MF is the generally-used type of function and its parameters are easy
to derive from data, as shown in the Figure 2.23. Therefore, we included this MF
for comparison in our work. According to Dickerson et al. [120], triangular MF
was used to simplify the derivation of rules. This method uses 1st and nth order
statistics in a cluster, assuming it fits the rectangular region and then the simple
triangular MF to characterise each region.

37The main ideas of this subsection are published under the contributions [373, 376]

90 State of the Art

Figure 2.23: Simple Membership Function used to defined the degree of truth in rectan-
gular fuzzy patches [233]

However, when it comes to elliptic fuzzy patches, MF construction is not that
simple. The input data sample is Xi = {A ∈ RM} with the corresponding
set of features a = {x0, . . . , aM}, and can be characterized as a point in M -
dimensional space. The whole set of N data samples is therefore contained in
an M -dimensional ellipsoid (hyperelipsoid) with a radius α and center ci. Fur-
thermore, to include the correlation between the features, we need to include the
covariance matrix that also defines the rotation of the elliptic region in the Kosko
method:

(x− c)T Σ−1 (x− c) = α2 (2.31)

where Σ−1 is a definite positive inverted symmetric covariance matrix. The num-
ber α is set to be the same for every fuzzy patch as in the Kosko method.

The Kosko method employs elliptic modelling instead of the previously mentioned
rectangular patches, and then derives the corresponding parameters of the triangu-
lar MF as presented in the Figure 2.24.

To simplify the MF construction, Dickerson and Kosko [120] defined a rotated
rectangular region, in which the hyperelipsoid is inscripted. As a result, the fol-
lowing triangular-based MF is constructed:

µj(X) =

1− |xj − cj |
pj

, |x− cj | ≤
pj
2

0, otherwise

(2.32)

where the µj defines the MF of j feature and the projection of the circumscribed
hypperrectangular on the i axis

2.5. Neuro-Fuzzy – A Hybrid-Intelligence Analytics 91

Figure 2.24: Representation of the membership function together with elliptic fuzzy
patches

Definition 6: Projection-based triangular MF according to Kosko [233], the MF
in Equation 2.32 is constructed using the projection from a hyperellipsoid on each
feature axis. The base length of the triangle for the j-th feature space is defined as
a sum of the projections on the i-th axis:

pij = 2 · α ·
∑ |cosθij |√

λi
(2.33)

where angle between the i-th axis and j-th eigenvector ej :

θij = arccos(ej(i)) (2.34)

Figure 2.25 shows the resulting ellipsoid projections that were described by Kosko [233].

Since the unit eigenvector represents the vector of direction cosines between the
principle axis of rotation and original features axis as it is eliminated from the char-
acteristic polynomialA ·e−λ ·e = 0. In Euclidean space, the features’ vectors are
mutually orthogonal as well as the corresponding set of eigenvectors. Therefore, it
is feasible to use a set of eigenvectors as a rotation matrix in eigendecomposition of
the inverse covariance matrix Σ−1. The projection of the hyperrectangle circum-
scribed around the target hyperellipsoid defines the parameters of this MF. We can
see that such a projection does not fit the data properly since the data might contain
outliers. In the above mentioned research, the authors stated that this way of MF
composition does not use the orientation of the ellipsoid, and might be improved
by utilization of the ellipsoid patch itself in MF. The following Section gives a

92 State of the Art

Figure 2.25: Projection of the eliptic fuzzy patches on the axis according to Kosko [233]

view on the probabilistic modelling in the definition of parameter α2. Moreover,
the modified MF function is presented based on the multivariate distribution.

2.5.6 Tuning of Fuzzy Rules

Artificial Neural Networks play an important role in NF architecture not only as
an unsupervised method for fuzzy patch allocation, but also for the fine-tuning of
extracted fuzzy rules. Different NF architectures such as ANFIS described by Ab-
raham [39] use Neural Network learning for enforcing the accuracy of the Fuzzy
Inference model, and adjusting the corresponding weights in the Neural Network,
whose role is of supervised trainer on the rule inference layer. By applying such
training, the NF model gets a better-expressed rules firing process, where rules
are considered to be input to ANN. A general scheme of ANN is shown in the
Figure 2.26.

As written before, ANN is known to be one of the most powerful ML methods
capable of learning from erroneous, complex, and incomplete data. Generally,
its training is done via minimization of the objective function of the error sig-
nals E(W):

E(W) =
1

2
(y − d)2 (2.35)

where d - desired output of the ANN, y - actual output, and W is a set of all

2.5. Neuro-Fuzzy – A Hybrid-Intelligence Analytics 93

Figure 2.26: A general representation of Artificial Neural Network [232]

weights. The main obstacle in learning is that the method can be stuck in a local
optima unless the learning rate is an optimal one. Thus, the primary optimization
problem in the ANN is the minimisation of the function:

min E(W) |W∈RM (2.36)

where each function in the E(W) is an objective function of the neuron’s weights
wji (j − th hidden layer and i− th hidden unit) that should be optimized with the
following condition on the whole domain of the function dom E(W) = R and
with respect to the learning rates α:

∀ wji ∈ R : E(wji
∗
) < E(wji) (2.37)

Researchers have proposed different learning schemes including complex algorithms
like Widrow-Hoff LMS and Adaline as described by Widrow et al. [438]. The MLP
learning process should be optimized as a differentiable error function, and then
the Gradient Descent (GD) optimization of the function tunes the weight of the
neurons:

wji
new

= wji
current − α · ∇E(wji) (2.38)

where E(wji) is a multidimensional error function over a weight wji . The principle
of the learning then is to use the so-called Delta Learning rule, comparing the
output of the network against the labelled dataset. The Delta Learning Rule makes
a robust first-order approximation as stated by McClelland et al. [273] along the
partial derivative direction only if the learning rate is less than or equal to the
optimal one, also described by Mandic et al. [262]. In real-world tasks however, it
is hard to predict how the optimal learning rate will change under the influence of
an input concept drift. The determination of the learning rate α brings with it the
most challenge. There are several options for definition, such as constant rate or
iterative adjustment [232].

94 State of the Art

2.5.7 Binomial & Multinomial Classification38

Mamdani-type NF is a model which is specifically designed for classification prob-
lems, where each fuzzy rule denotes a specific group of samples that can be de-
noted with a fixed label, as studied by Kosko and Chen [95, 233]. The advant-
age of fuzzy rules is that they can describe each group of similar data that be-
long to different classes separately without designing a separation hyperplane as
is normally done in other binary classification methods. Considering also the area
of Digital Forensics, such a model underwrites great interest in building human-
understandable and interpretable models that are also accurate. The majority of the
tasks in illegal activity detection denotes either "malicious" or "benign" patterns,
which is a binary classification task. These can be software samples, network
traffic dumps, web pages, etc. There are studies however that require the determ-
ination of a specific group or domain which this "malicious" pattern belongs to,
for example network attacks or malware families.

Many methods such as Multilayer Perceptron (MLP) or Support Vector Machine
(SVM) were originally designed at the dawn of the ML era to produce a binary
output in a form acceptable to computers. The design of MLP as Neural Network
is purely based on the activation function (e.g., logistic) that either activates (state
"1") or deactivates (state "0") the output neuron. There is almost no way to use such
single-output NN architecture for multinomial classification. So, one must utilize
either one network with multiple outputs or multiple single-output networks for
the defined purpose, according to Aly [56]. Multiple outputs are normally used for
the explicit determination of the class label or per class probability. Ou et al. [303]
performed an extensive study of the multinomial classification by NN and con-
cluded that the optimal class boundaries can be found when the method separ-
ates all classes at the same time by a single NN model. Also, the main problem
with multi-output NN is in training with discarded relevant information from "oth-
ers" classes. Such models are hard to train with large numbers of classes, while
single-output models are easier to handle. On the other hand, SVM was origin-
ally designed for binary classification format. Therefore, many different schemes
for multinomial classification were presented to supplement an intrinsic binary ar-
chitecture, as for example the decision tree-based SVM proposed by Madzarov et
al. [259]. One can also mention One-against-One and One-against-All approaches
used to apply binary classifiers to multinomial problems. Both schemes are natural
extensions of binary classifiers according to Avia-Herrera et al. [67]. The authors
proposed the One-against-All logic analysis algorithm to handle multinomial clas-
sification since this scheme faces many problems due to imbalanced training. On
small sets, it produces good results using a mixed-integer programming approach.

38The main ideas of this subsection are published under the contributions [372, 377]

2.5. Neuro-Fuzzy – A Hybrid-Intelligence Analytics 95

Furthermore, One-against-One gives a better generalization since it eliminates the
problem of imbalanced training, and allows only NC ·(NC−1)

2 binary classification
models for NC classes rather than NC models for the One-against-All scheme,
according to Alvear-Sandoval et al. [55].

NF operates with a slightly different situation, where an activation function can be
omitted and replaced by a defuzzification function, which is a real-valued one and
is on the edge of classification/regression. The Mamdani-type NF model uses de-
fuzzification to turn the fuzzy output value into a crisp value of some defined para-
meter that measures the fuzzy output. The most common application of NF is for
the detection of something that is known to be "good" and something known to be
"bad". We went through research with NF classification that used IF-THEN rules,
and found that most of them use a "one-hot" output encoding scheme. Chavdan
et al. [363] used Mamdani-type rules for the multinomial classification problem of
network attacks detection. Sindal et al. [391] presented an NF system for multino-
mial services in CDMA cellular network. There was an adoptive controller with
a "one-hot" encoding scheme in the output layer. 4 outputs were used for each of
the action classes. Furthermore, Yu-Hsiu et al. [253] proposed a novel NF classi-
fier where every class was represented by a separate output, then encoded together
with input parameters for particle swarm optimisation. Several multinomial clas-
sification problems were explored by Eiamkanitchat et al. [135] with respect to a
novel NF-based method, where "one-hot" encoding was used as well. The same
output encoding approach was applied by the Guo et al. [172].

As can be inferred, multinomial classification problems (especially in Digital Forensics)
require additional optimization since they are more complex to deal with. Many
of the existing models are only designed to handle binary classification problems.

Community-Accepted Classification Methods

Multinomial classification can be considered a harder task than binary in separat-
ing similar properties of similar classes due to the mix of parameters and possible
values. From the book by Kononenko et al. [232] we can see that the majority of
the supervised learning problems in Machine Learning are covered by binary clas-
sification methods. There are the following examples of originally-binary classifi-
ers:

• Decision Tree uses a binary split of attribute values in the form of compar-
isons > or < on the way to next attribute in a tree. Decision nodes represent
classes also as a binary split.

• Support Vector Machine builds a hyperplane that separates both classes us-
ing quadratic programming methods; however, kernel trick has to be applied

96 State of the Art

in case the classes cannot be separated linearly.

• Logistic Regression makes a classification in the form of binary-dependent
variables that use logistic regression analysis to separate classes along either
0.0 or 1.0 on a logistic function.

• Multilayer Perceptron is a Neural Network-based method that maps n-dimensional
input space into two asymptotically different values of the activation func-
tion, which could be a logistical one or something similar. It also has mul-
tiple hidden layers that model non-linear dependencies.

To extend the application of binary classifiers for multinomial classification prob-
lems, two ways of doing so can be named. First, there exist a number of modi-
fications like Multinomial logistic regression designed for multiple categorical
dependent variables. Second, the original method is preserved, while ensemble
learning strategies are used. The main conventional strategies developed for such
purposes are denoted by Allwein et al. [52] and Ou et al. [303]

• One-against-One trains a binary classifier for each of theNC classes against
every other class.

• One-against-All splits all classes in a way that every class fromNC is trained
against all other classes except that one.

• P-to-Q selects a set of P classes that are going to be trained against Q other
classes.

When it comes to purely multinomial classification methods however, there are
several methods that are generally considered as designed for such problems ac-
cording to Kononenko et al. [232]:

• k-Nearest Neighbours is a distance-based method that uses majority voting
to classify new data samples based on previously known labelled samples.

• Random Forest is an ensemble learning method based on decision trees,
which are generated using randomly selected attributes.

• Naive Bayes is a probabilistic classifier that calculates the chance that a par-
ticular set of attribute values appear in a particular class.

• Bayesian Net is a probabilistic classifier based on the conditional transition
between attributes values.

2.5. Neuro-Fuzzy – A Hybrid-Intelligence Analytics 97

General Problem Reduction & Output Encoding Strategies in Neural Network-Based
Architectures

Chen et al. [96] highlighted that NN-based methods are generally capable of sep-
arating k-different classes at the same time. In reality, this means that multiple
outputs have to be used. This is because the NN activation function is usually
a differentiable continuous one, and can converge to two asymptotically differ-
ent values such as in the case of a logistic function. Otherwise, reducing strategies
have to be applied to utilize multiple binary classifiers with a single defuzzifier out-
put, like One-against-One and One-against-All. As a result, there must be multiple
NN models created for the multinomial classification problem, where each output
is a binary [0; 1]. Considering this, the different output representation/encoding
schemes were to be applied in Neural Network-based architectures as proposed by
works by Aly [56] and Hurwitz [192] also shown in the Figure 2.27 and Table 2.2.

• One-hot such that 0001 (for 4 classes example) uses a single output flipped
as ’1’ to denote a specific class, while other outputs are ’0’, so the ap-
proach is stable against errors. The number of required outputs are there-
fore: q = Nc. This is the simplest naive approach used in works related to
multinomial-classification problems. The drawback however is that it can
be affected by imbalanced learning caused by assigning a single target class
as ’1’, while other classes are labelled as ’0’.

• Distributed-Output or Binary methods such as 0101 uses a unique simple
binary code (also could be different, like Hamming or error-correcting) to
represent each class. The most commonly used name is also Error Cor-
recting Output Coding (ECOC). Dietterich et al. [121] presented a ECOC
study on different methods, where the efficiency of the method was proven
to learn Decision Trees and Neural Networks on datasets partially repres-
ented in this work. Also in the problems where it is required to produce
human-understandable models, ECOC cannot be applied due to its com-
plexity. The total number of required outputs is lower than the number of
classes in a problem and equal to q = dlog2Nce. However, according to
Hurwitz [192], this method is rather more susceptible to errors than "one-
hot", and can produce mistakes while a model is trained. Furthermore, to
improve this method, Liu et al. [255] suggested the training of binary classi-
fiers jointly rather than for separate sub-problems. This is done via a unified
objective function.

98 State of the Art

Table 2.2: Example of Neuro-Fuzzy output encoding schemes for 4 classes

Class Label Scheme
Binary One-hot

Class ’1’ 00 0001
Class ’2’ 01 0010
Class ’3’ 10 0100
Class ’4’ 11 1000

Number of outputs 2 4

Figure 2.27: Comparison of Neuro-Fuzzy architecture with different output encoding
schemes

Defuzzification in Multinomial Methods

Defuzzification is the final part of the NF method that converts a fuzzy value back
into crisp value when necessary. Takagi-Sugeno regression model does not need
defuzzification to extract the value, which is usually a function over the input fea-
tures X . Despite this fact, a Mamdani-type classification model requires defuzzi-
fication, which is usually a time-consuming and complex process [95], in case a
crisp value is needed rather than a fuzzy class label. It is an important task to con-
vert a fuzzy value back to crisp numerical one. Many examples of defuzzification
methods can be cited as studied by Naaz et al. [292]: Center of Gravity, Bisector
of Area, Mean of Maximum, Smallest of Maximum. The authors performed an ex-
perimental study that showed that Center of Gravity can be considered as a method
that produces better results in comparison to other methods. In the case of binary
classifiers, it is easier to derive the continuous value of the output, which can be
easily used with multiple-output coding. Yet it becomes more challenging when
the system uses a single output. Kosko [233] suggested the use of an unequal-

2.5. Neuro-Fuzzy – A Hybrid-Intelligence Analytics 99

weight center-of-gravity defuzzifier since.

y =

∑NR
i=1 ·µi(X) · wi · Vi · ci∑NR
i=1 µi(X) · wi · Vi

(2.39)

Since the volume Vi does not change and is influence by α however, it can be
eliminated from the previous equation. Therefore, we are going to use equal-
volume rules to eliminate the dominance of some rules over others.

y =

∑NR
i=1 ·µi(X) · wi · ci∑NR
i=1 µi(X) · wi

(2.40)

whereX represents an unlabelled sample to be classified,NR is a number of rules,
extracted on the 1st step and ci denotes a centroid of a particular patch. Similarly,
Takagi-Sugeno rules represent a function over the vector of antecedent values.

2.5.8 Higher Level of Abstraction & Deep Neural Networks39

There is a strong need for advanced computational models capable of high level ab-
straction modelling due to multinomial classification problems that usually involve
a high level of non-linearity and complexity. We believe that the emerging area
of Deep learning (DNN in particular) may facilitate this goal, as was mentioned
before by Stallkamp et al. [400]. Previously, Ou et al. [303] performed an extens-
ive study of the multinomial classification by general Artificial Neural Networks
(ANN) and concluded that a single ANN model can achieve reliable classification
accuracy. DNN however has been developed to tackle hardly-differentiable ab-
stractions in data. Recently, Schmidhuber [357] performed a comprehensive over-
view of Deep learning in ANN. The majority of the state of the art Deep learning
methods have been developed after 1990. The drawback of such a method is an
inability to extract an exact meaning of the model, or derive a human-perceivable
representation of a model through linguistic fuzzy logic rules. On the other hand,
Fuzzy Logic has been used as a human-understandable model before, studied in
depth by Zadeh in his works starting from 1960 [453]. Deep learning in NF was not
mentioned in the work by Schmidhuber, so we believe that it might be a stepping
stone for future research targeting understandable models in multinomial malware
classification.

Complex data modelling in Neural-Architectures

ANN is a powerful method that is designed to handle non-linear dependencies in
the data. It can be trained from data that are complex and non-linearly separable.

39Ideas of this subsection are publshed under the contribution [380]

100 State of the Art

An example is XOR problem where ANN is successfully utilized to predict an out-
put from two inputs. Cottrell et al. [106] described the evolution of ANN’s ability
to handle complex data and studied the great potential of Multilayer Perceptions
as well as SOMs, which are also used on the 1st stage of NF. In some cases how-
ever better generalization is required to describe non-linear relations in the data.
Alternatively, this can be done either by increasing a number of hidden layers that
results in Deep Neural Networks (DNN), yet this is out of our scope due to pro-
ducing a hardly interpretable model. Dahl et al. [108] presented a work on the
application of three-layers ANN to classify around 200k samples into benign and
malicious as well as into the 134 malware families using 4,000 features extracted
from files. However, there is another way of keeping model understandable. Hy-
brid Intelligence methods such as NF are used to enhance the capabilities of ANN
and to provide classification fuzzy rules.

NF is a two-stage method that includes the grouping of unsupervised samples and
tuning of fuzzy rules, resulting in a rule-based fuzzy classification model [233].
The 1st stage of NF, which influences the accuracy and robustness of the whole
model, is based on Self-Organizing Map (SOM) learning. There has been work on
Growing Hierarchical SOM [51] to improve clustering, but it is hardly applicable
for NF since the fuzzy relationships cannot be represented properly because the
boundaries of the different layers are crisp. As an analogy, we can look to Convo-
lution Neural Networks (CNN) [357] which are used for visual pattern recognition.
Yet this is out of our scope since sub-sampling may not produce understandable
regions which can be explained by fuzzy rules later. The 2nd stage of NF is fuzzy
rules tuning to produce a reliable classification model. Many researchers have
been using Deep learning to enhance existing ML algorithms. Below, we present
the fundamentals of DNN as well as the limitations of the current state of the art
related to Deep learning in NF for multinomial classification.

Importance of Deep Neural Network

DNN has been inspired by the era of Deep learning [357], and differs from the
conventional definition of ANN by using higher levels of abstraction, or more
hidden layers, in order to be capable of handling nonlinearities in the data. This
was done to overcome the limitations of binary classifiers on non-linear problems,
such as XOR among others [77, 286]. Moreover, the use of more hidden lay-
ers allows DNN a better approximation than conventional Soft Computing meth-
ods like Support Vector Machines (SVM). Also, one can see the large number
of variations in how the architecture can be constructed due to the number of
independent variables. The main parameter that defines the depth of DNN is a
number of hidden layers used in a trained model. The "golden rule" is that ANN
with more than 3 layers can be considered deep, as also described by Karpathy et

2.5. Neuro-Fuzzy – A Hybrid-Intelligence Analytics 101

al. [215]. At the same time, the "rule of thumb" defined by practical considera-
tion is (number_attributes + number_classes)/2 used in Weka [149]. Some
CNN tend to use at least 10 hidden layers in consideration of the need for iterative
sub-sampling on a big image identification task [215]. Despite these advantages,
DNN cannot be used to generate human-like solutions or, at least, to make an un-
derstandable representation of the model. Therefore, we believe that the synergy
of DNN and NF is beneficial.

Deep Learning & Neuro-Fuzzy

There have been developed a number of Fuzzy Systems, including NF [38, 425]
based on a specific task and required fuzzy rules configuration. Such systems how-
ever can be considered as linear since the abstraction in the data is incorporated
only through the linear mixture of the membership functions. Non-linearity is an
important requirement for being able to model multinomial problems according to
Ou [303]. Originally, Neuro-Fuzzy [233] had been proposed as a synergy of ANN
and pure FL to be able to extract fuzzy rules automatically without the involve-
ment of a human expert. ANN offers high accuracy though the weights cannot be
interpreted, while FL provides clear understandability, yet requires manual tuning
of the parameters. Therefore, we have identified four research works that target
deep learning specifically in relation to a Neuro-Fuzzy approach. In 1996, Tano
et al. [411] presented Fuzzy Inference and Neural Network in Fuzzy Inference
Software (FINEST). Even though the authors state that the system presents a deep
combination of ANN and FL, it is in fact a hybrid system that consists of four
layers: antecedent fuzzy sets, fuzzy rules AND combinations, output consequents,
and a final layer that combines all rules outputs. Furthermore, a fuzzy deep be-
lief network algorithm was proposed by Zhou et al. [462] in 2014 for sentiment
classification. Its achieved accuracy was 66.6% – 75.3% on five different datasets
with 2,000 samples each in binary classification problems (positive and negative
reviews). It consists of an integration of Fuzzy Logic and DNN without the in-
termediate grouping step that was originally proposed by Kosko [233]. Instead,
a Membership Function (MF) is presented for each of the input features in each
class. The authors used 3-layer DNN with one output layer for features extrac-
tion, which is the minimal number of layers considered to be deep. Moreover, the
authors did not consider the extraction of fuzzy rules, making this model suitable
only for classification, and not for decision understanding. Following that, a Deep
Cascade Neuro-Fuzzy System was proposed by Hu et al. [189] in 2016 to facilitate
high-dimensional online fuzzy clustering. From the work however, it is not clear
how the deep learning is used, though the fuzzy clustering procedure is explained
in detail. Also, there was no mention of how the rules can be extracted for further
use in practical applications. Thus, we cannot justify that this method can fully

102 State of the Art

be qualified as Deep Neuro-Fuzzy. Finally, Aviles et al. [68] states in 2016 the
importance of combining deep learning and fuzzy theory to make a better Hybrid
Intelligence method. The authors applied a combination of Deep Networks and
Fuzzy Logic for handling visual uncertainty in robotic surgery. In particular, they
modified Long-Short Term Memory networks that resulted in recursive deep learn-
ing. The regression-based estimation of the error showed improvement beginning
at 35% to the accuracy rate. One may conclude therefore that the application of
Deep learning for NF to enhance model accuracy and extract corresponding IF-
THEN classification rules has not been sufficiently explored before. As a matter
of fact, no work has yet explored the synergy of DNN with NF using more than 3
layers of architecture.

2.5.9 Challenges with Pro-Active Training of Neural Network-based Archi-
tectures40

The Big Data paradigm brings new challenges to data analytics. Below, we will
consider several such obstacles that make utilization of conventional Machine
Learning methods less efficient.

Dynamic Modification of Fuzzy Sets in Neuro-Fuzzy

Despite the flexibility of the Neural Network and the Fuzzy Logic, the Hybrid In-
telligence system of NF is not modifiable and re-trainable. In the paper by Pitz
et al. [313] it was stated that such systems lacks the ability to tune the topology.
The KBANN and TopGen algorithms were studied and it was found that there is
a need for intelligence-based growth in the topology rather than just automated
updates. In [69], the dynamic node creation for ANN was proposed to show the
possible retraining of the network without a loss in accuracy. The change in the
topology of the Hybrid NF is more complicated since it binds the fuzzy rules se-
lection, including the fuzzification part, inference mechanism, and defuzzification
engine according to Fuller [155]. In this work, we concentrate instead on the
change between the fuzzification part and the inference mechanism. Generally
speaking, Neuro-Fuzzy is a Hybrid Intelligence method that assembles FL and
ANN into a classification model [233]. The input data sample is a real-valued
vector X = {xi ∈ R,≤ i ≤ M − 1}, meaning a corresponding set of features
X = {x0, . . . , xM−1}, and it characterizes a point in M -dimensional space (num-
ber of features in input data). The mapping of input X into output Y is performed
via the fuzzy patches [46]. Extension of the fuzzy set by adding a new term in to
it will affect mapping since a fuzzy set L of the input X corresponds to a crisp set
of classes C labels of the output Y . Thus the set L has the following form for all

40The main ideas of this subsection are published under the contributions [370, 368]

2.5. Neuro-Fuzzy – A Hybrid-Intelligence Analytics 103

m terms in the fuzzy set using one-input-one-output topology:

Li = µL(x1)/x1 + · · ·+ µL(xm)/xm (2.41)

where + represents the notion of the logic operation OR in the domain of L. By
means of the Zadeh’s extension principle, the mapping can be expressed in a cor-
responding form [155]. According to the principle, this can be expressed as map-
ping from the input fuzzy set L into a class C using the transition function f :

C = f(L) = µL(x1)/y1 + µL(xm)/ym (2.42)

In the malware detection problem, the input has to be constructed of multiple Uni-
verses X resulting in multiple-input-one-output a mapping scheme that gives spa-
tial fuzzy patches on the multidimensional input space [322]. However, we have
to apply the max principle since in this mapping scheme, there can be x1 = x2:

∃ xi ∈ R : y = f(x1) = · · · = f(xp) :→
µB(y) = max

y=f(x)
µL(xi)

(2.43)

Therefore, the fuzzy inference principle is performed via the max-min principle for
the Mandani-type rules based on the corresponding t-norm implication x → y =
T (x, y) = min(x, y) [194]:

µc(y) =

max
y=f(x1,··· ,xm)

(min(µ1
L1
x1, · · ·), · · · ,min(µkLmx1, · · ·)) (2.44)

where a number of fuzzy sets Li is defined over the corresponding input set X .
Generally speaking, this mapping establishes a relationship between the ante-
cedent and consequent by means of fuzzy patches

∏
xy with corresponding re-

lationships between input and output. However, the introduction of new terms will
affect the patches and split some of them into sub-patches. This will change the
mapping function since new terms will be added in each of the linguistic vari-
ables Li.

Fuller [155] stated that the cooperative models used for independent adjustment of
each component of the Neuro-Fuzzy systems while hybrid models perform con-
struction of the IF-THEN rules. Self-Organizing Maps and fuzzy clustering can be
applied for rule learning in such cases [128, 355]. However, the cooperative system
the requires a complete re-training of the neural network before the fuzzy compon-
ent is initialized. When the rules are constructed and weights are calculated, the

104 State of the Art

rules voting process has to be completed according to Ishibushi et al. [200]. Also,
it is important to select the smaller subset of rules that possess sufficient accuracy
to simplify the model. This is due to the exponential dependency of the number of
constructed rules on the dimensionality and number of the terms in each linguistic
variable Li. In the research [293], authors proposed to apply Genetic Algorithm
for the selection of the most important rules. This method is stochastic and may
produce different rules subsets for the same collected data. However, the most
common method is to evaluate all the constructed rules. Yet there has been no pro-
posed method of rules selection based on the weights importance and membership
function.

Expansion of Fuzzy Sets In Trained Model

However, despite the applicability of Neuro-Fuzzy there exist challenges related
to fast the emergence of new technologies. The problem of adding a new term into
a fuzzy set of an already trained Hybrid NF model on malware detection problem
can be formulated as follows: the NF model is learned from the data and is in the
state S0. After some period of time, there is a need to include a new k−th term
Lki into an arbitrary linguistic variable Li. Due to the possible limitations in the
real-world with respect to repeated data gathering and retraining, the model has to
be incrementally trained from the state S0 with the change in topology to a new
model in the state S1. From the perspective of malware analysis, the models in
both states have to be compatible with the collected characteristics of malware.
For example, when a new feature is added to Android API, there is a need to
expand the detection model and therefore preserve accuracy for the platform with
and without this feature. This is one of the most widely used mobile platform OS,
which has been in active development since 2008. As of January 2017, platform
versions 1.0 through 25 are available (Android 7.1) [165], each containing new
features and their included functionality. Since there has to be an initial reference
model in the state S0, we need to introduce the transition of the model S0 → S1.
By transition, we mean the modification of the model by adding newly extracted
rules into the reference model. In this work, we use rectangular fuzzy patches

∏
that produces a change in NN weights when the terms are added in.

Generally, the number of fuzzy rules constructed during NF model training isKM .
Furthermore, adding a single new term in the input fuzzy set part of the NF topo-
logy will bring KM−1 newly constructed rules. Most important for the decision,
the rules have to be extracted from both sets, so there will be no loss in accuracy.
Additionally, the distribution of the input features does not significantly influence
the model since the abstraction by the fuzzy logic is inserted. The main challenge
however is to update the model in the state S1 since it is on the edge of fuzzifica-
tion, and the inference and change in terms will cause a change in the set of rules

2.5. Neuro-Fuzzy – A Hybrid-Intelligence Analytics 105

and weights as result. There might be several causes of a need to expand the NF
model without much retraining. Among them is a change of characteristic, for ex-
ample on mobile phones with the Android platform when new types of data or new
permissions are added. The sketch of the process of adding a new term is depicted
in the Figure 2.28.

Figure 2.28: Dynamic expansion of a fuzzy set in Hybrid Neuro-Fuzzy with two classes:
benign and malicious

There are two existing ways of dealing with changing the characteristics of features
and fuzzy sets respectively. (i) The properties of the fuzzy terms can be adjusted,
though the set will remain the same. This will mitigate the "concept drift" [320]
(as in case with data streams), though not the need for fuzzy set extension. (ii) The
NF model can be trained from scratch in order to apply the changes in the terms
set, though it is not sufficient when the training delay is crucial. Thus, it must
be clearly stated which model state is used to collect the data from the questioned
application sample. Also, there is a need for an intermediate buffer of newly added
rules.

On-line Training of Neural Networks

ANN is one of the most powerful ML methods capable of learning from erroneous,
complex and incomplete data. As mentioned above, the training can be done either
off-line or on-line. In this work, we target on-line learning since the model should
be capable of adjusting the parameters of the model from data when a new sample
comes.

Definition 1: MLP training is done via minimization of the objective function of

106 State of the Art

the error signals E(W):

E(W) =
1

2
(y − d)2 (2.45)

where d - desired output of the MLP and y - actual output, and W is a set of
all weights in MLP. The main obstacles in learning are that the method can get
stuck in local optima unless the learning rate is an optimal one. So, the primary
optimization problem in the MLP is minimisation of the function:

min E(W) |W∈RM (2.46)

where each function in the E(W) is an objective function of the neuron’s weights
wji (j − th hidden layer and i− th hidden unit) that should be optimized with the
following condition on the whole domain of the function dom E(W) = R, and
with respect to the learning rates α:

∀ wji ∈ R : E(wji
∗
) < E(wji) (2.47)

According to Heskes et al. [184], on-line learning introduces a new challenge in
adapting to new data that arrive. Saad et al. [344] presented an analysis describing
the on-line learning within MLP, where the authors focused on the dynamic evol-
ution of the error function. Recently, there has been research on the improvement
of supervised learning in back-propagation MLP as well as the creation of new
methods for it according to Heskes et al [184] and Mandic et al. [262]. Research-
ers have proposed different learning schemes, including complex algorithms like
Widrow-Hoff LMS and Adaline as described by Widrow et al. [438]. The MLP
learning process should be optimized as a differentiable error function, and then
the Gradient Descent (GD) optimization of the function will tune the weight of the
neurons:

wji
new

= wji
current − α · ∇E(wji) (2.48)

where E(wji) is a multidimensional error function over a weight wji . The principle
of the learning then is to use a so-called Delta Learning rule, comparing the output
of the network against the labelled dataset. Delta Learning Rule makes a robust
first-order approximation as stated by McClelland et al. [273] along the partial
derivative direction only in case the learning rate is less than or equal to the optimal
one, also described by Mandic et al. [262]. In real-world tasks however it is hard
to predict how the optimal learning rate will change under the influence of an input
concept drift.

The determination of the learning rate α brings with it the most challenge. There
are several options for definition, such as constant rate or iterative adjustment [232].

2.5. Neuro-Fuzzy – A Hybrid-Intelligence Analytics 107

However, the data sample are available for a short period of time and data flow has
an unpredictable dynamic nature. Additionally, on-line training gives a faster con-
vergence than batch training according to Wilson et al. [441]. Thus, the commonly
used constant α is not suitable.

Error Back Propagation

The most commonly used method for ANN training is Error Back Propagation
(EBP), which is based on the assumption that the error function E(W) can be
reduced by using gradient measure to find optimal weights.

Definition 2: The generalized EBP learning rule for back propagation is defined
as follows, referring to GD method:

wji
new

= wji
current − α · δji · g(hji) (2.49)

where α - fixed learning rate, hji =
∑
w · h - sum of the weighted signals from the

previous neurons layer, g(hji) - sigmoid activation function of the neuron or value
of the xi in case the layer is the initial one. Moreover, depending on the layer, the
value of the error signal will be calculated respectively for the intermediate layers:

δji =
1

1 + e−h
j
i

· (1− 1

1 + e−h
j
i

) ·
∑

wji · h
j
i (2.50)

and corresponding output layer:

δoutput = g′(hji) · (d− y) =
1

1 + e−h
j
i

· (1− 1

1 + e−h
j
i

) · (d− y) (2.51)

Originally, EBP makes it difficult to train each layer of MLP since the exact values
of the output of each hidden layer are not known due to the fact that each layer
learns more of the abstract meaning of the input data and the complexity of the
model becomes higher with each new layer. So in general, the derivative of the
error function E(wji) is calculated on each hidden layer.

The GD-based methods have been extensively studied recently. With respect to
the optimization approach, there are several other valid ways of finding the op-
timal weights in MLP. The stochastic GD originally used for optimization has a
low speed of convergence and is therefore the baseline. In order to improve learn-
ing, one may use the Conjugate Gradient Descent and Newton-Raphson as studied
by McAllester [272], where Hessian matrices need to be evaluated. On the down-
side, this approach requires an additional algorithmic step to finding an optimal

108 State of the Art

direction and second-order derivatives, since the values of the derivatives are un-
known and require multiple error functions evaluation during each epoch as result.
On the other hand, a conventional MLP learning principle is not suitable for data
streams mining since it provides an off-line learning over a given finite sample G.
The stand-alone EBP method is highly resource-consuming in tasks related to Big
Data in comparison with the speed of on-line processing.

Existing ways of α optimization for weights calculations

According to the literature review, there can be named several approaches to weight
optimization in the Eq. 2.49: (i) static αwith gradient information, (ii) iterative ad-
justments of α using optimization, (iii) higher dimensions factorization for faster
convergence. In this work we consider the 2nd option since it is less computation-
ally expensive than 3rd and more efficient than 1st. According to Luenberger et
al. [256], line searching along the gradient direction is the most promising method
for iterative rate optimization since each weight can be optimized separately. In
our view, this is the most promising approach in data streams mining, eliminat-
ing a need for expensive computations. Visibly, the learning rate α must either
be defined empirically or use some one-dimensional optimization. According to
Roy [342], in most of the related studies the authors used some predefined values
or tried several empirical values. Since α is a constant in most cases is , it causes
aggregation of the error and slow convergence when the value is not optimal. Gen-
erally speaking, the α can be optimized in different ways, such as the adaptation
of a learning rate or alteration of the gradient values. Kandil et al. [214] pro-
posed to use time-varying learning through the linearization of the whole network,
requiring the additional expensive computation of matrices. This method uses a
binary mapping scheme for computing the optimal learning rates for each of the
layers. Yu et al. [451] described several approaches using first- and second-order
derivatives for optimal α and momentum calculations, which are used to adjust the
weights. At the same time, Tielman et al. [415] suggested the use of mini-batches
and moving average of the squared gradient for each weight optimization. How-
ever, it requires keeping in memory a set of mini-batches with their corresponding
moving average parameters in addition to a very slow alteration of a learning rate.
Kingma et al. [227] optimized α using similar weighting on a momentum estim-
ation. The authors suggested using decay parameters β, which require additional
empirical estimations. Furthermore, Plagianakos et al. [314] suggested the use of
pair-weights adjustments based on the previous epoch. On the other hand, one-
dimensional optimization approaches like Golden Section Search (GSS) [256] can
be considered a simpler and more effective approach than the application of Quad-
ratic Programming. Therefore, GSS can be used in EBP to find an optimal rate α
in an optimal region, rather than at some fixed starting point.

2.5. Neuro-Fuzzy – A Hybrid-Intelligence Analytics 109

Definition 3: Golden Section Search is used to find the most promising value of
α in the interval [αmin;αmax] by means of following the iterative process with an
error threshold ε:

α1 = b− b− a
φ

, α2 = a+
b− a
φ

(2.52)

where initially a = αmin, b = αmax and φ = 1+
√

5
2 . The Equation 2.52 defines an

iterative procedure, which is followed by the evaluation of E(W − α1 · ∇E(W))
and E(W − α2 · ∇E(W)). Each iteration ends with a = α1 or b = α2 until
criterion |a− b| > ε is satisfied.

Another approach to optimization of α using EC was proposed by Kim et al. [224].
Some authors specifically target the generation of weights using EA rather than
learning. Ding et al. [122] showed how the EC can be used for weights allocation.
Jie et al. [208] highlighted the importance of GA in that it is able to produce a gen-
eralized model and improve learning. Furthermore, Islam et al. [419] specifically
mentioned the applicability of GA to an optimized number of hidden neurons and
layers towards the improvement of classification accuracy. Finally, Kanada [213]
emphasized the importance of GA in learning rate optimization, where learning
rate is increased or decreased with respect to previous epoch according to geomet-
ric regression. Another work of interest is by Sajan et al. [347], where authors
optimized the number of nodes in addition to a single value of learning rate. In
this work, we will target global optimization of each individual learning rate inde-
pendent from previous values.

110 State of the Art

Chapter 3

The Proposed Soft Computing
Algorithm for Digital Forensics
Applications

This chapter is devoted to a novel Soft Computing Algorithm contributed by this
thesis. In particular, we proposed improvements to the unsupervised 1st stage of
NF presented in Section 3.1, the supervised 2nd stage, and towards multinomial NF
and the corresponding defuzzification, which are given in Section 3.2. Our work
towards Deep Neuro-Fuzzy is presented in the Section 3.3. Finally, we performed a
comprehensive analysis of the proposed improvements in comparison to the Kosko
method in the Section 3.5.

The Figure 3.1 shows the general steps in the Neuro-Fuzzy rule-extraction classi-
fication method [233]. It includes two stages: the unsupervised grouping of data
pieces for fuzzy rules extraction and the supervised fine-tuning of fuzzy rules for
building a precise classification model.

This method has not been used for Digital Forensics applications before. Moreover,
during our work we identified a number of limitations and weaknesses in this
method resulting in the (i) inability to handle large-scale data, (ii) incorporate
such data properties as correlation and random distribution, (iii) incapability of
performing multinomial classification.

111

112 The Proposed Soft Computing Algorithm for Digital Forensics Applications

Figure 3.1: Neuro-Fuzzy approach that includes two stages [233]

3.1 Neuro-Fuzzy Method - 1st Stage1

The proposed method revises the 1st stage of Neuro-Fuzzy rule-extraction classi-
fication method, which is devoted to unsupervised learning via SOM grouping and
fuzzy patch estimation from data as well as the impact of bootstrap learning on
the overall complexity of the method. This stage results in a set of linguistic fuzzy
rules that describe specific clusters found in data.

3.1.1 Inference of Self-Organizing Map Parameters

Here we provide insight into how the size of SOM can be determined using the
data analytic. Exploratory data analysis provides a fast way of getting high level
information about data properties. Considering this option, an automated proced-

1The main ideas of this section are published under the contribution [369, 373, 374, 375, 376]

3.1. Neuro-Fuzzy Method - 1st Stage 113

(a) Climate Sim.Crash. (b) Fertility

(c) Banknote Auth. (d) Mob. malw.

Figure 3.2: Visualization of the dependencies between the features in 4 datasets men-
tioned earlier in Weka. The colors are blue and red denotes both classes

ure will be presented that gives an optimal size of SOM before it is initialized and
learned, the main advantage being that no alteration will be made to the data. This
is important since according to the Digital Forensics Process requirements [169],
the data must be preserved without changing at all during the investigation pro-
cess. As has been written before, the biggest eigenvalues ratio does not alone give
sufficient information about the required number fuzzy rules.

Considering the previously mentioned obstacles and limitations for determination
of the SOM size in Section 2, we use measures of non-linear correlation to find the
best grid size with respect to the trade-off between interpretability and accuracy.

In the Figure 3.2 below, the visualization example of the dependency between the
features in datasets are given. It can be seen that in case of independent features,
the number of fuzzy patches can be decreased by covering more instances. From
the other side, some non-monotonic dependencies require an increase in the num-
ber of fuzzy patches to reduce the error.

At this point, we can expect that the Banknote Authentication dataset might re-

114 The Proposed Soft Computing Algorithm for Digital Forensics Applications

quire the largest number of more specific rules to build the classification model,
considering the non-linear and non-monotonic dependencies in Figure 3.2.c.

To deal with the uncertainty about the optimal SOM grid size, we apply the Pearson
Correlation Coefficient (PCC) shown in Equation 3.1 as one of the factors enabling
one to find the best grid size with respect to maintaining a reasonable balance
between interpretability and accuracy, according to Shalaginov et al. [374].

r =

∑N
i=1 (xi − x̄)(yi − ȳ)√∑N

i=1 (xi − x̄)2 ·
∑N

i=1 (yi − ȳ)2

(3.1)

where x and y are two arbitrary variables with mean values x̄ and ȳ over a corres-
ponding sample set.

Proposal 1: The measure of association between the variables can be used to
determine the number of regions that will be clustered in SOM according to the
Equation 2.12, using the absolute averaged value of PCC in the Equation 2.19.
This means that the number of SOM nodes used to maximize Accuracy (F) also
depends on the data correlation.

S ∝ ¯|r| (3.2)

Remark. In real life applications, the data do not require the use of all rules with
all combinations of the MF. Two contrary cases can be considered to show this.
In the first one, data are random and attributes are uncorrelated, meaning that less
specific fuzzy patches will fit the data better. In this case, the mentioned correlation
metrics can be found in the Section 2, including ¯|r| −→ 0. The second case is when
the data are more deterministic and follow some patterns. This means that more
fuzzy patches are required to describe the dependency specifically. Ideally, when
the ¯|r| tends to reach 1, more specific MF should be used to fit the data, rather than
rectangular patches or even Kosko patches [233].

Lemma 1: The Interpretability (F) in the Equation 2.12 can be formulated as
a range of a number of rules that can be perceived by analysts without additional
remembering efforts. Logical constraints are placed to limit the SOM size in order
to make it understandable:{

Smin ≥ NC ∧ Smin ≥ 22

Smax ≤ NM
S ∧ Smax ≤ 52

(3.3)

where NC is a number of classes in the classification problem, since at least such
a number of rules are required to distinguish the data samples. Smin = 22 corres-
ponds to the minimum SOM size used in GSOM [50]. Smax = 52 corresponds

3.1. Neuro-Fuzzy Method - 1st Stage 115

to the maximal amount of the rules that can be used according to previous studies
mentioned in the Chapter 2. A greater number of rules will create more difficulty
in understanding. Smax ≤ NM

S is the number of combinations of all MF in the
rules.

Proposal 2: The optimal size of the SOM grid can be defined using the limitations
mentioned before in the Equation 3.2, incorporating limitations from the Equation
3.3 via the degree of randomness α:

SProposed = Smin + α · (Smax − Smin) (3.4)

Proposal 3: The degree of randomness in the Equation 3.4 is calculated using the
mean absolute PCC as well as the metrics earlier denoted in the Equation 3.2:

α =
e0

e1
· ¯|r| ·NC =

e0

e1
·
∑M

i 6=j |rij |
M2 −M

·NC (3.5)

which is a subject to the following constraints:

0 ≤ α ≤ 1.0 (3.6)

where e0 and e1 are the 1st and the 2nd biggest eigenvalues that determine the
components with the highest variance value. Next, the parameters of each of the
2D dimensions of the SOM are calculated using the Equations 3.4, 3.5, and 2.16:

SH =
⌈√

SProposed

⌉
=
⌈√

Smin + α · (Smax − Smin)
⌉

(3.7)

SW =

⌊
SProposed
SH

⌋
(3.8)

Remark. The modification of the Vesanto method was proposed in order to meet
the interpretability requirements of the CF method. The proposed scheme does not
depend on any number of instances since it is targeted at dealing with large-scale
problems, as shown below in the Equation 3.9, in contrast to the Vesanto method
specified in the Equation 2.13.

lim
NS→∞

SProposed = Smax =⇒ lim
NS→∞

SProposed ≪∞ (3.9)

Moreover, the properties of the features such as normalization, number of fea-
tures, constant values, and highly-correlated pairs will not influence the proposed
method; this will be shown further on. The ¯|r| is required as a mean measure for

116 The Proposed Soft Computing Algorithm for Digital Forensics Applications

a dataset, since only the average value of PCC is important, and not the direction
(negative, positive).

Proposed algorithm for optimal SOM size in Neuro-Fuzzy training

Based on the studied literature and the problems with the predefined set of fuzzy
terms, we propose the following optimization of the NF method based on the new
estimation of Self-Organizing Feature Map size. It ensembles unsupervised clus-
tering of similar applications and the tuning of extracted fuzzy rules.

Automated fuzzy rules training procedure based on elliptic fuzzy patches

1. Calculate all values of the PCC rij pair-wise between the attributes. Estim-

ate the absolute mean of the PCC ¯|r| =
∑M
i 6=j |rij |
M2−M .

2. Perform eigendecomposition of Correlation Matrix based on the earlier cal-
culated PCC. Calculate the eigenvalues ratio e0

e1
.

3. CorrespondingH andW dimensions of the SOM are derived from the meas-
ure SProposed defined earlier.

4. Clustering based on the features similarities is done by trained SOM to con-
vert M -dimensional feature vector into 2D-lattice that consists of H ×W
nodes. After training each node, Si,j it includes clustering of similar data
samples as depicted in the Figure 3.3. One can see that a single SOM node
can contain samples belonging to one or more clusters that characterize a
particular class (samples of A or B classes in the Figure).

Figure 3.3: Extraction of elliptic fuzzy patches from trained Self-Organizing Map

3.1. Neuro-Fuzzy Method - 1st Stage 117

The full description of the proposed procedure is given in the Algorithm 1. It
is divided into four distinct functions. Line 1 describes the assignment of initial
parameters necessary for the proper operation of the algorithm; where αχ2 is a
pseudo-radius used in elliptic fuzzy patches calculation, SOMepochs describes
the number of epochs in which SOM is trained at the 1st stage of NF,NFepochs -
the number of iterations by which ANN is trained at the 2nd NF stage, andBA is a
fraction of the data samples from the initial dataset used in bootstrap aggregation.

The function on Line 2, OptimalSize(), estimates the optimal size of SOM ac-
cording to properties of given data x̄, and Proposal 2 & 3, deriving the optimal
weight and height of the SOM grid as a result. The function invoked on Line
3, SOMtraining(), describes the conventional iterative training of SOM using
BMU with respect to previously defined parameters. The outcome of such training
is a set of clusters for each of the classes, i.e. a set of data samples at each BMU.
These result in fuzzy patches to be used on the 2nd NF stage.

Algorithm 1 Proposed way of training on the 1st stage of Neuro-Fuzzy method
1: SOMepochs← 100 ; x̄← data ; BA← 1%
2: Hgrid,Wgrid← OptimalSize(x̄)
3: clustersConfig ← SOMtraining(x̄, Hgrid,Wgrid,BA, SOMepochs)
4: function OPTIMALSIZE(x̄)
5: Smin = 22 ; Smax = 52 ; nC ← 2
6: Corr(x̄) = PearsonCorrelationCoeffMatrix(x̄)
7: E0, E1 ← Eigendecomposition(Corr(x̄)) ; alpha ← E0

E1 ·
avg(Corr(x̄))

8: Sopt ← Smin + (Smax − Smin) · α
9: Hgrid =

⌈√
Sopt

⌉
; Wgrid =

⌊
Sopt
Hgrid

⌋
10: return Hgrid,Wgrid
11: end function

3.1.2 Fuzzy Patches Estimation

The method for elliptic patches configuration suggested by Kosko [233] does not
provide a proper incorporation of the information from the elliptic regions.

Theorem 1: The problem of estimation of the elliptic fuzzy patch Πi parameters
for real-data clusters can be reformulated as a parametric distribution χ2 test of
fitting data into a particular distribution model [373].

At this point, we make the assumption that the data are normally distributed,
and that the cluster derived from SOM will fit the elliptic region according to

118 The Proposed Soft Computing Algorithm for Digital Forensics Applications

Kosko [233]. The χ2 test is designed to measure how well the distributed data
fits Gaussian distribution, which has to be preliminarily validated when dealing
with real world data. Since this test is originally designed for categorical data, we
have to use χ2 test for the variance as described in the book [263][Chapter 12], for
NF − 1 df transforms into an equation for the M independent random variables:

χ2 =
(NF − 1)S2

σ2
=

NF−1∑
i=0

(xi − x̄i
σi

)2
(3.10)

where x̄i is a center of a particular cluster and σi is a spread around the center.
Proof: By considering the non-transformed unfolded equation of the hyperellips-
oid, we will get the following equation:

(x0 − c0)2

σ2
0

+ . . . +
(xNF−1 − cNF−1)2

σ2
NF−1

= α2 (3.11)

which is the same as the following, considering one feature as a fixed variable:

NF−1∑
i=0

(xi − ci)2

σ2
i

= α2 (3.12)

The χ2 test makes it clear that the parameter α2 can be estimated from a contin-
gency table, and is equal to the value of χ2 for a particular confidence value β and
a defined number of df :

NF−1∑
i=0

(xi − ci
σi

)2
= α2 ≈ χ2|β (3.13)

The sample variance S2 can be treated as variance of all elements in the particular
data cluster, and standard deviation σ2 as a theoretical deviation in this cluster,
so we can state that χ2 ≈ α2 with some degree of the confidence interval β. This
challenge is related to the chance of outliers rather than fuzziness, as was explained
by Ross et al. [339]. By introducing β, we are able to control the chance of outliers
in data distribution, so as to avoid the possibility entirely.

The Figure 3.4 sketches the differences between the simple rectangular elliptic
constructed by Kosko and proposed way of elliptic patches construction.

This definition of the elliptic region complies with the fitness of data within an
elliptic region that may eliminate outliers or error values. In case of a significant

3.1. Neuro-Fuzzy Method - 1st Stage 119

Figure 3.4: Examples of patches configuration: A simple, Kosko and proposed method

number of rules, this should reduce that number to get more specific fuzzy regions,
and reduce uncertainty by overlapping regions.

To summarize, we use a χ2 test to find the value of the parameter α2 from the
Kosko method. As was proven before, we come to the conclusion that χ2 = α2

in a defined confidence interval β with specified df for the statistical model of
the data. This gives an adaptable model that adjusts the configuration of elliptic
patches according to specified qualities of data that influence the selection of β.

3.1.3 Bootstrap Learning for Generalization

In order to improve the generalization of the method, as well as improve accuracy
by reducing the overfitting, we apply bootstrap aggregation. At this point, we
can hypothesize that bagging can help to reduce the errors due to outliers in the
clusters associated with each SOM node. Dudoit et al. [131] studied the influence
of bagging on the clustering procedure. This work can be considered relevant since
we are working on the improvement of SOM clustering and of the generalization of
the extracted patches. Dudoit et al. [131] performed a study of the clustering in new
tumor classes’ detection. They concluded that the application of bagging produced
results at least as accurate as those without bagging. Since we are dealing with
large-scale datasets, this study suggests bagging might not only result in improved
accuracy, but also in a shortened SOM learning time.

Lemma 2: Bootstrap aggregation is performed to extract h of the random samples
Dl from the dataset, equal to 1%. The best result is used to train the 2nd stage of
the NF method.

Remark. On the 1st step of NF, the SOM is trained from the best selected Dl.
Then, fuzzy patch parameters are used to train the ANN on the 2nd step of NF.
Such a configuration will be more robust than the training of ANN on the 2nd step
only using samples from the Dl.

120 The Proposed Soft Computing Algorithm for Digital Forensics Applications

3.2 Neuro-Fuzzy Method - 2nd Stage2

Below, we present an improvement targeted at the 2nd stage of Neuro-Fuzzy rules-
extraction classification methods that is devoted to fuzzy rules tuning in order to
achieve a better performance of the classification model.

3.2.1 Membership Function Construction

The triangular MF used in the simple rectangular and Kosko methods are not ap-
propriate for this purpose since they do not incorporate all available information
from a constructed elliptic fuzzy patch. Moreover, the function should count on
the rotation of the patch and distance from the center.

Theorem 2: A radial basis Gaussian MF can be used instead of the triangular
projection-based MF to provide a better fit for the data in rotated elliptic fuzzy
patches when the rules minimum combination is calculated, according to Shala-
ginov et al. [373].

Proof: The minimum principle used to define a rule’s MF according to Dickerson
et al. [120] is a combination of the following form of Cartesian products:

µR = µ0(X) ∧ µ1(X) · · · ∧ µNF−1(X) (3.14)

where each MF function µi of each feature is defined as a triangular one. At this
point, we replace the triangular MF by means of the Gaussian function for the
feature i:

µai = sie
− 1

2

(
xi−ci
σi

)2
(3.15)

where si ∈ (0; 1] is a scaling constant and other parameters are the corresponding
statistical properties of ellipsoid projections on each feature space. Furthermore,
this is used in the rule’s MF in Equation 3.14 and for the overall MF in Equa-
tion 3.16. According to Zhang et al. [328] and Qiu [327], the overall membership
grade is described in consideration of the collection of different image bands. The
authors propose the use of M -th root to derive the overall MF. However, this will
create a significant overlap between the rules that cause overfitting of the classific-
ation model.

µR = s0e
− 1

2

(
x0−c0
σ0

)2
· · · ∧ sNF−1e

− 1
2

(xNF−1−cNF−1

σNF−1

)2
=

=

NF−1∏
i=0

sie
− 1

2

(
xi−ci
σi

)2
= (

NF−1∏
i=0

si) · e−
1
2

(x−c)T (x−c)
(3.16)

2The main ideas of this section are published under the contribution [368, 373, 376, 377, 378,
381]

3.2. Neuro-Fuzzy Method - 2nd Stage 121

The scaling factors si are not known and have to be defined empirically. However,
we consider the product of Guassian MF functions in Equation 3.14 as the mul-
tivariate distribution. From the other side, Kim et al. [225] introduced a Gaussian
sum approximation as a product of a singular Gaussian MF. As a result, we make
the scaling factors si equal to 1.0 because the rule’s MF should not be restricted
to a magnitude of 1√

(2π)NF |Σ|
in the multivariate probability density function ac-

cording to study [383], as it is used by Kim et al. [225]. Piegat [312] mentioned
that the angle between the axis of the hyperellipsoid and its features can possibly
help to increase the precision of the MF. This book presented an example of 2-D
Gaussian MF that also incorporates an angle α. The author mentioned that such a
model will have 5 degrees of freedom (x1, x2, c1, c2, α) for a two features model in
comparison to a non-rotatable function, which therefore may become an obstacle
to using it. Yet the set of angles from Equation 2.34 is already known, which
does not require any additional computation steps. So, the generalized equation
of the hyperellipsoid is then used in the derived Gaussian MF sum approximation
that incorporates all available information from the elliptic region by means of a
covariance matrix:

µR = e−
1
2

(x−c)T P Λ PT (x−c) (3.17)

We have presented how the triangular MF is replaced by a modified Gaussian
function to form a rule MF. This will better fit with the data when the features are
correlated, as triangular MF based on the hyperellipsoid projections cannot cover
the model properly. The differences between the three methods are presented in
Figure 3.5.

Figure 3.5: Examples of MF in simple rectangular, Kosko and proposed methods

3.2.2 Improved Multinomial Classification

Considering the fundamentals mentioned in the Section 2, the following challenges
can be highlighted: in the case of "binary" and "one-hot" encoding, each weight
set represents a different model that is usually trained with (1) major bias in the

122 The Proposed Soft Computing Algorithm for Digital Forensics Applications

number of other classes vs the targeted one. As a result, it also requires (2) train-
ing overhead when the number of classes is large. Following this, (3) additional
weighting of the output in voting scheme might be necessary. Finally, (4) the
used Center of Gravity defuzzifier also has to include class information. To over-
come these obstacles, we suggest improvements that may facilitate the training of
a multi-class NF.

Proposal 4: The grouping results of the NF 1st step, i.e. SOM training has to be
bound to produce statistically-sound parameters G for each fuzzy rule Ri:

Ri = G{ SOM }|
N
Classi
h,w ≥ηClassi
Nh,w≥η

(3.18)

where Nh,w denotes the number of samples allocated in a SOM node after clus-
tering, NClassi

h,w shows the number of samples in this node for each particular class
Classi, η denotes a minimal number of samples in each node to be eligible to
extract the parameters of fuzzy rules, and ηClassi denotes a necessary minimal
amount of samples per class to be able to form a rule for a particular class Classi.
We believe however that while growing number of samples, the η has to be grown
as well to eliminate that outliers influence classification. In contrast to the previ-
ous study [372], we believe that ηClassi is too small to be used for a large-scale
dataset. In spite of this, we gave the following empirical estimation for large-scale
datasets.

Remark. After training SOM on the 1st stage of NF, each node may contain many
samples from various classes that result in a set of fuzzy rules described by those
samples. Respectively, a fuzzy rule represents a set of statistical parameters of a
group of similar samples grouped by every node in a SOM grid SOMh,w [233].
Therefore, there should be some minimal number of samples to derive a more
generalized fuzzy model rather than a specific outlier one. Rectangular patches
require at least two points to be able to circumscribe a rectangle and calculate the
lengths. Elliptic patches may require at least three points for better describing the
statistical properties. Thus, this will going to ensure the reliability of the derived
rules from each node.

Proposal 5. To comply with the minimum number of data samples extracted from
each SOM node, and to limit the growth of this number, the following estimation
is given for multinomial classification problems:

ηClassi =

√
size(Dl)

NC
(3.19)

3.2. Neuro-Fuzzy Method - 2nd Stage 123

where NC is a number of classes η ≥ 3. This is done for better distribution of
class samples grouped in a SOM node.

Remark. After training SOM on the 1st stage of NF, each node may contain many
samples from various classes that result in a set of fuzzy rules described by those
samples. Elliptic fuzzy patches require at least 3 data samples for an elliptic equa-
tion. However, in the case of large-scale multinomial datasets, the minimal number
of data samples must be higher to avoid errors due to outliers. This way, this step
can ensure reliability of derived rules from each node.

Proposal 6: Use a single-output (q = 1) defuzzifier to avoid building a multi-
output model as shown in the Figure 3.6. Thus, one can present training classes
to the desired output pattern di during the 2nd phase of the NF training process as
numerical values replace the value of the centroid in the Equation 2.40:

ci = di (3.20)

where the class label di denotes a nominal natural value of the input sample, mak-
ing it more consistent with Mamdani-type rules than with function-based Takagi-
Sugeno.

Figure 3.6: Comparison of output encoding schemes for Neuro-Fuzzy

Remark: The motivation behind this proposal is to reduce the number of output
weights that have to be trained in contrast to multiple-output NN. It can be noticed
that with a large number of classes, the process of training is affected by the Curse
of Dimensionality. The Table 3.1 compares the output schemes.

Proposal 7: A special approach for defuzzification function calculation has to be
used to comply with Proposal 5 as described earlier [372]. The Center of Gravity
fuzzifier used in work by Kosko [233] needs modification to incorporate more in-
formation as a single output in the NF model. We suggest the following one based

124 The Proposed Soft Computing Algorithm for Digital Forensics Applications

Table 3.1: Different NF output encoding schemes for 4 classes example

Class Label Scheme
Binary One-hot Natural

Class ’1’ 00 0001 1
Class ’2’ 01 0010 2
Class ’3’ 10 0100 3
Class ’4’ 11 1000 4

Number of outputs 2 4 1

on the numerical class label:

y =

∑NR
i=1 di · µi(X) · wi∑NR
i=1 µi(X) · wi

(3.21)

where NR is a number of rules extracted from data on the 1st stage of NF. In this
case, we consider the natural number component di as the output, specified by
the rule’s consequent part, yet also compliant with the Mamdani-type rules. The
scheme of the defuzzifier is represented in the Figure 3.7.

Figure 3.7: Center of Gravity defuzzifier using natural value of the Class ID label

3.2.3 An Insight into Dynamic Expansion of Linguistic Terms Set

The prospective challenge that may appear in proactive malware detection and
computer system defense is the possibility of a change in the characteristics or
properties that make an already trained model less efficient. This cannot be handled
simply by means of adjusting statistical characteristics of the fuzzy set that mitig-
ates the "drift of concept". The delays on re-training of the data model may have a
dramatic effect of the automated incidence response. In spite of this, incremental
learning of the changed NF topology has to be performed. This section provides a
description of our method for the mitigation of the defined problem.

3.2. Neuro-Fuzzy Method - 2nd Stage 125

Inspired by the Rete algorithm [127], we propose a flexible model of the trans-
itional fuzzy rules storage. First, γ-memory contains the initial set of the fuzzy
rules. Second, δ-memory serves as a buffer that aggregates newly collected and
selected fuzzy rules after a term in a fuzzy set is added. As a Hybrid Intelligence
system, the Type-1 Neuro-Fuzzy topology is used that has weights and outputs of
the systems as crisp values and inputs as fuzzy attributes [155]. Hybrid NF gives
a model that constructs rules, selects the most relevant, and then evaluates the set
of the rules with respect to firing strengths that are defined as membership func-
tions. Below, we consider the following sets of rules: the initially constructed set
of fuzzy rules RC, the selected set after the initial training RS, the newly construc-
ted set NC, and the set with selected rules from a new NS. The dataflow is given
below:

1. The initial set RR of classification fuzzy rules at the NF state S0 will be as
follows, considering initially created rules:

γ = RR|S0 = RC (3.22)

2. After introducing new linguistic terms, a new set of fuzzy rules will be cre-
ated:

δ = RR|S1 = NC (3.23)

According to Zadeh’s extension principle, adding new terms will have an
influence on max-min in fuzzy inference. At this point, a single-step incre-
mental training would be preferable for adjusting the weights of new rules
since the other part of the model is already trained. This means that the
method keeps already learned rules’ weights constant while adjusting the
weights of the newly added rules. This helps to avoid complete retraining
because properties of binary files do not change very often, and are rather af-
fected by polymorphism. However, as the model is retrained, a considerable
amount of properties are changed to keep it up-to-date.

Considering this, we propose a rules selection method that is more appro-
priate for the specified conditions. Out of all the constructed rules, only
relevant fuzzy rules with high accuracies should be considered. The rules
with higher/lower weights in the NF are treated as more important since
binary classification problems include both directions of importance: negat-
ive weight for one class and positive for another. This happens because the
output of the network is as follows:

ORC = w1 ·R1 + · · ·wm ·Rm (3.24)

126 The Proposed Soft Computing Algorithm for Digital Forensics Applications

where the change in fuzzy rules weights will cause a significant change in a
rule’s output for the corresponding class.

3. Finally, on the NF state S1, considering logical disjunction of the fuzzy rules
sets in both γ- and δ-memories, the set of fuzzy rules is as following:

γ ∨ δ = RR|S1 = NS ∨RS (3.25)

The conventional NF learning process consists of 5 stages, starting from data
pre-processing and ending with Inference and Decision Making. The Figure 3.8
presents the new steps that are added to conventional NF.

Figure 3.8: Conventional 5 stages of NF learning and proposed DENF stages (boxes with
dotted lines)

In the [198] it was stated that a higher value of the weights brings a higher cover-
age of the classification for each class. Hence, we proposed the algorithm called
Dynamically-Expanded Neuro-Fuzzy (DENF), which is denoted in the Listing 0
to encounter the challenge of the expanding fuzzy sets for the multi-valued logic.

In order to reduce the training error, we keep the initial weights values constant
and adjust only the values of new weights in order to reduce the error function of
the neural networkE(w). Additionally, this will decrease the time complexity that
is beneficial for the application in critical infrastructure that requires learning from
the large data sets. After the model is trained and the rules selection is performed,
the search for a closest rule is done using the Euclidean distance between the

sample’s assigned linguistic terms and the selected rules: min
RR|S1

√
(
∑M

k=1 L
k
i − Lkassigned).

Once the closest fuzzy rule is found, classification is performed using the min-max
principle for both classes.

Furthermore, the comparison of the proposed method’s computational complexity
with the conventional NF without rules selection is presented in the Table 3.2.
The NF are trained mE epochs over the total number N of labelled data samples.
In this case, we consider the dependency of the number of arithmetic operations
mainly dependent on the number of fuzzy sets M and number of fuzzy terms K.
It can be seen that NF‘s initial training and retraining have the same complexity of

3.2. Neuro-Fuzzy Method - 2nd Stage 127

Algorithm 2 Dynamically-Expanded Neuro-Fuzzy (DENF) method for
adding new terms in fuzzy set without complete retraining of the NF

1: M ← numberFuzzySets ; K ← numberTerms
2: mR← numberSelectedRules
3: trainANN(); . Learning from the labelled data
4: for all for all fuzzy sets L do
5: for all for all terms in fuzzy set Li do
6: R[i][statement]← L1

1 ∧ L1
2 ∧ · · · ∧ LKM

7: weightR[i][weight]← w
8: end for
9: end for

10: sortRulesImportance(R[all][weight]); . Sorting all the constructed rules
11: while n<mR/2 do . Selection of important rules
12: Rclass1 ← R[n] ; Rclass2 ← R[KM − n] ; n+ +;
13: end while
14: γ −memory ← Rclass1 ∨Rclass2 . γ-memory composed from the rules
15: newTerm← idFuzzySet . New term is added to a fuzzy set
16: updateWeights(); . Retraining ANN for new rules (updating the weights)
17: for all for all fuzzy sets L do . Retraining ANN except the expanded set
18: for all for each term in fuzzy set Li do
19: Rnew[i][statement]← LK+1

newTerm ∧ L1
1 ∧ L1

2 ∧ · · · ∧ LKM
20: weightRnew[i][weight]← w
21: end for
22: end for
23: sortRulesImportance(Rnew[all][weight]);
24: while n<mR/2 do . Selection of important rules from new
25: Rnewclass1 ← Rnew[n] ; Rnewclass2 ← Rnew[KM − n] ; n+ +;
26: end while
27: δ −memory ← Rnewclass1 ∨Rnewclass2 . δ-memory composed from the selected

rules
28: return γ, δ

128 The Proposed Soft Computing Algorithm for Digital Forensics Applications

O(KM) as well as the complexity of DENF initial training. This can be explained
by the fact that the method is trained from scratch and the assumption is made
that the data is new, and further that the re-training will take a lower number of
arithmetic operations for DENF with complexity O(KM−1) since the proposed
improvements allow it to be re-trained using the previous NF model. The parallel
time complexity is affected by the number of execution threads.

Method Number of Arithmetic Operations Sequential time
NF initial training N ·mE ·KM O(KM)
NF retraining N ·mE · (KM +KM−1)) O(KM)

DENF initial training N ·mE ·KM +K2·M +mR O(KM)

DENF retraining N ·mE ·KM−1 +K2·(M−1) +mR O(KM−1)

Table 3.2: Complexity comparison of the proposed method and conventional re-training
of the Hybrid NF for adding a single term in a fuzzy set.

It can be seen, however, that there is an exponential dependency on the number of
terms in each fuzzy set on the time complexity. With the constant change in fuzzy
terms, retraining will be time consuming. Also, for the purposes of fuzzy rules
selection we apply the metric of importance of the rule that is roughly semantic-
ally close to the weight value. Moreover, the proposed method targets adding new
rules, while a new property to the malware characteristic is added. However, de-
letion of the rules is out of scope of this thesis and will be considered in future
research.

3.3 Deep Neuro-Fuzzy Architecture3

From the literature study, we found that NF has great potential in Digital Forensics,
yet is hardly suitable for such tasks as multinomial malware categorization due to
its shallow architecture. Another idea is the extraction of relevant fuzzy rules, and
not the whole set of combinations of fuzzy set terms in contrast to [68, 117, 462].

The main drawback of the classical NF approach defined earlier by Kosko [233]
is the shallow architecture that makes it impossible to model non-linear data. If
we look at the available NF architectures [38], we notice that they have similar
limitations, making such systems hardly applicable to multinomial classification
of complex large-scale data. This shallow architecture means that the data regions
defined by fuzzy sets are then weighted with the help of a linear output combiner
of a form y =

∑
(wi ·Ri) over a set of extracted fuzzy rules R. On the other hand,

3The main ideas of this section are published under the contribution [380]

3.3. Deep Neuro-Fuzzy Architecture 129

there are approaches like kernel methods in linear classifier SVM for example that
increase the dimensionality of the problem being solved. Still, SVM is considered
to be an intrinsically shallow algorithm, which makes it impossible to achieve high
classification performance on many-class problems [377].

To the contrary, DNN is capable of feature space transformation in such a way
as to make it separable [77]. With more hidden layers, one can achieve better
class separation due to feature space transformation into other representations. In-
spired by [301], we studied how DNN is better when it comes to non-linear data
as presented in the Figure 3.9. This is a simple example of 3-layer DNN showing
how the class boundary changes in each of the hidden layers together with PCC
value r.

(a) Representation on the input layer:
r(a1, a2) = 0.56

(b) Representation on the 1st layer:
r(aw11, aw12) = 0.72

(c) Representation on the 2nd layer:
r(aw21, aw22) = 0.93

(d) Representation on the output layer:
r(out1, out2) = 1.0

Figure 3.9: Data representation evolution on different layers of DNN for linearly non-
separable two class problem

Noticeably, the correlation grows and the weighted original data distribution be-
comes closer to linearly separable space. Also, one can see an increase of r, mean-

130 The Proposed Soft Computing Algorithm for Digital Forensics Applications

ing that data become less random with the growth of hidden layers in the network.
Therefore, we believe that such an intrinsic DNN property can help to tackle NF
limitations with respect to multinomial classification.

As was shown in the Figure 3.9, each new layer of DNN adds non-linearity by
making non-linearly separable classes align towards a separable hyperplane.

3.3.1 Deep Mapping of Feature Space

The main challenge with shallow single-layer neural architectures when dealing
with multinomial data is the inability to differentiate samples from different classes
because of similar properties. It has been demonstrated [377] that the overall mean
absolute PCC ¯|r| → 0.0 of such data, meaning that it becomes a rather random
distribution without any specific regions with correlations that can be specifically
approximated. In such cases, NF results in a few general rules, defined by SP in
Equation 3.4, giving a lower classification accuracy. To overcome this limitation, it
is necessary to increase ¯|r| > 0.0 by mapping the input characteristics of the given
malware to another hyperspace with less uncertainty. The general representation
of the next hidden ANN layer is defined as an activation function over a linear
combination: hji = g(

∑M−1
i=0 wji · h

j−1
i) of j − th layer and i − th hidden unit

using differentiable activation function g(hji) = 1/(1 + e−h
j
i). The total error

function E(W) of the output layer of DNN can be expanded as follows for the
desired output class d, as depicted in the Equation 3.26.

E(W) =
1

2
· [d− 1

1 + e−h
j
i

]2 =

1

2
· [d− g(

M−1∑
i=0

wji ·
1

1 + e−h
j
i

)]2 = · · · =

1

2
· [d− g(

M−1∑
i=0

wji · g(. . . w1
i · g(

M−1∑
i=0

w0
i · xi) . . .))]2

(3.26)

From the expanded equation above, we can see that the set of deepest weights of
the input layer w̄0 have the least influence on the derivative d E(W)

dW , yet the most
on weights adjustments used for feature mapping. In fact, the deltas δ(w̄j) >>
δ(¯wj−1) for the sample output deltas ε(E(w̄j)) ≈ ε(E(¯wj−1)). The higher layers
require less adjustment of the weights to cause the same function growth. So, we
can posit ideally limL→∞E(W) = 0 for the number of hidden layers L, which is
achieved by mapping the feature space to a distribution with ¯|r| > 0.

3.3. Deep Neuro-Fuzzy Architecture 131

3.3.2 Integration with the 1st Stage of Neuro-Fuzzy

Keeping in mind the influence of each hidden layer’s weights decreasing from
input to output, the decrease in uncertainty takes the biggest leap in the first DNN
layers. To incorporate it into the NF structure, weX ′ = Γ(X), where the mapping
function is based on the non-linear transformation from DNN for desired depth
measure Q:

Γ = g(
M−1∑
i=0

wQi · h
Q
i) (3.27)

Independently from Q, such a method gives the freedom to increase δ in the Equa-
tion 3.4, also reducing the uncertainty of the data. Unlike Zhou et al. [462], this
method allows for integration in the two-stages method proposed by Kosko [233],
resulting in a better configuration of fuzzy patches after the unsupervised 1st stage
of NF learned by SOM, and an increased precision of the corresponding MF on
the 2nd:

µj(X
′) = e−

1
2

(Γ(X)−Γ(C))T Σ−1 (Γ(X)−Γ(C)) (3.28)

Through the suggested modification, we add a new level of abstraction to the con-
ventional NF approach, making it work with even more uncertain data, as shown
in the Figure 3.10.

Figure 3.10: Proposed Deep Neuro-Fuzzy approach based on classic two stages approach
accroding to Kosko [233]

This NF architecture consists of the following processing stages: (i) pre-training,
which uses multilayer perception; (ii) 1st stage, consisting of unsupervised fuzzy
patches extraction from the pre-trained data; and (iii) 2nd stage, consisting of su-
pervised tuning of the fuzzy rules model by adjusting corresponding rules weights.

132 The Proposed Soft Computing Algorithm for Digital Forensics Applications

3.4 A New Method of On-line MLP Training Using Genetic Al-
gorithm4

Despite the successful application of EBP, there are multiple explanations as to
why this method fails to learn properly from the given data. (i) There may be
several occurrences of local minima. (ii) The wrong placement of a pre-defined
set of initial parameters such as learning rate α will mislead the optimization pro-
cedure. Thus, one can highlight the following difficulties related to the usage of
EBP: convergence is not guaranteed, it can be slow, and it depends on the input
data parameters. (iii) The challenge of training an on-line model from the data
within as low a number of iterations as is possible is apparent. From the liter-
ature, we can see that EC has been applied for stochastic optimization in MLP
before to reduce convergence time. It is also vital that the decision is made in
a short period of time, because otherwise it can cause privacy breaches due to
unreasonable delays in re-training an AC mechanism. In contrast to previous
works [122, 208, 213, 347, 419], we suggest the application of an optimization
procedure for individual α.

3.4.1 Single-step On-line Learning of MLP

The aforementioned optimization problem in single-step online MLP learning is
caused by non-linearity and a high level of abstraction.

Lemma: The error function E(W) in a single-step MLP is non-monotonic with
multiple extreme points due to several layers of non-linearity introduced by nested
hidden layers. As a result, conventional GD-based optimization methods may fail
to find a global optimal set of weights W .

The learning rate α in weights adjustments shall not be constant on every iteration;
this will result in a faster decrease of theE(W) on each learning iteration. Further-
more, each of these adjustment steps consists of an additional unconstrained optim-
ization procedure that is aimed at finding a corresponding optimal α by means of a
meta-heuristic real-valued GA. The GA enables multiple hypothesis evaluations at
the same time since the problem is to find an appropriate value of α. This is done
towards hardening the robustness against non-deterministic patterns in the access
sequence. We consider MLP, which is based on a differentiable sigmoid activation
function [232]. It can be seen that the error function E(W) is a non-linear one that
includes the recursive additive composition of the neurons activation functions for

4The ideas of this section are published under the contribution [368]

3.4. A New Method of On-line MLP Training Using Genetic Algorithm 133

each given labelled dataset:

E(W) =
1

2
· (d− y)2 =

1

2
· (d− 1

1 + e−h
j
i

)2, (3.29)

Remark. The complexity of the function E(W) will grow with the number of
hidden layers. Thus, the function will have a corresponding recursive form for
each of the given labelled data samples in a single-step approach as shown in the
Eq. 3.30.

E(W) =
1

2
· [d− 1

1 + e−hj
i

]2 =

1

2
· [d− g(

M−1∑
i=0

wj
i ·

1

1 + e−hj
i

)]2 = · · · =

=
1

2
· [d− g(

M−1∑
i=0

wj
i · g(. . . wj0

i · g(

M−1∑
i=0

w0
i · xi) . . .))]2

(3.30)

The function in Eq. 3.30 represents an error surfaceE(W) that has a non-linear de-
pendency with respect to a set of neuron weightsW . From this perspective, the in-
fluence of the weights in the initial layer will have a greater degree of non-linearity
than the next layer. Rojas [336][Chapter 7] studied a similar example of the error
function and depicted a possible local minima that affects the optimization. There-
fore, there are multiple challenges to conventional GD optimization, possibly res-
ulting in local optima solutions [122]. Multiple plateaus and local minima make
it unlikely to achieve the global minima, so GD will be stuck sub-optimally dur-
ing the weights update process. In fact, for an arbitrary weight wji of the layer j,
the next function’s E(W) limit will have a place as shown in the Eq. 3.31, con-
sidering thw MLP error function described in the E. 3.30. This is based on the
limit’s property of the composite continuous functions lim f [g(x)] = f [lim g(x)]
according to Stein [401], since the sigmoid function g(hji) is a continuous and
differentiable function. Moreover, the neighbourhood of the global minima of the
derived limit is inside the tolerance interval L± ε for the given neighbourhood of
the optimal value of the weight wji

optimal ± δ, as studied by Exner [139] while
continuously changing the input data sample X . Also, we can see that the nested
combination of multiple monotonically increasing sigmoid functions will result
in a number of local optima, rather than one global one. Such combinations of
the sigmoid function will give a complex non-linear high level abstraction for the
same input data pattern, and different weight values. Thus, it is nearly impossible
to define the exact value of the limit for the global extreme point neighbourhood
since the resulting limit is a complex one, and the vector of the weights needs to

134 The Proposed Soft Computing Algorithm for Digital Forensics Applications

be closer to the global optima. The limit is not a constant value however, as there
is a constant concept drift at each iteration in data stream mining. As a result, the
neighbourhood of the global optimawji

optimal
is changing stochastically with each

new data sample, which means that the error function E(W) has an inconsistent
global optima region, making the usage of the fixed-α method less efficient.

lim
wji−>woptimal

E(W)|X=constant =

lim
wji−>w

j
i optimal

1

2
· [d− g(

M−1∑
j=0

wji · g(. . . w0
i ·

g(

M−1∑
i=0

w0
i · xi) . . .))]2 ≈

≈ 1

2
· [g(. . . lim

wji−>w
j
i optimal

g(

M−1∑
i=0

w0
i · xi) . . .) . . .]2

∈ [L± ε]

(3.31)

There is a need to apply more advanced techniques for the weights optimization
rather than a conventional one like constant or increasing learning rate α. E(W) is
located within some ε of the L, meaning that for the different input X , the global
optima will be different. For our purpose, we use a sigmoid activation function
for each neuron since it is differentiable [283], and most suitable for learning in
the case of two-class problems: either ("denied" or "allowed"). The main point of
optimization is to find an optimal set of weights W that give the lowest possible
value of the error function E(W) during single-step learning. Therefore, it is
unacceptable to apply purely unimodal optimization and line searching, because
they are exposed to premature convergence according to Salomon [351]. Unimodal
heuristic optimization has monotonicity as its necessary criteria according to Doerr
et al. [182], yet this is not achieved. As result, the found solution will be a local
one.

3.4.2 An Optimal Individual Learning Rate α Prediction Using Genetic Al-
gorithm

Our method targets the usage of individual optimal α for each of the weights on
each layer that make MLP converge faster than conventional unified fixed-α or
deterministic decreasing/increasing α approaches. Additionally, the single-step
on-line learning is applied since the availability of data samples for training is
limited. For on-line incremental learning, the α has to be optimal on each step for
eliminating the accumulation of the error residuals. So, meta-heuristic EC tends

3.4. A New Method of On-line MLP Training Using Genetic Algorithm 135

to solve the problem more reliably and quickly when classical unimodal search
methods are slow.

Proposal: Evolutionary Computing, Genetic Algorithm in particular, is applied
as one-dimension optimization in a single-step MLP learning to facilitate a proper
individual α-determination for each particular weight wji optimal update.

Non-monotonic functions such as E(W) have lower chances to be optimized due
to multiple extreme points; we therefore consider EC methods as the most prom-
ising for such tasks. MLP provides nested optimization problem. The primary
problem includes seeking optimal weights as shown in the Figure 3.32, which
gives a value of the error function referring to the Equation 2.36.

minW∈RM E[W − α · ∇E(W)] (3.32)

The secondary optimization problem is to find a set of optimal steps α as shown
in the Figure 3.33, which will result in a global optimal solution for single-step
algorithms to avoid long iterative learning. However, at this point, we need to
consider each individual αij that employs mutation and crossover operations to be
optimized by GA, which increases the chance to cover as much search space as
possible while keeping the weights constant.

minᾱ∈RM E[W −D(ᾱ) · ∇E(W)] |W=const (3.33)

where D - is a diagonal matrix.

Remarks. The surface of the error function has a non-linear dependency on the
weights values, which means that the weights update process has to be performed
by meta-heuristic optimization methods in order to avoid premature convergence.
Conventionally, GSS or similar line search methods are applied as a unimodal
optimization. But it does not work well without reliable information about the
borders of the optimal learning rate, and is usually very slow. Naturally, GA will
make it converge faster.

Proposed methodology & Algorithm

Under the aforementioned constraints in on-line incremental learning, we propose
to use single-step MLP, solving the nested optimization problem to find an optimal
set of individual α for the weights update. As a result, the weights are only cor-
rected based on the optimal learning rate. Additionally, it is important for privacy
protection that its application maintains the trade-off between speed and reliability
of the answer. The algorithm of the proposed method is defined in the Listing 3.
The conventional Error Back Propagation method was modified accordingly. For

136 The Proposed Soft Computing Algorithm for Digital Forensics Applications

this algorithm, we make the assumption that each hidden layer has the same dimen-
sionality as the input data vector. The computational complexity will be as follows:
for each neuron’s weight, there will be pop_size(·pcrossover +pmutation) ·Nepochs

recalculation of the fitness function in a case-by-worth scenario. However, this
can be decreased by introducing the memory of the fitness function values. Addi-
tionally, there is a chance of getting to the sub-optimal or optimal αoptimal within
a fewer amount of epochs in comparison to the Brent’s Method (Golden Section
Search) or Fibonacci method, since they have rather linear convergence according
to Press [321].

The real-valued does not require additional binary mapping schemes, and therefore
the α values are used as chromosomes and the error function E(W) is defined as a
fitness one. The corresponding Arithmetic Crossover was performed for the cros-
sover operation as discussed in the paper by Köksoy et al. [237]. Additionally, the
mutation was done as a real-valued random uniform mutation of a chosen chromo-
some as shown by Adewuya [43]. Here, we concentrated on deriving as close to
an optimal learning rate α as possible in a short time frame. Information Security
tasks often put speed and response time constraints on hard computational tasks
rather than constraints on answer precision.

3.5 Analysis of Complexity of Novel Neuro-Fuzzy5

In this Section, we analyse the complexity of the improved Neuro-Fuzzy in com-
parison to the simple method and the method proposed by Kosko. This is one of
the most important considerations when dealing with large-scale data analytics.
It will be shown further that the proposed method has a lower number of basic
computational operations.

3.5.1 Algorithm of the Proposed Novel Neuro-Fuzzy Method

The full description of the proposed procedures for NF using SOM for large-scale
datasets with an emphasis on interpretability is given in the Algorithm 4. It is di-
vided into four distinct functions: Line 1 describes the assignment of initial para-
meters necessary for the proper operation of the algorithm where αχ2 is a pseudo-
radius used in the elliptic fuzzy patches calculation, SOMepochs describes the
number of epochs SOM is trained on the 1st stage of NF, NFepochs - the number
of iterations ANN is trained on the 2nd NF stage, and BA is a fraction of the data
samples from the initial dataset used in bootstrap aggregation.

The function on Line 2, OptimalSize, estimates the optimal size of SOM ac-
cording to the properties of given data x̄, which are described in the subsection

5The main ideas of this section are published under the contributions [376]

3.5. Analysis of Complexity of Novel Neuro-Fuzzy 137

Algorithm 3 Optimization of α-rate in single-step MLP training using real-valued
GA

1: x← xnew
2: w ← wprevious
3: δoutput = g(h) · (d− y) · (1− g(h))
4: for all hidden layer do
5: for all neurons in a current hidden layer do
6: δji ← g(h) · (1− g(h)) · wji · δoutput
7: initialization(αrandom,pop_size);
8: while Nepochs < NepochsMax or |Fitk − Fitk−1| < ε or |Fit′ | < ε

do
9: MUTATION(pmutation,α)

10: CROSSOVER(pcrossover,α1,α2)
11: SELECTION(α);
12: αoptimal ← αselected
13: end while
14: wij ← wji + αoptimal · δji · g(hji)
15: end for
16: end for
17: return w
18: function MUTATION(probmutation,α)
19: d← random(0, 1) (generation of a real number)
20: αmutated ← αmutate ± d
21: return αmutated
22: end function
23: function CROSSOVER(probcrossover,α1,α2)
24: d← random(0, 1) (generation of a real number)
25: offspring1← d · yi + (1− d) · xi
26: offspring2← d · xi + (1− d) · yi
27: return αoff1, αoff2

28: end function
29: function SELECTION(α)
30: Fit← E(W)|α
31: return αoptimal
32: end function

138 The Proposed Soft Computing Algorithm for Digital Forensics Applications

3.1, Proposal 2. As a result, the optimal weight and height of the SOM grid are
derived. The function invoked on Line 3, SOMtraining, describes conventional
iterative training of SOM using BMU based on previously defined parameters. The
outcome of such training is a set of clusters for each of the classes, i.e. a set of data
samples at each BMU. The third function on Line 4 clustersToRules converts
clustered data into corresponding fuzzy patches parameters which are used later
to form fuzzy rules. The description of this process is justified in the subsection
3.2, Theorem 1. Finally, the function on Line 5 fuzzyRules covers the process of
fuzzy rules tuning using conventional ANN training as described by Kononenko et
al. [232]. It means that weighted input data (fuzzy rules) are fed to a combination
function that is used together with the activation function during the iterative train-
ing (modification of weights) NFepochs times. The used MF ProposedMF is
described in the subsection 3.2, Theorem 2. Finally, the fuzzy inference is based
on fuzzy rules with the corresponding MF and weights from ANN tuning.

3.5.2 Complexity Evaluation

One of the main concerns when dealing with data analysis in Digital Forensics is
the delay required to build a classification model and label the questioned network
packet. Here, the analysis of the computation complexity is presented with respect
to the approximate number of operations required to perform on the input data as
discussed by Arora et al. [62]. We consider the tentative computation cost (big O
notation as time complexity) of each feature ai processing in the vector of the input
data. NF consists of two training stages: grouping by SOM and the corresponding
fuzzy rules tuning by ANN. Later, we also consider inference complexity.

Training Complexity

It defines the amount of computations required for a method to train from the given
dataset to get a complete classification model. We consider a worthy case scenario
that includes calculations without empty nodes in SOM clustering.

1. Vesanto as SOM size determination and simple rectangular patches with
triangular MF. On the 1st stage of NF, we need to perform the following
steps:

(a) SOM size estimation is done based on eigendecomposition on the whole
original dataset, as described by Smith [396]:

NS ·NF
3 (3.34)

(b) SOM training includes iterative training using Best Matching Unit (BMU)
based on the distance calculation according to Maiorana et al. [260].

3.5. Analysis of Complexity of Novel Neuro-Fuzzy 139

Algorithm 4 Proposed modifications of Neuro-Fuzzy method
1: αχ2 ← 95%; SOMepochs ← 100 ; NFepochs ← 10 ; x̄ ← data ; BA ←

1%
2: Hgrid,Wgrid← OptimalSize(x̄)
3: clustersConfig ← SOMtraining(x̄, Hgrid,Wgrid,BA, SOMepochs)
4: fuzzyPatchesParameters← clustersToRules(clustersConfig)
5: fuzzyRules← trainingANN(x̄, fuzzyPatchesParameter,NFepochs)
6: function OPTIMALSIZE(x̄)
7: Smin = 22 ; Smax = 52 ; nC ← 2
8: Corr(x̄) = PearsonCorrelationCoeffMatrix(x̄)
9: E0, E1 ← Eigendecomposition(Corr(x̄)) ; alpha ← E0

E1 ·
avg(Corr(x̄))

10: Sopt ← Smin + (Smax − Smin) · α
11: Hgrid =

⌈√
Sopt

⌉
; Wgrid =

⌊
Sopt
Hgrid

⌋
12: return Hgrid,Wgrid
13: end function
14: function CLUSTERSTORULES(clustersConfig)
15: for all clusters extracted from SOM do
16: Cov(x̄)← CovarianceMatrix(cluster)
17: Cov−1(cluster)← matrixInverse(Cov(cluster))
18: FuzzyPatchesµ = centroids(cluster); FuzzyPatches∑ =

(Cov−1)
19: end for
20: return FuzzyPatches
21: end function
22: function PROPOSEDMF(αχ2 , sample)
23: mahalanobisD ← (sample− µ)T ·

∑−1 · (sample− µ)
24: χ2 ← contingencytable(DF)|αχ2
25: if mahalanobisD ≥ χ2 then
26: mf ← e−

1
2
·χ2

27: else
28: mf ← e−

1
2
·mahalanobisD2

29: end if
30: return mf
31: end function

140 The Proposed Soft Computing Algorithm for Digital Forensics Applications

Later comes the assignment of the samples for a particular BMU node
with the corresponding weights update:

NS · (SV ·NS + SV · log(SV) + SV ·NF) (3.35)

where SV denotes the number of SOM nodes suggested by the Vesanto
method.

(c) Fuzzy rules parameters estimation includes calculation of 1st and nth

order statistics using min and max values of the elements per feature.
In such a way, the centers and bases of the triangular MF are found for
each of the rules:

NR V ·NF ·
NS

NR V
= NS ·NF (3.36)

where NR V is a number of rules extracted after SOM training using a SOM
size defined by Vesanto method.

On the 2nd step of NF, training ANN is used to tune each particular rule
according to the full original dataset:

Ne ·NS ·NR V ·NF
2 (3.37)

where Ne denotes the number of epochs used in ANN.

2. Vesanto as SOM size and Kosko method with shadow-based triangular MF
from the circumscribed rectangular over the hyperellipsoid. In the 1st stage
of NF, we need to perform following steps:

(a) SOM size estimation is the same as above.

(b) SOM training is the same as above.

(c) Fuzzy rules parameters estimation is more cumbersome than the previ-
ous step, and was suggested by Kosko [233]. It includes a zero-mean
matrix calculation for each of the SOM clusters, and covariance and
inverse covariance matrices calculation. This is finished with the ei-
gendecomposition of the inverse covariance matrix and calculation of
the corresponding triangular MF parameters for each of the rules:

NR V · (
NS

NR V
·NF +

NS

NR V
·NF

3 + (3.38)

+
NS

NR V
·NF

3 NS

NR V
·NF

3 +
NS

NR V
·NF

2) = (3.39)

NS · (3 ·NF
3 +NF

2 +NF) (3.40)

3.5. Analysis of Complexity of Novel Neuro-Fuzzy 141

where NR V is a number of rules extracted after SOM training using SOM
size, defined by the Vesanto method.

The 2nd sage is identical to the one described above.

3. Proposed improved method with bootstrap aggregation. The 1st step differs
significantly from the previous methods:

(a) SOM size estimation is done according to the suggested method based
on the PCC:

NS ·NF
3 ·NF (3.41)

(b) SOM training is basically similar to the previous simple and Kosko
methods, yet we used a considerably low number of samples Dl in
order to bootstrap aggregation and a new optimal SOM size metric
SP :

Dl · (SP ·Dl + SP · log(SP) + SP ·NF) (3.42)

(c) Fuzzy rules parameters estimation similar to the method used by Kosko,
yet we do not need to perform eigendecomposition to extract eigen-
values and vectors for MF construction. Instead, we use an inverse
covariance matrix as a part of MF:

NR P · (
Dl

NR P
·NF +

Dl

NR P
·NF

3 + (3.43)

+
Dl

NR P
·NF

3 +
Dl

NR P
·NF

2) = (3.44)

Dl · (2 ·NF
3 +NF

2 +NF) (3.45)

where NR P is a number of rules extracted with the help of proposed
optimal SOM size.

On the 2nd step of the NF stage, sequence matrix multiplications and trans-
position are required, so the complexity will be as follows:

Ne ·NS ·NR P ·NF
6 (3.46)

To summarize, we compare complexities of both NF stages in the Table 3.3. In the
table below, we target large-scale analysis that gives SV >> SP and NS >> NF .

The proposed method significantly reduces the complexity of the 1st stage of
Neuro-Fuzzy NR V >> NR P Basically, we can see that the 2nd stage of NF
can take a lot of time, and optimization is required. In particular, we can reduce

142 The Proposed Soft Computing Algorithm for Digital Forensics Applications

Table 3.3: Analysis of computation complexity of three NF methods: S is for simple, K
is for Kosko, and P is for proposed

NF Number of operations for training Approximation
S NS ·NF

3 +NS · (SV ·NS + SV · log(SV) +
SV ·NF) +NS ·NF +Ne ·NS ·NR V ·NF

2
≈ NS

2 · SV +Ne ·NS ·NR V ·
NF

2

K NS ·NF
3 + N · (SV ·NS + SV · log(SV) +

SV · NF) + NS · (3 · NF
3 + NF

2 + NF) +
Ne ·NS ·NR V ·NF

2

≈ N2
S ·SV +Ne·NS ·NR V ·NF

2

P NS · NF
4 + Dl · (SP ·Dl + SP · log(SP) +

SP ·NF) +Dl · (2 ·NF
3 +NF

2 +NF) +Ne ·
NS ·NR P ·NF

6

≈ NS ·NF
4 +Ne ·NS ·NR P ·

NF
6

the number of trainings by applying parallel optimization for rules training that
will result in the following complexity on a p-threaded platform:

Ne ·NS ·NR P ·NF
6 → Ne ·NS ·

NR P

p
·NF

6 (3.47)

Inference Complexity

Inference Complexity denotes the amount of computations required to calculate
the membership value of an unknown data sample.

1. Triangular MF was used for the first two methods and needed NF
2 multi-

plication and division to calculate the membership value of the rule.

2. Modified Gaussian MF proposed in this paper required NF
6 operations due

to the multiplication of the transposed zero-mean matrix, inverse covariance,
and zero-mean matrix again. This is why the proposed MF may take to time
to calculate the membership value. It can be improved with the help of
parallel optimization.

Chapter 4

Application in Digital Forensics
Science

Digital Forensics includes many specific domains related to Cyber Crime Invest-
igation. In order to show the successful application of Machine Learning, the
Neuro-Fuzzy rule-extraction classification method in particular, we have studied
a number of practical applications reflected in the sections below. The following
areas were analysed: Windows Malware detection and analysis, Network Intrusion
Detection, Web Application Firewall, Network Forensics Readiness and Mobile-
Device virus analysis.

The experimental part was conducted at NTNU Digital Forensic group during
2013-2017 and includes comprehensive evaluation of the proposed methods with
respect to challenges and requirements in variety of different real-world applica-
tions: (i) Using state of the art datasets like the Android malware dataset, obsolete
KDD CUP 1999, and PKDD 2007 dataset, we performed a comprehensive evalu-
ation of the applicability of the proposed improvements. (ii) A novel large-scale
collection of the Portable Executable 32bit malware files was composed as a part
of this PhD thesis. It consists of 328,000 labelled malware samples that repres-
ent 10,362 families and 35 categories, which was further tested as a non-trivial
multinomial classification problem, and was neither sufficiently studied in the lit-
erature nor explored before. In addition to this, we successfully demonstrated the
advantage of the proposed method using large-scale datasets such as SUSY and
HIGGS.

143

144 Application in Digital Forensics Science

4.1 ML-aided Windows Malware Detection1

Users of MS Windows Operation Systems have been under attack since it was
released toward the end of the 1990’s due to the numerous versions and inherent
security flaws, also dramatically enhanced by a lack of user awareness. The file
format used by the operating system is Portable Executable (PE), developed for
executable and dynamic-link libraries[302]. Below, first we present a study of the
in-depth static code analysis of PE files to understand malicious patterns without
file execution. Second, we display the investigation of the applicability of certain
Machine Learning techniques. As a result of this investigation, a taxonomy of
Machine Learning and feature selection methods are proposed. Later, a practical
tutorial is given. This is supported by extensive experiments done in order to get
a clear picture on the malware detection performance using a baseline dataset for
training.

4.1.1 Datasets

As for MALWARE PE32 COLLECTION, one can see that the number of viruses de-
veloped for Windows is large, therefore, it is hardly possible to completely catch
up with new samples discovered in the wild on a daily basis. Though our goal was
to demonstrate practical aspects of PE analysis, we tried to get larger sets to be
able to achieve better coverage in the software. The original aim was to gather all
possible combinations of viruses, so there was a need for intensive preprocessing
to extract the target group of PE32 executables. Our main malware source is an
archive VirusShare repository accessible through VirusShare tracker [19]. We de-
cided to consider the two following archives: VirusShare_00000.zip created on
2012-06-15 00:39:38 with a size of 13.56 GB and VirusShare_00207.zip created
on 2015-12-16 22:56:17 with a size of 13.91 GB. Both archives contain 131,072
uncategorised and unsorted samples gathered by a unique md5 sum. They will be
referred to further as malware_000 and malware_207.

To the authors knowledge, there have not been published any large BENIGN SOFT-
WARE REFERENCE DATASETS, so we had to create our own set of benign files.
Even though the National Software Reference Library [300] exists, only MD5
sums are available to public. Since the focus of the paper is mainly on PE32 for
Windows NT OS families, we decided to extract corresponding known-to-be-good
files from different versions of MS Windows, including different software and mul-
timedia programs installations that are available for this OS to get better coverage.
To perform this, we used the previously mentioned VDS with corresponding in-
stallation of various OS inside to speed up the process of analysis. The versions

1The main ideas of this section are published under the contribution [382]

4.1. ML-aided Windows Malware Detection 145

that we processed are: Windows XP 32-bit (with MS office and other programs
installed), Windows 7 32 bit, Windows 8 32bit and Windows 10 32bit installation.
This will be referred to further as benign dataset. To be able to perform experi-
ments on the dataset, we had to filter out irrelevant samples, which are out of the
scope of this paper.

After collecting all possible files and performing the pre-processing phase, we
ended up with the following sets as presented in the Table 4.1. Even after perform-
ing extensive malware collection from different OS in the Windows NT family, the
amount of files is lower due to the similar binaries used across different versions
of MS Windows.

Table 4.1: Characteristics of the dataset collected and used for our experiments after fil-
tering PE files

Dataset Number of files Size

Benign 16,632 7.4GB
Malware_000 58,023 14.0GB
Malware_207 41,899 16.0GB

After performing the literature study we evaluated how well the collected data
describes the current distribution of malware samples with respect to different ver-
sions of Windows NT OS. Moreover, the accuracy of ML methods was studied
using a set of extracted features.

4.1.2 Experimental Setup

For the experiments, we used a set of benign and malicious samples. However,
the processing of 100k samples imposed limitations and required non-trivial ap-
proaches to handle such a large amount of files. We discovered that common ways
of working with files in directories such as simple ls and mv in bash take an un-
reasonable amount of time to execute. Also, there is no way to distinguish files by
extension like *.dll or *.exe since the names are just md5 sums.

We characterized the executables by means of architecture (PE32 32bit), on which
it intended to run like:

PE32 e x e c u t a b l e (GUI) I n t e l 80386 , f o r MS Windows
PE32 e x e c u t a b l e (DLL) (GUI) I n t e l 80386 , f o r MS

Windows
PE32 e x e c u t a b l e (GUI) I n t e l 80386 , f o r MS Windows , UPX

compressed

146 Application in Digital Forensics Science

Following our purpose to concentrate only on 32bit architecture, only pure PE32
are filtered out from all possible variants of PE32 files.

After filtering all benign and malicious PE32 files, multiple rounds of feature ex-
traction were performed according to methods used in the literature. Finally, we
insert the extracted features into the corresponding MySQL database to ease the
handling, feature selection, and machine learning processes.

4.1.3 Results & Analysis

This part presents the results of applying Naive Bayes, BayesNet, C4.5, k-NN,
SVM, ANN, and NF machine learning algorithms against static features of our
dataset namely PE32 header, Bytes n-gram, Opcode n-gram, and API calls n-gram.

1. PE32 header

PE32 header is one of the most popular sources of binary files characteristics
used in static analysis for malware detection. The most important thing that
we discovered and that can be relevant to threat intelligence is the signific-
ance of the features extracted from PE32 headers. We performed feature se-
lection using Cfs and InfoGain methods while using 5-fold cross-validation;
results are presented in the Figure 4.2. The InfoGain method is based on
the ranking and estimation attribute’s merit. As a result, one can see the
degree to which each of the attributes are relevant to malware classification
problems. From the other side, Cfs gives us only a sub-set of features that
achieve higher accuracy considering their correlation.

We can clearly see that the features from the Short Info section in PE32
headers can be used as stand-alone indicators of malware, including differ-
ent epochs. The number of directories in this section, as well as the file size
and flag of EXE or DLL, have bigger merits in comparison to other features.
To contrast, Anti Debug and Suspicious API sections from PEframe do not
necessarily indicate whether a binary file belongs to malware or goodware.
Finally, we can say that the digital signature and Anti VM files in PE32
headers are almost irrelevant for the malware detection task. PEframe was
mentioned by SANS [457] as one of the prominent tools to analyse suspi-
cious executables on Windows, since it is able to detect relevant information
earlier, in addition to the standard fields in PE headers. Hahn made a contri-
bution of a robust static analysis of portable executables for malware detec-
tion [173]. The work includes possible malformations of the PE format that
can be used to identify malicious intentions. The authors also stated that PE
format has an ambiguous documentation that does not necessarily get used
on purpose. Since the number of fields is large, it requires some knowledge

4.1. ML-aided Windows Malware Detection 147

Table 4.2: Feature selection on PE32 features. Bold font denotes selected features accord-
ing to InfoGain method

Benign vs Malware_000 Benign vs Malware_207 Malware_000 vs Malware_207

Information Gain

merit attribute merit attribute merit attribute

0.377 ShortInfo_Directories 0.369 ShortInfo_DLL 0.131 ShortInfo_FileSize
0.278 ShortInfo_DLL 0.252 ShortInfo_Directories 0.094 ShortInfo_Detected
0.118 AntiDebug 0.142 ShortInfo_FileSize 0.064 SuspiciousAPI
0.099 Packer 0.105 SuspiciousSections 0.044 ShortInfo_Directories
0.088 SuspiciousSections 0.101 SuspiciousAPI 0.036 Packer
0.082 ShortInfo_Xor 0.089 AntiDebug 0.028 AntiDebug
0.076 SuspiciousAPI 0.084 ShortInfo_Detected 0.017 SuspiciousSections
0.045 ShortInfo_FileSize 0.054 ShortInfo_Xor 0.016 Url
0.034 ShortInfo_Detected 0.050 Packer 0.015 AntiVM
0.022 Url 0.036 Url 0.012 ShortInfo_Xor
0.004 AntiVM 0.002 AntiVM 0.002 ShortInfo_DLL

0 ShortInfo_Sections 0 ShortInfo_Sections 0 ShortInfo_Sections
0 DigitalSignature 0 DigitalSignature 0 DigitalSignature

Cfs

attribute attribute attribute

ShortInfo_Directories ShortInfo_Directories ShortInfo_Directories
ShortInfo_Xor ShortInfo_Xor ShortInfo_FileSize
ShortInfo_DLL ShortInfo_DLL ShortInfo_Detected
ShortInfo_Detected Packer
Url

to identify key indicators. Therefore, we believe that an automated analysis
may help to identify key compromise indicators to help malware analysts.
Moreover, there can be pieces of information describing unusual findings in
data directories or a windows specific field. Furthermore, we performed the
exploration of selected ML methods that can be used with selected features.
By extracting the corresponding numerical features mentioned earlier, we
were able to achieve the classification accuracy presented in the Table 4.3. It
can be seen that such static analysis methods give high accuracy on most ML
methods. Moreover, we are able to differentiate between different epochs of
malware using these features. The Table 4.2 also presents the accuracy of
the ML method after performing feature selection. Here, we used whole
feature sub-sets defined by the Cfs method and features with merit ≥ 0.1
detected by InfoGain.

Malware vs goodware datasets can be easily classified using the full set as
well as a sub-set of the features. One can also notice that ANN and C4.5
performs much better that other methods.

It can also be seen that the quality of these features can be considered as

148 Application in Digital Forensics Science

Table 4.3: Comparative pair-wise binary classification accuracy between benign, mal-
ware_000 and malware_207 datasets based on features from PE32 header, in %.

Dataset Naive Bayes BayesNet C4.5 k-NN SVM ANN NF

All features

Bn vs Ml_000 90.29 91.42 97.63 97.30 87.75 95.08 92.46
Bn vs Ml_207 88.27 91.21 96.43 95.99 84.88 93.24 89.03
Ml_000 vs Ml_207 63.41 71.59 82.45 82.11 73.77 69.99 69.01

Information Gain

Bn vs Ml_000 88.32 89.17 94.09 94.01 94.09 93.51 87.53
Bn vs Ml_207 87.25 90.39 95.06 94.58 84.55 92.37 87.88
Ml_000 vs Ml_207 58.26 67.05 67.77 70.70 69.46 63.19 51.31

Cfs

Bn vs Ml_000 89.35 90.89 95.39 95.38 95.16 93.69 85.85
Bn vs Ml_207 86.88 89.67 91.61 91.68 91.68 91.68 81.91
Ml_000 vs Ml_207 67.45 70.95 76.98 76.92 72.15 68.18 67.06

high and suitable for the differentiation between a benign and malware_
000 dataset, meaning that we can differentiate most of the goodware and
malware using only the characteristics available in the PE32 header. Fur-
thermore, we can see that the two datasets malware_000 and malware_207
are similar, and the extracted features do not provide high classification ac-
curacy. Consequently, malware samples could be from the same categories
and families. Neural Network was used with 3 hidden layers considering
this as a non-linear model. The experiments were performed using 5-fold
cross-validation.

2. Bytes n-gram

Bytes n-gram is a very popular method for the static analysis of binary ex-
ecutables. This method has one significant benefit: in order to perform ana-
lysis, there is no need for previous knowledge about file type and internal
structure, since we use it in raw (binary) form. For feature construction, we
used randomness profiles that were first presented in the work by Ebringer
et al. [133]. They proposed a method of measuring the randomness of cer-
tain parts of an executable in order to distinguish between different types of
packers used by malware developers. There are two main methods proposed
by authors: fixed sample count, which generates a fixed number of random-
ness profiles regardless of file size and sliding window algorithm. In this
method, each file was represented in a hexadecimal way. The frequencies
of each byte were counted, and then a Huffman tree for the whole file was
built. Then, using a window of fixed size and moving it on fixed skip size,

4.1. ML-aided Windows Malware Detection 149

the randomness profile of each window is calculated. Randomness profile is
a sum of Huffman code lengths of each byte in a window. Thus, the lower
the randomness in a particular window, the larger will be the randomness
profile.

The author’s application of this method is not the only one that exists. It is
also possible to use this algorithm for extracting features for malware de-
tection, and we tried to use it for our task. As a sliding window size, we
chose 32 bytes as the most prominent according to [133, 326, 404]. Due to
the big variety of file sizes in our dataset, and especially very small minimal
file sizes, we chose 30 of the best features (or pruning size in terminology
from [133]) which are the areas of biggest randomness (the most unique
parts) in their original order. These features were fed into the machine learn-
ing algorithms mentioned in the Table 4.4.

Table 4.4: Classification accuracy based on features from bytes n-gram randomness pro-
files, in %

Dataset Naive Bayes BayesNet C4.5 k-NN SVM ANN NF

All features

Bn vs Ml_000 69.9 60.4 76.9 75.6 78.3 78.3 74.8
Bn vs Ml_207 70.3 68.2 75.8 75.6 72.1 71.6 68.2
Ml_000 vs Ml_207 50.1 64.0 68.1 64.7 58.1 60.1 58.2

In the Table 4.4, the results of machine learning algorithms evaluation is
present. As we can see, their accuracy with these types of features are not as
high as with others. There are several reasons for this fact. The first reason is
that the original method was developed in order to work on the packer classi-
fication task. This means that it is probably better at finding unique features
of packer (that are meta-features by its nature) that could be spread among a
large number of files rather than finding similarities between files on the byte
level. The second reason for low accuracy is that the method is developed
to preserve local details of a file according to Ebringer et al. [133], and the
size of file affects locality a lot. In our case, the file sizes vary from around
0.5Kb to 53.7Mb and in the original paper from 3Kb to 191Kb, which is a
significantly smaller range as shown in the Figure 4.1. Despite worse res-
ults overall, the tendency kept the same: it was easier to distinguish between
benign executables and malware than between malware from different time
slices. Also, we can see that ANN is better in the Benign vs Malware_000
dataset, and C4.5 in the Benign vs Malware_207 and Malware_000 vs Mal-
ware_207 datasets.

Also it should be noted that we did not use feature selection methods as

150 Application in Digital Forensics Science

(a) Less than 1M (b) Bigger than 1M

Figure 4.1: Distribution of file size values in Bytes for three classes

in the case with PE32 header features. Both Information Gain and Cfs are
not efficient due to the similarity of features and less-than-equivalence in
importance for classification process. For the first dataset of files, Informa-
tion Gain is in the range 0.0473-0.0672; for the second dataset it is 0.0672-
0.1304, and for the last is 0.0499-0.0725. Moreover, Cfs produces the best
feature subset—nearly equal to the full set. Therefore, we decided to use all
features, since there is no subset that could possibly be better than original.

3. Opcode n-gram

Opcode n-gram is the combination of assembly instructions from which an
executable file is constructed. They were described earlier in Subsection 2.
This method has one limitation: in order to gain opcodes, one needs to per-
form disassembly, which sometimes fails to get the correct opcodes due to
different anti-disassembly and packing techniques used in executables (even
though we tried to filter out these kinds of files on the dataset preparation
stage). Therefore, we extracted the 100 most common 3- and 4-grams from
each of the three file classes. Then, we extracted from them a set of 200 most
common n-grams: lets call these feature n-grams. For each file within a data-
set, we built a presence vector of length 200 where value 1 was assigned if
certain n-grams from feature n-grams are present in the top 100 most used
n-grams in this file. The Table 4.5 represents the results of feature selection
performed on the dataset with 3-grams. We can see that the first two pairs of
datasets have a lot of common n-grams, while the selected n-grams for the
third pair of datasets are totally different. For Information Gain, a threshold

4.1. ML-aided Windows Malware Detection 151

equal to 0.1 was used for both benign vs malware dataset, while for the last
set we used InfoGain equal to 0.02. It can be highlighted that the first two
pairs of datasets use the same 3-grams to differentiate between malware and
benign binaries, indicating significant differences in the properties of files.

Table 4.5: Feature selection on 3-gram opcode features. Bold font denotes features that
are present in both datasets that include benign samples

Benign vs Malware_000 Benign vs Malware_207 Malware_000 vs Malware_207

Information Gain

merit attribute merit attribute merit attribute

0.302483 int3movpush 0.298812 int3movpush 0.042229 pushlcallpushl
0.283229 int3int3mov 0.279371 int3int3mov 0.039779 movtestjne
0.266485 popretint3 0.227489 popretint3 0.037087 callpushlcall
0.236949 retint3int3 0.202162 retint3int3 0.031045 pushpushlcall
0.191866 jmpint3int3 0.193938 jmpint3int3
0.134709 callmovtest 0.108580 retpushmov
0.133258 movtestje
0.115976 callmovpop
0.114482 testjemov
0.101328 poppopret
0.100371 movtestjne

Cfs

attribute attribute attribute

movtestje movmovadd pushpushlcall
callmovtest retpushmov movtestjne
callmovpop xormovmov movmovjmp
retint3int3 callmovtest jecmpje
popretint3 popretint3 cmpjepush
pushmovadd pushmovadd pushleacall
int3int3mov int3int3mov callpopret
callmovjmp callmovjmp leaveretpush
jmpint3int3 jmpint3int3 pushmovadd
int3movpush int3movpush pushcalllea

callpushlcall
callmovlea
pushlcallpushl
movmovmovl
calljmpmov

This data was passed to machine learning algorithms; results can be seen
on Table 4.6 and Table 4.8. We can see that among all the performed ML
methods, C4.5 performs well and has the highest accuracy in almost all ex-
periments. Also, feature selection significantly reduced the number of n-
grams from 200 down to 10-15, while overall accuracy on all methods did
not drop significantly. In fact, Naive Bayes performed even better than can
be explained by reduced complexity of the probabilistic model. Also, NF

152 Application in Digital Forensics Science

showed much better accuracy in comparison to other methods when using
all features to distinguish between both malware datasets. This can be ex-
plained by the non-linear correlation in the data that are circumscribed in the
Gaussian fuzzy patches.

Table 4.6: Classification accuracy based on features from opcode 3-gram, in %

Dataset Naive Bayes BayesNet C4.5 k-NN SVM ANN NF

All features

Bn vs Ml_000 83.51 83.52 95.53 93.82 94.43 94.51 95.28
Bn vs Ml_207 84.52 84.52 93.93 91.84 92.32 92.44 93.20
Mn_000 vs Ml_207 63.73 63.73 81.21 78.64 75.42 76.64 83.13

Information Gain

Bn vs Ml_000 86.74 86.94 90.41 90.45 89.98 90.26 84.45
Bn vs Ml_207 86.22 86.22 86.22 86.22 87.46 87.48 83.36
Mn_000 vs Ml_207 63.19 62.55 71.19 71.89 69.54 67.36 69.14

Cfs

Bn vs Ml_000 87.79 88.66 91.15 91.22 90.90 90.82 85.31
Bn vs Ml_207 86.24 86.33 89.92 89.73 89.17 89.34 81.58
Mn_000 vs Ml_207 86.24 86.33 89.92 89.73 89.17 89.34 69.25

Furthermore, we investigated the possibility of any correlation between n-
grams in files that belong to both benign and malicious classes. We extracted
the relative frequency of each n-gram according to the formula hn−gram =
NClass
files ∈ n−gram
NClass
files

, where NClass
files ∈ n−gram indicates the number of files in a

class that has an n-gram and NClass
files is the total number of files in this class.

The results for 3-gram are depicted in the Figure 4.2. As a reference, we
took the top 20 most frequent n-grams from benign classes and found the fre-
quency of the corresponding n-grams from both malicious classes. The fre-
quency does not differ fundamentally, yet n-grams for both malicious classes
tend to have very close numbers in comparison to benign. Moreover, there
is a clear dependency between both malicious classes. We also can notice
that most of the features selected from the two datasets that include benign
samples are same. This highlights the reliability of the selected 4-grams and
generalization of the method for malware detection.

Furthermore, we also investigated 4-gram method on the files and extracted
200 features. Later, feature selection was performed with the results presen-
ted in the Table 4.7. Similar to the 3-grams features selected in the Table 4.5,
one can see that the first two pairs of datasets have a lot of common features,
while the last one provides a significantly different set. As in the case with
3-grams, we used Information Gain with a threshold equal to 0.1 for both

4.1. ML-aided Windows Malware Detection 153

Figure 4.2: Distribution of the frequencies of the top 20 opcode 3-grams from the benign
set in comparison to both malicious datasets

benign vs malware datasets, while for the last set we used InfoGain equal to
0.02, which seemed reasonable with respect to number of selected‘ features.

The classification performance is given in the Figure 4.8. As we can see
from the results, 3-grams can show a bit better result than 4-grams in case of
distinguishing between Benign and Malware000 or Benign or Malware207
with a C4.5 classifier. At the same time, 4-grams are better in order to dis-
tinguish between two malware datasets, again with a C4.5 classifier. We can
conclude that the results are quite good, and can be used for malware detec-
tion. In our opinion, results can be improved in the case of extracting more
features and the usage of relative frequencies rather than a pure vector that
indicates presence.

Contrary to 3-grams, we can see that the histograms of 4-grams have fun-
damental differences when it comes to malicious and benign sets, as is de-
picted in the Figure 4.3. We can see that the frequencies that correspond to
malware_000 and malware_207 datasets are nearly similar and are far from
the frequencies detected for benign class. Moreover, there is a clear and
strong correlation between the two malware datasets. So, we can state that
in case of probabilistic-based models like Bayes Network and Naive Bayes,
the classification could be a bit better due to differences in likelihood of
appearance, which can be also found in the Tables 4.6 and 4.8.

4. API call n-grams

API calls n-grams is the combinations of specific operations invoked by the
process in order to use functionality of operational system of the host. Stat-
ically, they could be extracted with different debug tools. For our study, we
used peframe, which can extract API calls from PE32 files. As was known
from previous studies described in Section 2 the bigger n-gram size is the

154 Application in Digital Forensics Science

Table 4.7: Feature selection on 4-gram opcode features. Bold font denotes features that
present in both datasets that include benign samples

Benign vs Malware_000 Benign vs Malware_207 Malware_000 vs Malware_207

Information Gain

merit attribute merit attribute merit attribute

0.303209 int3int3movpush 0.295427 int3int3movpush 0.047452 pushlcallpushlcall
0.295280 int3movpushmov 0.286378 int3movpushmov 0.045860 movpoppopret
0.285608 int3int3int3mov 0.266966 int3int3int3mov 0.044750 jepushcallpop
0.258733 popretint3int3 0.229431 jmpint3int3int3 0.044573 callpushlcallpushl
0.241215 poppopretint3 0.224318 poppopretint3 0.038822 cmpjepushcall
0.233205 jmpint3int3int3 0.210289 popretint3int3 0.035731 pushcallpopret
0.220679 retint3int3int3 0.170367 retint3int3int3 0.030460 pushcallpopmov
0.185178 movpopretint3 0.148442 movpopretint3 0.028564 movcmpjepush
0.151337 movpushmovsub 0.116760 movpushmovsub 0.025813 cmpjecmpje
0.125703 pushcallmovtest 0.103841 movpushmovpush 0.024372 leaveretpushmov
0.104993 movpushmovpush 0.102730 movpushmovmov 0.023374 pushpushpushlcall
0.104416 movpushmovmov 0.022312 pushcallpoppop

0.021929 movtestjepush
0.020003 pushpushleapush

Cfs

attribute attribute attribute

incaddincadd addaddaddadd leaveretpushmov
movpushmovsub movmovpushpush callmovtestje
jmpmovmovmov movpushmovsub jepushcallpop
pushcallmovtest pushcallmovtest pushlcallpushlcall
int3int3int3mov int3int3int3mov pushpushpushlea
movpoppopret movxormovmov jecmpjecmp
jmpint3int3int3 pushlcallpushlcall movpoppopret
movpopretint3 jmpint3int3int3 pushcallmovpush
int3int3movpush movpopretint3 pushmovmovcall
int3movpushmov int3int3movpush movpopretint3
poppopretint3 int3movpushmov cmpjepushcall
addpushpushpush poppopretint3 movleamovmov
pushpushcalllea movmovjmpmov

pushpushcalllea
retnopnopnop
movaddpushpush
subpushpushpush

lowest accuracy it is possible to gain. The reason for this is that single API
calls and their n-grams are present in files in fewer amounts comparing to,
for example, opcode n-grams. Sometimes, a single executable can have less
than several dozens of API calls. During the extraction process, peframe
fails to extract API calls on some files due to internal errors or file antidebug
features. After extracting API calls, we combined them into 1- and 2-grams.
For each task, we selected the 100 most frequent features in particular class
and combined them into 200-features vector. In the Tables 4.9 and 4.10

4.1. ML-aided Windows Malware Detection 155

Table 4.8: Classification accuracy based on features from opcode 4-gram, in %

Dataset Naive Bayes BayesNet C4.5 k-NN SVM ANN NF

All features

Bn vs Ml_000 86.92 86.92 95.31 93.73 94.28 94.23 95.54
Bn vs Ml_207 86.84 86.84 93.33 91.71 92.03 92.04 93.75
Ml_000 vs Ml_207 64.90 64.90 81.58 78.98 74.98 75.77 78.80

Information Gain

Bn vs Ml_000 87.79 87.89 91.48 91.45 91.31 90.84 85.74
Bn vs Ml_207 84.64 84.57 87.84 87.83 87.25 87.70 48.67
Mn_000 vs Ml_207 62.73 63.20 69.96 70.25 68.40 67.24 68.90

Cfs

Bn vs Ml_000 89.63 89.63 91.51 91.52 91.52 90.76 84.95
Bn vs Ml_207 86.41 86.64 89.36 89.48 89.16 89.12 81.13
Mn_000 vs Ml_207 66.28 66.17 72.00 72.27 68.96 69.17 69.32

Figure 4.3: Distribution of the frequencies of top 20 opcode 4-grams from benign set in
comparison to both malicious datasets

results for machine learning evaluation on API call n-grams are present.

Table 4.9: Classification accuracy based on API call 1-gram features, %

Dataset Naive Bayes BayesNet C4.5 k-NN SVM ANN NF

All features

Bn vs Ml_000 90.79 90.79 93.39 93.47 93.51 93.43 82.44
Bn vs Ml_207 87.18 87.18 90.94 91.03 91.37 91.23 81.28
Ml_000 vs Ml_207 66.19 66.2 78.44 77.09 73.33 72.77 73.55

As we can see from the tables ANN, kNN and C4.5 are the best classifiers,
similar to previous results. It is also more difficult to distinguish between
files from malware_000 and malware_207. We gained quite a high accur-
acy, but it is still lower than in related studies. This could be explained by
the size of datasets: in other studies, datasets usually consist of several hun-

156 Application in Digital Forensics Science

Table 4.10: Classification accuracy based on API call 2-gram features, %

Dataset Naive Bayes BayesNet C4.5 k-NN SVM ANN NF

All features

Bn vs Ml_000 86.54 86.55 90.88 91.53 91.96 91.85 75.24
Bn vs Ml_207 81.94 81.91 87.84 88.82 88.31 87.81 83.61
Ml_000 vs Ml_207 62.31 62.31 73.69 73.17 70.27 69.45 70.08

dreds or thousands of files while our dataset has more than 110,000 files in
it. After analysing feature selection results, we decided not to include them
in the results section since most of the features are similar in terms of distin-
guishing between malware and goodware. This means that there are a large
number of unique API calls that can be found once or twice in the file, in
contrast to byte or opcode n-grams.

Furthermore, we also studied the difference in frequency distributions among
API calls. The Figure 4.4 sketches extracted API 1-grams from three data-
sets. One can see that there is a significant spread between the number of
occurrences in benign classes in contrast to both malicious datasets. On the
other hand, the results for both malware datasets are similar, which indicates
statistical significance of the extracted features. It is important to highlight
the largest scatter in frequencies for the functions memset(), malloc() and
free(). It makes more sense for the developers of benign software to care-
fully allocate and clean memory that the program uses to make it more ef-
ficient, while malware producers mostly do not care about this issue since
it is not an important factor for the malicious payload. On the other hand,
malicious programs tend to use GetProcAddress() the function more often
for retrieving the address of any function from dynamic-link libraries in the
system.

Figure 4.4: frequencies of 20 most frequent API 1-grams for three different datasets

4.1. ML-aided Windows Malware Detection 157

Relevance of Collected Datasets

Along with the study of ML application for malware detection, we also performed
a study to check whether the collected datasets actually represent the real distribu-
tion of the malware and goodware. One of the credible sources for this information
is the so-called "Compile Time" filed that can be extracted from the PE32 header.
A previous section described one benign and two malicious datasets that were col-
lected for this study. The Figure 4.5 represents a log-scale histogram of the com-
pilation time for the benign dataset. Since our target is the Windows NT family,
we performed an exploration of the history of the Windows OS [279, 440]. Taking
into consideration the OS timeline, we found some consistencies. Microsoft has
produced a large number of versions of Windows operating systems starting from
Windows 1.0 in 1985 and finishing with the recent Windows 10 released in summer
2015. To start with, Windows 3.1 was originally released on April 6, 1992, and
our plot indicates the biggest spike around the first part of the year 1992. Later on
in the 90’s, Windows 95 arrived on 24 August 1995, while the next Windows 98
was announced on 25 June 1998. Further, the 2000’s marked the release of Win-
dows XP on October 25, 2001. This OS had great success and was installed on PC
by home users as well as industrial customers like ATM machines and supermarket
systems. The following phases of the plot describe the releases of Windows Vista
on 30 January 2007 and Windows 7 on 22 October 2009. Following that, the next
popular version appeared on 26 October 2012 and was named Windows 8. Finally,
the latest major spike at the end of 2014 corresponds to the fact that Windows 10
was unveiled on 29 July 2015. Spikes over dates of major Windows NT versions,
also followed by a significant increase of number of files coming from updates and
corresponding software releases right after corresponding version of Windows are
released. However, what is more interesting is that we did not get any binary from
Windows 1.0 or Windows 2.0, which means that binaries from such OS are not
included in latest versions. Finally, there are no binaries from Windows 1.0 (20
November 1985) and Windows 2.0 (9 December 1987), meaning that these sys-
tems are 16 bit architecture, while Windows 3.1 and later use 32bit architecture, or
PE32 files. Considering this, we think it is reasonable to concentrate on the Win-
dows versions that have been in use over last two decades, such as 2000, Vista, XP,
7, 8, 8.1 and 10.

Further, the compilation time distribution for the first malware dataset malware_
000 is given in the Figure 4.6. We can clearly shows that the release of another
Windows version always causes an increase in the cumulative distribution of mal-
ware samples in the following 6 to 12 months. The gap between release and spike
is justified by the fact that attackers take time to study possible vulnerabilities and
create a malicious code. It can be seen that the release of 32bit Windows 3.1

158 Application in Digital Forensics Science

Figure 4.5: Log-scale histogram of compilation times for benign dataset

caused a spike in a number of malwares. After this, the number of malware com-
piled each year is constantly growing. Another increase can be observed in the
second half of the 2001 year which is relevant to the release of the most popu-
lar Windows XP. Since this dataset was collected early in 2012, this means that
the collection of malware samples in most cases covers Windows versions up to
Windows 7 released on 2007.

Figure 4.6: Log-scale histogram of compilation times for malware_000 dataset

Considering the fact that MS DOS was released in 1981, it seems as though com-
pilation times before this day look fake or intentionally obfuscated. On the other
hand, the dataset malware_000 can not have dates later than June 2012. How-

4.1. ML-aided Windows Malware Detection 159

ever, there are quite many files later compiled just before 2016, meaning that the
compilation dates in these files are tampered with. Furthermore, the malware_
207 dataset seems to have more recent versions of malware, and the number ob-
viously increases towards the year 2016 staring from the mid-90’s. A number of
outstanding viruses have emerged since release of Windows OS. It worth men-
tioning the Brain virus, primarily designed for MS-DOS, which infects the boot
sector and is also compatible with IBM PCs [439]. Additionally, Jerusalem hit
the world in 1988, being destructive for most of the executable files found on the
computer [436]. Later on, Michelangelo was expected to create a massive attack
in 1992 by rewriting the first 100 sectors of hard disk. At this point, we clearly
see that most of the viruses were written for MS-DOS as a basis of Windows OS,
while Windows was considered a graphic addition. One of the most well-known
trojans is Storm, which infected about 2 million computers in 2007 through email
attachments, according to Moloseciv [282]. In 2007, Zeus botnet also struck the
world and was mostly deployed on MS Windows OS intending to steal sensitive
information and create botnets [439]. The period before the release of Windows 7
was marked with several waves of July 2009 cyber attacks deploying W32.Dozer
that erases information and prevents a computer from being rebooted [439]. In
comparison to the first malware collection, there are files also covering Windows
versions after Windows 7 as shown in the Figure 4.7. Also, we see that the largest
number of malware samples were compiled in the range from 2012 up to as recent
as 2016. This is caused by the fact that Microsoft released Windows 8, 8.1, and
finally ended up with Windows 10 around that time. Also, these two malware data-
sets seem to have more reliable malware samples considering the reduced amount
of malwares compiled before release of Windows 1.0.

Figure 4.7: Log-scale histogram of compilation times for malware_207 dataset

160 Application in Digital Forensics Science

Later, following the release of Windows 7 and Windows 8, a number of malware
were developed in addition to the already mentioned viruses. Duqu was discovered
in 2011, which provided a large functionality to attackers by exploiting a number
of vulnerabilities in MS Windows [282, 439]. Flame then appeared in 2012 while
being referred to Duqu creators as studied by Milosevic [282]. Finally, Regin
Trojan was discovred in 2014 just before the release of Windows 10 and affected
computers via spoofed web pages and is supposedly designed for cyber espion-
age [439]. Thus, it can be concluded that benign samples reflect the history of MS
Windows OS, while the distribution of malware tends to cover the development
of corresponding viruses. Additionally, malware developers used to set false and
sometimes infeasible compilation times to obfuscate and deceive malware ana-
lysts.

Summary: Above, we presented a tutorial and a survey on the application of
Machine Learning models for Portable Executable malware detection using static
analysis. We have considered the different ways of extracting the most relevant
attributes from static characteristics of the executable files. Then, we provided an
overview of the publicly available dataset, ML methods with corresponding im-
plementations. Additionally, we saw that static-based detection using ML can be
used as a fast and reliable tool considering the different characteristic of PE32
that eliminates a need to execute it and may give a tentative understanding of the
purpose of a executable or library. Furthermore, we believe that this approach is
also applicable in Cyber Threat Intelligence since compromise indicators can be
retrieved from static features. Below, we will provide an overview of the features
and accuracy of ML methods with respect to feature selection process. Based on
the extensive experiments performed, one can see that C4.5 and k-NN in most
cases perform better than other methods. SVM and ANN showed good perform-
ance on some datasets. On the other hand, Bayes Network and Naive Bayes have
poor performances compared to other ML methods. This can be explained by neg-
ligibly low probabilities, especially present in a large number of features such as
opcode and bytes n-grams.

Meanwhile, there are a growing amount of benign files around 2009 as shown in
the Figure 4.5 which reflects Windows Vista - Windows 8 releases. Moreover,
the accumulated growth of malware samples is seen around 2008-2009 in the mal-
ware_00000 dataset in the Figure 4.6. Similarly, the more recent dataset malware_
00207 has similar tendencies show in the Figure 4.7. As a result, the increased
number of publications per year indicates the importance of the static analysis of
Portable Executables using machine learning methods. Thus, we can conclude that
most of the features extracted by means of static analysis are suitable for robust
malware classification. One main discovery was related to compilation time of

4.2. Windows Portable Executable 32 Bit: A Novel Multinomial Malware Collection 161

binary files. Goodware seem to follow releases of Windows OS, while malware
developers used fake or sometimes infeasible compilation times for obfuscation.
We noticed that quite many malware samples presumably had been compiled be-
fore release of MS-DOS OS in the 1980’s, which should be doubted.

4.2 Windows Portable Executable 32 Bit: A Novel Multinomial
Malware Collection2

There are two main approaches to analyzing malware samples: static and dynamic
analysis. Static analysis includes scanning files to collect relevant raw charac-
teristics from the file, while dynamic analysis reveals behavior characteristics by
executing them in an isolated environment, as studied by Ravi et al. [331] for mul-
tiple malware families. As a result of obfuscation, the different methods utilized
by malware to avoid detection, some dynamic analysis methods require user inter-
action to trigger the malicious behaviour. Despite the fact that dynamic analysis
could be comprehensive, this would require much more time and resources than
static analysis methods. Because of this, we consider static analysis to be more
appropriate for our project, taking in mind the large number of samples and time
constraint. The main goal of this section is to study how static analysis of PE32
and classification through SC methods can facilitate large-scale detection of mal-
ware families and malware types. A novel dataset has been composed during the
experimental phase. It will be used further in different contexts with respect to the
aforementioned challenges in the Chapter 2.

Most antivirus scanners use signature-based and heuristic-based detection meth-
ods, where they search for known patterns in executable code as well as the hash
sum of the file against known malicious files in a database. A limitation of signature-
based methods are that the malware must be obtained and analyzed before the
antivirus vendors can update their databases, as described by Ye et al. [449] and
Kolter et al. [231]. Far more flexibility is provided by ML-based methods, such as
nature-inspired SC methods that allow the building of inexact models from incom-
plete and complex data. Das et al. [111] gave an overview of how SC methods can
be used in different areas, including in the area of Information Security.

4.2.1 Dataset

There was a malware collection initiative that took place within the NTNU Di-
gital Forenisc research group3 during Summer 2015 using the following sources:
maltrieve [269] that extracts recent modern malware samples, the 10 first archives
available at VirusShare [17] starting from VirusShare_00000.zip, the collection

2The main ideas of this setion are published under the contributions [167, 379, 381]
3https://testimon.ccis.no

https://testimon.ccis.no

162 Application in Digital Forensics Science

from VxHeaven, and files that students share within the group. After thorough
analysis and filtering, we derived PE32 files and removed other types of files. Ini-
tially, we ended up with 407,741 malware samples. This will be further named as a
novel PE32 malware collection. It can be considered large-scale suitable enough
for our experiments, since datasets used in the studies before are mostly small sets
with thousands and tens of thousands of samples [333, 458, 385, 82].

Since we targeted a static analysis, it was decided to extract as much of the raw
characteristic as possible to facilitate large-scale malware analysis. The two main
sources that we used were PEframe [57] and VirusTotal [18]. PEframe presents a
comprehensive set of attributes that can be found in the PE32 header. There has
been some work that demonstrated the possibility of identifying malware using
such information. VirusTotal presents scan results from over 65 anti-virus data-
bases, information about possible packers and compressors in addition to basis
PE32 headers data. All data from the VirusTotal were gathered using Private API.
Moreover, we used standard Linux tools to retrieve various file characteristics, e.g.
the size of different sections, strings, and entropy. Finally, we created a MySQL
database with raw characteristics of all PE32 executables filtered out from a heap
of gathered earlier samples. The overall process can be described as following:

Malware samples collection

The resulting malware collection consists of a number of samples from students,
the first 10 archives of VirusShare [17], and files from VxHeaven [20] were collec-
ted in addition. VirusShare offers number of archives, out of which we used Vir-
usShare_00000.zip–VirusShare_00009.zip that covers a range of collected samples
from 2012-06-15 to 2012-09-15, and in a size range from 13GB up to 85GB. Each
of these archives includes 131,072 files equally. Also, there was a collection done
by Maltrieve [269] with thousands of recent malware samples available in the In-
ternet. To pre-process files, we renamed them with md5 values and filtered out all
files other than PE32 by Linux ‘file‘ command. Overall, we reduced the number
of files by eliminating duplicates and non-PE32 files. Thus, we ended up with
407,731 malware, yet some of them will be eliminated. The total size of all the
executables is 136GB out of all archives from VirusShare, which were 378GB.

Characteristics acquisition

NF is designed to handle numerical features as inputs. Therefore, static analysis
is applied on the collected dataset to extract the corresponding characteristics for
future feature construction. We targeted a static analysis and not a dynamic one due
to the large number of collected samples and specific requirements for malware
execution. The two primary objectives: (i) get a set of static characteristics for

4.2. Windows Portable Executable 32 Bit: A Novel Multinomial Malware Collection 163

each file, including those available in the PE32 header, (ii) retrieve the most likely
malware category and family name for each file.

PEframe presents a comprehensive set of attributes that can be found in the PE
header of a format showed in the Listing 4.1:

Listing 4.1: Example of PEframe output

" An t i Debug " : [
" G e t L a s t E r r o r " ,
" T e r m i n a t e P r o c e s s " ,
" U n h a n d l e d E x c e p t i o n F i l t e r "

]
" S u s p i c i o u s API " : [

" G e t C u r r e n t P r o c e s s " ,
" G e t C u r r e n t P r o c e s s I d " ,
" GetTickCount " ,
" S l e e p " ,
" T e r m i n a t e P r o c e s s " ,
" U n h a n d l e d E x c e p t i o n F i l t e r "

]

There were some works before showing that it can be possible to detect malware
using such headers information.

VIRUSTOTAL reports are scan results from over 60 anti-virus databases, informa-
tion about possible packers, exiftool data, and detected packers versions in addition
to basic PE header data. An example of the output is given in the Listing 4.2. In or-
der to retrieve information from the database, one has to use API that sends a md5
sum and retrieves JSON-formatted report. The daily quota was 5,760 requests,
so we asked for academic access to be able to process 400k samples in reason-
able time. It took more than a week to get all the data collected. Despite the fact
that it contains information from 60 anti-viruses, it still can be considered as sub-
jective analytical results that may indicate different malware families for the same
malware.

Listing 4.2: Example of VirusTotal report

[M i c r o s o f t] => s t d C l a s s O b j e c t
(

[d e t e c t e d] => 1
[v e r s i o n] => 1 . 10401
[r e s u l t] => PWS: Win32 / OnLineGames
[u p d a t e] => 20140404

)

164 Application in Digital Forensics Science

Finally, we used standard Linux tools to retrieve more file characteristics, e.g. size
of different sections, strings, and also entropy. We created a MySQL database that
contains the raw characteristics of the PE32 windows executables (all malware)
filtered out of the mess of different malwares that were present in gathered earlier
sets. Fields in the initial SQl table are as follows:

1. md5 - unique id also a key in VirusTotal.

2. virustotal_file_report - VirusTotal report [18].

3. virustotal_file_behaviour - Cuckoo data API [18].

4. virustotal_file_network_traffic - network communication.

5. peframe - PEframe report, JSON-formatted.

6. file - output of the Linux command ‘file‘.

7. strings - command ‘strings‘ (ASCII).

8. size - Linux command ‘size‘ of the format:

t e x t d a t a b s s dec hex f i l e n a m e
10518 2044 3424 110650 1b03 a / b i n / l s

9. file_entropy - entropy of the file, may indicate the degree of encryption. A
typical range is from 0.0 up to 8.0.

10. size_of_file - size of the file in bytes.

It took about a week to collect information from VirusTotal database and PEframe
output. The behavioural analysis as well as network interaction was not available
from VirusTotal for most of the files at the time of the dataset composition, so we
excluded it from the feature extraction stage. We also contributed to the VirusTotal
database since there were around 200 malware samples not present there.

Feature Extraction

Before meaningful automated analysis can be executed, we must extract numerical
features by performing a preliminary manual processing of raw static characterist-
ics. On this step, we (i) transform the gathered raw characteristics into numerical
features. To accomplish this task, we processed VirusTotal and PEframe reports.
The content from both sources was the form of a serialized JSON object. There-
fore, we focused on extracting as many relevant numerical features as possible
from this structure. Extracted features are given in the Table 4.11.

4.2. Windows Portable Executable 32 Bit: A Novel Multinomial Malware Collection 165

Afterward, (ii) we extracted the corresponding malware types and families names
from VirusTotal output. Furthermore, feature selection was performed to determ-
ine which features contribute most to classification. Feature extraction is the next
important step that we pursue while working on malware samples collection. Clas-
sifying families and categories were the main objectives and challenges when we
created the dataset. Our initial hypothesis was to utilize and parse scan reports
from VirusTotal. A quarter-century ago, an organization named CARO (Computer
Antivirus Research Organization [4]) was founded to establish common naming
schemes to be used by anti-virus vendors. One may notice that there exist a high
number of categories (like trojan, backdoor, etc) and families (like Poison, Ramdo,
etc) that are commonly defined by the Information Security community. Our first
thoughts were to apply a majority voting scheme for families in case of conflict-
ing names, but all vendors used an inconsistent and variable naming approach that
make it infeasible to classify data. Moreover, hardly more than Microsoft followed
the standard, so we considered only files where Microsoft indicated the malware
properties, which reduced the number of files from 400k to 328k. For example, if
the malware scan result by anti-virus is ADWARE.WIN32.CONDUIT.M, then the
category is ADWARE and malware family is CONDUIT, while the platform archi-
tecture is WIN32. The most comprehensive collection of malware family names
for OS Windows was done by Microsoft [278], which assembled 246 different
items. From malware collection, we managed to extract 10,362 families and 35
categories. Finally, a Python script was written to first extract the data, and then to
put it into a new database table.

In general, one can say that the challenge with categorization is that malware cat-
egories had commonly accepted names [123], while families were partially in-
vented by malware analysis, which first found a specific species in the wild and
analysed it [217]. After filtering out malware that does not contain structured cat-
egorization information from VirtusTotal, there have been found 10,362 malware
families and 35 types in 328,337 collected samples according to MS antivirus re-
ports. The details will be discussed in the following section. The top 35 labels
for both classes are given in the Table 4.12. It can be seen that the large majority
of malware samples lies only in a few malware categories, while other categories
include only a few malware samples.

4.2.2 Static Analysis in Hard & Soft Computing Models

As was mentioned earlier in 2 there are considered two main sets of methods in
Machine Learning, Hard Computing and Soft Computing. HC includes the con-
ventional methods dealing with crisp logic, while Soft Computing is more tolerant
toward data errors and incompleteness than are present in real-world data. The
results of multinomial classification are given below.

166 Application in Digital Forensics Science

Experimental Design

As was mentioned earlier, we gathered a novel large-scale malware dataset. Ini-
tially, (i) we reduced the number of files by eliminating duplicates and non-PE32
files. After a thorough analysis and filtering, we derived all possible types of PE32
files designed for MS Windows and removed other types of files. Overall, we
ended up with 407,741 unique malware samples that are PE32 files, as was men-
tioned earlier in this Section. The total size of all the executables is 136GB despite
the fact that all archives from VirusShare occupied 378GB. Furthermore, (ii) we
performed a raw characteristic acquisition from PEframe and VirusTotal and ob-
tained a MySQL table of 19.5GB that later resulted in 98.7MB of numerical fea-
tures totaling 328,337 malware samples. The number is lower since we only used
samples that contained a CARO-formatted report from Microsoft anti-virus. Con-
sequently, after filtering and pre-processing we ended up with 328k samples that
consisted of 10,362 malware families and 35 types. Our preliminary study showed
that such a high number of families makes the application of most ML methods in-
feasible. Therefore, the decision was made to create the following subsets limiting
the most frequent types and families to decrease the number of highly-imbalanced
classes.

1. 10 families containing 74,655 samples, 11.8 MB.

2. 100 families containing 227,191 samples, 36.3 MB.

3. 500 families containing 292,596 samples, 46.7 MB.

4. 10 types containing 310,355 samples, 50.5 MB.

5. 35 types (full set) containing 328,337 samples, 53.5 MB.

The Figure 4.8 presents the distribution of the smallest sets.

Choice of Soft Computing methods

As mentioned earlier, SC is a set of nature-inspired methods that are designed to
handle complex data and produce inexact solutions that can be also interpretable.
Singh et al. [394] sketched how the variety of SC methods can be applied for
malware detection. In this thesis, we concentrate on the following SC methods in
our experiments.

• Naive Bayes is a simple classifier built on the assumption that features are
independent from classes as described by Rish [335]. This method performs
well on nominal features compared to other classifiers.

4.2. Windows Portable Executable 32 Bit: A Novel Multinomial Malware Collection 167

• Bayesian Network is based on the conditional probabilities of features in a
directed acyclic graph as presented by Friedman et al. [154]. Probabilities
of the observable variables are then computed.

• MultiLayer Perceptron is a type of Artificial Neural Network that simulates
how the human brain neurons learn from observations according to Konon-
enko et al. [232]. This is achieved by using multiple hidden layers for better
representation of non-linear data.

• Support Vector Machine learns from data by determining the optimal hyper-
plane to best separate the data. The better accuracy is achieved by using
kernels in SVM that can project the data to a higher dimension feature space
to create such a hyperplane according to Hearst et al. [181].

Feature Selection methods

Proper feature selection will contribute to a higher classification accuracy and re-
duction of computational complexity, which in turn will increase the overall clas-
sification performance as suggested by Kononenko et al. [232]. After the examin-
ation of the current state of the art in feature selection methods, we decided to use
the following methods:

• Cfs selects features with a high correlation to classes and disregards features
with a low correlation. Experiments by Hall [175] show that it can easily
eliminate irrelevant, redundant, and noisy features.

• Information Gain ranks features by entropy with respect to each class as
presented by Roobaert et al. [338].

• ReliefF ranks features from how well they help to separate classes of data
samples that are close to each other. This is an extension from the two-
class Relief algorithm. The algorithm was designed to perform on data with
missing values as given by Kononenko [232].

Our main motivation is also to see how the feature’s merit influences classification
and whether we can judge about the utility of the feature in malware analysis as a
compromise indicator.

Performance Evaluation

The following metric was used to evaluate the performance of both methods us-
ing overall accuracy Acc = NP

NS
, where NS - number of data samples and NP -

number of properly classified samples according to max−min principle [233] in
Mamdani-type rules.

168 Application in Digital Forensics Science

Results & Analysis

During this research, we performed more than a hundred different experiments.
Since this is a novel work, we figured out that many of the methods could not be
successfully performed due to the large model size in computer memory. Also, we
did not consider the results of experiments that took more than a week to execute.
Below, achieved accuracy is given for SC and HC methods on different sets of
malware and features.

Feature Merits

All experiments on feature selection and classification were performed using cross-
validation to see how well the methods can handle unlabeled data samples.

Feature selection resulted in a set of various features. The results from Cfs contain
only the selection features and not the feature’s merits. This is because Cfs utilizes
another search algorithm than Information Gain and ReliefF. Also, we can say that
the ReliefF method shows considerably smaller average merit for each feature than
was achieved by Information Gain. This suggests that we have to use more features
with much smaller thresholds to be able to achieve good results. The numbers of
extracted features per method are shown in the Table 4.13. For ReliefF, we used
only features with merit ≥ 10−3. For Information Gain we used features with
merit ≥ 0.1 for types, and ≥ 0.5 for families respectively. Cfs is not a ranking-
based method and only generated the final subset of features.

Furthermore, we can state that ReliefF in general gives a larger number of fea-
tures from a less-significant range of the feature’s merits. For example, on a set
of the 500 most frequent families the merit range for ReliefF is 0.0-0.063 against
0.0-2.188 in Information Gain. The Table 4.14 shows the features selected by
both Cfs and Information Gain on each data subset. The features in bold were
selected by both methods for three subsets of families and two subsets of types re-
spectively. An interesting observation considering the features selected for family
classification is that the features selected converge with the increase in the number
of classes.

Two important features that we can highlight are "pe_api" and "vt_sections". Both
features were selected by all three methods for feature selection. What we can
derive from this is that the different malware families differ in the numbers of
API-calls made in the file and in the number of PE32-sections in the files. Previ-
ously, we discussed the structure of a PE32 file. There are a number of sections
mandatory for a PE32 file to run, while the total possible number of files is much
greater (maximum 216-1 = 65,535), as studied by Kath [218]. The number of API
calls within the different families has a certain variety as well, from which we can

4.2. Windows Portable Executable 32 Bit: A Novel Multinomial Malware Collection 169

tell that similar malware families will have a similar number of API calls. Since
the different families have different capabilities and functionality, we conclude that
our assumption that API calls will be of interest to labelling malware is supported
after this observation.

Classification performance

Performance was estimated using a 5-fold cross validation. Also, experiments with
the resampling filtering method showed an improvement in accuracy, though we
did not include these in the final results. Along with the SC method, we decided
to compare accuracy of a set of HC methods such as symbolic reasoning, as was
also studied by Abraham [40]. The comparison of the achieved accuracies are
shown in the Table 4.15. The highest accuracy for each subset is highlighted with
respect to feature selection methods. To give more wide coverage, we only con-
sidered Accuracy as performance metric for all methods. Bayes Network shows
considerably good performance among SC methods. MLP performs much better
on smaller sets, which might indicate a need to use a higher non-linearity, for ex-
ample Deep Neural Network. Furthermore, Naive Bayes gives a huge error rate
on all sets, meaning that the method only works well on nominal-valued features.
On the other hand, we can see that in general, HC methods such as tree-based
C4.5 and Random Forest tend to have better performance on defined problems of
malware classification. However, for the 500 families dataset, C4.5 can result in
32,904 leaves with a total size of the tree equal to 65,807. For 35 malware types,
this method produces 33,952 leaves with a total size of the tree equal to 67,903. In
real life however, this model is not practical.

Note that we were able to train SVM only on the smallest dataset (10 families).
Also Random Forest exhausted available memory on the largest dataset (500 fam-
ilies).

Summary: In this paper, we investigated a large-scale malware detection using
Soft Computing methods based on the static features extracted from PE32. It is
important not only to distinguish between benign and malware files, yet also to
understand what kind of malicious file it is: malware family and type. To explore
this problem, we created a novel datasets of malware features with respect to fam-
ilies and types using publicly available sources and tools. At this point we can
see that among SC methods, Bayes Network performs much better than others,
while Naive Bayes is the worse one. HC can produce reasonable results and better
accuracy, yet the resulting model is incredibly large for C4.5 and Random Forest.
The last also failed to train on the largest dataset. Feature selection mostly cannot
provide a consistent improvement. Moreover, SVM is not scalable at all. This ex-
tensive study contributes to the area of Soft Computing and Information Security

170 Application in Digital Forensics Science

also by giving an insight for malware analysts on how to detect malware types and
families extracted from static analysis.

4.2.3 Improved Multi-Class Neuro-Fuzzy for Static Analysis

Traditional malware classification research considers only binary problems, where
a set of benign software samples with a corresponding heap of malware binaries
are used to extract features and classify a model respectively. Due to the large
number of malware targeting MS Windows however, it is important to understand
the differences between various malware categories and families. These have quite
different functionalities, infection methods, and impact; among others, these are
trojan, worms, keyloggers, etc. In some cases, such malware are used as an initial
compromise instrument in the Advanced Persistent Threats (APT) attacks. Even
though it might be challenging to detect ongoing APT, one can still identify a
used virus sample without execution. Moreover, we believe that the application of
fuzzy rules can simplify binary analysis in security labs by narrowing down likely
malware category or family of unknown binary file. Our motivation is therefore
to perform such a study on the malware samples that are available for Windows
OS. Portable Executables (PE) is the file format used in this OS for executables,
linked libraries, etc. It contains a compiled program with a PE32 header describ-
ing different properties such a lookup tables, addresses and the size of different
file sections. According to the official Microsoft manual [427], it covers a large
number of architectures, characteristics, and data directories that make it suitable
for malware detection.

Taking into consideration the last decade in the history of Windows malware, we
can see that this has been the decade where most of the modern malware categories
were discovered, in addition to being a decade of almost exponential growth of the
number of detected malware. Windows NT OS family (like XP, Vista, 7, etc.)
has been widely deployed by both private and public sectors, and in both critical
and entertainment infrastructures. Despite some security fixes, the Windows NT
family was under attacks due to outdated installed software like Internet Explorer
6 and unpatched versions of the OS. One of the main reasons for such a tendency is
also the lack of awareness by the user about security problems in the OS as studied
by Symantec Lab.

Another concern regarding malware classification is within the characteristics ac-
quisition. There exist static- and behaviour-based analyses that address the vari-
ous aspects of PE32 files as we can learn from the SANS report [123]. Despite
the comprehensiveness of the dynamic approach, we believe that it can hardly be
considered applicable against large-scale collections due to the limitations on OS
version and installed software. Static analysis, on the other hand, is fast and does

4.2. Windows Portable Executable 32 Bit: A Novel Multinomial Malware Collection 171

not require execution. If we look at the previous studies that involve PE32 file
formats for MS Windows, we can see that the majority of them target only binary
differentiation such as "malicious" and "benign" samples. For example, Markel
et al. [264] explored an application of static PE32 header data as primary indicat-
ors in the detection of malware and benign files. Hahn [173] extensively studied
PE32 header and its efficiency in the detection 103,275 malware samples from a
single VirusShare archive against 49,814 goodware collected from MS Windows
OS. However, there are many malware categories and families that have various
characteristics and functionality. Therefore, our idea is to study how the static ana-
lysis of PE32 files can facilitate large-scale malware detection into families and
categories with the help of the Neuro-Fuzzy method.

Experimental Setup

The main goal of our experiments was to explore the behaviour of the NF method
on large-scale multinomial malware families and categories detection problems.
This is a novel and quite comprehensive preliminary study and therefore we con-
sider only the 10 most frequent classes and 10 frequent families to have balanced
distribution. From the results of this study, we can say that many methods could
not be trained in a reasonable time while the number of classes reaches hundreds.
Additionally, we decided to compare ANNs with less than 3 layers, so DNN are not
within our scope. However, it is important to see whether with higher non-linearity
(more layers), it can outperform NF.

Properties of Dataset

We had to overcome significant limitations in standard tools to be able to process
such a large malware samples collection, as well as the characteristics dataset. This
represents a significant interest to the number of samples and collected character-
istics. First, we filtered out entries where tools outputs were not retrieved or were
empty. Second, the data pre-processing and exploratory analysis were done using
the open-source software Weka [149]. To eliminate highly imbalanced classes, we
decided to concentrate on the 10 most frequent categories and 10 most frequent
families, which are listed below:

• families: vb, hupigon, vundo, obfuscator, agent, renos, small, onlinegames,
vbinject, zlob - 74,655 samples.

• categories: trojan, pws, trojandownloader, worm, virtool, backdoor, virus,
rogue, trojandropper, trojanspy - 310,355 samples

To compare with, Ou et al. [303] used only 110,530 protein data samples, 15,000

172 Application in Digital Forensics Science

English letters samples and 60,000 handwritten digits. Thus, both our generated
subsets are large-scale and describe two different problems in malware detection.

By visualizing extracted features we can see that some classes have distinguish-
able patterns and can therefore be described by fuzzy rules. The Figure 4.9 shows
an obvious correlation between a number of suspicious API calls (according to
PEframe) and the entropy of the file (meaning possible encryption of the file con-
tent). Moreover, groups in different regions are clearly visible. On the other hand,
it is difficult to see specific groups in the dataset when considering the number of
suspicious API calls and file sizes in the malware categories dataset as shown in
the Figure 4.9. This means that it might be hard to perform such differentiation
using only extracted characteristics.

Another important consideration regarding the dataset is whether it actually re-
flects the modern global distribution of malware samples for MS Windows. By
having 400k samples, it is hard to analyse this aspect manually. However, we con-
sider a compilation time from PE32 header as a good relevant indicator. We used
RapidMiner [14] to depict the distribution of the compilation dates using a year,
month, and day stamp as given in the Figure 4.10.

Next, we studied the history of Windows OS [279] and found some consistencies.
For example, Windows 3.1 was originally released on April 6, 1992 and our plot
indicates the biggest spike around the first part of the year 1992. After this, the
number of malware compiled each year is constantly growing. Then, another in-
crease can be observed in second half of the year 2001, which is relevant to the
release of the most popular Windows XP on October 25, 2001. The next phase
describes the releases of Windows Vista on 30 January 2007 and Windows 7 on
22 October 2009. Finally, the latest major spike at the end of 2014 corresponds to
the unveiling of Windows 10 in September 2014. However, considering the fact
that MS DOS was released in 1981, it makes compilation times before this day
look fake or obfuscated intentionally. Next, we indicated how the binary files are
distributed according to the architecture they were designed for. It was logical to
assume that executables constitute the most popular category, while linked libraries
may be supplementary in terms of included malicious API functions as described
in the Table 4.16.

To sum up, the dataset represents a real world picture of malware samples distri-
bution and can be considered relevant for both Information Security and Machine
Learning areas. However, malware categories can be hard to distinguish since they
are too general, and the importance of the numerical features is therefore not high.

4.2. Windows Portable Executable 32 Bit: A Novel Multinomial Malware Collection 173

Performance Evaluation

The accuracy of the proposed improvements to the NF in multinomial malware
detection of a class is compared against the ANN method since both are of the same
inherited architecture, while the complexity of the resulting model is different:

Neuro-Fuzzy was implemented in C++ using Boost and Eigen libraries. The
method also includes modifications described by Shalaginov et al. [375]. It uses
two steps: SOM grouping and fuzzy rules tuning using single-layer ANN. On the
1st step, the method was run 100 times performing bootstrap aggregation using
1% as suggested in the work by Shalaginov et al. [375] to tackle the generalization
problem. The main purpose of NF training was to understand and compare how
well the model can actually describe the data it was built from. On the 2nd step,
the learning rate of 0.3 was used, while the number of epochs was adjusted.

ANN is available from the Weka package and represents multi-output models. It
was run with a learning rate equal to 0.3 and momentum 0.0 to eliminate the risk
of unstable learning. The Ou et al. [303] used 2-3 layers in Neural Network ar-
chitecture to test multinomial datasets, yet we concentrate only on 1 and 2 layer
architectures, considering 3 layers being more relevant to DNN.

The following metric was used to evaluate the performance of both methods for
overall accuracy Acc = NP

NS
, where NS - number of data samples and NP - num-

ber of properly classified samples according to max − min principle [233] in
Mamdani-type rules.

Results Analysis

Once the subsets were generated, we performed a feasibility study of NF applica-
tion for this task by selecting the most relevant features and evaluating their clas-
sification accuracy. Also, some limitations of Neural Network-based architectures
were revealed.

Feature selection

To evaluate the utility of manually extracted features for the defined classification
tasks, we performed feature selection using Information Gain method. Addition-
ally, we evaluated the results of the RelieFF and CFS methods, and the results look
consistent. For Information Gain, we used a threshold equal to 0.1, which resulted
in the following feature subsets as described in the Table 4.17.

It can be noticed that selected features have significant relevance for malware fam-
ilies detection, while for malware categories detection, they are too general. Mal-
ware analysts may find this work helpful in the identification of specific malware

174 Application in Digital Forensics Science

species based on their attributes. Furthermore, results are given in the Table 4.18.

From the results one can see that NF outperforms ANN, yet gives the same ac-
curacy when increasing the number of training epochs on 2nd stage. For malware
families, there can be seen an improvement in the accuracy when using non-linear
2-layers ANN model and a larger number of training epochs. We can say that
the improved fuzzy patches [374] are already a good data description and are not
affected by training iterations. However, to be more specific, the MAPE (Mean
Absolute Percentage Error) metric decreases from 89.64% to 66.02% for simple
rectangular patches in NF on a malware families set. For the malware categories
dataset, MAPE was reduced from 135.24% to 119.63% for the simple rectangular
method, and from 64.38% to 63.13% for the original Kosko method [233]. Yet the
proposed earlier method [375] does not have a reduction in MAPE. Furthermore,
we investigated the True Positive (TP) and False Positive (FP) rates for each class
as is indicated in the Table 4.19. Also, we believe that True Negative and False
Negative metrics are less important since we deal with multinomial classification.
One can see that among malware families, hupigon backdoor has a high detection
rate and, among all categories, trojan is the most detectable one.

4.2. Windows Portable Executable 32 Bit: A Novel Multinomial Malware Collection 175

Table 4.11: Description of all 37 numerical features that were extracted from raw Win-
dows PE32 malware characteristics

From PEframe output

pe_api The number of suspicious API class
pe_debug The number of opcodes recognized as common anti debug techniques
pe_packer The number of packers discovered by PEframe
pe_library The number of DLL calls in the file. Retrieved from PEframe
pe_autogen The number of autogens discovered by PEframe
pe_object The number of object calls discovered by PEframe
pe_executable The number of .exe calls within the file
pe_text The length of the ’text’-field
pe_binary The number of binary(.bin) files called by the file
pe_temporary The number of .tmp files accessed by the file
pe_database The number of .db files accessed by the file
pe_log The number of log entries accessed by the file
pe_webpage The number of web pages access by the file
pe_backup The number of backups the file performs or accesses
pe_cabinet The number of references to .cab files
pe_data The number of .dat files accessed by file
pe_registry The number of registry keys accessed or modified by the file
pe_directories The number of directories accessed by the file
pe_dll The number of DLL’s accessed by the file
pe_detected The number of suspicious sections in the file

From VirusTotal report

vt_codesize The size of the code in the file, retrieved from virustotal
vt_res_langs The number of resource languages detected in the file
vt_res_types The number of PE32 resource types detected in the file
vt_sections The number of PE32 sections in the file.
vt_entry_point Decimal value of entry point, i.e. the location in code where control is transferred

from the host OS to the file.
vt_initDataSize The size of the initialized data.
vt_productName The length of the field ‘ProductName‘. Can e.g. be "Microsoft(R) Windows(R)

Operating System"
vt_originalFileName The length of the original file name
vt_unitializedDataSize The size of the part of the file that contain all global, uninitialized variables or

variables initialized to zero.
vt_legalCopyright The length of the field LegalCopyRight. E.g."(C) Microsoft Corporation. All

rights reserved."

From other Linux command line tools

size_TEXT The first output from the ‘file‘ command. This is the size of the instructions
size_DATA The second output with size of all declared/initialized variables
size_OBJ The third output that contains the size of all unitialized data, i.e the BSS-field
size_TOT The fourth output that indicates the sum of the text, data and bss fields of the file
filesize The total size of the file, including metadata

176 Application in Digital Forensics Science

Table 4.12: 35 most frequent malware categories and families found among Windows
PE32 files

Top Malware families Top Malware categories
Label Number Label Number

onlinegames 11,129 trojan 76,932
small 9,284 trojandownloader 52,479
hupigon 7,743 backdoor 45,499
renos 7,423 pws 38,598
agent 7,022 virtool 25,710
zlob 6,933 worm 23,809
vb 6,805 trojanspy 15,239
vbinject 6,502 trojandropper 12,046
obfuscator 5,939 virus 11,947
vundo 5,875 rogue 8,096
frethog 5,593 adware 5,294
delf 4,833 browsermodifier 3,051
winwebsec 4,273 trojanclicker 1,962
farfli 4,137 trojanproxy 1,502
bifrose 4,068 spammer 886
zbot 3,941 dialer 806
c2lop 3,892 monitoringtool 806
alureon 3,702 hacktool 730
delfinject 3,631 ransom 671
startpage 3,553 exploit 566
bancos 3,406 ddos 491
banload 3,399 program 362
vobfus 3,319 constructor 262
lolyda 2,841 dos 177
injector 2,646 spyware 169
gamania 2,636 joke 98
tibs 2,378 settingsmodifier 70
taterf 2,341 softwarebundler 52
allaple 2,283 trojannotifier 7
lmir 2,254 tool 4
ircbot 2,160 spoofer 4
banker 2,137 flooder 3
hotbar 2,079 remoteaccess 3
bho 2,065 nuker 3
poison 2,039 misleading 3

Table 4.13: Number of selected features out of 27 initial features for each of the method

Dataset Feature Selection methods
Cfs InfoGain ReliefF

10 families 15 15 25
100 families 16 17 27
500 families 16 13 27
10 types 12 11 23
35 types (full) 14 15 25

4.2. Windows Portable Executable 32 Bit: A Novel Multinomial Malware Collection 177

(a) 10 most frequent families

(b) 10 most frequent types

Figure 4.8: Distribution in malware families and types datasets

178 Application in Digital Forensics Science

Table 4.14: Commonly selected features for malware families and types datasets using
different feature selection methods

Malware families Malware types
10 families 1000 families 500 families 10 types 35 types

vt_res_langs vt_codesize vt_codesize vt_codesize vt_codesize
vt_res_types vt_res_langs vt_res_langs vt_entry_point vt_entry_point
vt_sections vt_sections vt_sections vt_initDataSize vt_initDataSize
vt_entry_point vt_entry_point vt_entry_point vt_productName vt_productName
vt_initDataSize vt_initDataSize vt_initDataSize vt_unitializedDataSize vt_unitializedDataSize
vt_productName vt_productName vt_productName vt_legalCopyright vt_legalCopyright
vt_originalFileName pe_api pe_api pe_dll pe_api
vt_unitializedDataSize pe_packer pe_packer size_TEXT pe_dll
pe_api pe_library pe_library size_DATA size_TEXT
pe_debug pe_dll pe_executable size_OBJ size_DATA
pe_dll size_TEXT pe_dll filesize size_OBJ
size_DATA size_DATA size_TEXT size_TOT
filesize filesize size_DATA filesize

entropy filesize
entropy

Table 4.15: Accuracy of Soft Computing and selected Hard Computing methods, in %

Dataset Features Soft Computing Hard Computing
Naive Bayes Bayes Net. MLP SVM C4.5 Rand.Forest

10 f.

Full set 23.9408 72.6462 42.3133 32.9824 83.2871 88.7965
Cfs 20.8760 70.8285 40.7206 32.7962 83.9180 88.1990
InfoGain 23.9354 72.6462 51.5947 38.0952 84.2100 88.9572
ReliefF 31.7835 65.9996 41.0703 41.2283 82.7821 87.2279

100 f.

Full set 20.9062 61.6056 11.8116 – 76.6250 81.3078
Cfs 21.0008 61.6851 18.1451 – 77.8019 81.9535
InfoGain 20.1905 60.9452 15.9034 – 77.8204 81.8329
ReliefF 23.9406 57.3495 17.4743 – 75.3771 79.4565

500 f.

Full set 16.1718 57.2137 9.1806 – 72.4210 –
Cfs 16.7610 56.8853 11.5360 – 73.2847 –
InfoGain 13.7654 54.1846 6.8251 – 72.4487 –
ReliefF 2.8466 52.2410 11.3481 – 70.7730 –

10 t.

Full set 10.4316 51.3618 28.4829 – 73.6789 78.6000
Cfs 7.3857 51.1862 25.9661 – 73.8200 77.1639
InfoGain 4.9063 49.9312 26.9623 – 73.6099 77.5177
ReliefF 9.9650 47.2420 27.5317 – 72.4954 77.0888

35 t. (full)

Full set 2.3576 48.4487 27.2826 – 72.6272 77.8797
Cfs 1.9894 48.6290 25.1683 – 73.7480 77.3324
InfoGain 1.9785 48.4140 25.7842 – 73.8254 77.9687
ReliefF 3.3517 44.9438 28.0675 – 71.7842 76.4943

4.2. Windows Portable Executable 32 Bit: A Novel Multinomial Malware Collection 179

(a) 10 fam.: ‘pe_api‘ vs ‘entropy‘ (b) 10 cat.: ‘pe_api‘ vs ‘filesize‘

Figure 4.9: Distribution of samples in families and categories datasets using different
static features for 10 classes

Figure 4.10: Log-scaled plot of the malware compilation time frequency built with a help
of RapidMiner [14]

Table 4.16: Most popular PE32 architectures found in the dataset according to Linux ‘file‘
command

Architecture Samples

PE32 executable (GUI) Intel 80386, for MS Windows 231,445
PE32 executable (DLL) (GUI) Intel 80386, for MS Windows 57,012
PE32 executable (GUI) Intel 80386, for MS Windows, UPX compressed 50,608
PE32 executable (GUI) Intel 80386, for MS Windows, Nullsoft Installer self-
extracting archive

11,009

PE32 executable (GUI) Intel 80386, for MS Windows, PECompact2 com-
pressed

9,349

180 Application in Digital Forensics Science

Table 4.17: Selected features for malware families and malware categories datasets using
Information Gain

10 Malware families 10 Malware categories
Info Gain Feature name Info Gain Feature name

1.2678 vt_entry_point 0.5655 vt_entry_point
0.9768 size_TOT 0.5042 size_TEXT
0.9627 size_TEXT 0.4771 size_TOT
0.9559 filesize 0.4457 size_DATA
0.9518 vt_initDataSize 0.4250 filesize
0.8712 size_DATA 0.4043 vt_initDataSize
0.8572 vt_codesize 0.3866 vt_codesize
0.6456 pe_api 0.1893 entropy
0.5529 entropy 0.1725 pe_api
0.4325 vt_unitializedDataSize 0.1697 vt_unitializedDataSize
0.3929 vt_productName
0.3895 vt_sections
0.3622 vt_res_langs
0.3398 pe_library
0.3197 vt_originalFileName
0.2814 vt_res_types
0.2741 pe_debug
0.2530 pe_dll
0.2506 pe_packer
0.2230 vt_legalCopyright

Table 4.18: Overall classification accuracy of the Neuro-Fuzzy methods and ANN (with
1 and 2 hidden layers), in %

Method Epochs in ANN / 2nd NF step
10 50 100

Dataset: Malware families
NF (10 rules) 39.6196 39.6196 39.6196
ANN1 layer 22.2262 22.3347 22.5102
ANN2 layers 32.0742 31.8813 32.6422

Dataset: Malware categories
NF (27 rules) 26.4665 26.4665 26.4665
ANN1 layer 24.7884 24.7884 24.7884
ANN2 layers 25.0774 24.9050 24.9198

4.2. Windows Portable Executable 32 Bit: A Novel Multinomial Malware Collection 181

Ta
bl

e
4.

19
:T

ru
e

Po
si

tiv
e

an
d

Fa
ls

e
Po

si
tiv

e
ra

te
s

of
N

eu
ro

-F
uz

zy
fo

r1
0

m
al

w
ar

e
fa

m
ili

es
an

d
10

m
al

w
ar

e
ca

te
go

ri
es

Fa
m

ily
vb

hu
pi

go
n

vu
nd

o
ob

fu
sc

at
or

ag
en

t
re

no
s

sm
al

l
on

lin
eg

am
es

vb
in

je
ct

zl
ob

sa
m

pl
es

6,
80

5
7,

74
3

5,
87

5
5,

93
9

7,
02

2
7,

42
3

9,
28

4
11

,1
29

6,
50

2
6,

93
3

T
P

ra
te

0.
35

95
0.

80
80

0.
54

05
0.

12
22

0.
16

33
0.

32
76

0.
52

29
0.

60
84

0.
20

76
0.

42
95

FP
ra

te
0.

02
26

0.
20

33
0.

02
33

0.
11

85
0.

03
41

0.
01

01
0.

13
97

0.
03

03
0.

02
61

0.
02

62

C
at

eg
or

y
tr

oj
an

pw
s

tr
oj

an
do

w
nl

oa
de

r
w

or
m

vi
rt

oo
l

ba
ck

do
or

vi
ru

s
ro

gu
e

tr
oj

an
dr

op
pe

r
tr

oj
an

sp
y

sa
m

pl
es

76
,9

32
38

,5
98

52
,4

79
23

,8
09

25
,7

10
45

,4
99

11
,9

47
8,

09
6

12
,0

46
15

,2
39

T
P

ra
te

0.
60

84
0.

19
54

0.
13

85
0.

16
08

0.
21

12
0.

33
92

0.
08

57
0.

00
00

0.
07

44
0.

07
69

FP
ra

te
0.

52
20

0.
04

32
0.

05
17

0.
00

97
0.

06
14

0.
15

28
0.

00
98

0.
00

00
0.

01
93

0.
01

52

182 Application in Digital Forensics Science

It can be seen that with a growing amount of samples, the accuracy of the NF
method may not be influenced by simply tuning the number of training epochs, as
can be seen from the categories dataset. Additionally, to cross-validate, we applied
Random Tree methods on both datasets. The achieved accuracy was 83.567%
for malware families using the size of the tree equal to 23,755 and 73.3402% for
malware categories with a tree size of 151,743. We can state that such a model has
enormous complexity and is hardly-applicable in real life problems that require
good generalization. Also, it means that the extracted feature may not work well
for the categories dataset as we can see from the values of Information Gain in the
Table 4.17. Thus, better quality features must be analytically defined.

Summary: We explored the application of NF for multinomial classification of
malware families and categories. We collected a novel dataset consisting of 400k
samples for static malware analysis. In the literature, there are only a few works
that consider multinomial malware detection, while others only target binary prob-
lems. The proposed is a way to enhance the accuracy and generalization of NF to
be able to handle such complex and large-scale problems. NF performs well con-
sidering the complexity of the problem and non-linearity of the data. However,
there is an identifiable limitation in the method despite the proposed improve-
ments. Also, it archived better accuracy than non-linear ANN. This shows that NF
can handle such data, though the quality and utility of the extracted features have a
crucial influence on the method’s performance, which requires additional analysis
of the PE32 headers.

4.2.4 Dynamic Behavioural Analysis

Malware developers have been employing more and more advanced techniques in
their software to remain unnoticed for as long as possible, and to cause as much
harm as possible. They can use fake Windows certificates, zero-day vulnerabilities
and default software settings, etc. as described by Wu et al. in 2016 [444], mak-
ing it difficult to notice abnormalities. Furthermore, a set of obfuscation methods
is often applied such as encryption, polymorphism, metamorphism, dead code in-
sertions, or instruction substitution [356] to conceal the real functionality logic of
the software. In addition to this, MS Windows is a known target of many attacks
crafted by famous viruses such as Stuxnet, Duqu and Flame [76]. Multiple market
share surveys suggest that more than 50% of desktop computers and laptops users
utilize MS Windows as an Operating System (OS) [35]. At the same time, nearly
10% of the users still have Windows XP installed, which is no longer a supported
OS version [34].

4.2. Windows Portable Executable 32 Bit: A Novel Multinomial Malware Collection 183

Experimental Design & Methodology

Our main goal is to create a light-weight approach that does not require a specifically-
tuned sandbox nor major changes to the desktop platform, and can deliver a human-
understandable multinomial classification model to the end customer. The idea
is to utilize different behavioural characteristics which are commonly observed in
malware analysis [333, 252, 98]. Further in this thesis, we follow a known dynamic
malware analysis cycle described by Ligh et al. in the Malware Cookbook [251].
Its seven steps are shown in the Figure 4.11.

184 Application in Digital Forensics Science

Fi
gu

re
4.

11
:D

yn
am

ic
m

al
w

ar
e

an
al

ys
is

[2
51

]

4.2. Windows Portable Executable 32 Bit: A Novel Multinomial Malware Collection 185

Furthermore, having information gained from a PE32 header, files with GUI were
selected. The reason for this filtering is that DLLs might be difficult to evalu-
ate without invoking API calls. This brings significant problems to automated
dynamic analysis since it can produce very small amounts of data or require an un-
reasonably long waiting time. Finally, we also filtered out executables that contain
anti-debug and anti-VM features according to PEframe. Afterwards, files were
filtered by presence in each of the categories and families were selected for pre-
liminary analysis.

This ongoing study is aimed at exploring both effective automated malware detec-
tion and the limitations of ML methods. Therefore, we used 1,000 samples of the
10 most frequent malware families and 1,000 samples of the most frequent mal-
ware categories. This is a fraction of the collected dataset, and used mainly as a
proof-of-concept demonstration due to the significant amount of time required for
the malware execution and logs processing.

Behavioural analysis as a malicious indicator

Multiple technical reports by famous security labs such as Kaspersky, Symantec,
etc. investigate particular malware samples that belong either to a family or cat-
egory. This process is often manual and involves the study of multiple aspects,
also during execution of the malware. We believe that behavioural analysis may
speed up this process and enable similarity-based deduction of zero-day exploits.
Many researchers address behavioural characteristics that showed their efficiency
for malware detection [134, 158, 201], including the case of multinomial detection
described by Rieck et al. [334]. Survey by Gandotra et al. [158] shows that quite a
few researchers prefer to use behavioural characteristics when classifying malware
into malware families using ML.

Behaviours Characteristics: Disk activities

Most of the software leaves disk patterns when launched. It can be either some
meta data required for proper operation or user-specific sensitive information. Us-
ing such logic, we can make a hypothesis that a specific malware category might
be characterized by its own disk activity patterns. We divide disk activities into
two sub-domains:

• Low-level access by the application that includes modification, deletion and
writing to the file on a disk storage accessible for user as presented by
Lin [252] earlier. Also, if the launched executable was immediately de-
leted form the disk, it might indicate a desire to hide its presence. Similarly,
Cheng et al. [98] monitored FileWrite API calls to find malicious indicat-
ors. We can see such operations in the operation of the trojanspy category

186 Application in Digital Forensics Science

malware. For example, if we execute TrojanSpy:Win32/YBad.B (md5 sum
e4c36489ca8f4d11a77f9d322a5b20d8) sample, the disk activities are going
to be as described in the Figure 4.12. It can be also see from the VirusTotal
reports that malware creates specific DLL and EXE files into System32 dir-
ectory to be able to run itself automatically and look for login windows to
attach to. This malware was designed to steal user-sensitive data on the
victim’s computer.

4.2. Windows Portable Executable 32 Bit: A Novel Multinomial Malware Collection 187

Fi
gu

re
4.

12
:T

ro
ja

n
Sp

y
cr

ea
te

s
fil

es
in

Sy
st

em
32

di
re

ct
or

y

Fi
gu

re
4.

13
:T

ro
ja

n
D

ro
pp

er
ac

tiv
ity

th
at

m
ak

es
m

od
ifi

ca
tio

n
in

W
in

do
w

s
re

gi
st

ry

188 Application in Digital Forensics Science

• Behaviours Characteristics: Registry patterns describes changes into the
configuration database of OS. Windows registry is a complex database that
is used to store low level system and application settings according to the
MS manual page [277]. Because of hierarchical storage, this must be con-
sidered separately from disk activities rather than just as a modification of
the corresponding files in the %SystemRoot%\System32\Config directory.
For example, looking at the logs from TrojanDropper:Win32/VB.AU exe-
cution (md5 sum fff912e7ec1bafcf52349092d3bdd7d0) that are given in the
Figure 4.13. One can see that the malware makes changes in the MS Internet
Explorer security zones and privacy settings. In particular, it disables prox-
ies from preventing the use of the Internet and updating anti-virus software,
since most the environments use some kind of built-in proxies.

Further, Dolan-Gavitt [124] performed a forensics analysis of the Windows
registry in memory and provided guidelines on how it can be extracted.
Rieck et al. [333] used the creation or modification of registry keys as one
of the main features in multinomial malware classification. It can be seen
that the amount of data stored in the registry is huge and may lead to identi-
fication of the malicious activities as shown in the research by Carvey [88].
In this paper, we limit the number of data to be examined within the re-
gistry [277]. We will look into local computer settings (HKEY_LOCAL_
MACHINE or HKLM) that are further divided into the following keys:
SAM, SECURITY, SYSTEM and SOFTWARE. User settings HKEY_USERS
(HKU) are also within our scope, and HKEY_CURRENT_USER (HKCU)
is of a particular interest. Finally, HKEY_CLASSES_ROOT (HKCR) may
indicate any settings changes by malware being launched.

So, one can say that files and registry alterations may be considered as lead disk
indicators of malicious activities during file execution. However, some of the mal-
ware categories do not leave any disk or registry traces, making such behavioural
characteristics less efficient in automated classification.

Behaviours Characteristics: Network traffic

Network activity is one of the most important requirements for successful malware
operation. It communicates with an attacker, downloads tasks or sends sensitive
user data. Out of the mentioned earlier relevant works, only Rieck et al. [333]
briefly investigates IRC connections and ping scans. The number of artifacts that
can be extracted from network traffic dumps however are much larger. Some
simple examples of such artifacts will be shown below. The Figure 4.14 shows
traces left by TrojanDownloader:Win32/Agent.HA (md5 sum 3ed12bffaa3bd840c1895e8bd87c4fc1)
as it was iteratively trying to get a calc.exe file without success. Attempts to down-

4.2. Windows Portable Executable 32 Bit: A Novel Multinomial Malware Collection 189

load system-like executables are a strong indicator of suspicious activity.

Figure 4.14: Trojan Downloader attempts to retrieve an executable

Furthermore, we can see how the Backdoor:Win32/Hostil.gen!A (the md5 sum of
the malware file is 51b19c82c0b9c8e6fdda7875e3266ad7) sends sensitive inform-
ation (IP address) and some encrypted parameters out to an advertising web-site
through HTTP GET request as shown in the Figure 4.15.

Figure 4.15: Backdoor sends encoded GET request with IP address

Behaviours Characteristics: Memory footprints

From the literature study, we can see that memory footprints are much harder to ob-
serve than disk or network traffic patterns. Such analysis required either (i) extens-
ive knowledge about the values of the memory space since an attacker’s memory
alteration may remain unnoticed. Prakash et al. [318] claimed that memory ana-
lysis without ground-truth could not be very trustworthy, especially on proprietary
OS (such that MS Windows). They investigate the accuracy and efficiency of
traversal-based and signature-based memory analysis tools (Volatility [32] frame-
work and its plug-ins), which are designed to provide information about processes,
modules, files etc. Alternatively, memory analysis needs (ii) specifically-crafted
software and detection schemes. The accuracy and efficiency of robust field-
based signature schemes are described by Dolan-Gavitt et al. [125]. Another work
showed a graph-based brute-force approach SigGraph by Lin et al. [254]. They
compare results from binary analysis tools and Volatility over the Virtual Ma-
chine memory. The authors claimed that the achieved results of traversal-based
and signature-based methods showed reduced accuracy, making memory patterns

190 Application in Digital Forensics Science

analysis is out of the scope of this paper since the characteristic collection pro-
cess is cumbersome and hardly yields acceptable results, especially when using
automated classification.

Performance Evaluation

The experimental setup and corresponding tools are given below. We refer to the
automated dynamic malware analysis cycle suggested by Ligh et al. [251] and
sketched in the methodology section 4.2.4 above. Finally, performance metrics
and achieved results are presented.

For our experiments, we used ANN, a famous Soft Computing and ML method
also described by Kononenko et al. [232]. This method has great generalization
capability and the ability to learn from complex non-linear relationships in data
without much prior knowledge [367, 418]. ANN requires almost no manual model
parameters tuning, since it is done automatically. Additionally, it offers highly
non-linear modeling, which is important in multinomial classification in contrast
to binary classification, where a number of methods exist to make a linearly sep-
arable decision model. In our experiments, we use multilayer ANN, which can
also be considered as Deep Neural Network, where the number of hidden layers is
greater than 3. ANN consists of input neurons with corresponding weights wj for
each of the input data xj , the number of featuresN and specifically-designed activ-
ation function g(). The output yi of the ANN is as follows: yi = g(

∑N
j=1wj · xj),

and is designed to perform an optimization (minimization) of the following cost
(error) function E = 1

2 · (di − yi)
2, where di - is the original label of the data

sample. We used 500 training epochs while learning from the data. The number of
hidden layers was calculated using a "rule of thumb": (number of features + num-
ber of classes) / 2. Finally, a 5-fold cross validation was applied for performance
estimation.

Multinomial classification is a problem investigated in this thesis and therefore it
is not sufficient to simply use overall accuracy as the ultimate performance met-
ric. Such a metric might be suitable for a balanced binary classification problem,
where it gives a clear picture of the properly classified samples. When it comes
to multinomial classification however, we need a specific per-class performance
metric, which can show the number of properly classified samples in a particular
class. Therefore, we use ML community-accepted metrics according to Konon-
enko et al. [232], such as True Positive Rate (TPR, also called as Sensitivity or
Recall): TPR = TP/P , which defines the number of properly classified samples
of a particular class TP with respect to the original number of samples in this
class P . Another metric is False Positive Rate (FPR) rates of each class for this
purpose: FPR = FP/N , which defines the fraction of samples of other classes

4.2. Windows Portable Executable 32 Bit: A Novel Multinomial Malware Collection 191

that are classified as the current class FP with respect to the number of all other
samples from other classes excepting the current class N . Also, we believe that
True Negative and False Negative metrics are less important since we deal with
multinomial classification.

Results & Analysis

Both datasets (families and categories) contain 49 features that can be extracted
automatically: 30 disk- and log-related, the checking of whether the exe file was
deleted, and 18 network-related as shown in the Table 4.20.

192 Application in Digital Forensics Science
Ta

bl
e

4.
20

:O
ve

rv
ie

w
of

th
e

co
ns

tr
uc

te
d

fe
at

ur
es

de
sc

ri
bi

ng
dy

na
m

ic
be

ha
vi

ou
r

D
is

k-
an

d
lo

g-
re

la
te

d
fe

at
ur

es
N

et
w

or
k-

re
la

te
d

fe
at

ur
es

m
em

or
y_

pr
oc

es
sC

re
at

ed
di

sk
_r

eg
is

tr
yH

K
U

m
al

w
ar

e_
di

sk
_r

eg
is

tr
yS

et
V

al
ue

K
ey

ne
tw

or
k_

fil
eS

iz
e

ne
tw

or
k_

tc
p

m
em

or
y_

pr
oc

es
sT

er
m

in
at

ed
di

sk
_r

eg
is

tr
yH

K
L

M
_S

A
M

m
al

w
ar

e_
di

sk
_r

eg
is

tr
yD

el
et

eV
al

ue
K

ey
ne

tw
or

k_
nu

m
Pa

ck
et

s
ne

tw
or

k_
ic

m
p

di
sk

_n
um

be
rR

ec
or

ds
di

sk
_r

eg
is

tr
yH

K
L

M
_S

E
C

U
R

IT
Y

m
al

w
ar

e_
di

sk
_r

eg
is

tr
yH

K
L

M
ne

tw
or

k_
da

ta
Si

ze
ne

tw
or

k_
ht

tp
di

sk
_fi

le
W

ri
te

di
sk

_r
eg

is
tr

yH
K

L
M

_S
Y

ST
E

M
m

al
w

ar
e_

di
sk

_r
eg

is
tr

yH
K

C
U

ne
tw

or
k_

da
ta

R
at

e
ne

tw
or

k_
ht

tp
G

E
T

di
sk

_fi
le

D
el

et
e

di
sk

_r
eg

is
tr

yH
K

L
M

_S
O

FT
W

A
R

E
m

al
w

ar
e_

di
sk

_r
eg

is
tr

yH
K

C
R

ne
tw

or
k_

av
gP

ac
ke

tS
iz

e
ne

tw
or

k_
ht

tp
G

E
Te

xe
di

sk
_r

eg
is

tr
yS

et
V

al
ue

K
ey

di
sk

_fi
le

N
am

eP
re

se
nt

m
al

w
ar

e_
di

sk
_r

eg
is

tr
yH

K
U

ne
tw

or
k_

av
gP

ac
ke

tR
at

e
ne

tw
or

k_
ht

tp
G

E
T

tx
t

di
sk

_r
eg

is
tr

yD
el

et
eV

al
ue

K
ey

m
al

w
ar

e_
m

em
or

y_
pr

oc
es

sC
rt

d
m

al
w

ar
e_

di
sk

_r
eg

is
tr

yH
K

L
M

_S
A

M
ne

tw
or

k_
un

iq
ue

Pr
ot

oc
ol

s
ne

tw
or

k_
ht

tp
G

E
T

ph
p

di
sk

_r
eg

is
tr

yH
K

L
M

m
al

w
ar

e_
m

em
or

y_
pr

oc
es

sT
er

m
nt

d
m

al
w

ar
e_

di
sk

_r
eg

is
tr

yH
K

L
M

_S
E

C
U

R
IT

Y
ne

tw
or

k_
un

iq
ue

Pa
ck

et
Sz

s
ne

tw
or

k_
ht

tp
G

E
T

jp
g

di
sk

_r
eg

is
tr

yH
K

C
U

m
al

w
ar

e_
di

sk
_fi

le
W

ri
te

m
al

w
ar

e_
di

sk
_r

eg
is

tr
yH

K
L

M
_S

Y
ST

E
M

ne
tw

or
k_

un
iq

ue
IP

s
di

sk
_r

eg
is

tr
yH

K
C

R
m

al
w

ar
e_

di
sk

_fi
le

D
el

et
e

m
al

w
ar

e_
di

sk
_r

eg
is

tr
yH

K
L

M
_S

O
FT

W
A

R
E

ne
tw

or
k_

ud
p

4.2. Windows Portable Executable 32 Bit: A Novel Multinomial Malware Collection 193

Malware families TP rate and FP rate are presented in the Table 4.21. By using the
feature selection method Information Gain [232] we found that the largest merit
in differentiation between families have (1) registry "SetValueKey" operations by
executed files and (2) size of the data transferred via a network during observation.
Class Onlinegames can be detected with a high degree of confidence using disk
features, while class vundo is more distinguishable using network characteristics.

Malware categories classification results gave interesting results as shown in the
Table 4.22, considering the variety of malware families in each category. Accord-
ing to InfoGain, (1) the registry "SetValueKey" plays a key role as a disk feature
in families separation, while (2) the number of a unique network packet’s sizes
has the biggest merit when making a separation between categories. Class Vir-
tool shows the largest performance on disk features and is a hacker tool with a
combination of trojan and obfuscation methods to hide its presence and make a
victim’s computer into a zombie-machine [33]. One can see that the results of
the dynamic behavioural classification outperform static analysis in the detection
of some classes [381]. In particular, our method is able to detect Rogue, a fake
anti-virus software, which was not detected by static analysis at all.

194 Application in Digital Forensics Science
Ta

bl
e

4.
21

:C
la

ss
ifi

ca
tio

n
pe

rf
or

m
an

ce
of

A
N

N
on

10
m

al
w

ar
e

fa
m

ili
es

A
N

N
la

ye
rs

Fe
at

ur
es

Pe
rf

or
m

an
ce

C
la

ss
es

ag
en

t
hu

pi
go

n
ob

fu
sc

at
or

on
lin

eg
am

es
re

no
s

sm
al

l
vb

vb
in

je
ct

vu
nd

o
zl

ob

21
D

is
k

T
P

ra
te

0.
07

0
0.

42
0

0.
20

0
0.

93
0

0.
02

0
0.

41
0

0.
11

0
0.

39
0

0.
05

0
0.

52
0

FP
ra

te
0.

01
1

0.
00

7
0.

14
0

0.
00

0
0.

00
1

0.
07

3
0.

02
1

0.
24

7
0.

00
8

0.
25

7

14
N

et
w

or
k

T
P

ra
te

0.
01

0
0.

19
0

0.
23

0
0.

20
0

0.
42

0
0.

37
0

0.
06

0
0.

21
0

0.
49

0
0.

32
0

FP
ra

te
0.

01
0

0.
09

4
0.

02
4

0.
06

3
0.

10
1

0.
06

7
0.

05
3

0.
10

2
0.

11
3

0.
20

4

30
B

ot
h

T
P

ra
te

0.
05

0
0.

42
0

0.
23

0
0.

93
0

0.
45

0
0.

36
0

0.
13

0
0.

33
0

0.
51

0
0.

52
0

FP
ra

te
0.

02
6

0.
00

7
0.

01
9

0.
00

3
0.

10
3

0.
06

1
0.

06
7

0.
11

1
0.

12
0

0.
15

8

Ta
bl

e
4.

22
:C

la
ss

ifi
ca

tio
n

pe
rf

or
m

an
ce

of
A

N
N

on
10

m
al

w
ar

e
ca

te
go

ri
es

A
N

N
la

ye
rs

Fe
at

ur
es

Pe
rf

or
m

an
ce

C
la

ss
es

ba
ck

do
or

pw
s

ro
gu

e
tr

oj
an

tr
oj

an
do

w
nl

oa
de

r
tr

oj
an

dr
op

pe
r

tr
oj

an
sp

y
vi

rt
oo

l
vi

ru
s

w
or

m

21
D

is
k

T
P

ra
te

0.
04

0
0.

32
0

0.
18

0
0.

00
0

0.
13

0
0.

05
0

0.
50

0
0.

56
0

0.
05

0
0.

19
0

FP
ra

te
0.

00
2

0.
06

0
0.

13
6

0.
00

0
0.

03
0

0.
02

2
0.

00
8

0.
46

3
0.

00
2

0.
16

3

14
N

et
w

or
k

T
P

ra
te

0.
05

0
0.

35
0

0.
53

0
0.

07
0

0.
39

0
0.

17
0

0.
19

0
0.

07
0

0.
07

0
0.

05
0

FP
ra

te
0.

01
7

0.
20

6
0.

19
2

0.
02

2
0.

07
7

0.
10

6
0.

14
4

0.
03

2
0.

03
4

0.
06

6

30
B

ot
h

T
P

ra
te

0.
06

0
0.

28
0

0.
48

0
0.

12
0

0.
22

0
0.

19
0

0.
57

0
0.

16
0

0.
07

0
0.

41
0

FP
ra

te
0.

01
6

0.
04

4
0.

19
6

0.
07

3
0.

05
7

0.
09

1
0.

02
7

0.
09

4
0.

01
7

0.
21

2

4.3. Intrusion Detection 195

Summary: There has been a great need for malware categorization due to the
recent emergence of new ways to attack computer systems. Existing literature dis-
tinguishes between general malware categories and more specific malware famil-
ies. Previous relevant works on multiple categories considered only a few of them
based on outdated and imbalanced datasets. Based on the literature review we
found that multinomial detection has been neither sufficiently explored nor tested
on recent malware samples. Moreover, authors of similar research used only gen-
eral characteristics in specifically-designed sandboxes. In this thesis, we use a
labelled collection of malware categories and families from the end of 2015. More
granular disk-, log-, and network-based behavioural characteristics were extracted
without use of specific sandboxes. This is an ongoing work and we are seeking
proof that such behavioural characteristics can be used for ML-aided automated
malware classification by Artificial Neural Networks. Today, this is a prominent
method already successfully used in malware detection. Furthermore, the applic-
ation of Soft Computing may help boost accuracy by better modelling non-linear
feature dependencies. We believe that the methodology used in this study contrib-
utes to supporting the decision of a malware analyst, and provides better protection
against unknown malware samples that may appear in a corporate environment.

4.3 Intrusion Detection4

This thesis is also aimed at Intrusion and focused on analysis of network traffic
for gathering evidences of attacks or relevant intrusion information with a scope
of prevention or future testimony. Our scope is primary focused on firewall rules
generation to indicate the attacks coming from outside, while using Mamdani-type
classification rules. NF showed great performance in malware detection tasks as
studied by Singh et al. [394]. Another important area of ongoing research is under-
standing and spotting attack patterns in network traffic in order to be able to pre-
vent network compromise and to investigate incidents that have already occurred.
Shanmugavadivu et al. [386] presented a work that studied the applicability of
fuzzy logic for the intrusion detection dataset from the obsolete KDD Cup 1999
challenge. However, despite the successful application of the fuzzy logic for di-
gital forensics challenges, the main concern is with large-scale data that can result
in a hardly-explainable model without manual analysis. One of the well-known NF
architectures was proposed by Kosko et al. in 1997 [233]. It uses Self-Organizing
Maps (SOM) to extract parameters of fuzzy rules automatically without human in-
teraction. It works well on small-scale datasets with tens of thousands of samples.

4The main ideas of this section are published under the contributions [375, 378]

196 Application in Digital Forensics Science

4.3.1 Datasets

The 10% of KDD Cup 1999 dataset is publicly available and can be accessed
using the UCI Machine Learning Repository [250]. It is a well-known dataset that
was released by Kibler et al. [107] in 2000 as a part of KDD Cup 1999 challenge.
It is a set of 41 characteristics of network packets characterized "bad" or "good".
The task is from Intrusion Detection and the model derived from the data can
be used to flag any malicious activity. The features values are real, symbolic,
binary, and integers. The Feature Selection was performed based on the method
proposed by Nguyen et al. [294] in 2010 with 9 features that contribute most to the
classification of the benign and malicious connections: 5 - src_bytes, 6 - dst_bytes,
10 - hot, 12 - logged_in, 14 - root_shell, 22 - is_guest_login, 29 - same_srv_rate,
37 - dst_host_srv_diff_host_rate, 41 - dst_host_srv_rerror_rate. According to the
authors, these features provide the classification without much loss of accuracy in
comparison to the original dataset. The dataset includes 97,278 samples of the 1st

class ("normal") and 396,743 samples of the 2nd class ("attacks") out of 494,022
samples in total.

Critics of KDD CUP 1999 dataset

We are aware of the fact that the KDD CUP 1999 dataset is nearly 18 years old.
During this period of time, the network infrastructure developed all the way from
Fast Ethernet 100Mbps in 1995 to 100th of Gbps in 2017. Dozens of new types of
applications have been developed, resulting in an exponential growth of vulnerab-
ilities and possible attack vectors. In 2000, McHugh performed a critical analysis
of DARPA 1998 and 1999 datasets [274] and found that there exist a number of
shortcomings. Similarly, Tavalaee et al. [412] performed a thorough investigation
of KDD CUP 1999 and concluded that the dataset posses several intrinsic problems
related to packets distribution. The authors found that 78% of the records in the
training dataset are duplicates. This means that the number of distinct data records
in the dataset is actually much smaller. Tavalaee et al. proposed an alternative
dataset called NSL-KDD. This new dataset includes 125,973 trained data samples
and 22,544 tested. Considering this fact, we have decided to proceed with the
KDD CUP 1999 dataset for our experiments due to the fact that one of the goals of
this research is to test the new Soft Computing method on large-scale datasets. To
the authors’ knowledge, there is no dataset except KDD CUP 1999 that describes
network attacks and is also large-scale.

4.3.2 Experimental Design

In this thesis, we will study the applicability and required improvement of the ori-
ginal Kosko method for large-scale data analysis, including network traffic dumps

4.3. Intrusion Detection 197

with several hundreds of thousands of samples. Moreover, the comparative study
of Hard Computing and Soft Computing methods was made to understand the im-
portance of the proposed improvements. Finally, we make an estimation of the
efficiency of the generated model by analysing the computational time required to
learn and inference. Moreover, space complexity is low, which makes it feasible
to also apply the model on embedded devices with limited storage capacity.

4.3.3 Performance Metrics

A special focus was put on the accuracy, model complexity, and time required to
learn and infer from the model. As for performance evaluation, we used classi-
fication and regression metrics. Classification estimated the number of properly
classified samples, while the regression metrics included the following measures:
Mean Absolute Error (MAE), Relative Absolute Error (RAE), and Mean Absolute
Percent Error (MAPE) from the value of the center of gravity defuzzifier.

MAE =
1

NS

NS∑
i=1

|yi − di|; (4.1)

MAPE =
1

NS

NS∑
i=1

|yi − di
di
| · 100% (4.2)

RAE =

∑NC
i=1 |yi − di|∑NS
i=1 |di − d̄|

; (4.3)

Acc =
NP

NS
(4.4)

where yi - the output of the defuzzifier on the 2nd stage of NF, di - the actual
class of the sample, d̄ - average value of actual class, and NP - number of properly
classified samples according tomax−min inference principle [233] in Mamdani-
type rules. We refer to the Acc,% when taking about the classification accuracy.

4.3.4 Results & Analysis

In the Chapter 1, we mentioned four hypotheses that could facilitate the forensically-
sound analysis of large-scale datasets. First, we hypothesize that the lower number
of nodes in SOM (the 1st step of NF) does not necessitate a significant drop in
accuracy. The results for the earlier-mentioned performance metrics are presented
in the Table 4.23. The Vesanto method has lower accuracy on rectangular patches
due to significant overfitting caused by using a greater number of specific rules.
Bagging may help to generalize the model when using a lower amount of more

198 Application in Digital Forensics Science

general rules.

Table 4.23: Performance comparison (regression, classification) of the proposed improve-
ments

SOM size MF Full dataset Bootstrap aggregation
MAE RAE MAPE Acc,% MAE RAE MAPE,% Acc,%

Vesanto
Simple 0.168 0.532 14.728 38.272 0.213 0.674 20.236 19.847
Kosko 0.817 2.583 41.620 80.080 0.103 0.325 9.915 77.277
Proposed 0.579 1.832 29.195 98.790 0.040 0.126 3.590 99.058

10,231 rules 211 rules

Proposed
Simple 1.124 3.556 66.020 14.059 0.198 0.627 19.425 73.135
Kosko 0.454 1.437 26.914 91.710 0.205 0.650 10.896 90.455
Proposed 0.077 0.244 6.029 94.571 0.118 0.374 5.970 98.787

50 rules 39 rules

Moreover, the results of SOM clustering are shown in the Figure 4.16, where the
bubble plots depict the samples distribution for 1% of the dataset using Vesanto
method and proposed methods of an optimal SOM size determination. From the
left part of the Figure 4.16, we notice that not all of the nodes are filled with
samples, which are empty. Moreover, there are nodes with a dominant amount of
samples, which also indicates a strong similarity.

Another concern had to do with how fuzzy regions could include as much inform-
ation as possible from data. We can see from the Table 4.23 that the proposed
way of constructing regions and MF results in a much better performance in all
experiments, exceeding 90% accuracy threshold as indicated in the Table 4.23. Fi-
nally, bootstrap aggregation, used on the 1st step of NF will provide more general
clusters that result in corresponding fuzzy regions.

From the experiments, we can see that a lower amount of better generalized fuzzy
rules is more acceptable when dealing with the analysis of large-scale datasets.
Moreover, the processing time is reduced with better accuracy.

Computational Complexity

The computing speed results are given in the Table 4.24; one can see that the
proposed improvements for NF gives an optimal trade-off between accuracy, in-
terpretability, and significant reduction in the number of required computational
operations. The 2nd step of NF is the most computationally-intensive one, since
each of the extracted fuzzy rules on the 1st step have to be trained against all the
samples in the training dataset’s defined number of epochs. This also includes lin-
ear algebra operations on the matrices that define the membership function for the
proposed method. Parallel optimization may provide significant speed up on this
step. We also noticed that learning using bootstrap data usually takes 10-20% less

4.3. Intrusion Detection 199

−50 0 50 100 150 200

−50

0

50

100

150

200

(a) SV esanto on 1%, 24,595 nodes

−1 0 1 2 3 4 5

−1

0

1

2

3

4

5

(b) SProposed on 1%, 25 nodes

Figure 4.16: The number of samples in each node during SOM clustering using different
optimal size criteria KDDCUP 99.

time than using the full dataset.

Once the model is trained, the rules can be stored in any convenient format. Both
simple and Kosko rules require the storage of the center of the fuzzy patch and

200 Application in Digital Forensics Science

Table 4.24: Time in seconds required to learn models and inference new data for dataset
without bootstrap

SOM size Learning, seconds Inference, 10−6 seconds
Simple Kosko Proposed Simple Kosko Proposed

Proposed, full set 53.64 52.91 469.24 9.44 8.98 40.60
Proposed, bootstrap 57.99 70.66 379.65 1.59 1.71 19.90

Vesanto, full set 24,141.79 25,301.97 62,998.87 1,510.00 1,550.00 8,660.00
Vesanto, bootstrap 54.33 101.76 1402.59 9.65 11.60 128.00

length of the triangular for each patch, while the proposed method needs to store
the center of the fuzzy patch and the inverted covariance matrix for the ellipsoid.
We can estimate the amount of memory considering those 39 fuzzy rules that were
extracted by our proposed method for 9 features. The estimation is given in the
Table 4.25. Ideally, using C++ double format (8 Bytes), the proposed model re-
quires 28 KBytes, which is not a great space. This method does however require
some additional overhead to organize storage structure in memory that can add an
additional 30-50% to the model size.

Table 4.25: Ideal storage complexity of fuzzy rules for three methods. NR is a number of
rules and NF is a number of features

Method Simple MF Kosko MF Proposed MF
Needed space NR · 2 ·NF NR · 2 ·NF NR · (NF +N2

F)
39-rules model 5,616 Bytes 5,616 Bytes 28,080 Bytes

Performance Comparison with Other Machine Learning Methods

To be able to estimate the utility of the proposed improvements for NF, we com-
pare other Machine Learning methods using the same datasets. Specifically, we
used WEKA [149] version 3.6.13 to perform experiments in this subsection. We
also selected peer-reviewed and community-accepted Soft Computing and Hard
computing methods for the sake of experiments coverage. The full training KDD
99 dataset was used to train the model and further estimate achieved accuracy,
time complexity, and the size of the model for HC. The purpose was to see how
well it could generalize and describe the data in comparison to the NF approach
suggested earlier. Thus, two sets of experiments were performed:

Soft Computing covers a set of methods with inexact solutions such that Bayesian
Network, Support Vector Machines (SVM), and Multilayer Perceptron (MLP) be-
sides NF approach. Abraham et al. [41] studied the applicability of SC for net-
work intrusion detection systems, so we think that these methods should be tested

4.3. Intrusion Detection 201

against our method. The results are given in the the Table 4.26. The follow-
ing classes were used in Weka: functions.MultilayerPerceptron, functions.libSVM,
bayes.BayesNet, bayes.NaiveBayes.

Table 4.26: Performance of other peer-reviewed Soft Computing methods on KDD 99
dataset

Method Acc., % Learn, sec.

MLP (0 layers) 95.1360 418.62
MLP (1 layer) 94.7016 457.80
MLP (5 layers) 95.0051 921.26
MLP (10 layers) 95.4229 1,604.11

SVM 99.815 47,394.53

Bayes Network 99.1201 6.10

Naive Bayes 41.2677 1.43

We can see that the results of stand-alone MLP gives lower results (≈ 95%) than
the proposed NF method (≈ 98%), which is still considered to be a NN-based
method. Moreover, we tested several layers in the MLP and concluded that in-
creased complexity and non-linearity does not necessarily mean increase in clas-
sification accuracy. It can be also seen that the proposed NF improvements re-
quire more time to train (≈ 379 seconds) to train than simple NF method (≈ 53
seconds). Yet is it still lower than using MLP without hidden layers (≈ 418
seconds). Bayesian methods are quire fast when it comes to learning, yet only
Bayesian Network (≈ 99%) can be considered as an accurate one, not Naive Bayes
(≈ 41%). Finally, SVM gives the highest accuracy, though the time it took to
train this model is not realistic and hardly applicable for any real-life scenario.
Moreover, these three models do not provide rule-based models and can not be
easily explained.

Hard Computing includes methods that produce crisp models with the help of
binary logic and exact values of the attributes rather than inexact approximations.
The methods are partially described by Kononenko et al. [232] as the following:
linear regression, a set of rule-based methods, general decision rules based on
specific attributes, and a set of tree-based methods that consider decision tree with
a set of selected attributes. Results are presented in the Table 4.27. Addition-
ally, the following Weka classes were useg: functions.SimpleLogistic, rules.JRip,
rules.NNgre, trees.RandomForest, trees.RandomTree, trees.J48. Extracted rules
are numerical and do not involve any kind of abstraction like linguistic rules. So,
either a large amount of rules are generated that hard to prune or a lower number
of trees that require computation-intensive pruning or stochastic evaluation.
Note: k-NN did not succeed in inferring the data from the build model, probably

202 Application in Digital Forensics Science

Table 4.27: Performance of peer-reviewed Hard Computing Computing methods on KDD
99 dataset

Method Acc., % Learn, sec. Model size

Linear Reg. 95.0569 1904.88 2 · 9 parameters

RIPPER 99.8589 488.25 18 rules
k-NN based n/a 1742.26 17,453 exemplars

Random Tree 99.9324 7.67 631 tree size
Random Forest 99.9290 82.42 10 trees
C4.5 99.9126 24.74 157 trees/79 leaves

due to the overwhelming amount of generated exemplars and enormous amount
of required memory. At this point, we can say that this is a weakness of many
conventional ML methods developed a decade ago, since smaller sets were initially
tested with thousands or tens of thousands of data.

Summary: We have proposed a way that NF can be improved in order to facilitate
a construction of firewall rules using fuzzy logic based on the large-scale analysis
of network traffic. We made a synergy of optimal SOM size determination, the
most appropriate method of fuzzy regions construction, and the corresponding MF
that can be derived to incorporate all possible information on the 2nd step of NF.
The new method showed a great improvement in performance and required less
learning and inference time in comparison to classical approaches. Additionally,
we studied that bootstrapping on the 1st stage of NF may result in a lower amount
of rules and more generalized classification model based on the fuzzy rules, which
is important to the experiment. The achieved accuracy of the proposed improve-
ment was 98.787% when using 39 rules against 98.790% with 10,231 rules when
applying original method. Therefore, it can be used as a part of decision support
system and firewalls to strengthen the security of networks. Computational time
and space complexity make it possible to use on embedded hardware solutions.
In future research, we will investigate the utility of non-parametric models for el-
liptic regions estimation and the possibility of online retraining of the fuzzy layer
without complete re-learning of the whole NF model. Also, by parallel processing
a model, training can be optimized using CPUs with a higher number of computa-
tional cores, especially on the intensive 2nd step of Neuro-Fuzzy.

4.4 Web Application Firewalls5

We focus here on aspects of building multinomial classification Neuro-Fuzzy (NF)
models for the detection of attacks on web applications using different properties

5The main ideas of this chapter are published under the contributions [372, 377]

4.4. Web Application Firewalls 203

of HTTP requests. Mamdani-type NF is a model which is specifically designed for
classification problems, where each fuzzy rule denotes a specific group of samples
that can be denoted with a fixed label as studied by Kosko and Chen [233, 95].

4.4.1 Datasets

Our main motivation was to perform fast and accurate classification of web attacks
using a single NF model. For this purpose, we used the ECML/PKDD 2007 Web
Attacks Discovery Challenge [25]. However, it is important to benchmark multi-
nomial classification on data with different properties to be able to understand the
limitations of the proposed and other methods. We acquired several datasets as lis-
ted below from UCI Machine Learning Repository [16]. The data were subject to
thorough criteria such that absence of documented mistaken, missing data, usage
in literature before, etc. Properties of the mentioned above datasets are given in
the Table 4.28.

1. Isolet Data Set represent data collected from different speakers that repres-
ent the letters A-Z (classes) of the English alphabet. These features include
spectral coefficients, sonorant features, etc. The dataset was originally pub-
lished by UCI in 1994.

2. Wine Quality Data Set represents data that describe results of the physiochem-
ical quality assessment of red and white vinho verde wines from Portugal.
Features include different measurements such that pH level, density, etc.
The dataset was published by UCI in 2009.

3. PKDD 2007 - Web Traffic Data Set contains raw XML dumps of HTTP
requests that characterize different types of web-attacks, as well as normal
valid requests as described by Gallagher et al. [157]. Each sample includes
the parameters of the server, OS, MySQL, etc. To cover different types
of attacks, we manually analysed indicators of these attacks and extracted
the corresponding features, since the dataset consisted only of raw data.
The following features were extracted: os, webserver, runningLdap, run-
ningSqlDb, runningXpath, method, protocol, strlenUri, strlenQuary, strlen-
HeAder, strlenHost, strlenAccept, strlenAcceptCharset, strlenAcceptEncod-
ing, strlenAcceptLanguage, strlenReferer, strlenUserAgent, strlenUACPU,
strlenVia, strlenWarning, strlenCache-Control, strlenClient-ip, strlenCookie,
strlenFrom, strlenMax-Forwards, strlenConnection, strlenContent-Type, en-
tropyUri, entropyQuery, countExe, countShell, countSelect, countUpdate,
countWhere, countFrom, countUser, countPassword, countOR, countPs, coun-
tGcc, countXeQ, countDir, countLs, countQueryArgs. This was inspired by
Pachopoulos et al. [306], who managed to extract 216 features with nearly

204 Application in Digital Forensics Science

the same accuracy of 77%. The dataset has been criticized before because
it is artificial and contains a very skewed class distribution, so we addition-
ally used re-sampling to get a more reliable distribution. Abdi et al. [37]
indicated the importance of having balanced classes when training machine
learning methods. In most datasets related to attacks detection, the normal
traffic is the majority, while attacks are sometimes are underrepresented.
Therefore, we used the filter Resample in Weka that produces a random sub-
sample of data using the parameters of the desired class distribution.

4. Pen-Based Recognition of Handwritten Digits Data Set is a set of digits
(250 samples) that were collected using pressure sensitive tablet from 30
writers. The dataset was published by UCI in 1998.

5. Connectionist Bench (Vowel Recognition - Deterding Data) Data Set
represents a set of steady state vowels of British English. The dataset was
created in 1989.

Table 4.28: Properties of the dataset. NS is a number of samples in a set, NF is a num-
ber of features, NC is a number of classes, e0 and e1 represents the 1st and 2nd biggest
eigenvalues.

Dataset NS NF NC e0 e1

Wine-red 1,599 11 10 3.0260 1.9138
Wine-white 4,898 11 10 3.1624 1.5752
Isolet1+2+3+4 6,238 617 26 119.1251 54.8089
PKDD 2007 50,000 43 8 4.3303 2.8711
Pendigits 7494 16 10 4.6780 3.1912
Vowels 528 10 11 2.3316 2.1420

4.4.2 Experimental Design

Each experiment included: SOM grouping, extracting three types of fuzzy regions
parameters (rectangular, Kosko, proposed method), and models training. To estim-
ate the speed of the execution, the relative times of the experiments were measured
for all samples in the training set.

4.4.3 Performance Evaluation

Both binary and multinomial classification methods require different approaches
to compare their performance:

• For binary classification methods a number of metrics were designed, such
as Precision, Recall (Sensitivity) and Specificity. Those measure the amount
of correctly classified instances with respect to one or another class.

4.4. Web Application Firewalls 205

• For multinomial classification methods metrics have to be calculated for
each of the classes using some kind of averaging, which is out of our scope
since the classes can be considered relatively balanced.

Sokolova et al. [397] performed a systematic analysis of performance measures for
different types of classification tasks. We can see that Accuracy evaluates overall
effectiveness in both methods, so it will be considered later.

The experiments were designed to show the performance of the proposed scheme.
Two types of performance metrics were utilized for our method. (1) Regression-
based accuracy using the defuzzifier value: Mean Absolute Error (MAE), Relative
Absolute Error (RAE), and Mean Absolute Percent Error (MAPE).

MAE =
1

NS

NS∑
i=1

|yi − di|, (4.5)

MAPE =
1

NS

NS∑
i=1

|yi − di
di
| · 100%, (4.6)

RAE =

∑NS
i=1 |yi − di|∑NS
i=1 |di − d̄|

(4.7)

Acc =
NP

NS
(4.8)

where yi - the output of the NF defuzzifier for a particular data sample, di - the
actual class of the sample, wij - weight of a particular rule, and µji - MF value of a
particular rule, NS - number of given data samples, and NP - number of properly
classified samples according tomax−min inference principle [233] in Mamdani-
type rules. (2) Classification-based which estimates the Accuracy, or how well the
rules selected by MAX-MIN principle classifies the data samples by calculating the
percentage of correctly classified samples. We refer to the second measure when
talking about classification accuracy. This type of accuracy was also used in other
experiments using the WEKA tool.

4.4.4 Results & Analysis

The results below are divided into two blocks. First, we evaluated the newly pro-
posed method against the datasets. Second, we compared the achieved accuracy
against community-accepted ML methods.

206 Application in Digital Forensics Science

Classification Accuracy

The performance results of the proposed improvements are given in the Table 4.29.
Some of the datasets contain training and testing sets, yet some only testing. Thus,
we concentrate here only on training samples, and try to build a model that de-
scribes the data by means of fuzzy rules. Additionally, using the improvements
suggested earlier for binary classification problems [373, 374], we are able to tune
the accuracy of multinomial classification significantly.

Table 4.29: Performance comparison of NF with a single linear output combiner

Fuzzy patches MAE RAE MAPE Acc,% MAE RAE MAPE,% Acc ,%

Dataset: Wine-red Dataset: Wine-white
Rect. [233] 0.656 0.961 11.505 41.338 0.749 1.117 13.796 37.260
Kosko [233, 120] 0.694 1.016 12.346 43.089 0.692 1.031 11.859 27.623
Proposed [373, 374] 0.566 0.828 9.582 68.667 0.610 0.916 11.076 59.064

46 rules 71 rules

Dataset: Isolet1+2+3+4 Dataset: PKDD 2007

Rect. [233] 6.620 1.018 135.858 2.837 3.827 1.907 108.343 9.300
Kosko [233, 120] 6.467 0.995 131.042 20.984 2.094 1.043 99.889 12.131
Proposed [373, 374] 5.105 0.785 37.159 64.363 1.440 0.717 66.319 52.570

174 rules 48 rules

Dataset: Pendigits Dataset: Vowels

Rect. [233] 2.203 0.873 92.700 23.031 2.572 0.943 97.969 26.515
Kosko [233, 120] 3.298 1.307 72.639 79.837 2.629 0.964 89.949 57.575
Proposed [373, 374] 0.116 0.046 5.358 97.811 2.629 0.272 22.046 75.757

102 rules 53 rules

It can be seen that our method works well on all datasets and shows consistently
high accuracy in comparison to simple rectangular patches and the Kosko method.
Moreover, a method with simple rectangular patches produces a high error rate,
which indicates the goodness of fit of the proposed improvements. On the Iso-
let dataset our method achieved ≈ 64%, while rectangular fuzzy patches give an
almost random result of ≈ 3%. The last approximation means that the classifier
failed to classify properly nearly every instance in the dataset.

Comparison to Other Machine Learning Methods

To be able to independently evaluate the accuracy of the proposed NF improve-
ments, we decided to perform several tests using the implementation of ML meth-
ods available in WEKA [149] version 3.6.13. All the chosen methods were men-
tioned in the Section 2 and are peer-reviewed by the ML community. The fol-
lowing experiments are performed: (i) binary classification methods for multi-
nomial problems, (ii) multinomial classification methods, and (iii) influence of

4.4. Web Application Firewalls 207

non-linearity in NN as compared to single-layer NF.

Performance on binary classification methods was estimated using the follow-
ing WEKA functions: J48, libSVM, SimpleLogistic, MultilayerPerceptron. MLP
had 1 hidden layer and 500 training epochs. The results are given in the Table 4.30.

Table 4.30: Accuracy of binary classifiers in Weka, %

Dataset Decision Tree SVM Logistic Reg. MLP1 l

Wine-red 60.537 58.036 59.787 58.536
Wine-white 58.677 56.227 53.246 51.776
Isolet1+2+3+4 82.654 95.014 95.832 7.630
PKDD 2007 83.925 91.491 48.960 21.049
Pendigits 95.823 13.250 96.530 38.497
Vowels 78.787 88.068 69.128 29.545

We can say that there is no consistently highest accuracy method for all 6 stud-
ied datasets. However, MLP with 1 hidden layer gives much worse results than
corresponding NF with 1 combiner layer. Furthermore, SVM failed to classify a
majority of the samples in Pendigits dataset. Decision Tree method J48 performed
relatively well on a majority of the datasets, yet the size of the trained model is able
to reach multiple hundreds and thousands of leaves, which may break the general-
ization. Logistic Regression performs well with an accuracy nearly equal to SVM;
in the case of the Isolet dataset with 617 features however, it takes too much time
to estimate the parameters for each class regression model.

Performance on multinomial classification methods was estimated following
the WEKA functions: IBk, RandomForest, NaiveBayesMultinomial, BayesNet. IBk
was used with a number of neighbours k = 1. The results are presented in the
Table 4.31.

Table 4.31: Accuracy of multinomial classifiers in Weka, %

Dataset k-NN Random For. Naive Bayes BayesNet

Wine-red 63.727 69.731 43.902 58.286
Wine-white 63.842 68.395 39.424 47.856
Isolet1+2+3+4 88.233 86.325 84.081 90.093
PKDD 2007 87.263 89.861 36.373 51.995
Pendigits 99.292 99.146 83.480 88.604
Vowels 99.053 95.075 66.287 61.553

208 Application in Digital Forensics Science

All multinomial classification methods produce consistently good accuracy on all
datasets. Exceptions are Naive Bayes and Bayes Network that are able to overcome
NF with the proposed improvements only on the Isolet dataset. Moreover, Naive
Bayes produced half of the results with an accuracy lower than 50%, so we can
conclude that this method does not generalize well. Finally, our observation is that
the execution of the binary classifiers takes much more time to train that any of the
originally designed multinomial classifiers.

Influence of non-linearity in NN was estimated using various numbers of hidden
layers (0-10) in a single MLP with multiple outputs. However, it makes an impact
on the overall complexity of the model. Since NF is a Neural Network-based
architecture, it is important to know whether increasing the non-linearity actually
improves in classification accuracy or not. The results of these experiments are
given in the Table 4.32.

Table 4.32: Accuracy of MLP with respect to non-linearity in Weka (100 epochs), %

Dataset MLP0 l* MLP1 l MLP5 l MLP10 l

Wine-red 58.098 58.786 58.536 58.787
Wine-white 50.592 52.021 53.348 54.532
Isolet1+2+3+4 95.142 7.566 24.687 88.393
PKDD 2007 46.326 20.328 46.605 50.608
Pendigits 93.047 38.417 91.419 94.448
Vowels 55.303 23.295 64.962 77.651

*MLP with 0 hidden layers means that there are NC separate linear combiners
of input features set into output neurons denoting each class. Basically, we have
multiple independent Neural Networks.

We can see that a set of multiple MLPs generally performs better than a single MLP
with multiple hidden layers. Yet this creates a large computing overhead needed
to train NC separate models. Furthermore, 1-layer MLP produces accuracy higher
than 50% only on both Wine datasets, which is an extremely poor performance.
These results are also consistent with the original research performed on the data-
sets by Cortex et al. [105]. Finally, we can see that 10-layer MLP performs nearly
as well as 1-layer NF with the proposed improvements, except in Isolet dataset. Fi-
nally, we can say that our method shows consistently good accuracy as compared
to multiple other methods, while also being able to learn a model quickly. The
results for the Vowels dataset are similar to the performance achieved by Thimm
et al. [414] when considering this dataset as a binary classification problem with
outputs equal to -1 and +1.

4.5. Network Forensics Readiness 209

Finally, we can see that the results obtained by the NF methods with the proposed
improvements are consistent with other methods. The huge number of features
in ISOLET dataset makes it impossible to classify data with a higher degree of
accuracy. Apparently, the challenge is that the data are very complex and have
non-linear relations for different classes. Moreover, for the PKDD 2007 dataset,
MLP with 10 hidden layers shows the same accuracy as our method to a much
lower degree of non-linearity. On the WINE dataset, our method performs even
better than C4.5.

Note. We noticed that MLP implementation in Weka uses "one-hot" encoding that
creates enormous overhead with the number of hidden layers > 1 since multiple
outputs need to be evaluated. As a result, skewed classes distribution in the One-
against-All training results in significant errors.

Summary: This contribution proposed improvements towards the application of
NF in multinomial classification problems, such as web attacks detection. The ma-
jority of Network Forensics applications requires one to find not only "benign" or
"malicious" activity patterns, yet also to distinguish between multiple "malicious"
patterns. However, a conventional single-output Neural Network-based method
works with either two sets of classes or alternatively requires additional outputs
per class. In order to overcome multiple outputs encoding in the NF, we proposed
bounding the clustering results of SOM for better statistically-sound fuzzy rules
parameters as well as apply a modified Gaussian membership function. Then,
we suggested using a single-output mode for reduced overhead and training time.
The Corresponding Center of Gravity defuzzifier was modified to be compliant
with Mandani-type rules as well as to incorporate class labels. The results were
tested on a range of various datasets with completely different properties, and the
accuracy is only comparable to a performance achieved by 10 layers multi-output
MLP implementation in Weka. Additionally, we studied the performance of binary
and multinomial classification methods and can say that multinomial classification
models generally perform better and faster on all sets than ensemble binary clas-
sifiers. Not all of them can produce understandable models however, as in case
with NF. Thus, we believe that it is better to use multinomial NF with proposed
improvements for web attacks differentiation to achieve consistent classification
results by fuzzy rules.

4.5 Network Forensics Readiness6

Soft Computing (SC) methods are known to be able to extract both accurate and in-
terpretable classification models from Network Forensics data, Neuro-Fuzzy (NF)

6The main ideas of this section are published under the contributions [376, 432, 433]

210 Application in Digital Forensics Science

in particular, as studied by Anaya et al. [59]. This capability is important when
dealing with digital forensics investigations and incident responses within that
context. In 2014, Al-Mahrouqi et al. [49] presented a Network Forensics readi-
ness and security awareness framework. We can see based on that research that it
is not only important to preserve data properly, but also to analyze it meaningfully
and extract relevant knowledge. Adeyemi et al. [44] studied features that are rel-
evant for network forensics investigations with respect to different stakeholders.
One can see that there are many comprehensive characteristics that can be helpful
in differentiating between normal traffic and attacks.

4.5.1 Datasets

To perform a comprehensive evaluation and assessment of the proposed methods,
several datasets were used: HIGGS (1), SUSY (2), Record Linkage Comparison
Patterns (3), KDDCUP 1999 10% and KDDCUP 1999 (4) [250]. They all are
publicly available and can be accessed using the UCI Machine Learning Reposit-
ory [16].

Add. 1: HIGGS Data Set was published by Baldi et al. [71] in 2014. It presents
a classification problem in distinguishing between the signals from Higgs-
Boson particles and background radiation. It consists of the 28 real attrib-
utes values of different metrics related to signal processing. In our experi-
ment, these datasets were adopted for training without major modifications
of the contents. There are 5,170,877 samples of the 1st class and 5,829,123
samples of the 2nd class out of 11,000,000 samples in total.

Add. 2: SUSY Data Set was published by Baldi et al. [71] in 2014 and presents
the classification problem in distinguishing between the signal value pro-
duced by particles and background noise. All 18 attributes are real values.
This dataset was not modified when used in our experiments. There are
2,712,173 samples of the 1st class and 2,287,287 samples of the 2nd class
out of 5,000,000 samples in total.

Add. 3: Record Linkage Comparison Patterns dataset was published by Schmidtmann
et al. [359] in 2009. It covers a classification problem of identifying whether
separate records belong to the same person. This dataset was modified dur-
ing the pre-processing. In particular, the attributes cmp_fname_c2 and cmp_
lname_c2 are missing in 98.19% and 99.95% of the records respectively.
These two attributes were removed from the dataset. Moreover, < 0.2% of
the data records include other missing features, so the records with missing
attributes were removed as well. The resulting preprocessed dataset con-
sists of 5,734,488 records (5749132 initially) and 9 real-valued features (11

4.5. Network Forensics Readiness 211

initially). Overall, there are 20,887 samples of the 1st class and 5,713,601
samples of the 2nd class.

Add. 4: KDD CUP 1999 10% and KDD CUP 1999 FULL are well-known data-
sets that were released by Kibler et al. [107] in 2000 as a part of KDD Cup
1999 challenge "Computer network intrusion detection". They represent a
set of 41 characteristics of the network packets characterized as "bad" or
"good" connections. This is the task of Intrusion Detection, and the model
derived from the data can be used to prevent any malicious activity. The
features values are real, symbolic, binary, and integers. These datasets were
modified during the pre-processing step. In particular, the Feature Selection
was done based on the method proposed by Nguyen et al. [294] in 2010. It
implies that we selected only features that contribute to the classification of
benign and malicious connections [id - name]: 5 - src_bytes, 6 - dst_bytes,
10 - hot, 12 - logged_in, 14 - root_shell, 22 - is_guest_login, 29 - same_srv_
rate, 37 - dst_host_srv_diff_host_rate, 41 - dst_host_srv_rerror_rate. Ac-
cording to the authors, these features provide classification without much
loss of accuracy in comparison to the original dataset. The KDD Cup 1999
10% set includes 97,278 samples of the 1st class ("normal") and 396,743
samples of the 2nd class ("attacks") out of 494,022 samples in total. The full
KDD Cup 1999 set consists of 972,781 samples of the 1st class ("normal")
and 3,925,650 samples of the 2nd class ("attacks") out of 4,898,431 samples
in total.

The properties of these datasets are presented in Table 4.33. The preprocessing
was first applied to get suitable data for learning from. The number of suggested
SOM nodes are included as well for both the Vesanto method and our proposed
one.

Though each cluster can have samples from both classes, the actual number of
clusters will be in between the S and nC · S, where S is a number of suggested
SOM nodes. The proposed scheme for the optimal amount of SOM size reduces
the total number of clusters extracted by SOM.

4.5.2 Experimental Design

To apply the proposed improvements of the Neuro-Fuzzy method, and to verify our
hypothesis mentioned in Section 1, the following experiments were performed: (1)
the estimation of an optimal SOM size based on correlation and eigendecomposi-
tion, and analysis of the overfitting / underfitting and spread of fuzzy rules accord-
ing to SOM clustering results; (2) training of the NF method using a full dataset,
estimating the performance of the trained dataset; (3) generation of a Bootstrap

212 Application in Digital Forensics Science

Table 4.33: The properties of the datasets used in the experiments are based on the data ob-
tained from the statistical program PSPP. The columns are: NS - number of data samples
in the dataset, NF - number of features, E0 and E1 - the 1st and the 2nd biggest eigen-
values of the dataset, r̄ - average Pearson Correlation Coefficient, SP - proposed optimal
size of the SOM grid, and SV - an optimal size of SOM, according to Vesanto, SV lower -
the lower boundary of the Vesanto method, and SV upper - the upper boundary of Vesanto
method.

Dataset NS NF E0 E1 ¯|r| SP SV SV lower SV upper

HIGGS 11,000,000 28 4.164 1.864 0.066 11 37,040 9,260 148,160
SUSY 5,000,000 18 4.806 3.772 0.181 14 14,246 3,562 56,984
RL 5,734,488 9 1.937 1.501 0.114 10 15,450 3,863 61,800
KDD 4,898,431 9 1.819 1.433 0.057 7 14,054 3,514 56,216
KDD_10% 494,022 9 6.998 1.000 0.583 25 24,595 6,149 98,382

Aggregation subsample for performance estimation; (4) comparison of different
performance metrics for experiments 2 and 3 in order to prove or deny the hy-
pothesis; (5) comparison to other scientifically-proven ML classification methods,
such as SVM, Bayesian Network, C4.5, Random Tree, and Multilayer Perceptron.
In our experiments, we used the two stages of NF architecture with the improve-
ments proposed earlier: (i) SOM is initialized with dimension parameters and used
to group data samples according to their classes; (ii) parameters of fuzzy clusters
are extracted forming fuzzy rules, while single-layer ANN is used to tune the cor-
responding weights of each fuzzy rule. The initial learning rate for SOM (it is
decreasing over time) and for ANN NF was chosen to be equal to 0.1.

Virtual Dedicated Server was used to perform all the experiments. Practical details
about computing platforms are given in the A.2. To estimate the relative speed
of execution, time requirements of the experiments include: (1) estimation of an
optimal SOM size, (2) training of the three models using full datasets, and (3) the
estimation of five accuracy metrics mentioned earlier for all the samples in the
training set. The approximate time frame required for each of the experiments are
presented in Table 4.34 for the proposed improvements.

Table 4.34: Amount of time in minutes required to perform a complete experiment on
each dataset for the proposed improvements

HIGGS SUSY RL KDD Cup 1999 KDD Cup 1999 10%
185 99 72 55 15

We also noticed that learning using bootstrap aggregation usually takes 10-20%
less time than from the full dataset. To compare, we utilized the Vesanto [423]

4.5. Network Forensics Readiness 213

method on KDD 10% dataset. The required time was increased dramatically (in
minutes): 402 for the rectangular patches with triangular MF, 421 for the Kosko
elliptic patches with triangular MF and 1,049 for the proposed method of fuzzy
patches construction and MF derivation. Consequently, we can conclude that
the original methods (NF by Kosko and SOM size determination by Vesanto)
are hardly applicable for large-scale datasets and take an enormous amount of
resources to learn the fuzzy model.

4.5.3 Performance Evaluation

To estimate the accuracy of the models on the datasets mentioned earlier, we de-
cided to use several error measures due to the fact that the sample belongs to a
particular class and had been foretasted by the models. The following two groups
of metrics are used: the first is the regression-based accuracy of the model Mean
Absolute Error (MAE), Relative Absolute Error (RAE), and Mean Absolute Per-
cent Error (MAPE) based on the value of the center of gravity defuzzifier by
Kosko [233]:

yi =

∑NR
j=1 di · µji · wji∑NR
j=1 µij · wij

(4.9)

where NR is a number of extracted rules, yi - the output of the NF, di - the actual
class of the sample, wij - the weight of a particular rule, and µji - the MF value of
a particular rule.

The second one estimates how well the rules selected by max-min principle clas-
sify the data samples by calculating the percentage of correctly classified samples Acc.

MAE =
1

NS

NS∑
i=1

|yi − di| (4.10)

MAPE =
1

NS

NS∑
i=1

|yi − di
di
| · 100% (4.11)

RAE =

∑NS
i=1 |yi − di|∑NS
i=1 |di − d̄|

(4.12)

Acc =
nP

NS
(4.13)

where N - number of given data samples and nP - number of properly classified
samples according tomax−min inference principle, according to Kosko [233] in
Mamdani-type rules. Naturally, we refer to the second measure when discussing

214 Application in Digital Forensics Science

classification accuracy. To support the applicability of the proposed method, one
can refer to the regression metrics as well.

4.5.4 Results & Analysis

In this Section, we present the results of the proposed method on the dataset to
verify suggested improvements and confirm the hypothesis. Though we performed
multiple experiments, as described above, we chose to represent them in fewer
tables for analysis convenience. Also, we did a preliminary feasibility study earlier
on KDD 10% dataset [375]; the results were promising. Each table with perform-
ance metrics includes bootstrap aggregation results as well as training on the full
dataset.

Optimal Self Organizing Map Size

The first stage of NF is defined by the quality and complexity of SOM cluster-
ing. To show the difference between our method and the Vesanto method, we used
bubble plots in Figure 4.17 to represent the distribution and amount of samples
clustered in the SOM grid. The size of the biggest clusters are limited by the size
of the bubble; the purpose of this plot is to show a tentative distribution. It can be
clearly seen that in the case of the Vesanto method, the number of empty nodes
is enormous, while in the proposed method there are only few nodes with 0 data
samples. Additionally, it takes much more time to perform clustering using Ves-
anto at an optimal size since the number of nodes to be updated is several hundred
times more numerous than in the proposed one. Finally, the Vesanto model will not
result in a human-understandable fuzzy classification model due to the great num-
ber of extracted rules. Consequently, we need to look at each rule’s merit definition
in the Vesanto Method in order to reduce the number of rules to a reasonable one,
according to subjective quality.

4.5. Network Forensics Readiness 215

−
5
0

0
5
0

1
0
0

1
5
0

2
0
0

−
5
00

5
0

1
0
0

1
5
0

2
0
0

(a
)S

V
on

1%
sa

m
pl

e,
24

,5
95

no
de

s

−
5
0

0
5
0

1
0
0

1
5
0

2
0
0

−
5
00

5
0

1
0
0

1
5
0

2
0
0

(b
)S

V
on

fu
ll

se
t,

24
,5

95
no

de
s

−
1

0
1

2
3

4
5

−
1012345

(c
)S

p
on

1%
,2

5
no

de
s

−
1

0
1

2
3

4
5

−
1012345

(d
)S

p
on

fu
ll

se
t,

25
no

de
s

−
2
0

0
2
0

4
0

6
0

8
0

1
0
0

−
2
00

2
0

4
0

6
0

8
0

1
0
0

(e
)S

V
lo
w
e
r

on
1%

sa
m

pl
e,

6,
14

9
no

de
s

−
1
0
0

0
1
0
0

2
0
0

3
0
0

4
0
0

−
1
0
00

1
0
0

2
0
0

3
0
0

4
0
0 (f

)S
V
u
p
p
e
r

on
1%

sa
m

pl
e,

98
,3

82
no

de
s

Fi
gu

re
4.

17
:T

he
nu

m
be

ro
fs

am
pl

es
in

ea
ch

no
de

du
ri

ng
SO

M
cl

us
te

ri
ng

us
in

g
di

ff
er

en
to

pt
im

al
si

ze
cr

ite
ri

a
K

D
D

C
U

P
99

10
%

se
t.

216 Application in Digital Forensics Science

Clearly, SOM size based on the Vesanto method is large, and there are several
dominating clusters with a majority of the samples located within them. Other
nodes contain a negligible amount of data samples and do not provide much merit
in the final classification model. As a result, the accuracy degrades and the model
becomes highly overfitted compared to the suggested model.

Classification Accuracy Using Proposed Self Organizing Map Size

To reduce complexity and improve generalization in the SOM grouping phase,
Bootstrap Aggregation was used on 1% of randomly selected samples from the
dataset. The following experiments were used to evaluate their performance: (i)
for the bootstrap method, we performed 5 runs of SOM training on 1% of sets to
determine the best sequence for the whole of NF training. What this means is that
5 datasets in total were generated from the original dataset. The performance was
then estimated using the model trained from the best sample and using the whole
training dataset. (ii) For experiments without bootstrap, and using the proposed
SOM size determination method, we used 5 runs to determine the best accuracy
of SOM training on whole dataset. (iii) For the Vesanto method, we used a single
SOM training run since the experiment time was too enormous to perform more
trials. The results shown in the Table 4.29 include the following abbreviations:
M denotes used method: S - simple rectangular patches with triangular MF, K -
elliptic patches with Kosko MF, P - proposed construction of the patches with the
corresponding MF. The example of the fuzzy rule’s parameters and corresponding
visualization is given in the Appendix.

Table 4.35 shows that accuracy on the HIGGS dataset reaches 67.961% using the
full dataset and 61.150% using bootstrap aggregation. To compare, we can say
that according to Kheirkhahan et al. [222] the AUC on 1% of this dataset using 5-
hidden layer perceptron with 300 nodes is 72.41%, which can be treated as decent
for that complex model. Furthermore, according to Whiteson et al. [437] the net-
work with two hidden layers can increase accuracy from about 69.90% to nearly
70.6%, which increases the computation time dramatically on the whole dataset.
Also, the accuracy on the SUSY dataset was 67.961% using bootstrap aggrega-
tion on the proposed method. In comparison, according to the study by Triguero
et al. [417], the accuracy of K-NN win k = 1 was 68.99%. Moreover, accord-
ing to this study, the highest accuracy using k-NN was 99.60% against 99.758%
achieved by the proposed method on the Record Linkage dataset. This is on the
edge, since there is very little difference from 100%. Also, we can state that the
data most likely forms multivariate distribution that fits an ellipse quite well, since
the accuracy on the rectangular patches is extremely poor.

4.5. Network Forensics Readiness 217

Table 4.35: Performance comparison (regression, classification) of the proposed method
with and without bootstrap aggregation on the dataset.

M Full dataset Boostrap aggregation
MAE RAE MAPE,% Acc,% MAE RAE MAPE,% Acc ,%

Dataset: HIGGS
S 0.374 0.754 23.719 63.963 1.511 3.033 98.949 46.660
K 0.457 0.921 22.878 65.139 0.500 1.003 36.676 49.027
P 0.398 0.802 37.829 67.961 0.422 0.847 27.136 61.150

16 rules 16 rules

Dataset: SUSY
S 0.400 0.807 20.276 62.364 0.374 0.754 23.719 63.963
K 0.500 1.000 40.756 61.686 0.457 0.921 22.878 65.139
P 0.393 0.792 37.298 67.669 0.398 0.802 37.829 67.961

24 rules 24 rules

Dataset: Record Linkage
S 1.028 141.739 51.534 1.460 0.996 137.276 49.818 0.364
K 0.003 0.470 0.327 99.743 0.001 0.101 0.072 99.977
P 0.005 0.755 0.276 99.752 0.005 0.714 0.262 99.758

16 rules 16 rules

Dataset: KDD Cup 1999 full set
S 1.800 5.657 99.946 18.251 1.790 5.623 98.883 19.137
K 0.432 1.360 27.933 80.211 0.491 1.544 28.467 72.511
P 0.147 0.463 9.434 94.877 0.109 0.344 5.809 88.215

12 rules 12 rules

Dataset: KDD Cup 1999 10% set
S 1.124 3.556 66.020 14.059 0.198 0.627 19.425 73.135
K 0.454 1.437 26.914 91.710 0.205 0.650 10.896 90.455
P 0.077 0.244 6.029 94.571 0.118 0.374 5.970 98.787

50 rules 39 rules

218 Application in Digital Forensics Science

Table 4.36: Performance comparison (regression, classification) of the Vesanto method
on the KDD CUP 1999 full dataset without bootstrap aggregation.

Method MAE RAE MAPE,% Acc,% Train. Time, sec
Dataset: SUSY

Simple 0.4318 0.8699 32.1105 66.5670 345,487
Kosko 0.4960 0.9992 38.2749 62.4708 468,894
Proposed 0.3412 0.6874 29.5479 68.5518 2,350,348

29,166 extracted rules

Dataset: Record Linkage

Simple 0.0868 11.9575 4.4774 82.7559 268,642
Kosko 0.0037 0.5037 0.3358 99.9821 310,489
Proposed 0.0012 0.1619 0.0643 99.8022 1,010,158

16,843 extracted rules

Dataset: KDD CUP 1999 full set

Simple 0.1312 0.4121 12.3240 82.9980 127,745
Kosko 0.8053 2.5300 40.4663 80.5873 344,220
Proposed 0.5788 1.8184 29.3671 98.9855 756,837

15,081 extracted rules

Dataset: KDD CUP 1999 10%

Simple 0.1684 0.5323 14.7287 38.2728 24,141
Kosko 0.8171 2.5836 41.6208 80.0831 25,301
Proposed 0.5797 1.8329 29.1953 98.7909 62,998

10,231 extracted rules

Classification Accuracy Using Vesanto Self Organizing Map Size

To compare with the proposed enhancements, we also performed the experiments
using the Vesanto metric from Equation 2.13. The results are presented in Table 4.36.
It can be seen that the results for the KDD Cup 1999 10% set using the proposed
method from Table 4.35 are the same as when uing bootstrap aggregation; res-
ulting in 39 rules, against 10,231 from the Vesanto method. It is clear that the
complexity of the model based on Vesanto is much higher, yet the classification
results are the same. The results achieved here are slightly better than using boot-
strap and the proposed SOM size, yet the complexity is too high and inapplicable
for real life scenarios.

Influence of Self Organizing Map Training on Fuzzy Patches Allocation

To understand the influence of bootstrap aggregation on SOM clustering and on the
second stage of NF, we visualised the way fuzzy patches are located. Since it is not
possible to visualize all 9 features used for the KDD dataset, we took only the two
features that contribute most to classification, according to ReliefF and Information
Gain quality measures. These are the 1st and 2nd attributes, which are called "src_
bytes" and "dst_bytes" respectively. The results of the visualization (scatter plot)

4.5. Network Forensics Readiness 219

of the fuzzy rules center using only these two attributes are given in Figure 4.18.
The color of the points indicates class label, while the shape represents the SOM
learning method: the full set and bootstrap aggregation.

220 Application in Digital Forensics Science

Fi
gu

re
4.

18
:

A
llo

ca
tio

n
of

th
e

ce
nt

re
s

of
fu

zz
y

ru
le

s
fo

r
th

e
K

D
D

10
%

da
ta

se
t

fo
r

bo
th

cl
as

se
s

fo
r

tr
ai

ni
ng

w
ith

th
e

fu
ll

da
ta

se
t

an
d

bo
ot

st
ra

p
se

tr
es

pe
ct

iv
el

y
us

in
g

R
ap

id
M

in
er

4.5. Network Forensics Readiness 221

As is clearly shown, SOM training using a full dataset results in many redundant
rules, located in the same region as the inefficiently described data (compared to
the proposed method). The suggested modification of Gaussian MF gives a better
description of the data in each rule. One can see that training the full dataset gives
several redundant rules, as for example around [106;1.25 · 106] and [106;0.25 ·
106]. The same applies for other regions, and may degrade the understanding of
classification decisions considerably. Otherwise, there may also be a need to limit
the number of samples per SOM node in order to limit the number of fuzzy rules
directly on the 1st stage of NF.

Comparison to Other Machine Learning Methods

Most of the methods are implemented in publicly available tools libraries, such as
WEKA, RAPIDMINER, LIBSVM, and DLIB. Yet some of them do not use par-
allel optimization, which can make the process of training extremely slow. This
means that the amount of time required to train a model with several millions of
data entries is enormous. However, MAPREDUCE can be used on the powerful
stations to divide the tasks and process into parallel operations like was done using
12 nodes (12 threads each) by Triguero [417]. There have been several studies
on the KDD Cup 1999 using a reduced set to train the model, though the HIGGS
and SUSY datasets were barely used in the peer-reviewed publications due to their
novelty and complexity. The accuracy results of WEKA 3.7.12 [149] (Bayes Clas-
sifier and C4.5) and DLIB 18.14 [6] (ν-SVM [91]) are presented in the Table 4.37.
The results from the WEKA method need to be comparable to the results of the
DLIB and our proposed method. At this point, we defined the Class 1 samples as
Negatives and Class 2 as Positives. The 1st class has nC1 and the 2nd class has
nC2 samples respectively out of a total NS in the dataset. Using 5-folds cross val-
idation in DLIB corresponding Sensitivity / True Positive Rate (Class 2 accuracy)
and Specificity / True Negative Rate (Class 1 accuracy) were derived. In order to
calculate the accuracy, we used the following formula:

Acc =
TPR · nC1 + TNR · nC2

NS
(4.14)

From the other side, WEKA provides a percentage of correctly classified samples
in the results referred to as overall classifier accuracy.

The biggest challenge when using ν-SVM is estimation of the ν and γ paramet-
ers, which is mostly done by running cross-validation several times on the grid
of values. However, each run of DLIB requires an enormous amount of time, so
the values equal to 10−5 were chosen according to the library manual. The res-
ults of the proposed method and the existing best community-reviewed method

222 Application in Digital Forensics Science

Table 4.37: Performance of other peer-reviewed methods on the defined datasets, includ-
ing Soft Computing

Method HIGGS SUSY RL KDD KDD_10

ν-SVM (dlib) - sens. 63.495 53.225 98.635 88.906 63.221
ν-SVM (dlib) - spec. 38.978 37.227 2.031 7.709 20.914
ν-SVM (dlib) - acc. 51.970 45.901 98.283 72.781 54.890
C4.5 (weka) n/a n/a 99.990 99.921 99.902
Random Tree (weka) 66.204 71.951 99.998 99.925 99.905

Bayes Network (weka) 66.356 75.854 99.983 99.414 99.121
M.layer (1) Perc. (weka) 65.004 78.451 99.998 95.271 94.689
M.layer (5) Perc. (weka) 67.484 78.896 99.998 95.492 94.944

are not that different, though the proposed method requires less time to learn from
data and produces reasonable number of rules. Furthermore, we tried to run the
LIBSVM implementation of C−SVM from available in RAPIDMINER 6.3 [14].
However, the experiment did not finish within the reasonable time interval, so we
considered it a failure. To compare with Hard Computing methods, on the KDD
Cup 1999 10% dataset, C4.5 results in 171 rules, compared with 39 achieved by
our proposed method with bootstrap aggregation. Another method was validated
on Multilayer Perceptron with the result of 10 epochs, and 1 (5) hidden layer. Fi-
nally, we also used Random Tree, resulting in a tree with the size of up to a million
units.

Note: This is that work can be beneficial for data analysis since existing tools like
WEKA, GNUMERIC, and RAPIDMINER experience problems when dealing with
data greater than 1 million samples.

Time Performance and Applicability in Live Systems

With the growing amount of network communications, the ability to mitigate at-
tacks becomes crucial. Not only accuracy, but also the time required matters. For
the proposed method, the learning and inference stages were measured, and an av-
erage required time is presented in the Table 4.38 to show the real time consump-
tion for each of the processes. By improving upon the NF method, we achieved
two goals: (i) fast training on large-scale datasets and (ii) the nearly real-time in-
ference of a network packet in question. To compare to one of the fastest methods,
Bayesian Network in WEKA took roughly 3 days to train from the HIGGS dataset,
which was on an order of magnitude higher than the suggested method.

From the contemporary literature, we can see that Network Forensics Readiness

4.5. Network Forensics Readiness 223

Table 4.38: Time in seconds required to learn models and infer new data for a different
amount of fuzzy rules, using optimal SOM size without bootstrap aggregation

Dataset Learning Inference ,10−6

Simple Kosko Proposed Simple Kosko Proposed

HIGGS 938.38 940.95 5,816.36 2.96 2.90 26.00
SUSY 638.48 496.34 2,695.53 6.48 6.48 32.60
RL 238.01 198.61 1,781.29 3.10 2.74 13.90
KDD CUP 99 228.04 197.44 1,109.89 2.36 1.95 95.00
KDD CUP 99 10% 53.64 52.91 469.24 9.44 8.98 40.60

has many obstacles when dealing with wired and wireless communications in real
world scenarios. Al-Mahrouiqi et al. [49] gave an insight into security awareness
frameworks that included network forensics. Authors stated that it is important
not only to collect and store log data properly, but also to maintain the knowledge
warehouse. Furthermore, Adeyemi et al. [44] gave an overview of existing network
forensics frameworks. Each of thee frameworks include complementary collection
and analysis phases. We believe that fuzzy models for attack classification will
help one understand attack scenarios better. Additionally, its applicability in live
systems is feasible. From the Table 4.38, we see that it takes approximately 40
µseconds to classify a packet in question, in comparison to an average of 25,000
of network packets per second. We can see that KDD CUP was using much more
additional field and meta data along with the standard fields (such as destination
and source addresses, etc.) To compare with real systems, we looked into the study
of network performance metrics given by Cisco[360]. According to the study, 100
Fast Ethernet links may give the following network packet rate PR depending on
the packet size:

PRmin size =
100 · 106 bits/s

84 bytes/packet · 8 bits/byte
≈ 148, 809 packets/s (4.15)

PRmax size =
100 · 106 bits/s

1, 538 bytes/packet · 8 bits/byte
≈ 8, 127 packets/s (4.16)

The suggested method works at 3 times faster processing speed than using a full
packet in Fast Ethernet. However, by means of distributed sensors and multi-
threaded implementation, one can achieve a suitable speed for Gigabit Ethernet
networks. According to Internet bandwidth usage statistics [8], one can see that
the highest average rate of connection was achieved in South Korea, and is equal to
26.7 Mbps. Thus, we believe that the proposed improvements make NF applicable
not only for network forensics, but also for readiness and nearly real time incident

224 Application in Digital Forensics Science

responses. Another concern is incremental or online learning that I defined by a
faster model re-training when dealing with constantly changing data, as described
by Bottou [83]. We believe that the proposed offline NF method can be transferred
to the domain of online learning by means of two optimization procedures: (i) even
faster SOM training 1st stage using bootstrap on old datasets and newly arrived
data over some fixed time frame; (ii) better stochastic optimization on the 2nd

stage that will reduce the number of required operations to tune fuzzy rules. In our
view, this will provide a faster adjustment of existing the fuzzy rules parameters
without retraining from scratch. One should consider the possibility however that
new fuzzy patches may appear over time, resulting in a change of the fuzzy rules
set.

Summary: We have proposed a new method for forensically-sound fuzzy rules
construction using NF on the optimal SOM size determination using exploratory
data analysis. The main idea is to produce an accurate model with a moderate
amount of fuzzy rules that will also be human-understandable, and that can be
used in Network Forensics Readiness effectively. The known Vesanto method for
SOM size produces a vast amount of clusters that result in complex models, re-
quiring enormous computational resources when dealing with Big Data in Digital
Forensics Investigations, particularly with large-scale datasets that contain mil-
lions of data samples.

The proposed improvements of the first NF stage along with bootstrap aggregation
gives a considerably better performance both in terms of accuracy and required
training time. We have studied the influence of bootstrap aggregation on the final
model using 1%. We can state that it can be used to improve the generalization
of the extracted clusters, though the accuracy might degrade. Also, the Vesanto
method is not suitable for use with bootstrap aggregation due to the lower number
of samples available for clustering.

The new method for fuzzy patches and corresponding MF construction on the
second NF stage improves classification accuracy. We can see that a lower number
of fuzzy rules requires more advanced techniques to incorporate information from
data, rather than using the Kosko method with triangular MF based on the pro-
jections. The proposed method for fuzzy patch construction uses χ2 tests to find
the parameters of each patch. Implementing the proposed method showed good
accuracy and learning time reult on a desktop computer using four different data-
sets with an average amount of over 5 million samples. Current Machine Learning
methods and their implementations are designed to handle tens of thousands of
data, yet have complexity issues with bigger sets.

Big Data analytics requires new and enhanced models to handle complex prob-

4.5. Network Forensics Readiness 225

lems such as Network Forensics Readiness and network traffic analysis. The con-
ventional Neuro-Fuzzy method is very much affected by overfitting, the reduced
explainability of the classification model, and the enormous training time required
when it comes to million-sample sized datasets. As a result, faster and more ac-
curate models are required. Therefore, the proposed improvements can serve as a
stepping stone for real-time protection and forensically-sound evidence collection
in network environments.

4.5.5 Overlap with Information Security Risk Management

Rowlingson [341] defined that Network Forensics Readiness and ISRM should be
inseparable from better preparedness. Below, we consider the cases of malware
distribution and DDoS attacks.

Case 1: Malware and Botnet Distributions

Successful malware distribution, such as in different versions of botnets, e.g. Zeus,
Conficker7 and others, have shown considerable resilience towards eradication.
Epidemic models have proven useful for estimating propagation rates [450, 65],
however historical data is more useful for obtaining probability distributions. We
propose the following methodology for Malware and Botnet distributions:

1. Data source. For our calculations, we obtained data from the Shadowserver
Foundation 8, which has monitored the infection rates of the Gameover Zeus
botnet and Conficker with respect to time. Gameover Zeus is a peer-to-peer
botnet built by cyber criminals, spread by sending emails with embedded
malicious links or attachments, or enticing the victim to visit an infected
website where a Trojan infects the victim. In comparison to APT statistics,
the information about botnet distribution is relatively easy to gather from
publicly available sources like Shadowserver because anti-virus companies
construct corresponding signatures shortly after the first discovery of botnet
and starts logging occurrences.

2. Discussion of statistical approach. Based on the available statistics col-
lected over the months by Shadowserver, we ran a fitting test. The results
concluded that the most promising hypothesis about the probabilistic model
is that data follows the (1) LOGNORMAL distribution. Therefore, it can be
possible to predict the exact percentage of probability of the distribution of
the botnet in some future period. From the other side, numerical methods for

7Conficker was initially a computer worm, but when the payload was uploaded post-infection, it
operated as a Botnet

8Gameover Zeus https://goz.shadowserver.org/stats/

https://goz.shadowserver.org/stats/

226 Application in Digital Forensics Science

time series analysis can estimate the number of malware species in the wild
after a defined period. The value of the last two methods is that the trends
of the malware distributions can be predicted with better accuracy than just
random guessing, because human experts may fail to do it accurately.

3. Results - Applicability of statistical methods and possible failures for each
risk. We can state that (1) the available data follows LOGNORMAL distri-
bution, so we can use these methods to dicuss future conditions. (2) It is
not possible to fully rely on these methods since the uncertainty in the pre-
dictions is quite significant due to versatility in the data and tail sensitivity
in the graph. However, the derived information can be used in qualitative
ISRM since it is a set of fuzzy metrics.

4.5. Network Forensics Readiness 227

Fi
gu

re
4.

19
:

G
am

eo
ve

rZ
eu

s
in

fe
ct

io
n

pr
ob

ab
ili

ty
di

st
ri

bu
tio

n
an

d
tim

el
in

e.
R

ig
ht

sh
ow

s
re

su
lts

of
Q

-Q
pl

ot
of

L
og

N
or

m
al

di
st

ri
bu

tio
n.

D
at

a
so

ur
ce

:T
he

Sh
ad

ow
se

rv
er

Fo
un

da
tio

n.

228 Application in Digital Forensics Science

We ran the data points for Gameover Zeus in QQ plot and got the best fit
with a Log-Normal curve, with a tendency towards a thick tail, Fig. 4.19.
Our results show that the Gameover Zeus botnet distribution is left-skewed
(positive). The initial propagation speed is high, until saturation or patch re-
leased slows down the propagation, from which point the existing population
deteriorates. In addition to adhering to epidemic propagation theory, there
are several aspects that will influence the thickness of the tail. For example,
new versions of the malware being released, either exploiting a new vul-
nerability for increased propagation or changing behavior/coding to avoid
scanners. In addition, we know that Conficker followed similar propagation
and deterioration patterns, although Conficker9 was self-replicating [450].
According to our model: if the entity is vulnerable, the general probability
of infection is 30% from the initial dissemination until the first month has
passed with a Mean population = 134,527, Standard Deviation = 64,797, and
δ = 0.491. The graph is sensitive to changes in the tails; this is also visible
in the Q-Q plot results. The right tail of the graph in Fig. 4.19 would likely
have been thicker if the data came from Conficker A+B, which remains act-
ive and deteriorates after six years.

4. Classification of Risk - Single non-zeroday malware infections are gener-
ally detected and removed by antivirus software, and generally pose very
little risk. However, dependending on the target infected and type of mal-
ware, the payoff can be complex. Self-propagating malware is usually more
severe, as they pose a threat to larger parts of the infected system. With some
computer worms, the payoff can be considered simple, as the computer is
infected (meaning non-operational) or not infected, effectively having only
two states of being. It is partially possible to predict exposure from such
generic attacks, e.g. the amount of vulnerable systems, but there is exposure
to multi-vectored and other random effects which puts this risk in the Third
Quadrant.

Case 2: Distributed Denial of Service (DDoS) Attacks

A denial of service (DoS) occurs when an ICT (Information and Communication
Technology) resource becomes unavailable to its intended users. The attack scen-
ario is to generate enough traffic to consume either all available bandwidth or to
produce enough traffic on the server itself to prevent it from handling legitimate
requests (resource exhaustion). The attacker needs to either exploit a vulnerable
service protocol or to exploit a network device(s) to generate traffic, or to amp-

9See also http://www.shadowserver.org/wiki/pmwiki.php/Stats/
Conficker

http://www.shadowserver.org/wiki/pmwiki.php/Stats/Conficker
http://www.shadowserver.org/wiki/pmwiki.php/Stats/Conficker

4.5. Network Forensics Readiness 229

lify his requests via a server to consume all of the bandwidth. The DoS attack is
distributed (DDoS) when the attacker manages to send traffic from multiple vul-
nerable devices. The attacker can achieve amplification through the exploitation
of vulnerable protocols or through using botnets.

The increase of Internet throughput capacity has also facilitated the growth in
traffic volume for DDoS-attacks. According to Arbor Networks, the largest ob-
served attack in 2002 was less 1 Gbps (Gigabit per second). While the biggest
observed attack until now targeted a British television channel and reportedly gen-
erated ≈ 600 Gbps of traffic. That is an approximate 60x development in capacity
for DDoS attacks over the course of about 14 years, see Fig. 4.20.

Figure 4.20: The development of bandwidth consumption (Gbps) of DDoS-attacks during
the last 15 years. Data source: Arbor Networks and media reports

One of the most feared information attacks is the DDoS attack, as they have the
potential to break servers and deny access to a service to customers over an ex-
tended period, causing massive revenue losses. By monitoring activity, we can
obtain reliable numbers on how large the average DDoS attack is, and generate
distributions of attack magnitudes.

1. Data source. There are open access statistics available on DDOS attacks.
So, we can use available statistics, yet it can not be fully relied on due to
misleading detections or hardware malfunctions. Using numbers gathered
from open access, we generated an example of the possible distribution of
DDOS occurrences for different bandwidths, as shown in the Figure 4.23.
Available threat intelligence indicates that the commonly observed DDoS

230 Application in Digital Forensics Science

magnitude at the time was between 0-90 Gbps, with distributions as seen
in Table 4.39. Our test dataset corresponded to the numbers provided in
open access sources, having an arithmetic mean = 7.31, and Std. Dev =
13.55. The largest reported DDoS attack so far was 500 Gbps, and we can
estimate that the generic probability of such an attack occurring annually is
large; while the probability of such a large-scale directed attack at a single
organization is negligible. There was no observed attack magnitudes over
90 Gbps in the surveys. However, we add the scenario A5 in Table 4.39.

Table 4.39: Example of DDoS attack magnitude distributions and probabilities, with con-
ditional probabilities of semi-annual occurrence.

Scenario Gbps % of attacks P(A|B)

A1 <1 55.00 % 27.50%
A2 1-5 15.00 % 7.50%
A3 5-10 10.00 % 5.00%
A4 10-90 20.00 % 10.00%
A5 90+ Not observed (0.1%) 0.05%

2. Discussion of statistical approach. There are several possible ways of ap-
proaching the statistical analysis of DDOS attacks. At first, the probability
of the DDOS attack can be calculated as simple (1) CONDITIONAL PROB-
ABILITY, which gives an exact risk of being targeted for a DDOS attack
out of possible attacks. Table 4.23 shows the results of calculations made
for an organization that expects a P(B)=50% annual chance of DDoS at-
tack. After that, we can say something about the number of attacks and
maximum possible use of bandwidth by considering historical information.
However, the number of maximum reported DDOS attacks follow the (2)
EXPONENTIAL FUNCTION and can not be predicted for following years:
N = N0 · et

′
since some covert parameters are not taken into consideration

like breakthrough network controller speed. Finally, the particular scenario
involving discretion intervals of DDOS bandwidth are considered, such as
P (DDOS > 90Gbps) = P (DDOS) · P (> 90Gbps|DDOS). Also, the
(3) γ-DISTR. is the most applicable way of modeling such variety in the
scenarios.

Fig. 4.21 depicts the correlation between duration and magnitude, where
the attacks from the A1 and A2 scenarios are distributed nearly uniformly
across the duration scale. It means that the nature of such attacks is more
random and non-deterministic, which was also confirmed by our correlation
tests. Going further, one can see that the majority of the attacks from the
range of A3 are located in the duration range around 103 · · · 106 seconds.
Finally, the same stands for the scenario A4, where the dispersion of possible

4.5. Network Forensics Readiness 231

magnitudes is large in comparison to A3. However, date with much higher
frequency in the case of the probabilistic model suppresses less frequent
cases, while fuzzy logic describes data independently from the frequency
of its appearance, only taking into consideration its possibility as described
before by Shalaginov et al. [373].

232 Application in Digital Forensics Science

Fi
gu

re
4.

21
:

B
ub

bl
e

pl
ot

of
th

e
at

ta
ck

ba
nd

w
id

th
de

pe
nd

in
g

on
th

e
du

ra
tio

n
fo

r
ea

ch
sc

en
ar

io
.

T
he

si
ze

of
th

e
bu

bb
le

al
so

de
no

te
s

th
e

m
ag

ni
tu

de
of

th
e

at
ta

ck
.S

ce
na

ri
os

ar
e

de
pi

ct
ed

w
ith

di
ff

er
en

tc
ol

ou
rs

.

4.5. Network Forensics Readiness 233

Probabilistic modelling for Risk Estimation. Unplanned downtime is an
adverse event for which most ICT-dependent organizations need to have
contingencies. The institution considered in this paper has defined the sever-
ity metrics in Table 4.40 as ranging from "Negligible" to "Catastrophe", to-
gether with the distribution of durations within the defined intervals. Losses
are considered to be moderate up to two hours downtime, as most employ-
ees will be able to conduct tasks that do not require connectivity for a short
period. Losses are estimated to start accumulating after 2 hours of down-
time. The analysis shows that the defined events B3-B5 are over 99% likely
to last more than 2 hours, which falls well outside of the Institution’s risk
tolerance.

Table 4.40: Overview of attack severity for the case study and duration frequencies. Data
Source: Akamai [31]

Outcome Interval (min) Seconds Severity Frequency % of
Attacks

B1 0-10 min 0 - 600 Negligible 1 0.0
B2 11-30 min 601 - 1,800 Slight 1 0.0
B3 31 - 120 min 1,800 - 7,200 Moderate 28 0.6
B4 2 - 24 hours 7,201 - 86,400 Critical 3,346 70.2
B5 >24 hours > 86400 Catastrophe 1,392 29.2

Possibilistic modelling. Fuzzy hierarchical models represent possibilities
modelling that differ from the conventional probabilistic approach for Risk
Assessment. Our main motivations are (i) to eliminate negligibly low prob-
abilities when an event is near, (ii) to apply inexact fuzzy rules for better
generalization of risk assessment model and (iii) to compose a hierarchical
model that covers all the components of risk assessment in a single frame-
work.

In order to be able to fuzzify the earlier defined scenarios, we performed
a proof-of-concept demonstration of fuzzification and corresponding fuzzy
rules extraction. We used the Neuro-Fuzzy method for automated data ana-
lysis as earlier defined by Shalaginov et al. [373]. The method analysed both
attributes Duration and Magnitude and proposed the 12 most suitable fuzzy
rules for four scenarios as defined by us earlier. The distribution of the rules
is shown in the Figure 4.22 and plotted with the help of RAPIDMINER [14].
The biggest bubbles denote centers of extracted fuzzy rules. The MF of the
fuzzy rule in the center has a value of 1.0, decrease around it according to
values of standard deviation for each of the attributes. One can see that the
extracted rules for the scenarios A2 and A3 located nearby and have similar
statistical parameters. On the other hand, rules for scenarios A1 and A4 do

234 Application in Digital Forensics Science

not overlap and have quite distinct placements on the scatterplot. We are
able to classify up to 99% of the DDoS attacks using this fuzzy model based
on two attributes.

4.5. Network Forensics Readiness 235

Fi
gu

re
4.

22
:

D
is

tr
ib

ut
io

n
of

12
fu

zz
y

ru
le

s
ex

tr
ac

te
d

au
to

m
at

ic
al

ly
w

ith
re

sp
ec

t
to

da
ta

lo
ca

tio
n.

C
en

te
rs

of
ex

tr
ac

te
d

fu
zz

y
ru

le
s

ar
e

de
pi

ct
ed

w
ith

bi
g

bu
bb

le
;,

or
ig

in
al

da
ta

po
in

ts
w

ith
sm

al
lo

ne
s.

236 Application in Digital Forensics Science

The advantage of the Neuro-Fuzzy method is that it is suitable for large-
scale data analysis when the number of attributes is much greater than two.
Moreover, it gives us a clear understanding of the properties of similar at-
tacks for each scenario, even when their nature is non-deterministic and does
not have clear a dependency between attributes, like in case with A1 and A2.

Furthermore, we can perform a manual analysis of the data in order to
fuzzify them using manual analysis. As we described the in the method-
ology, the corresponding parameters of the fuzzy patches should be extrac-
ted. We use Gaussian MF that is composed of the mean of the correspond-
ing scenario magnitude distribution with standard deviation. The results are
given in the Table 4.41.

Table 4.41: Parameters extracted from different scenarios for Gaussian MF

Scenario Mean Std.Dev

A1 1.4351 1.5318
A2 7.2954 0.8429
A3 19.2653 9.7245
A4 92.7211 39.541

Using these parameters, we compose four MF for each of the ranges of the
DDOS attacks magnitudes. Also, results of the modeling in the Figure 4.23
show that the distribution of DDOS attacks magnitude follows γ distribution
with the following parameters: shape=0.152, scale=0.025.

(a) Histogram of DDoS magnitude displaying
normal curve

(b) Simulated γ-distribution of DDOS
from collected data

Figure 4.23: Comparison of the original DDOS data and modeled distribution

Moreover, to compare the probabilistic modeling with fuzzy logic reasoning,
we plotted both approaches in the Figure 4.24 using R[161]. One can see

4.5. Network Forensics Readiness 237

Figure 4.24: Mapping fuzzy logic-based Gaussian MF µ and probabilistic density func-
tion of γ distribution

that the main difference from the probabilistic approach is the independence
of the possibility of a number of particular event occurrences. This means
that fuzzy logic can help to predict a particular outcome using inexact lin-
guistic terms with respect to how far the numerical value lies from 100%
degree of truth of the corresponding linguistic term.

Fuzzy logic has great utility in uncertainty modelling when there is not
enough data for probability estimation. Insufficient data for probability will
cause very low numbers increasing possible calculation errors. For example,
in the DDoS example above, one can see that with a growing attack dura-
tion, the value of the γ density function will be millions in parts of 1.0. The
Figure 4.24 gives insight into the fundamental difference between two mod-
eling principles. The theory of possibility by Zadeh [454] was proposed as
an alternative to the theory of probability for showing the uncertainty also
can be described by the degree of trust of a particular statement rather than
the chance of its occurrence. Thus, at this point it crucial to note that the
conventional statement P (Occurrence for organization x Magnitude x dur-
ation) may be transferred to fuzzy logic inference:

γ(X) ⇒ µ(X) (4.17)

By introducing fuzzy logic, we believe that IRSA can not only reduce un-

238 Application in Digital Forensics Science

certainty caused by extreme events, yet also bridge between raw numer-
ical characteristics and the linguistic assessment provided by human experts.
Also, from the Akamai case above we can see that a negligibly low probab-
ility does not necessarily properly describe the series of events that fall into
the scenario A4. Moreover, the fuzzy logic model results in a set of rules
that can be used by decision makers.

3. Results - Uncertainty/ Confidence intervals. The data and estimated para-
meters are valid only for some period until new attack methods emerge.
However, it is still possible to form a corresponding γ-distribution to char-
acterize the bandwidth for DDOS as it is depicted in the Figure 4.23, (a).
Thus, the corresponding CI can be extracted based on the parameters of the
distribution to estimate the DDOS [207]. The Lower boundary can be neg-
lected, however exceeding the upper boundary may indicate that the para-
meters need to be re-evaluated for quantitative ISRM.

Though the data distribution can vary, and therefore change the form de-
pending on newly emergent technologies in the network adapters industry,
we can still use CI to estimate the boundary of the desired mitigation frame.
It can be stated that the company wants to eliminate some % of the DDOS
attacks and estimates the threshold of the attacks based on previously col-
lected information. The Table 4.42 presents an exact range of the bandwidth
at which a particular % of attacks can be mitigated. Our particular interest
is in the upper boundary of the CI, since the lower boundary can be ignored
at this point. For example, to withstand 95% of the DDOS attacks according
to the modeled γ-DIST. in the Fig. 4.23, (b) a company must implement a
DDOS protection not lower than 62.82 Gpbs.

Table 4.42: Confidence Intervals for defined % of the DDOS attacks to be eliminated

To eliminate 50% 90% 95% 99%

Limit_lower, Gbps 0.531143 0.012634 0.002547 0.000061
Limit_upper, Gbps 9.411601 29.566104 39.241385 62.822911

4. Results - Applicability of statistical methods and possible failures for each
risk. We can estimate and establish a threshold for intrusion detection sys-
tems to be capable of handling such attacks, which might be significant when
estimating the risk that the organization takes when ignoring particularly
intensive attacks. For example, network adapters have increased capacity
from 100Mbps up to 1Gbps over previous years. Therefore, statistical mod-
els can be used for (1) DDOS bandwidth and probability prediction and
estimation, though constant failures of these models may indicate a need

4.6. Mobile-Device Virus Analysis 239

for re-evaluation of the maximal DDOS bandwidth. Furthermore, using the
estimated probability, we can also build qualitative risk estimators as more
general linguistic characterizations of the risk.

5. Classification of Risk - As we have shown, it is possible to obtain distri-
butions of DDoS attack magnitudes with their associated probabilities. Our
observations can be offset however by a single massive attack, such as DDoS
attack on Estonia in 2007 attributed to Russia. This area is also subject to
Moore’s law, which means that the historical observations of attack mag-
nitudes will quickly become obsolete. We consider the payoff from DDoS
attacks as simple; it either succeeds in denying service or it does not, while
the duration of the attack determines the consequence. Our analysis, there-
fore, places the risks of DDoS attacks in the Third Quadrant.

4.6 Mobile-Device Virus Analysis10

Over the last decade, one can observe a malware transition from Personal Com-
puters to mobile platforms that is caused by the intensive development of embed-
ded devices. Despite the fact that, there has been a number of awareness campaigns
(Europol [138]) about the amount of malware in the environment, and affected
users are growing as shown in reports from 2017 [399, 421].

4.6.1 Datasets

The proposed improvements to the Neuro-Fuzzy rules-extraction classification
method were tested on the Android malware dataset. Moreover, there have been
several datasets chosen to demonstrate the proof of concept from the UCI Ma-
chine Learning Repository [16]. Besides the properties of the datasets presented
in the Table 4.43, the ratio of the biggest eigenvalues e0

e1
from a non-zero mean set

(Correlation Matrix) and absolute averaged Person Correlation Coefficient ¯|r| are
given.

The other datasets are publicly available and represent different domains. All data-
sets chosen are with two classes, as in the malware detection problem. The mobile
malware is a manually composed dataset of features from static and dynamic tests
of mobile malware and benign applications. The Android platform was chosen
because of its popularity, since users can install 3rd party applications (not from
official Google Play) that might contain malicious payloads. We got 388 unique
malware samples with only 348 suitable for dynamic and static tests. Furthermore,
460 unique applications (247 suitable for testing) known to be benign applications

10The main ideas of this section are published under the contributions [368, 371, 373, 374]

240 Application in Digital Forensics Science

Table 4.43: The properties of the datasets used in the experiments based on the data,
obtained from the statistical programs PSPP [311] and Weka [149]

Dataset M NS Const. Norm. ¯|r| e0 e1
e0
e1

Climate Model Crashes 18 540 No Yes 0.0091 1.0797 1.0759 1.0035
Fertility 9 100 No Yes 0.1204 1.8654 1.4530 1.2838
Banknote Authentication 4 1,372 No No 0.4255 2.1799 1.2931 1.6857
Mobile malware 36 596 Yes No 0.1224 6.3839 4.3715 1.4603
Ionosphere 34 351 No Yes 0.2169 8.8121 4.2386 2.0790
SPECTF Heart 44 80 No No 0.2516 11.9965 6.3279 1.8957
Madelon 500 2,000 No No 0.0182 6.4630 5.0242 1.2863
QSAR biodegradation 41 1,055 No No 0.1653 7.3993 5.0285 1.4714

were gathered from official sources. In this dataset, we assigned Class 1 to a mali-
cious application’s features vector and Class 0 to corresponding vectors of benign
application. Finally, it consists of 36 versatile numerical features from 596 applic-
ations that characterize a particular property such as CPU load, memory usage,
API calls, etc., as also described in [371]. The specification of the features is given
in the Table 4.44.

In the Figure 4.25, the visualization of the dependency between the features in the
given earlier datasets is shown. In the cases of independent features, the number of
fuzzy patches can be decreased by covering more instances. From the other side,
some non-monotonic dependencies require an increase in the number of fuzzy
patches to reduce error.

From the scatter plots of selected pair-wise attributes, we can see that the char-
acteristics of dependency between attributes vary a lot. At this point, we can ex-
pect that the Banknote Authentication dataset might require the largest number of
more specific rules to build the classification model, considering the non-linear
and non-monotonic dependencies in the Figure 4.25.c. Furthermore, similar chal-
lenges may face rules-generation for the Ionosphere dataset 4.25.e and QSAR data-
set 4.25.h.

4.6.2 Experimental Design

To evaluate the performance of the proposed scheme, we implemented two stages
of the NF method as described by [233]. Also, we used three types of the fuzzy
patches and corresponding MFs. The first one is simple rectangular patches with
triangular MF. The second one is [233] elliptic patches with projection-based tri-
angular MF based on the projection of the ellipses. The third is elliptic patches
with modified Gaussian MF, proposed by [374]. Since SOM is a method influ-
enced by the random initialization of the nodes, bootstrap aggregation was per-
formed. To ensure the consistency of the results, 10 samples were randomly gen-

4.6. Mobile-Device Virus Analysis 241

Feature name Description
sdkVersion Minimal version Android API required for app execution
targetSdkVersion Target version of Android API necessary for app running
app_label_length Length of the application label
package_name_length Length of the package label, e.g. ’com.application’
filesize Size of installation package file
permissions_highest The highest numerical level of permissions
permissions_avg Average numerical level of permission
permissions_number Amount of permissions requested by application
pull_data_size Amount of stored data in ’/data/data/<app>’
log_launch_size Size of pulled log file during app launch
cpu_usage_peak Peak value of CPU utilization during during launch
cpu_usage_avg Average value of CPU utilization during launch
cpu_usage_stdev Standard deviation value of CPU utilization
thr_usage_peak Maximal amount of created threads
thr_usage_avg Average amount of threads created by an app
thr_usage_stdev Standard deviation of amount of threads
vss_usage_peak Maximal size of virtual memory used by an application
vss_usage_avg Average size of virtual memory used by an application
vss_usage_stdev Standard deviation of size of virtual memory
rss_usage_peak Maximal size of resident memory used by an app
rss_usage_avg Average size of resident memory used by an app
rss_usage_stdev Standard deviation of size of resident memory
shared_prefs N of XML files in ’/data/data/<app>/share_prefs’
shared_prefs_size Size of all shared preferences files
databases N of stored DB in ’/data/data/<app>/databases’
databases_size Size of all stored databases
files N of stored files in ’/data/data/<app>/files’
files_size Size of all stored files
package_entropy Shannon Entropy, which helps to reveal encrypted info
package_number_files Total number of files in the installation package
manifest_size Size of configuration file ’AndroidManifest.xml’
res_folder_size Size of the folder with additional resources
assets_folder_size Size of directory with application’s assets
classes_dex_size Size of DEX files (already compiled Java classes)
classes_Dex_entropy Shannon entropy of DEX files
execution_time Time that was spent to execute app

Table 4.44: Example of collected features in mobile malware dataset

242 Application in Digital Forensics Science

(a) Climate: vconst_4 vs convect_corr,
r=-0.01

(b) Fertility, Age vs Sitting hours, r=-
0.44

(c) Banknote: Skewness of wavelet vs
Entropy o fimage, r=-0.53

(d) Mobile: permissions_number vs
log_launch_size, r=0.01

(e) Ionosphere: a12 vs a32, r=0.47 (f) SPECTF: F2R vs F4R, r=0.2

(g) Madelon: a1 vs a2, r=0.0 (h) QSAR: LOC vs SM6_B(m), r=-0.01

Figure 4.25: Visualization of the dependencies between the features in all datasets men-
tioned earlier in Weka with corresponding values of PCC. The blue and red colors denote
classes

4.6. Mobile-Device Virus Analysis 243

erated during SOM clustering and the best sequence was chosen to be used after-
wards in the experiments. On the 1st stage of NF, the fuzzy patches parameters are
derived according to the derived number of clusters from the proposed method. NS

training epochs were used in SOM. During the 2nd stage, the classification rules
are tuned. We used 100 training epochs for 2nd stage of NF and a 0.1 training rate
for both stages.

4.6.3 Performance Evaluation

The accuracy of the NF method was evaluated using two different performance
metrics: (1) a regression-based real-value accuracy comparison of the defuzzified
output of NF using the following metric: Mean Absolute Percent ErrorMAPE =

1
NS

∑NS
i=1 |

yi−di
di
| · 100%, where yi - the output of of the gravity defuzzifier [233],

di - the actual class of the sample, and NS - number of given data samples, and
(2) Discrete classification accuracy comparison using the selected rules by min-
max principle in cross-validation: Acc = NP

NS
, where NP - number of properly

classified samples.

4.6.4 Results & Analysis

The hypothesis was made that a greater size of SOM provides more unstable results
due to the spread of data. A trade-off must be found in order to reduce complexity
and improve specificity. To evaluate the defined hypothesis that a greater size
of SOM gives more unstable results due to the spread of data, we performed a
comparison of cross-validated results with bootstrapped training data.

Effect of Self Organizing Map Size on Classification Accuracy

The performance was evaluated using the regression performance metric "MAPE,
%" and a classification one "Acc(rules), %". The results are presented in the
Table 4.45 for all the given dataset. The theoretical number of rules in the Table
means the number of rules suggested by SOM size estimation methods independ-
ently from the number of classes. The extracted rules means a number of rules ac-
tually extracted, also considering different classes, implying that the second meas-
ure can exceed the first one. In addition to this, we performed a comparative study
of manually-defined SOM sizes and corresponding classification results which are
given in the B. One can see that proposed procedure for optimal SOM size determ-
ination results in a high classification accuracy and less complex model.

The proposed method shows how SOM size along with Gaussian MF seems to
fit well with the data. Also, classification accuracy using the min-max principle
always exceeds Kosko method. Using the χ2 for building fuzzy patches provides
a better way to fit data. Thus, we can summarize that both original models do not

244 Application in Digital Forensics Science

Table 4.45: Performance comparison (regression, classification) of the proposed method

Method "Rule of thumb" Vesanto Proposed
MAPE,% Acc,% MAPE,% Acc ,% MAPE,% Acc ,%

Dataset: Climate Model Simulation Crashes Data Set
Simple MF 13.3848 23.5185 13.3825 23.5185 38.3623 22.7778
Kosko MF 11.1754 91.4815 45.4244 91.6667 45.6569 92.0370
Gaussian MF 5.9791 69.6296 5.8009 76.6667 3.8818 96.4815
Extr.rules (Theoret.) 61 (116) 61 (117) 6 (6)

Dataset: Fertility
Simple MF 14.7705 88.0000 18.5313 88.0000 68.8893 84.0000
Kosko MF 6.0117 88.0000 10.2212 85.0000 8.9175 89.0000
Gaussian MF 6.2184 92.0000 6.5119 92.0000 4.8512 92.0000
Extr.rules (Theoret.) 9 (50) 9 (64) 7 (11)

Dataset: Banknote Authentication
Simple MF 22.2296 55.5394 21.8893 55.5394 5.9234 95.5539
Kosko MF 27.1998 98.9796 22.4358 98.9067 22.7381 96.2828
Gaussian MF 1.7491 100.0000 15.7715 99.6356 18.0398 99.9271
Extr.rules (Theoret.) 94 (185) 97 (312) 17 (25)

Dataset: Mobile malware
Simple MF 38.4787 35.1261 39.0162 40.0000 40.1554 41.1765
Kosko MF 41.5120 58.4874 34.5776 56.8067 41.3487 58.4874
Gaussian MF 11.7330 84.5378 11.5823 80.8403 5.1865 91.9328
Extr.rules (Theoret.) 48 (122) 39 (189) 24 (13)

Dataset: Ionosphere
Simple MF 44.9931 26.2108 39.2309 29.6296 25.2921 64.1026
Kosko MF 43.4663 48.7179 12.5893 49.5726 44.8586 49.5726
Gaussian MF 23.2906 80.9117 22.5460 74.0741 15.5957 88.3191
Extr.rules (Theoret.) 26 (94) 22 (195) 28 (22)

Dataset: SPECTF Heart
Simple MF 66.3703 33.7500 67.6426 31.2500 40.7887 41.2500
Kosko MF 25.0000 72.5000 25.0000 75.0000 33.6323 72.5000
Gaussian MF 16.8750 85.0000 16.5625 86.2500 13.3333 85.0000
Extr.rules (Theoret.) 2 (45) 2(89) 3(24)

Dataset: Madelon
Simple MF 37.1836 49.5500 37.5393 49.1500 44.8408 41.1500
Kosko MF 37.2098 49.9500 25.3145 49.8000 26.9802 61.9000
Gaussian MF 42.2500 78.7000 44.2000 77.7500 36.1000 82.1500
Extr.rules (Theoret.) 197 (224) 215 (288) 6 (5)

Dataset: QSAR biodegradation
Simple MF 25.7192 46.2559 26.8668 48.8152 28.6848 45.6872
Kosko MF 26.7484 67.4882 26.7991 69.0047 29.4705 68.1517
Gaussian MF 13.1149 75.9242 15.0202 73.9336 10.4234 87.2038
Extr.rules (Theoret.) 101 (162) 99 (239) 23 (14)

4.6. Mobile-Device Virus Analysis 245

possess the same accuracy as the proposed one, neither in regression performance
nor in classification based on the fuzzy rules model.

The results for all 8 datasets look consistent. We can draw the conclusion that
the proposed method tends to decrease the number of extracted rules signific-
antly while accuracy consistently decreased. Also, we improved Gaussian MF
by [373] describing data within the fuzzy patch much better than when using either
simple triangular MF or the projection-based triangular MF introduced by Kosko.
SPECTF dataset can be described by using only 2-3 rules due to the lower number
of rules and more random distribution of the features values. However, the ac-
curacy of fuzzy model based on the proposed method is 85% using 3 rules, while
rectangular fuzzy patches with triangular MF gave only≈ 30% properly classified
samples. Further, "Rule of thumb" gives 100% classification rate for the bank-
note authentication dataset, which is 0.0779% more than for the proposed method.
Yet the number of rules is 94 versus 17, which also implies the trade-off between
the complexity and accuracy of the model is better in the proposed method. The
only irregularity that was noticed in the results is related to the Climate dataset,
where the Kosko method gives better results than the Vesanto and "Rule of thumb"
methods, yet not on the proposed one.

Influence of the Proposed Method on 2nd Stage of Neuro-Fuzzy Training

The size of the SOM depends, first of all on the statistical properties of the data set.
We can see that in most cases the results are degraded with the increase of the SOM
grid. However, we can observe the results for the rectangular patches and Kosko
patches on the datasets with non-normalized and correlated features. Despite this,
the proposed method performs well on such datasets with a considerable amount
of features keeping the classification accuracy of around 90%. To see how well the
patches describe the data, the MAE (Mean Absolute Error) was observed during
the learning on the 2nd step of NF. The results for all three methods are given in
the Figure 4.26.

As can be seen, the rules are mostly tuned based on the rectangular Kosko method
with corresponding triangular MF during the 2nd training phase. In contrast, rules
based on the proposed methods give the best results with almost no alteration of
the weights during that training. Therefore, we can state that the proposed patches
fit the data with the lowest possible error. It also results in drastically reduced
training overhead on the 2nd stage of NF.

Allocation of the Fuzzy Rules and Compactness of Self Organizing Map Nodes

To understand the difference between the three methods in terms of fuzzy patches
allocation we decided to visualise the way these patches are located. Since it is

246 Application in Digital Forensics Science

Figure 4.26: Change of MAE values of three methods on the 2nd stage of NF on mobile
malware dataset over training with 100 epochs

not possible to visualize all 41 features for the Mobile malware dataset, we only
took the two features that contribute mostly to the classification according to Re-
liefF merit. These are the 2nd and 6th attributes, called "target SKD version" and
"highest request permission" respectively. The results of the visualization (scatter
plot) of these two attributes are given in the Figure 4.27 using RapidMiner [14].
The shape of the points indicates class label, while the color presents a method
used to determine size of the SOM.

Figure 4.27: Distribution of the fuzzy rules derived based on three different SOM size
estimation methods

We can see that "Rule of thumb" and Vesanto methods result in a number of redund-

4.6. Mobile-Device Virus Analysis 247

ant rules, which located in the same region also describing data in an inefficient
way comparing to the proposed. Also, the usage of Gaussian MF gives a better
description of the data in each rule. Around the region [0.2;16], one can see 3
rules for Vesanto and "Rule of thumb", while for the proposed method it gives only
a single rule for the same class number 1. The same applies for other regions that
may improve the understanding of classification decisions.

One can see an explanation through the allocation of data samples from different
classes in SOM nodes, as depicted in the Figure 4.28. The plot is a bubble plot
built using RapidMiner [14]. Despite the fact that the SOM sizes for Vesanto and
"rule of thumb" methods are not large, there still exist a dozen empty nodes. In
addition to this, one can see fewer nodes that contain a majority of the assigned
data samples. While the proposed method offers a lower number of SOM nodes
with a higher accuracy, using a manually defined SOM grid sized in the B, we can
see that many datasets give a majority of empty nodes causing much computational
overhead.

(a) "Rule of thumb", 9x11 (b) Vesanto, 11x13 (c) Proposed, 2x3

Figure 4.28: Distribution of date samples per SOM node with respect to different classes
using three size determination methods. The size of the bubble corresponds to number of
samples in this node, while colour denotes malicious or benign sample

Performance using Other Machine Learning Methods

In order to reliably establish the relevance of the proposed improvements to the NF,
comparisons to other community-approved ML methods are given in the Table 4.46.

Note: we used Weka package with 5-fold cross validation. Also, ANN was launched
with 3 hidden layers. All methods have weak performance on Madelon on a range
≈ 50 − 65%, while the proposed method shows accuracy up to 82%. This is a
significant difference, which can be explained by the need for generalization on
datasets with hundreds of features. On the other datasets we can see results con-
sistent with the proposed method, as described in the Table 4.45.

248 Application in Digital Forensics Science

Table 4.46: Accuracy of the other ML methods on the datasets. Highest accuracy is
denoted with bold.

Dataset Bayes Network ANN SVM C4.5

Climate Sim.Crash. 92.2222 93.1481 91.2963 91.8519
Fertility 88.0000 84.0000 88.0000 84.0000
Banknote Auth. 91.9825 100.0000 100.0000 98.6152
Mob. malw. 90.5882 92.6050 58.4874 93.2773
Ionosphere 89.4587 90.5983 92.5926 89.7436
SPECTF Heart 72.5000 75.0000 53.7500 75.0000
Madelon 60.6500 57.5500 50.0000 64.9500
QSAR 80.4739 83.6019 85.8768 84.3602

4.6.5 Complexity

It can be noted from the theoretical justification above that the new proposed
method requires more resources to learn from data and form a FL model. In this
Section, we perform analysis of the time required for learning and the space to
be occupied. The first aspect is given with respect to single- and multi-threaded
applications that are used in modern computational systems.

Computational Complexity of the Proposed Method

The estimation of the computational complexity is an important issue to be con-
sidered in critical applications of real-time systems and data analysis. We meas-
ured execution time for the training and rules inference parts of the mobile mal-
ware dataset as it is shown in the Table 4.47. Using the size from the proposed
method, SOM trains faster due to the lower amount of rules. We used the differ-
ence between the output’s values yi of two adjacent steps on the 2nd stage of NF
as a stopping criteria.

Table 4.47: Time in seconds, required to learn the NF mode using different estimations
for optimal SOM and methods for fuzzy patches construction on mobile malware dataset
with parallel optimization

Method Training, seconds Inference, 10−6 seconds
Simple Kosko Gaussian Simple Kosko Gaussian

"Rule of thumb" (49 rules) 0.3820 0.5185 0.3402 2.97 3.33 120.00
Vesanto (28 rules) 0.3805 0.4715 0.3401 2.53 2.98 101.00
Proposed (24 rules) 0.3833 0.3647 0.1662 1.71 2.18 55.30

The size of SOM is decided first based on the statistical properties of the data set.
In most cases however, the bigger SOM size causes degradation of the accuracy
and execution time with a decrease in interoperability. Furthermore, a larger SOM
will results in a longer NF training time and a slower fuzzy rules inference process

4.6. Mobile-Device Virus Analysis 249

when there is a need to classify a new unlabelled sample. The proposed method
of SOM size determination shows better performance on the training phase as
well as the inference phase than the other two methods. This can be explained
by well-fitted fuzzy patches and lack of need for longer training on the 2nd stage
of NF. Inference by Gaussian MF takes more time however, so a more advanced
optimization of the inference might be needed, yet this is out of the scope of this
paper. One can see that simple fuzzy patches take almost the same time for all
three methods of SOM size determination due to simplicity of used triangular MF.

Parallel Optimization for Growing Number of Fuzzy Patches

In the Table 4.47, we present the time required to learn and to make decisions for
simple, Kosko, and Gaussian MF. The time measurements are given for single-
threaded and multi-threaded applications. For testing purposes, we took the Mo-
bile malware dataset whose results are presented in the Table 4.48 for SOM sizes
ranging from 9 to 100 nodes. It has been measured by the execution of the imple-
mented version in a single- and multi-threaded mode.

Table 4.48: Time required to learn three types of NF models with respect to three methods
of SOM size determination using 6 parallel threads

SOM size Extr. rules MF Method Sequential , sec Parallel , sec

3x3 16
Simple 0.3958 0.3619
Kosko 0.3936 0.3131
Gaussian 0.3825 0.1239

5x5 35
Simple 0.5534 0.3912
Kosko 0.8001 0.4723
Gaussian 0.8237 0.2492

10x10 49
Simple 0.6415 0.4771
Kosko 1.1222 0.6571
Gaussian 1.1539 0.3567

The computational complexity is an important issues that affects decision whether
to use particular methods while dealing with data complexity that will affect the
execution time. The proposed method of SOM size determination requires less
time than "Rule of thumb" and Vesanto methods when Parallel execution is used.
As we can see from the Table 4.45, the accuracy of the proposed method is much
better. Also, the utilization in systems with a bigger amount of CPUs (tens of
execution threads) may yield even better results. However, the simple MF model
uses less time when it comes to Sequential execution due to simplicity of the MF
and corresponding calculations.

250 Application in Digital Forensics Science

Space Complexity

In order to estimate the required space (memory) complexity of the Kosko and
proposed scheme for storing the fuzzy rules parameters, we modelled both stages
of NF using the same clustering results from SOM. In this experiment, we did
not estimate the size of the Rectangular fuzzy patches since its and Kosko fuzzy
patches use triangular MF and occupy the same amount of space. The results of the
experiment for the Mobile malware dataset model are presented in the Table 4.49.
The dataset has 41 features and 596 data samples, which results in 24 rules using
the proposed method of SOM size determination, 39 for Vesanto and 48 for "Rule
of thumb" methods. The structure describes the necessary amount of memory to
initialize storage for each rule without data inside, rule shows the memory needed
for each rule, while model presents total amount of memory including storage
overhead required for the extracted classification fuzzy model.

Table 4.49: Comparison of the size fuzzy rules for two types of MF using different archi-
tectures: 32 and 64 bits. The measurements are: Structure - size of empty rule structure,
Rule - size required to store a single rule, and Model - total size required to store all the
classification rules.

SOM size Architecture MF types Required size & overhead, Bytes
Structure Rule Model

"Rule of thumb" 48r.
32 bit Triangular 24 872 41,856

Gaussian 28 15,848 760,704

64 bit Triangular 48 1736 83,328
Gaussian 56 31,688 1,521,024

Vesanto 39 r.
32 bit Triangular 24 872 34,008

Gaussian 28 15,848 618,072

64 bit Triangular 48 1,736 67,704
Gaussian 56 31,688 1,235,832

Proposed 24r.
32 bit Triangular 28 872 19,184

Gaussian 24 15,848 348,656

64 bit Triangular 48 1,736 38,192
Gaussian 56 31,688 697,136

The proposed radial-basis rules need to store M · M elements of the inversed
covariance matrix +NS centroids, while triangular needs only the 2 ·NS centroids.
This means that the size of the rules in data analysis will converge to a number of
samples, which means that if M << NS , then the size of the elliptic Kosko and
Rectangular rules will exceed the size of the Gaussian MF making them more
demanding in storage complexity. The size of the proposed model can be saved
by exploiting the symmetric property of the covariance matrix. Otherwise, the
proposed rules will occupy more space on the small sample. As can be seen from
the Table 4.49, the complete model of 24 rules can be stored in RAM using ≈ 38

4.6. Mobile-Device Virus Analysis 251

KBytes for triangular MF rules and ≈ 750 KBytes for the proposed MF on 64
bit PC. The Vesanto and "Rule of thumb" methods require at least 2 times more
space for the model, exceeding 1MByte. The size looks reasonable considering
the capacities of modern computers. This makes it possible to apply the rules
on the embedded devices with a significant resource limitation, since the vectors
are stored in contingency memory and don’t require multiple random accesses for
inference. Modern mobile devices provide 0.5-1GB of RAM with much greater
storage space, which is sufficient for use by the proposed model.

Summary: This subsection addresses the problem of optimal SOM size determ-
ination used on the 1st stage of Neuro-Fuzzy. It was studied how the trade-off
between the accuracy of the resulting NF model and the interpretability can be
achieved with respect to the malware analysis in Digital Forensics. We have pro-
posed a new, efficient, and fast approach to deriving an optimal number of nodes
in SOM to be clustered using data analytics rather than an alteration of the data-
set. Experiments on different datasets proved the applicability of the method using
simple triangular, Kosko, and Gaussian MF with corresponding rectangular and
elliptic fuzzy patches configuration. The proposed method decreases the num-
ber of effective rules from 42 in Vesanto and 39 in "Rule of thumb" methods to
24 in the case of Android malware detection, based on versatile features collec-
ted from static and dynamic tests. The number of suggested rules is decreased
from 189 in the Vesanto method to 13 in proposed method, and the classification
accuracy grows due to a smaller spread of the clusters, achieving 92%. Finally,
the proposed method uses less time to train a fuzzy model compared others while
applying Gaussian MF.

4.6.6 Dynamic Feature-based Expansion of Fuzzy Sets in Neuro-Fuzzy for
Proactive Malware Detection

In this subsection, we present the results of the proof-of-concept demonstration of
the proposed DENF method for malware analysis.

The dataset was collected from real Android OS applications, so it might contain
different means of functionality obfuscation, encryption, etc. Later, the following
features were extracted from the original dataset using the Information Gain fea-
ture selection method: targetSdkVersion, permissions_highest, permissions_avg,
package_number_files, and manifest_size, classes_dex_size . These features were
transformed into the fuzzy sets with a defined number of fuzzy terms. Note that the
final dataset includes 6 features out of 36 that are proven to be efficient in malware
detection with a high classification rate under cross-validation by SC and other
methods. Furthermore, we define several cases that expose the implications of the
proposed improvements in Hybrid NF re-training over the conventional method.

252 Application in Digital Forensics Science

For the experiments, we created general fuzzy sets of each of the aforementioned
numerical features and split them in two commonly used sets of terms. Gaussian
membership functions with corresponding means and spread were used, since ac-
cording to the three-σ law, such an approach provides the coverage of the large part
of the distribution of the numerical feature. Moreover, this offers a naive approach
for automated fuzzification.

For the 3-terms set, we used following terms:

(LOW,MEDIUM,HIGH) =

(µ− 2 · σ;µ;µ+ 2 · σ)
(4.18)

For 5-terms set we used the next terms:

(V ERY LOW,LOW,MEDIUM,HIGH, V ERY HIGH)

= (µ− 3 · σ;µ− σ;µ;µ+ σ;µ+ 3 · σ)
(4.19)

Experimental Design

In fact, we created the environment that simulates the learning of Hybrid Neuro-
Fuzzy prior to and after adding the new term. To evaluate the performance of the
method, we used an accuracy measure:

Acc =
Nbenign +Nmalicious

N
(4.20)

where Nbenign is the number of properly classified benign samples, Nmalicious is
the number of properly classified malicious samples, and N is the total number of
software samples.

The Fuzzy Logic part of NF used automatic statistical parameters allocation for
each of the 3 fuzzy sets. The ANN part of NF was initialized with initial weights
values 0.5, a fixed learning rate of α 0.1, 100 training epochs, and the first 10
rules were selected based on importance11, which will be mentioned later in the
justification for these parameters. On this dataset, the one-layer ANN provides
classification accuracy of 86.9205%, which will be the reference point for our
further comparison.

Results & Analysis

Finally, we simulated the following cases that shuld be considered while construct-
ing pro-active malware or intrusion detection systems:

11The importance of the selected rules was taken as proportional to the rules weights. The logic
behind this was that the higher weight will result in voting for the rule, which denotes its importance.

4.6. Mobile-Device Virus Analysis 253

Case 1 - Fixed set of terms in a fuzzy set. The NF was trained using the 3 linguistic
terms in each fuzzy set. The results are shown in the Table 4.50. This case refers
to an initial learning of the NF based on the given data set.

Case 2 - A single linguistic term is added to a single fuzzy set variable. A new term
VERY HIGH is being added to the fuzzy set targetSdkVersion besides the existing
3 terms in this set. Then, the comparison of the performance for NF12 and DENF
was made. The results are presented in the Table 4.50.

Method Case 1, % Case 2, % T trainpar. , sec T trainseq. , sec T slct.par. , ms T slct.seq. , ms
Simple NF 83.61 82.62 12.1351 99.3929 2.1 17.0

DENF - 82.95 2.9108 29.4822 1.0 1.0

Table 4.50: Accuracy, required re-training, and rules selection time with and without
parallel optimization

The DENF is not used for Case 1 since the given dataset is fixed and only general
NF was trained from it. There is an increase in the accuracy from using DENF
for the set that can be explained by the concept drift and the outdated information
in the trained NF. The time required for re-training of the DENF against training
of NF from scratch is 12.1351 seconds against 2.9108 seconds respectively that is
considerably significant in terms.

In addition to this, we have cross-validated the results of our method’s accuracy
using community-accepted Machine Learning methods implemented in Weka, as
shown in the Table 4.51. SVM has the lowest possible accuracy of 66.8874%,
which is on the lower end for binary classification problems. Further, C4.5 shows
the accuracy of 91.3907% with 29 leaves and the size of the tree equal to 57. The
highest accuracy of 93.2119% was achieved using k-NN. Even though we did not
find that the method can support dynamic fusion of the rules, the proposed method
is at least consistent with the presented results.

Method SVM ANN1layer MLP20layers K-NN NaiveBay. JRip C4.5 BayesNet
Accuracy 66.88 87.08 92.21 93.21 87.25 91.72 91.39 91.05

Table 4.51: Accuracy of ML methods on the dataset, in %

Dependence of Accuracy on Number of Fuzzy Rules

During the experiment design, we performed a study of the performance of generic
Neuro-Fuzzy with respect to the number of terms in fuzzy sets as it is shown in

12Note that the time to retrain NF is be the same as initial training

254 Application in Digital Forensics Science

8 16 24 32 40 48 56 64 72 80 88 96 200 400 600

Number of selected rules

60

70

80

90

A
c
c
u
ra

c
y
,

%

NF, 10 epochs NF, 100 epochs
NF, 1000 epochs ANN (no FL), 100 epochs

Accuracy of Neuro-Fuzzy, 3 terms per fuzzy set

(a)

4 8 12 16 20 24 28 32 36 40 44 48 52

Number of selected rules

60

70

80

90

A
c
c
u
ra

c
y
,
%

NF, 10 epochs NF, 100 epochs
NF, 1000 epochs ANN (no FL), 100 epochs

Accuracy of Neuro-Fuzzy, 5 terms per fuzzy set

(b)

Figure 4.29: Accuracy of Neuro-Fuzzy model using 10,100, 1000 epochs in ANN training
with selected number of fuzzy rules NS ≤ NC and reference ANN accuracy

the Figure 4.29. The figure shows that the smaller a fuzzy set is, the more robust
are its results in classification. Additionally, the increase in the amount of training
epochs may give better results, though the training time depends linearly on the
amount of epochs.

The amount of rules should be reduced to keep the model simple and understand-
able. Therefore, one of the main challenges to rule selection is the selection criteria
and amount limitation. A smaller amount of rules brings more certainty in malware
detection while a model without pruning possesses a higher error rate. Thus, we
proposed a selection method based on the significance of the rules using weights
of the trained model. It was also observed that in the proposed method, the values
of the membership function of the rules with less importance are negligibly low,
and can therefore be eliminated.

Summary: The main idea of this research is to show how pro-active malware
analysis can be optimized with respect to the need for dynamic changes in the
model by means of adding new software characteristics without complete model
re-training. Since the Neuro-Fuzzy approach does not possess the flexibility in
the re-training of the model when the fuzzy sets are changed, we have proposed
a DENF method. It is based on the fuzzy rules γ-memory from the initial train-
ing and δ-memory that contains newly contracted fuzzy rules based on the added
characteristics. Also, we used the automated allocation of the statistical paramet-
ers in each fuzzy set based on the analysis of the given dataset. To demonstrate
its efficiency, we considered the performance of the DENF and NF methods i two
cases: in fixed fuzzy sets and when a single new linguistic term in a fuzzy set has
been added. The time needed to execute DENF is in nearly 4 times less than is
needed for NF to re-train, while the accuracy is increased from 82.62% to 82.95%

4.7. Privacy Preserving & Access Control 255

when a new term has been added in the fuzzy set. Pointedly, the accuracy is less
than in ANN since an abstraction level is added. Also, Fuzzy Logic must be tuned
manually, and in this case the automated extraction of fuzzy rules parameters was
used. For future work, we foresee research on the deletion of the terms not only
in a single fuzzy set, but also across multiple sets. Additionally, model fusion can
be proposed for more efficiency in dealing with both initial and re-trained mod-
els parameters. Finally, the lightweight frameworks can be constructed for use as
Decision Support System.

4.7 Privacy Preserving & Access Control13

Artificial Neural Network (ANN) is one of the most powerful methods capable
of modelling complex non-linear relations between input data and the output de-
cision. It has been successfully applied in a number of fields in Information Secur-
ity, such as Intrusion Detection [315] and web attacks classification [372]. Access
Control (AC) is one of the most important tasks of Information Security. Modern
AC models and policies are based on a specifically predefined set of rules for a
single user or group of users. The challenge comes when dealing with agile en-
vironments like grid-systems or a cloud environment according to Bedi et al. [74],
making traditional access methods less efficient. Below we target the on-line learn-
ing of the AC mechanism based on the flow of access logs data. Despite the wide
applicability of Multilayer Perceptron (MLP), which is a type of ANN, its usage
in data streams mining brings additional limitations such as the availability of data
in a very short time period. MLP is capable of providing fast responses [350] how-
ever, so we believe that the optimization of MLP learning may facilitate similarity-
based AC.

4.7.1 Dataset

The Kaggle Amazon Employee Access Challenge [211] was used as an access log
to test the proposed method. It consists of training 32,768 data records charac-
terized by a 9 integer-valued feature as access requests: ACTION, RESOURCE,
MGR_ID, ROLE_ROLLUP_1, ROLE_ROLLUP_2, ROLE_DEPTNAME, ROLE_
TITLE, ROLE_FAMILY_DESC, ROLE_FAMILY, ROLE_CODE. ACTION is a
binary class label: 0 - action against resource is denied (1,897), 1 - action is ap-
proved (30,871). Since the original labeled testing dataset of the challenge is not
published, we decided to use the model by Duan et al. [129] with the performance
of AUC = 0.92360 as a reference testing dataset that consists of 58,921 test data
samples.

13The main ideas of this section are published under the contribution [370]

256 Application in Digital Forensics Science

4.7.2 Experimental Design

For proof of concept demonstration, we used only 3 out of 6 layers according to
the "Rule of thumb" optimal Nhidden = 2

3 · (NIn+Nout), and defined a generally
accepted fixed learning rate α = 0.3. Also, the amount of epochs for off-line
learning was defined as 10 and 1 for the optimized single-step model.

These metrics provide an opportunity to compare the results of an optimized MLP
model with other implementations. The implementation is capable of scaling and
expanding to any number of features and hidden layers. The MLP architecture
used has a rectangular unbiased structure, since the idea of the model was to find
an appropriate set of learning rates over a single step. That means that as a single-
control point of the layer, bias might be irrelevant because it requires manual ad-
justments [232]. The Figure 4.30 shows the experimental design using the pro-
posed method.

Figure 4.30: Proposed method for single-step on-line learning

We assumed that a set of pre-defined access policies and known access patterns
could be found by selecting a specific fraction of the data for training before the
data stream is fed to the model. The following experiments were conducted: (i)
100 samples were used for training, followed by the data stream of test data.
(ii) 1,000 samples are used as training data and then testing is done for the new
samples from the data stream. We also performed a standard batch learning and
cross-validated the accuracy of the implemented method in C++, in comparison
with community-accepted implementations in Weka [149] and RapidMiner [14]

4.7. Privacy Preserving & Access Control 257

as shown in the Table 4.52. The optimized model used 10 iterations of GA with
10 chromosomes in each population, and 4 mutation and 7 crossover operations;
other MLPs used 100 epochs. The results look consistent. Generally, RRSE is a
description of the mean prediction. In this case, we can see that the mean is biased
towards an approved action "1", as the majority of access patterns in a system are
legitimate. Therefore, all implementations show a similarly high value of RRSE.

Method MAE RMSE RRSE, %

MLP impl. 0.061 0.140 100.849
MLP impl. + GA 0.054 0.142 102.665
Weka MLP 0.061 0.149 107.554
RapidMiner MLP 0.059 0.151 108.700

Table 4.52: Performance of implementations on static dataset

We performed experiments having a data stream with a limited availability of data
samples for training.

4.7.3 Performance Evaluation

For the comparison of the implemented model on the testing data, several met-
rics were used such as Mean Absolute Error (MAE), Root Relative Squared Error
(RRSE), and Root Mean Square Error (RMSE), considering that the data streams
mining model is regressional according to Bifet [80].

MAE =
1

N
·
N−1∑
i=0

|yi − di|

RRSE =

√∑N−1
i=0 (yi − di)2∑N−1
i=0 (yi − d̄)2

RMSE =

√√√√ 1

N
·
N−1∑
i=0

(yi − di)2

(4.21)

4.7.4 Results & Analysis

Similarity-based Access Control performance

We performed single-step on-line learning of the MLP as well as cross-validation
of incoming data in the data stream S. The experiment was built as follows: the
boundaries of α for GSS and GA were chosen to be [0, 1]. The MLP started from
randomly initialized weights and trained with l% samples from the training data-
set. The stream of k% samples from the classified test dataset is then fed to the

258 Application in Digital Forensics Science

model. Moreover, the trained dataset constantly trains the model while new test
data samples arrive. Finally, the earlier-defined performance metrics are computed
over classified samples from the test dataset. The Table 4.53 represents the res-
ults for the on-line scenario. The GSS method used the same number of iterations
as number of epochs in the GA. Original MLP without optimization trained 10
epochs, and MLP with optimization only one.

Table 4.53: Performance comparison of MLP on test dataset in on-line incremental learn-
ing using optimized and non-optimized techniques in data stream scenario

Method MAE RMSE RRSE, %

start with 100 pre-training samples

MLP (1 epoch) 0.065 0.180 36.117
MLP (10 epochs) 0.070 0.179 35.933
MLP + GSS (1 epoch) 0.060 0.173 34.682
Proposed 0.054 0.167 33.567

start with 1000 pre-training samples
MLP (1 epoch) 0.056 0.155 32.184
MLP (10 epochs) 0.057 0.155 32.183
MLP + GSS (1 epoch) 0.052 0.150 31.210
Proposed 0.038 0.140 29.078

The results show that the proposed method gives better accuracy on all perform-
ance metrics for 100 and 1,000 access log samples that were available for the initial
pre-training. However, such an application of GA for on-line MLP optimization
has higher computational complexity cost than the simple utilization of constant α.
Therefore, we believe that parallel optimization can help to achieve fast processing
speed, since sequential execution would be much slower than standard MLP. This
can be done using modern CPU and GPU.

Error surface influence on MLP training

The fitness function used in GA is basically the same as the error function in MLP
E(W). The derivative on each step is estimated in the neighbourhood of the cor-
responding neuron weight w with precision h = ±10−6 in error cost function
E(W), while keeping constant all other weights and the input data sample. To
study the dependency between the weights change and error function, two arbitrary
weights were chosen on the lower layers (w1

3 and w1
9) in the 3-layers perceptron.

Figure 4.31 shows the surface of the error function for two arbitrarily-selected
weights. Unless some sophisticated learning rate updating methods and stopping

4.7. Privacy Preserving & Access Control 259

criteria are used, the EBP will converge to a sub-optimal solution.

Figure 4.31: Surface of the error function showing dependency of E(W) on w1
3 and w1

9

as covariates in 3-layers MLP that was trained from the given dataset

The Figure 4.32, (a) represents an example of the path of both weights along 1,000
iterations until it gets converged. The learning rate stayed constant, showing that
the path is gradually following one direction. On the other hand, Figure 4.32, (b)
shows that the proposed method has broader coverage of the search space, giving
a higher chance of achieving an optimal solution for the non-linear error function.

(a) Conventional MLP training with a
constant learning rate α

(b) Proposed method for individual learning
rate α optimization

Figure 4.32: Path traverse of the weights w1
3 and w1

9 in MLP

Considering smooth transition between minima and the neighbourhood of the error
function in the Figure 4.31, we can see that the proposed method will likely result
in a better solution than when training ML with a constant step. Therefore, MLP
can be trained using adoptive rate α approach with a higher number of layers faster
rather than with a fixed-rate iterative line search.

Summary: Conventional off-line learning of Multilayer Perceptron is no more re-

260 Application in Digital Forensics Science

liable for data streams mining since it requires more iterations to learn and does
not converge quickly. As a result, it cannot be successfully applied for on-line
training of Similarity-Based Access Control models, where the attributes of re-
source and user can be utilized to evaluate whether similar users may access sim-
ilar resources. To overcome this limitation, a single-step learning of Multilayer
Perceptron can adjust the model once new access requests come, and does not re-
quire constant access to that pattern. In this thesis, the Evolutionary Computing
method was utilized, Genetic Algorithm in particular. We consider this method to
be more robust in an environment with a consistent drift of the data statistics and
non-deterministic events. The influence of the weights of the layers on the error
function was also studied, and we can state that it requires better optimization due
to non-linearity. Therefore, we proposed how the appropriate learning rate α cal-
culation can be done using Genetic Algorithm for each neuron in accordance with
an optimal solution on each layer. This eliminates the need for constant iterative
batch learning of the Multilayer Perceptron, allowing the model to be a single step.
Finally, one of the main benefits of the proposed method is that it scales and can
be used for larger non-linear Neural Networks.

Chapter 5

Summary & Future Work

In this chapter, we provide a brief overview of achieved results and discuss their
implications for future work. Big Data is a reality and Cyber Crime Investigat-
ors are confronted with a great amount and complexity of seized digital data in
criminal cases. Human experts are sitting in Courts of Law and making decisions
with respect to evidence found and presented. Therefore, there is a strong need
to bridge data processing and automated analysis for providing representations of
human-understandable results. There is a history of the successful application of
Machine Learning methods in Digital Forensics, such as Artificial Neural Net-
works, Support Vector Machines, and Bayes Network. The challenge with this ap-
proach, however, is that such methods neither provide human-explainable models
nor can work without the prior knowledge required for inference and data repres-
entation. In this thesis, we focus on Neuro-Fuzzy, a Hybrid Intelligence method
that is capable of connecting two worlds: Computational Intelligence and Digital
Forensics. Generic Neuro-Fuzzy methods showed poor performance on a class of
Digital Forensics data analysis problems and required specific improvements in
order to be applicable. So, our goal was to revise this method to be able to extract
fuzzy rules that would be further presented in a Court of Law, rather than a set
of weights or parameters generated by other models. Also, the enhancement of
Neuro-Fuzzy by Deep Learning shows that the results of a data-driven approach
can be fine-tuned for modeling a high-level abstraction in complex data.

5.1 Summary of Findings
This thesis is inspired by the exponential growth of data stored on digital carriers
that are being seized in Cyber Crime Investigations. In most cases, the manual
work of a forensic expert is required to process a large amount of data and extract

261

262 Summary & Future Work

a human-understandable model. The challenge with this lies in the amount and
complexity of data. Below, we summarize our work on automated rule-extraction
and classification for Digital Forensics. In this Section, we present the general
findings that were made during work on the dissertation.

5.1.1 Main Contributions

The contributions are divided into the following sub-areas: (i) Study of applicab-
ility of Machine Learning and Soft Computing methods in particular for Digital
Forensics, (ii) Multi-part improvements of Neuro-Fuzzy upon a comprehensive
analysis of the method’s drawbacks and requirements in advanced data analytics,
(iii) Multinomial classification by Neuro-Fuzzy as a non-trivial problem, and (iv)
a novel large-scale dataset of PE32 files that includes multiple families and cat-
egories.

Soft Computing in Digital Forensics

One of the contributions of this thesis is a survey and description of static-based
malware detection using Machine Learning techniques. After a preliminary liter-
ature study, we performed an extensive review of the relevant scientific works. We
provided an in-depth overview of static malware characteristics with correspond-
ing feature construction methods. Furthermore, we created a taxonomy based on a
comparison of different cases of ML methods, which will be given with guidelines
for the usage and utilization of available implementations. Later, we gave a tutorial
on how these methods are applied in real large-scale scenarios. We also discussed
the applicability of each particular method based on its achieved accuracy. Thus,
this thesis contributes as a survey of the existing state of the art in malware analysis
using machine learning. We believe that static analysis has great potential, and can
facilitate large-scale malware detection; this is the answer to the RQ 1.

Additionally, we studied Soft Computing as a sub-field of Machine Learning.
Given Digital Forensics requirements for large-scale machine-aided analytics, Soft
Computing methods are prominent among Computational Forensics approaches.
There is a high demand for the automated analysis of large-scale data in different
fields of Forensics Science, considering the emergence of Big Data. In this thesis,
we presented an insight into how Soft Computing can be used to provide not only
explainable, but also a forensically sound analysis of evidence data. Furthermore,
it is possible to combine SC with search models in order to obtain explainable
Computational Forensics models. Moreover, we looked at the optimization by
meta-heuristic methods that improve the required performance when dealing with
Big Data challenges. We also presented an overview of our own work done to
improve the performance of Soft Computing in Forensics Science by means of

5.1. Summary of Findings 263

hybridization. So, to answer the RQ 2, Neuro-Fuzzy methods and its improve-
ments approached the fields of Forensics Science such as malware analysis and
network forensics. Also different aspects and improvements of information fusion
and on-line learning were considered as a part of answer on the RQ 3.

Improvement of Neuro-Fuzzy rule-extraction classification model

As was found, Neuro-Fuzzy can provide the accurate and human-understandable
data representation required by Digital Forensics testimony in a Court of Law.
However, the fuzzy inference system proposed by Kosko [233] based on Mamdani-
type linguistic classification rules is not suitable due to its intrinsic inability to
handle complex and large-scale data. To handle this, an improved NF was pro-
posed to facilitate large-scale analysis in digital forensics. A number of applica-
tions were successfully studied. We made a synergy of optimal SOM parameters
inference, the most appropriate method of fuzzy regions construction and corres-
ponding MF that can be derived to incorporate all possible information on the 2nd

step of NF. The new method showed great improvement in performance and the
required learning and inference time in comparison to classical approaches. Ad-
ditionally, it was observed that bootstrapping on the 1st stage of NF may result in
a lower amount of rules and a more generalized classification model based on the
fuzzy rules. The proposed theory is mainly an answer to the RQ 3 and RQ 4.

A novel Portable Executable 32bit dataset

One of the main objectives of this thesis was a feasibility study of the application
of Neuro-Fuzzy for large-scale data analytics problems that exist in the Digital
Forensics area. There already exists the KDD CUP 1999 dataset for Network
Intrusion Detection, even though it is considered outdated and old when dealing
with firewalls and IDS testing. However, such a public dataset is missing in the
area of malware analysis. Therefore, we originally collected 400k PE32 malware
species for MS Windows OS, later filtered down to 328k malware samples. It can
be considered a large-scale dataset suitable for our experiments since the datasets
used in studies before are mostly small sets with thousands and tens of thousands
of samples [333, 458, 385, 82]. Finally, we investigated large-scale malware de-
tection using Soft Computing methods based on the static features extracted from
PE32. It is important not only to distinguish between benign and malware files, but
also to understand what kind of malicious file it is: malware family and type. To
explore this problem, we created a novel dataset of malware features with respect
to families and types using publicly available sources and tools. By building this
dataset, our intention was to facilitate an answer to the RQ 5.

264 Summary & Future Work

Multinomial classification in Neuro-Fuzzy

A majority of work in the area of Computational Intelligence for security normally
considers mostly binary classification problems where there are defined "benign"
and "malicious" classes. This approach can be found in both malware analysis
and intrusion detection. On the other hand, one of the few works that considered
aspects of multinominal classification was written by [303] and is devoted to Arti-
ficial Neural Networks. So overall, one can see that there is a lack of contribution
towards multi-class problems and corresponding Neuro-Fuzzy training.

In this thesis, we proposed a set of improvements towards the application of Neuro-
Fuzzy in multinomial classification problems. Digital Forensics requires one to
find not only "benign" or "malicious" activity patterns, but also to distinguish
between multiple "malicious" patterns. However, a conventional single-output
NN method must work with either two sets of classes or alternatively requires
additional outputs per class. In order to overcome multiple outputs encoding in
the Neuro-Fuzzy, we suggested using a single-output mode for reduced overhead
and training time. The corresponding Center of Gravity defuzzifier was modified
to be compliant with Mandani-type rules as well as to incorporate class labels.
Finally, we established a baseline for creating Deep Neuro-Fuzzy that has great
potential when combining human-perceivable computational models and higher-
level abstractions. This part provides answers and considerations to the RQ 5 and
RQ6.

5.1.2 Overview of Main Results

During our thorough analysis of the Neuro-Fuzzy rule-extraction classification
method, we found that its application for Digital Forensics is promising, but holds
a number of drawbacks such as (i) an inability to learn from real-world data in
comparison to state of the art methods, (ii) the output model is often too large,
so human experts will not be capable of understanding it, (iii) a strong overfitting
in case of large-scale data caused by a huge number of rules, and (iv) part of the
training data is neglected since the intrinsic learning procedure does not represent
it in the final classification model. Because of this, Neuro-Fuzzy has been under
criticism and has not been widely used in the area before. Our research has tar-
geted the improvement of Neuro-Fuzzy and facilitated its application in Digital
Forensics.

Self-Organizing Feature Map Parameters Inference

We have proposed a new method for forensically-sound fuzzy rules construction
using NF on the optimal SOM size determination using exploratory data analysis.
The main idea was to produce an accurate model with a moderate amount of fuzzy

5.1. Summary of Findings 265

rules that will also be human-understandable, and that can be used in Network
Forensics Readiness effectively. The known Vesanto method for SOM size pro-
duces a vast amount of clusters that result in complex models that require enorm-
ous computational resources when dealing with Big Data in Digital Forensics In-
vestigations, particularly with large-scale datasets that contain millions of data
samples. Better generalization of the Neuro-Fuzzy method using the exploratory
analysis of data for SOM clustering was proposed, particularly targeting large-
scale datasets.

The proposed improvements of the 1st NF stage along with bootstrap aggrega-
tion gives considerably better performance both in terms of accuracy and required
training time. We have studied the influence of bootstrap aggregation on the final
model using 1% of the dataset. We can state that it can be used to improve the
generalization of the extracted clusters, though the accuracy might degrade. Also,
the Vesanto method is not suitable for use with bootstrap aggregation due to the
lower number of samples available for clustering.

Elliptic Fuzzy Patches Estimation

Big Data analytics requires new and enhanced models to handle complex problems
such as Network Forensics Readiness and network traffic analysis. The conven-
tional Neuro-Fuzzy method is very much affected by overfitting, reduced explain-
ability of the classification model, and enormous training time when it comes to
million-sample sized datasets. As a result, faster and more accurate models are
required. Therefore, the proposed improvements can serve as a stepping stone for
real-time protection and forensically-sound evidence collection in network envir-
onments.

Kosko [233] proposed a better way of data description than simple rectangular
patches. It used elliptic fuzzy patches for function approximation with an empirically-
estimated pseudo-radius α, which must be derived experimentally. In contrast, the
new method for fuzzy patches construction on the 2nd NF stage improves classi-
fication accuracy by automating the estimation procedure. We can see that a lower
number of fuzzy rules requires more advanced techniques to incorporate inform-
ation from data than using the Kosko method with triangular MF based on the
projections. The proposed method for fuzzy patch construction uses χ2 tests to
find the parameters of each patch. The method was implemented and showed bet-
ter accuracy results and learning time on a desktop computer using four different
datasets, each having an average amount of over 5 million samples. Current Ma-
chine Learning methods and their implementations are designed to handle tens of
thousands of data, yet have complexity issues with bigger sets. Thus, the estima-
tion of the pseudo-radius α of a hyper-ellipsoid can be done automatically using a

266 Summary & Future Work

χ2 goodness of fit test rather than a manual approach in the Kosko method.

Gaussian Membership Function

Simple triangular membership functions show high error levels when learning
complex high-dimensional data. Kosko [233] developed a better triangular mem-
bership function based on the projections of hyperellipsoids on features axes. How-
ever, the main drawback is that it does not incorporate data distribution and correl-
ation properly. To mitigate this, Gaussian approximation of the data distribution
offers an improved data approximation and better Neuro-Fuzzy model accuracy
than classical rectangular fuzzy patches. A Modified Gaussian Fuzzy Member-
ship Function provides a robust estimation of membership degree with respect to
data properties, which can’t be achieved with triangular or Kosko projection-based
Membership Functions. The achieved accuracy of the proposed improvement was
98.787% when using 39 rules against 98.790% with 10,231 rules when applying
the original method. For future research, we will investigate the utility of non-
parametric models for elliptic regions estimation.

Multinomial Classification

Improvements were proposed towards the application of Neuro-Fuzzy in multino-
mial classification problems, such as web attacks detection. A majority of Digital
Forensics applications require finding not only "benign" or "malicious" activity
patterns, yet also distinguishing between multiple "malicious" patterns. However,
a conventional single-output Neural Network-based method must work either with
two sets of classes or alternatively requires additional outputs per class. In order to
overcome multiple outputs encoding in the NF, we proposed to bound clustering
results of SOM for better statistically-sound fuzzy rules parameters as well as ap-
ply a modified Gaussian membership function. Then, we suggested using a single-
output mode for reduced overhead and training time. The corresponding Center
of Gravity defuzzifier was modified to be compliant with Mandani-type rules as
well as to incorporate class labels. Reconsideration of the application of Neuro-
Fuzzy for multinomial problems yields positive results, showing the need for more
advanced data modeling. Later on, a new approach to modeling non-linear data
using the standard Neuro-Fuzzy method results in using Deep Learning. The deep
Neuro-Fuzzy approach is designed to handle highly non-linear data while giving
robust classification, and outperforms contemporary Neuro-Fuzzy which has con-
siderably lower accuracy on multinomial problems.

A novel dataset for Windows malware analysis

A novel large-scale collection of the Portable Executable 32bit malware files was
composed as a part of this PhD thesis. It consists of 328k labelled malware families

5.2. General Considerations 267

(10,362) and categories (35), which was further tested as a non-trivial multinomial
classification problem, neither sufficiently studied in the literature nor explored
before.

5.2 General Considerations
Below, the outcomes of this dissertation will be presented along with a critical
analysis of the achieved results and their possible application.

5.2.1 Theoretical Implications

In this thesis, we focus on improving the Hybrid Intelligence method Neuro-Fuzzy,
a combination of Artificial Neural Networks and Fuzzy Logic. As was mentioned
in the beginning of the thesis, the biggest challenge in building a fuzzy rules model
is seeking for an optimal trade-off between accuracy and interpretability. In the
research [199], Ishibuchi stated it as a multi-objective problem as follows for the
fuzzy-based system F :

max
S

(Accuracy(F), Interpretability(F)) (5.1)

It is not easy however for a forensics analyst to define the appropriate paramet-
ers, especially when dealing with Big Data. The accuracy can be measured easily,
while the interpretability measures are not easy to define. Some of the main fea-
tures used to study their interpretability were number of rules, number of MF, etc.
The number of conditions in the rules should not exceed 7±2, which is a boundary
that human brain can handle according to Gacto et al. [156]. However, the num-
ber of features sometimes can be much more than this limit. Thus, the only way
to limit the complexity of the model is to shorten the number of rules. Accord-
ing to Alonso [53], the maximum number of rules acceptable by the user should
be greater than or equal to that 103 times number of classes. Therefore, as has
been shown, the pre-stage that is based in exploratory data analysis simplifies the
resulting fuzzy rules-based classification model.

Because of the promising utility for Digital Forensics, we believe that an improved
Neuro-Fuzzy rules-extraction classification model can find application in other do-
mains of Information Security where there is a need to build accurate linguistic
models for classifying malicious and benign or other activities. Additionally, we
studied the performance of binary- and multinomial classification methods and can
say that multinomial classification models generally perform better and faster on
all sets than ensembled binary classifiers. However, not all of them can produce
an understandable model as in the case with NF. Therefore, we believe that it is
better to use multinomial NF with the proposed improvements for attacks differ-
entiation to achieve consistent classification results by fuzzy rules. To sum up,

268 Summary & Future Work

Neuro-Fuzzy is a promising method that is capable of fulfilling the needs of Cyber
Crime Investigations towards faster and more accurate Big Data analytics.

5.2.2 Practical Considerations

The amount of digital information being processed in Cyber Crime Investigations
is growing exponentially each year. Human experts have been losing their ability
to reasonably process such information manually during the last decade. Currently,
manual data analytics can be considered an inefficient and expensive measure, and
therefore must be focused on decision making rather than a thorough investigation
of each piece of data.

Human-understandable Machine Learning model

As there is need to bound the grid size to improve the generalization, it is reason-
able to use less than 52 rules for the human-understandable model as studied by
Ishibuchi et al. [199]. Our experiment was conducted at NTNU Testimon Forensics
group during 2014-2016 and includes a comprehensive evaluation of the proposed
methods with respect to challenges and requirements in variety of different large-
scale real-world applications, such as KDD CUP 1999, PKDD 2007, the novel
PE32 files collection, and the SUSY and HIGGS datasets. We discovered that the
proposed Neuro-Fuzzy improvements help to considerably decrease the amount
of fuzzy rules in the classification model, with a trade-off between accuracy and
interpretability.

Large-scale data analysis for Digital Forensics

Due to the growth of network bandwidth, the capacity of digital storage, and the
development of new attack scenarios, Digital Forensics faces multiple emerging
challenges related to large-scale dataset processing and evidence extraction, as
mentioned in the report by Ernst & Young [141]. It is important not only to
detect an anomaly and classify it as a likely attack, but also to provide human-
understandable Threat Intelligence through a corresponding statistically-based ana-
lysis. Conventional Computational Intelligence methods are no longer reliable
as they result either in a very complex model that is hard to understand or one
that takes too long to infer a meaningful model. Considering the aforementioned
obstacles, our contributions to the area through improving Neuro-Fuzzy include
mitigation of the following challenges: (1) The large amount of SOM nodes will
result in a complex and overfitted model that will be difficult to train when dealing
with large-scale datasets. An alternative method for automated determination of
the optimal SOM size was suggested. (2) The optimal SOM grid requires more
advanced fuzzy patches configuring with the corresponding MF to characterize
the data in each cluster better. (3) SOM clustering will most likely produce an

5.2. General Considerations 269

overfitted model due to the large number of specific clusters trained from the data
when applied on large-scale datasets. Bootstrap aggregation however improves
accuracy and derives a more generalized model. As a result, we proposed the new
method to avoid the model overfitting as the Curse of Dimensionality would likely
entail, and to reduce the number of extracted rules to as few as possible. We were
able to achieve better accuracy using considerably fewer rules not only using the
intrusion detection dataset (with five million network traffic packets), but also on
other publicly available large-scale datasets. Moreover, our method uses less time
and has lower computational complexity in training the classification model and
inferring fuzzy rules in comparison to other community-known Machine Learning
(ML) methods.

5.2.3 Future Work

During work on this thesis, we identified several directions that can be investigated
further, taking into consideration the aforementioned achievements. Big Data is a
buzz word that is widely used, but in most cases only means a big number of data
records, a single V of the five Big Data Vs. Therefore, the proposed improvements
of the Neuro-Fuzzy rule-extraction classification method needs to comply with
other Vs such as data Veracity and data Variety. Below, we outline the main ideas
for future research.

On-line Learning In Data Streams

As was shown earlier, Neuro-Fuzzy can be successfully used in different fields
of Information Security such as network intrusion detection and malware analysis
because of its ability to provide a high level of abstraction for complex and in-
complete data. Despite its successful application as an off-line learning method,
on-line learning can be challenging when dealing with data streams. Data streams
mining is a special field that defines such on-line models [446]. From the perspect-
ive of Information Security, it includes events monitoring, traffic processing, etc.
in addition to access logs analysis [122]. This means that the data are available
for a short time frame and should be processed in a fast on-line way rather than
an iterative off-line [336] one. On-line learning should be capable of adjusting
the parameters of the model from data when a new sample comes. Considering
this, we can say that the application of Neuro-Fuzzy in data streams mining can
facilitate Information Security, Digital Forensics in particular, and is capable of
learning on-line since off-line learning may require significant resources when the
organization size is large.

270 Summary & Future Work

Information Fusion

Information Fusion represents a general methodology used to merge and combine
existing data and parameters to achieve better results of more accurate models.
Torra [416] stated three possible paradigms that can be used in Information Fusion
such as: pre-processing, model building, and information extraction. Our particu-
lar interest is in model construction, specifically in combining of several models to
achieve a final module simultaneously or over time. This is an inseparable part of
the Information Security community, considering the number of sensors that can
retrieve information from any computer system.

Taking into consideration that NF application may require dynamic changes in an
agile environment, we can state that more advanced methods should be used to
update new added terms without complete retraining. It is a particularly critical
issue when malware detection requires fast updates of the decision rules while
adding new characteristics. The inspiration for this problem came from malware
detection using the NF method [371], where the limitations of existing approaches
were discovered. For example, when a new feature is added to Android API,
there is a need to expand the detection model, and therefore preserve accuracy of
the model with and without this feature. Pro-active malware detection needs fast
changes in the model without big latency, so NF can be modified with respect to
this requirement.

Data Characterization

Most of the data in real-world applications abide normal distribution, also called
Gaussian. At least in data used in this thesis, we noticed that the assumption about
normality in a variety of different datasets works properly, allowing the proposed
improvements to improve accuracy. This means that each measure or property
appears around the neighbourhood of so-called "central tendency" with some de-
gree of "spread" or noise. For example, a specific malware family has its own
central tendency of measures, such as file size or number of API function calls.
This means that unlabeled malware samples that are similar to those measures will
likely belong to this family. Guided by this assumption, we utilized χ2 goodness
of fit test for data grouping on the 1st stage of Neuro-Fuzzy. However, future
work should consider finding data with other types of distribution, and verifying
the performances of such tests on those data in addition to the normally-distributed
data.

Bibliography

[1] The 4 V’s of Big Data. http://www.ibmbigdatahub.com/

infographic/four-vs-big-data. accessed: 12.12.2014.

[2] The R project for statistical computing. https://www.r-project.

org/. accessed: 19.04.2017.

[3] Attribute based access control (ABAC) - overview. http://csrc.nist.
gov/projects/abac/. accessed: 27.05.2016.

[4] Naming scheme - CARO - Computer Antivirus Research Organization.
www.caro.org/naming/scheme.html. accessed: 20.08.2015.

[5] Daubert standard. https://www.law.cornell.edu/wex/daubert_

standard. accessed: 20.12.2016.

[6] dlib C++ library. URL http://dlib.net/. accessed: 10.11.2015.

[7] What is soft computing? Techniques used in soft computing. http:

//www2.cs.uh.edu/~ceick/6367/Soft-Computing.pdf. accessed:
15.01.2017.

[8] Countries with the highest average Internet connection speed as of
4th quarter 2015 (in Mbps). URL http://www.statista.com/

statistics/204952/average-internet-connection-speed-

by-country/. accessed: 21.04.2016.

[9] History of Internet Explorer. https://en.wikipedia.org/wiki/

History_of_Internet_Explorer. accessed: 09.11.2015.

[10] Locards exchange principle. http://www.forensichandbook.com/

locards-exchange-principle/.

271

http://www.ibmbigdatahub.com/infographic/four-vs-big-data
http://www.ibmbigdatahub.com/infographic/four-vs-big-data
https://www.r-project.org/
https://www.r-project.org/
http://csrc.nist.gov/projects/abac/
http://csrc.nist.gov/projects/abac/
www.caro.org/naming/scheme.html
https://www.law.cornell.edu/wex/daubert_standard
https://www.law.cornell.edu/wex/daubert_standard
http://dlib.net/
http://www2.cs.uh.edu/~ceick/6367/Soft-Computing.pdf
http://www2.cs.uh.edu/~ceick/6367/Soft-Computing.pdf
http://www.statista.com/statistics/204952/average-internet-connection-speed-by-country/
http://www.statista.com/statistics/204952/average-internet-connection-speed-by-country/
http://www.statista.com/statistics/204952/average-internet-connection-speed-by-country/
https://en.wikipedia.org/wiki/History_of_Internet_Explorer
https://en.wikipedia.org/wiki/History_of_Internet_Explorer
http://www.forensichandbook.com/locards-exchange-principle/
http://www.forensichandbook.com/locards-exchange-principle/

272 BIBLIOGRAPHY

[11] The malware database. http://malware.wikia.com/wiki/. accessed:
15.07.2016.

[12] PEiD. https://www.aldeid.com/wiki/PEiD. accessed: 2015.11.09.

[13] PeStudio. https://www.winitor.com/. accessed: 25.10.2015.

[14] RapidMiner - 1 open source predictive analytics platform. URL https:

//rapidminer.com/. accessed: 20.01.2016.

[15] tshark - the wireshark network analyzer 2.0.0. https://www.

wireshark.org/docs/man-pages/tshark.html. accessed:
05.07.2016.

[16] UCI Machine Learning Repository. https://archive.ics.uci.edu/
ml/datasets.html. accessed: 15.12. 2015.

[17] VirusShare.com. http://virusshare.com/, . accessed: 15.10.2015.

[18] VirusTotal - service that analyzes suspicious files and urls, . accessed:
09.11.2015.

[19] VirusShare BitTorrent client tracker. https://tracker.virusshare.

com:7000/. accessed: 18.09.2015.

[20] VX Heaven. http://vxheaven.org/. accessed: 25.10.2015.

[21] Personal data act. https://www.datatilsynet.no/English/

Regulations/Personal-Data-Act-/, April 2000. accessed:
07.03.2017.

[22] WinDump. https://www.winpcap.org/windump/, December 2006.
accessed: 20.06.2016.

[23] The end of AI winter? http://machineslikeus.com/news/end-ai-

winter, October 2007. accessed: 10.12.2014.

[24] CaptureBat. https://www.honeynet.org/project/CaptureBAT,
September 2007. 20.05.2016.

[25] ECML/PKDD 2007 discovery challenge - analyzing web traffic. http:

//www.lirmm.fr/pkdd2007-challenge/, September 2007. accessed:
15.12.2015.

[26] What is soft computing? http://modo.ugr.es/en/soft_computing, 2008. ac-
cessed: 04.08.2015.

http://malware.wikia.com/wiki/
https://www.aldeid.com/wiki/PEiD
https://www.winitor.com/
https://rapidminer.com/
https://rapidminer.com/
https://www.wireshark.org/docs/man-pages/tshark.html
https://www.wireshark.org/docs/man-pages/tshark.html
https://archive.ics.uci.edu/ml/datasets.html
https://archive.ics.uci.edu/ml/datasets.html
http://virusshare.com/
https://tracker.virusshare.com:7000/
https://tracker.virusshare.com:7000/
http://vxheaven.org/
https://www.datatilsynet.no/English/Regulations/Personal-Data-Act-/
https://www.datatilsynet.no/English/Regulations/Personal-Data-Act-/
https://www.winpcap.org/windump/
http://machineslikeus.com/news/end-ai-winter
http://machineslikeus.com/news/end-ai-winter
https://www.honeynet.org/project/CaptureBAT
http://www.lirmm.fr/pkdd2007-challenge/
http://www.lirmm.fr/pkdd2007-challenge/

BIBLIOGRAPHY 273

[27] A survey of access control models. Technical report, NIST, 2009.

[28] Hawking warns AI ’could spell end of human race’. http://phys.org/
news/2014-12-hawking-ai-human.html, December 2014. accessed:
13.12.2014.

[29] Attack possibilities by OSI layer. White paper, National Cyber-
security and Communications Integration Center, USA, https:

//www.us-cert.gov/sites/default/files/publications/

DDoS%20Quick%20Guide.pdf, January 2014. accessed: 17.02.2017.

[30] Windows XP support has ended. http://windows.microsoft.

com/en-us/windows/end-support-help, April 2014. accessed:
28.10.2015.

[31] 2014-2015 DDoS attack duration and magnitude dataset. Technical report,
Akamai Technologies, 2015.

[32] Volatility. http://www.volatilityfoundation.org/, 2015. ac-
cessed: 23.05.2016.

[33] Antimalware and antivirus software. http://anti-virus-soft.com/,
2016. accessed: 24.07.2016.

[34] NetMarketShare - desktop operating system market share 2016.
https://www.netmarketshare.com/operating-system-

market-share.aspx, July 2016. accessed: 13.07.2016.

[35] Stack Overflow - developer survey results. http://stackoverflow.

com/research/developer-survey-2016, 2016. accessed:
11.07.2016.

[36] H. Abdi. Encyclopedia of Social Networks and Mining. Thousand Oaks
(CA), 2007.

[37] L. Abdi and S. Hashemi. To combat multi-class imbalanced problems by
means of over-sampling and boosting techniques. Soft Comput., 19(12):
3369–3385, Dec. 2015. ISSN 1432-7643.

[38] A. Abraham. Beyond integrated neuro-fuzzy systems: Reviews, prospects,
perspectives and directions. School of computing and Information Techno-
logy, Monash University, Victoria, Australia, 2002.

http://phys.org/news/2014-12-hawking-ai-human.html
http://phys.org/news/2014-12-hawking-ai-human.html
https://www.us-cert.gov/sites/default/files/publications/DDoS%20Quick%20Guide.pdf
https://www.us-cert.gov/sites/default/files/publications/DDoS%20Quick%20Guide.pdf
https://www.us-cert.gov/sites/default/files/publications/DDoS%20Quick%20Guide.pdf
http://windows.microsoft.com/en-us/windows/end-support-help
http://windows.microsoft.com/en-us/windows/end-support-help
http://www.volatilityfoundation.org/
http://anti-virus-soft.com/
https://www.netmarketshare.com/operating-system-market-share.aspx
https://www.netmarketshare.com/operating-system-market-share.aspx
http://stackoverflow.com/research/developer-survey-2016
http://stackoverflow.com/research/developer-survey-2016

274 BIBLIOGRAPHY

[39] A. Abraham. Adaptation of Fuzzy Inference System Using Neural Learning,
pages 53–83. Springer Berlin Heidelberg, Berlin, Heidelberg, 2005. ISBN
978-3-540-32397-6. doi: 10.1007/11339366_3. URL http://dx.doi.

org/10.1007/11339366_3.

[40] A. Abraham. Hybrid intelligent systems: evolving intelligence in hierarch-
ical layers. In Do Smart Adaptive Systems Exist?, pages 159–179. Springer,
2005.

[41] A. Abraham and R. Jain. Soft computing models for network intrusion
detection systems. In Classification and clustering for knowledge discovery,
pages 191–207. Springer, 2005.

[42] A. Abraham, C. Grosan, and C. Martin-vide. Evolutionary design of in-
trusion detection programs. International Journal of Network Security, 4:
2007, 2006.

[43] A. Adewuya. New Methods in Genetic Search with Real-valued Chromo-
somes. Massachusetts Institute of Technology, Department of Mechanical
Engineering, 1996.

[44] I. R. Adeyemi, S. A. Razak, and N. A. N. Azhan. Identifying critical
features for network forensics investigation perspectives. arXiv preprint
arXiv:1210.1645, 2012.

[45] H. Aguiar, O. Junior, and M. A. S. Machado. Fuzzy firewalls. Revista
Eletrônica de Sistemas de Informação ISSN 1677-3071 doi: 10.5329/RESI,
5(2), 2006.

[46] K. Ahmad. Fuzzy logic notes. http://www.maths.tcd.

ie/~ormondca/notes/Fuzzy%20Logic%20Notes.pdf. ac-
cessed:21.09.2014.

[47] S. C. Ahn and A. R. Horenstein. Eigenvalue ratio test for the number of
factors. Econometrica, 81(3):1203–1227, May 2013.

[48] N. B. Akhuseyinoglu and K. Akhuseyinoglu. AntiWare: An automated
Android malware detection tool based on machine learning approach and
official market metadata. In 2016 IEEE 7th Annual Ubiquitous Comput-
ing, Electronics Mobile Communication Conference (UEMCON), pages 1–
7, Oct 2016. doi: 10.1109/UEMCON.2016.7777867.

http://dx.doi.org/10.1007/11339366_3
http://dx.doi.org/10.1007/11339366_3
http://www.maths.tcd.ie/~ormondca/notes/Fuzzy%20Logic%20Notes.pdf
http://www.maths.tcd.ie/~ormondca/notes/Fuzzy%20Logic%20Notes.pdf

BIBLIOGRAPHY 275

[49] A. Al-Mahrouqi, S. Abdalla, and T. Kechadi. Network forensics readiness
and security awareness framework. In International Conference on Embed-
ded Systems in Telecommunications and Instrumentation (ICESTI 2014),
Algeria, October 27-29 2014, 2014.

[50] D. Alahakoon, S. Halgamuge, and B. Srinivasan. A self-growing cluster
development approach to data mining. In SMC’98 Conference Proceed-
ings. 1998 IEEE International Conference on Systems, Man, and Cybernet-
ics (Cat. No.98CH36218). Institute of Electrical & Electronics Engineers
(IEEE). doi: 10.1109/icsmc.1998.725103. URL http://dx.doi.org/

10.1109/icsmc.1998.725103.

[51] D. Alahakoon, S. Halgamuge, and B. Srinivasan. Dynamic self-organizing
maps with controlled growth for knowledge discovery. Neural Networks,
IEEE Transactions on, 11(3):601–614, May 2000. ISSN 1045-9227. doi:
10.1109/72.846732.

[52] E. L. Allwein, R. E. Schapire, and Y. Singer. Reducing multiclass to bin-
ary: A unifying approach for margin classifiers. The Journal of Machine
Learning Research, 1:113–141, 2001.

[53] J. M. Alonso, O. Cordón, A. Quirin, and L. Magdalena. Analyzing inter-
pretability of fuzzy rule-based systems by means of fuzzy inference-grams.
In In World Congress on Soft Computing, 2011.

[54] A. A. Altyeb Altaher and S. Ramadass. Application of adaptive neuro-fuzzy
inference system for information secuirty. Journal of Computer Science, 8
(6):983–986, 2012.

[55] R. Alvear-Sandoval and A. Figueiras-Vidal. Does diversity improve deep
learning? In Signal Processing Conference (EUSIPCO), 2015 23rd
European, pages 2496–2500, Aug 2015.

[56] M. Aly. Survey on multiclass classification methods. Neural Netw, pages
1–9, 2005.

[57] G. Amato. PEframe. https://github.com/guelfoweb/peframe. ac-
cessed: 20.10.2015.

[58] F. Amiri, C. Lucas, and N. Yazdani. Anomaly detection using neuro fuzzy
system. World Acad Sci Eng Technol, 49:889–896, 2009.

[59] E. A. Anaya, M. Nakano-Miyatake, and H. M. P. Meana. Network forensics
with neurofuzzy techniques. In 2009 52nd IEEE International Midwest

http://dx.doi.org/10.1109/icsmc.1998.725103
http://dx.doi.org/10.1109/icsmc.1998.725103
https://github.com/guelfoweb/peframe

276 BIBLIOGRAPHY

Symposium on Circuits and Systems. Institute of Electrical & Electronics
Engineers (IEEE), aug 2009. doi: 10.1109/mwscas.2009.5235900. URL
http://dx.doi.org/10.1109/mwscas.2009.5235900.

[60] D. Ariu, G. Giacinto, and F. Roli. Machine learning in computer forensics
(and the lessons learned from machine learning in computer security). In
Proceedings of the 4th ACM Workshop on Security and Artificial Intel-
ligence, AISec ’11, pages 99–104, New York, NY, USA, 2011. ACM.
ISBN 978-1-4503-1003-1. doi: 10.1145/2046684.2046700. URL http:

//doi.acm.org/10.1145/2046684.2046700.

[61] J. Armstrong. Long-range Forecasting: From Crystal Ball to Computer. A
Wiley interscience publication. John Wiley & Sons Canada, Limited, 1978.
ISBN 9780471030027. URL http://books.google.no/books?id=

7DAcAAAAIAAJ.

[62] S. Arora and B. Barak. Computational complexity: a modern approach.
Cambridge University Press, 2009.

[63] J. Ashcroft, D. J. Daniels, and S. V. Hart. Forensic examination of digital
evidence: A guide for law enforcement. National Institute of Standards and
Technology (NIST) and United States of America, 2004.

[64] D. Atienza, Á. Herrero, and E. Corchado. Neural analysis of HTTP traffic
for web attack detection. In International Joint Conference, pages 201–212.
Springer, 2015.

[65] J. A. Audestad. E-Bombs and E-Grenades: The Vulnerability of the Com-
puterized Society. Gjovik University College, 2011.

[66] T. Aven. Misconceptions of risk. John Wiley & Sons, 2011.

[67] J. F. Avila-Herrera and M. M. Subasi. Logical analysis of multi-class data.
In Computing Conference (CLEI), 2015 Latin American, pages 1–10. IEEE,
2015.

[68] A. Aviles, S. Alsaleh, E. Montseny, P. Sobrevilla, and A. Casals. A deep-
neuro-fuzzy approach for estimating the interaction forces in robotic sur-
gery. In International Conference on Fuzzy Systems (FUZZ-IEEE) 2016,
pages 684–691. Research Publishing Services, 2016.

[69] M. Azimi-Sadjadi, S. Sheedvash, and F. Trujillo. Recursive dynamic node
creation in multilayer neural networks. Neural Networks, IEEE Transac-
tions on, 4(2):242–256, Mar 1993. ISSN 1045-9227. doi: 10.1109/72.
207612.

http://dx.doi.org/10.1109/mwscas.2009.5235900
http://doi.acm.org/10.1145/2046684.2046700
http://doi.acm.org/10.1145/2046684.2046700
http://books.google.no/books?id=7DAcAAAAIAAJ
http://books.google.no/books?id=7DAcAAAAIAAJ

BIBLIOGRAPHY 277

[70] M. Baig, P. Zavarsky, R. Ruhl, and D. Lindskog. The study of evasion
of packed PE from static detection. In Internet Security (WorldCIS), 2012
World Congress on, pages 99–104, June 2012.

[71] P. Baldi, P. Sadowski, and D. Whiteson. Searching for exotic particles
in high-energy physics with deep learning. Nature Communications, 5,
jul 2014. doi: 10.1038/ncomms5308. URL http://dx.doi.org/10.

1038/ncomms5308.

[72] A. M. Balogun and S. Y. Zhu. Privacy impacts of data encryption on the
efficiency of digital forensics technology. arXiv preprint arXiv:1312.3183,
2013.

[73] R. Baltimore. An Analytic investigation into self organizing maps and their
network topologies. PhD thesis, Rochester Institute of Technology, 2010.

[74] P. Bedi, B. Gupta, and H. Kaur. Access control on grid resources using ra-
dial basis function neural network. Procedia Technology, 4(0):336 – 341,
2012. ISSN 2212-0173. 2nd International Conference on Computer, Com-
munication, Control and Information Technology(C3IT-2012) on February
25 - 26, 2012.

[75] N. Beebe. Digital forensic research: The good, the bad and the unad-
dressed. In IFIP International Conference on Digital Forensics, pages 17–
36. Springer, 2009.

[76] B. Bencsáth. Duqu, Flame, Gauss: Followers of Stuxnet.
https://www.rsaconference.com/writable/presentations/

file_upload/br-208_bencsath.pdf, 2012. accessed: 10.07.2016.

[77] Y. Bengio, Y. LeCun, et al. Scaling learning algorithms towards ai. Large-
scale kernel machines, 34(5), 2007.

[78] B. Bertoni. Multi-dimensional ellipsoidal fitting. Department of Physics,
South Methodist University, Tech. Rep. SMU-HEP-10-14, 2010. URL
http://www.physics.smu.edu/~scalise/SMUpreprints/SMU-

HEP-10-14.pdf.

[79] N. Bezroukov. An overview of malware development history.
http://www.softpanorama.org/Malware/Malware_defense_

history/Ch01_historic_overview/malware_development_

history.shtml, October 2013. accessed: 28.10.2015.

[80] A. Bifet. Data stream mining - regression. accessed: 14.02.2017, May 2012.

http://dx.doi.org/10.1038/ncomms5308
http://dx.doi.org/10.1038/ncomms5308
https://www.rsaconference.com/writable/presentations/file_upload/br-208_bencsath.pdf
https://www.rsaconference.com/writable/presentations/file_upload/br-208_bencsath.pdf
http://www.physics.smu.edu/~scalise/SMUpreprints/SMU-HEP-10-14.pdf
http://www.physics.smu.edu/~scalise/SMUpreprints/SMU-HEP-10-14.pdf
http://www.softpanorama.org/Malware/Malware_defense_history/Ch01_historic_overview/malware_development_history.shtml
http://www.softpanorama.org/Malware/Malware_defense_history/Ch01_historic_overview/malware_development_history.shtml
http://www.softpanorama.org/Malware/Malware_defense_history/Ch01_historic_overview/malware_development_history.shtml

278 BIBLIOGRAPHY

[81] A. S. Bist and A. Sharma. Analysis of computer virus using feature fusion.
In 2016 Second International Conference on Computational Intelligence
Communication Technology (CICT), pages 609–614, Feb 2016. doi: 10.
1109/CICT.2016.127.

[82] J. J. Blount. Adaptive rule-based malware detection employing learning
classifier systems. PhD thesis, Missouri University of Science and Techno-
logy, 2011.

[83] L. Bottou. On-line learning and stochastic approximations. In D. Saad,
editor, On-Line Learning in Neural Networks, pages 9–42. Cambridge Uni-
versity Press (CUP). doi: 10.1017/cbo9780511569920.003. URL http:

//dx.doi.org/10.1017/cbo9780511569920.003.

[84] S. R. Bragen. Malware detection through opcode sequence analysis using
machine learning. Master’s thesis, Gjøvik University College, 2015.

[85] L. Breiman et al. Statistical modeling: The two cultures (with comments
and a rejoinder by the author). Statistical Science, 16(3):199–231, 2001.

[86] B. R. Campomanes-Álvarez, Ó. Cordón, S. Damas, and Ó. Ibáñez.
Computer-based craniofacial superimposition in forensic identification us-
ing soft computing. Journal of Ambient Intelligence and Humanized Com-
puting, 5(5):683–697, 2014. ISSN 1868-5137. doi: 10.1007/s12652-012-
0168-1. URL http://dx.doi.org/10.1007/s12652-012-0168-1.

[87] E. Carrera. pefile. https://github.com/erocarrera/pefile, May
2015. accessed: 06.10.2015.

[88] H. Carvey. The Windows registry as a forensic resource. Digital Investiga-
tion, 2(3):201 – 205, 2005. ISSN 1742-2876.

[89] G. Castellano, A. M. Fanelli, and C. Mencar. Discovering interpretable
classification rules from neural processed data. 2002.

[90] C. Cepeda, D. L. C. Tien, and P. Ordóñez. Feature selection and improv-
ing classification performance for malware detection. In 2016 IEEE Inter-
national Conferences on Big Data and Cloud Computing (BDCloud), So-
cial Computing and Networking (SocialCom), Sustainable Computing and
Communications (SustainCom) (BDCloud-SocialCom-SustainCom), pages
560–566, Oct 2016. doi: 10.1109/BDCloud-SocialCom-SustainCom.2016.
87.

http://dx.doi.org/10.1017/cbo9780511569920.003
http://dx.doi.org/10.1017/cbo9780511569920.003
http://dx.doi.org/10.1007/s12652-012-0168-1
https://github.com/erocarrera/pefile

BIBLIOGRAPHY 279

[91] C.-C. Chang and C.-J. Lin. Training v -support vector regression: Theory
and algorithms. Neural Computation, 14(8):1959–1977, aug 2002. doi:
10.1162/089976602760128081. URL http://dx.doi.org/10.1162/

089976602760128081.

[92] W.-L. Chang, H.-M. Sun, and W. Wu. An Android behavior-based malware
detection method using machine learning. In 2016 IEEE International Con-
ference on Signal Processing, Communications and Computing (ICSPCC),
pages 1–4, Aug 2016. doi: 10.1109/ICSPCC.2016.7753624.

[93] M. Chattopadhyay, P. K. Dan, and S. Mazumdar. Application of visual
clustering properties of self organizing map in machine-part cell forma-
tion. Appl. Soft Comput., 12(2):600–610, Feb. 2012. ISSN 1568-4946.
doi: 10.1016/j.asoc.2011.11.004. URL http://dx.doi.org/10.1016/

j.asoc.2011.11.004.

[94] B. Chen. Computer forensics in criminal investigations. Dujs. dartmouth.
edu. Dartmouth Undergraduate Journal of Science, 13, 2013.

[95] B. Chen. The fundamentals - fuzzy system. Mamdani fuzzy models.,
September 2013. accessed: 15.08.2015.

[96] C.-H. Chen and K.-C. Li. A three-way classification strategy for redu-
cing class-abundance: The zip code recognition example. Lecture Notes-
Monograph Series, pages 63–86, 2004.

[97] C.-K. Chen. Malware classification and detection. http:

//www.slideshare.net/Bletchley131/malware-

classificationanddetection, May 2015. accessed: 10.07.2016.

[98] J. Y.-C. Cheng, T.-S. Tsai, and C.-S. Yang. An information retrieval ap-
proach for malware classification based on Windows API calls. In 2013 In-
ternational Conference on Machine Learning and Cybernetics, volume 04,
pages 1678–1683, July 2013. doi: 10.1109/ICMLC.2013.6890868.

[99] D. M. Chess and S. R. White. An undetectable computer virus. In Proceed-
ings of Virus Bulletin Conference, volume 5, 2000.

[100] E. Chester. Are the terms "hard work" and "work ethic" syn-
onymous?sigkdd. http://www.revivingworkethic.com/terms-

hard-work-work-ethic-synonymous/, September 2011. accessed:
15.12.2014.

http://dx.doi.org/10.1162/089976602760128081
http://dx.doi.org/10.1162/089976602760128081
http://dx.doi.org/10.1016/j.asoc.2011.11.004
http://dx.doi.org/10.1016/j.asoc.2011.11.004
http://www.slideshare.net/Bletchley131/malware-classificationanddetection
http://www.slideshare.net/Bletchley131/malware-classificationanddetection
http://www.slideshare.net/Bletchley131/malware-classificationanddetection
http://www.revivingworkethic.com/terms-hard-work-work-ethic-synonymous/
http://www.revivingworkethic.com/terms-hard-work-work-ethic-synonymous/

280 BIBLIOGRAPHY

[101] A. S. Chitrakar and K. Franke. Author identification from text-based com-
munications: Identifying generalized features and computational methods.
Norsk informasjonssikkerhetskonferanse (NISK), 2013, 2014.

[102] M. G. Christian Funk. Kaspersky security bulletin 2013. overall statist-
ics for 2013. https://securelist.com/analysis/kaspersky-

security-bulletin/58265/kaspersky-security-bulletin-

2013-overall-statistics-for-2013/, December 2013. accessed:
15.10.2015.

[103] M. Clark. A comparison of correlation measures. Technical report, Univer-
sity of Notre Dame, 2013.

[104] F. Cohen. Computer viruses: theory and experiments. Computers & secur-
ity, 6(1):22–35, 1987.

[105] P. Cortez, A. Cerdeira, F. Almeida, T. Matos, and J. Reis. Modeling wine
preferences by data mining from physicochemical properties. Decis. Sup-
port Syst., 47(4):547–553, Nov. 2009. ISSN 0167-9236.

[106] M. Cottrell, M. Olteanu, F. Rossi, J. Rynkiewicz, and N. Villa-Vialaneix.
Neural networks for complex data. KI - Künstliche Intelligenz, 26(4):373–
380, 2012. ISSN 0933-1875.

[107] S. D, D. F. Kibler, M. J. Pazzani, and P. Smyth. The UCI KDD archive
of large data sets for data mining research and experimentation. SIGKDD
Explorations, 2:81, 2000.

[108] G. E. Dahl, J. W. Stokes, L. Deng, and D. Yu. Large-scale malware classific-
ation using random projections and neural networks. In Acoustics, Speech
and Signal Processing (ICASSP), 2013 IEEE International Conference on,
pages 3422–3426. IEEE, 2013.

[109] S. Damas, O. Cordón, O. Ibáñez, J. Santamaría, I. Alemán, M. Botella,
and F. Navarro. Forensic identification by computer-aided craniofacial su-
perimposition: A survey. ACM Comput. Surv., 43(4):27:1–27:27, Oct.
2011. ISSN 0360-0300. doi: 10.1145/1978802.1978806. URL http:

//doi.acm.org/10.1145/1978802.1978806.

[110] D. Danchev. Why relying on antivirus signatures is simply not enough any-
more. http://blog.webroot.com/2012/02/23/why-relying-on-
antivirus-signatures-is-simply-not-enough-anymore/. Ac-
cessed: 09.04.2013.

https://securelist.com/analysis/kaspersky-security-bulletin/58265/kaspersky-security-bulletin-2013-overall-statistics-for-2013/
https://securelist.com/analysis/kaspersky-security-bulletin/58265/kaspersky-security-bulletin-2013-overall-statistics-for-2013/
https://securelist.com/analysis/kaspersky-security-bulletin/58265/kaspersky-security-bulletin-2013-overall-statistics-for-2013/
http://doi.acm.org/10.1145/1978802.1978806
http://doi.acm.org/10.1145/1978802.1978806
http://blog.webroot.com/2012/02/23/why-relying-on-antivirus-signatures-is-simply-not-enough-anymore/
http://blog.webroot.com/2012/02/23/why-relying-on-antivirus-signatures-is-simply-not-enough-anymore/

BIBLIOGRAPHY 281

[111] S. K. Das, A. Kumar, B. Das, and A. Burnwal. On soft computing tech-
niques in various areas. Computer Science & Information Technology,
page 59, 2013.

[112] G. De Tré, J. Nielandt, A. Bronselaer, D. Vandermeulen, J. Hermans, and
P. Claeys. LSP based comparison of 3D ear models. In Norbert Wiener
in the 21st Century (21CW), 2014 IEEE Conference on, pages 1–7. IEEE,
2014.

[113] O. De Vel, A. Anderson, M. Corney, and G. Mohay. Mining e-mail content
for author identification forensics. ACM Sigmod Record, 30(4):55–64, 2001.

[114] P. M. Deepika Veerwal. Ensemble of soft computing techniques for mal-
ware detection. International Journal of Emerging Technologies in Compu-
tational and Applied Sciences, 6:159–167, September-November 2013.

[115] R. DeLisle. Kohonen’s self organizing feature maps. http://www.ai-

junkie.com/ann/som/som1.html. accessed: 14.02.2017.

[116] A. Demontis, M. Melis, B. Biggio, D. Maiorca, D. Arp, K. Rieck, I. Corona,
G. Giacinto, and F. Roli. Yes, machine learning can be more secure! a case
study on Android malware detection. IEEE Transactions on Dependable
and Secure Computing, PP(99):1–1, 2017. ISSN 1545-5971. doi: 10.1109/
TDSC.2017.2700270.

[117] Y. DENG, Z. Ren, Y. Kong, F. Bao, and Q. Dai. A hierarchical fused fuzzy
deep neural network for data classification. IEEE Transactions on Fuzzy
Systems, PP(99):1–1, 2016. ISSN 1063-6706. doi: 10.1109/TFUZZ.2016.
2574915.

[118] D. Devi and S. Nandi. Detection of packed malware. In Proceedings of the
First International Conference on Security of Internet of Things, SecurIT
’12, pages 22–26, New York, NY, USA, 2012. ACM. ISBN 978-1-4503-
1822-8. doi: 10.1145/2490428.2490431. URL http://doi.acm.org/

10.1145/2490428.2490431.

[119] A. K. Dey and D. Kundu. Discriminating between the log-normal and log-
logistic distributions. Communications in Statistics-Theory and Methods,
39(2):280–292, 2009.

[120] J. Dickerson and B. Kosko. Fuzzy function approximation with el-
lipsoidal rules. IEEE Trans. Syst., Man, Cybern. B, 26(4):542–560,
1996. doi: 10.1109/3477.517030. URL http://dx.doi.org/10.1109/

3477.517030.

http://www.ai-junkie.com/ann/som/som1.html
http://www.ai-junkie.com/ann/som/som1.html
http://doi.acm.org/10.1145/2490428.2490431
http://doi.acm.org/10.1145/2490428.2490431
http://dx.doi.org/10.1109/3477.517030
http://dx.doi.org/10.1109/3477.517030

282 BIBLIOGRAPHY

[121] T. G. Dietterich and G. Bakiri. Solving multiclass learning problems via
error-correcting output codes. Journal of artificial intelligence research,
pages 263–286, 1995.

[122] S. Ding, H. Li, C. Su, J. Yu, and F. Jin. Evolutionary artificial neural net-
works: a review. Artificial Intelligence Review, 39(3):251–260, 2013. ISSN
1573-7462.

[123] D. Distler and C. Hornat. Malware analysis: An introduction. Sans Reading
Room, 2007.

[124] B. Dolan-Gavitt. Forensic analysis of the Windows registry in memory.
Digital Investigation, 5, Supplement:S26 – S32, 2008. ISSN 1742-2876.
The Proceedings of the Eighth Annual {DFRWS} Conference.

[125] B. Dolan-Gavitt, A. Srivastava, P. Traynor, and J. Giffin. Robust signatures
for kernel data structures. In Proceedings of the 16th ACM conference on
Computer and communications security, pages 566–577. ACM, 2009.

[126] J. Dolcourt. Best phones of 2016. https://www.cnet.com/topics/

phones/best-phones/, December 2016. accessed: 20.12.2016.

[127] R. B. Doorenbos. Production Matching for Large Learning Systems. PhD
thesis, Pittsburgh, PA, USA, 1995. UMI Order No. GAX95-22942.

[128] M. Drobics, W. Winiwater, and U. Bodenhofer. Interpretation of self-
organizing maps with fuzzy rules. In Tools with Artificial Intelligence, 2000.
ICTAI 2000. Proceedings. 12th IEEE International Conference on, pages
304–311, 2000. doi: 10.1109/TAI.2000.889887.

[129] P. Duan and B. Solecki. Solution for the Amazon employee access
challenge. https://github.com/pyduan/amazonaccess. accessed:
10.12.2015.

[130] T. Dube, R. Raines, G. Peterson, K. Bauer, M. Grimaila, and S. Rogers.
Malware type recognition and cyber situational awareness. In Social Com-
puting (SocialCom), 2010 IEEE Second International Conference on, pages
938–943, Aug 2010. doi: 10.1109/SocialCom.2010.139.

[131] S. Dudoit and J. Fridlyand. Bagging to improve the accuracy of a
clustering procedure. Bioinformatics, 19(9):1090–1099, jun 2003. doi:
10.1093/bioinformatics/btg038. URL http://dx.doi.org/10.1093/

bioinformatics/btg038.

https://www.cnet.com/topics/phones/best-phones/
https://www.cnet.com/topics/phones/best-phones/
https://github.com/pyduan/amazonaccess
http://dx.doi.org/10.1093/bioinformatics/btg038
http://dx.doi.org/10.1093/bioinformatics/btg038

BIBLIOGRAPHY 283

[132] R. G. Dukhi. Soft computing tools in credit card fraud & detection, 2011.

[133] T. Ebringer, L. Sun, and S. Boztas. A fast randomness test that preserves
local detail. Virus Bulletin, 2008, 2008.

[134] M. Egele, T. Scholte, E. Kirda, and C. Kruegel. A survey on automated
dynamic malware-analysis techniques and tools. ACM Comput. Surv., 44
(2):6:1–6:42, Mar. 2008. ISSN 0360-0300.

[135] N. Eiamkanitchat, N. Theera-Umpon, and S. Auephanwiriyakul. A novel
neuro-fuzzy method for linguistic feature selection and rule-based classific-
ation. In Computer and Automation Engineering (ICCAE), 2010 The 2nd
International Conference on, volume 2, pages 247–252, Feb 2010.

[136] G. Erdélyi. Malware taxonomy. accessed: 16.02.2017, 2010.

[137] P. Estévez, J. Príncipe, and P. Zegers. Advances in Self-Organizing Maps:
9th International Workshop, WSOM 2012 Santiago, Chile, December 12-
14, 2012 Proceedings. Advances in Intelligent Systems and Computing.
Springer, 2012. ISBN 9783642352300. URL https://books.google.

no/books?id=vHgnfKFpIFUC.

[138] Europol. Mobile malware. https://www.europol.europa.eu/

activities-services/public-awareness-and-prevention-

guides/mobile-malware. accessed:03.05.2017.

[139] G. R. Exner. Inside Calculus. Undergraduate Texts in Mathematics.
Springer-Verlag, Springer-Verlag, 2000.

[140] EY. Forensic data analytics. http://www.ey.com/Publication/

vwLUAssets/EY_-_Forensic_Data_Analytics_(FDA)/$FILE/

EY-forensic-data-dnalytics.pdf, 2013. accessed: 20.12.2016.

[141] EY. Forensic data analytics. http://www.ey.com/Publication/vwLUAssets/EY_
-_Forensic_Data_Analytics_(FDA)/$FILE/EY-forensic-data-dnalytics.pdf,
2013. accesed: 16.08.2016.

[142] D. Farber and R. Lachman. Similarity-based access control of data in a data
processing system, May 17 2011. US Patent 7,945,544.

[143] P. Faruki, V. Laxmi, M. S. Gaur, and P. Vinod. Mining control flow graph
as API call-grams to detect portable executable malware. In Proceedings of
the Fifth International Conference on Security of Information and Networks,

https://books.google.no/books?id=vHgnfKFpIFUC
https://books.google.no/books?id=vHgnfKFpIFUC
https://www.europol.europa.eu/activities-services/public-awareness-and-prevention-guides/mobile-malware
https://www.europol.europa.eu/activities-services/public-awareness-and-prevention-guides/mobile-malware
https://www.europol.europa.eu/activities-services/public-awareness-and-prevention-guides/mobile-malware
http://www.ey.com/Publication/vwLUAssets/EY_-_Forensic_Data_Analytics_(FDA)/$FILE/EY-forensic-data-dnalytics.pdf
http://www.ey.com/Publication/vwLUAssets/EY_-_Forensic_Data_Analytics_(FDA)/$FILE/EY-forensic-data-dnalytics.pdf
http://www.ey.com/Publication/vwLUAssets/EY_-_Forensic_Data_Analytics_(FDA)/$FILE/EY-forensic-data-dnalytics.pdf

284 BIBLIOGRAPHY

SIN ’12, pages 130–137, New York, NY, USA, 2012. ACM. ISBN 978-1-
4503-1668-2. doi: 10.1145/2388576.2388594. URL http://doi.acm.

org/10.1145/2388576.2388594.

[144] U. Fayyad, G. Piatetsky-Shapiro, and P. Smyth. From data mining to know-
ledge discovery in databases. AI magazine, 17(3):37, 1996.

[145] J. fei Qiao and H. gui Han. An Adaptive Fuzzy Neural Network Based on
Self-Organizing Map (SOM). INFTECH, April 2010. ISBN 978-953-307-
074-2.

[146] E. R. Feldman. Criteria for admissibility of expert opinion testimony under
daubert and its progeny. Technical report, Cozen O’Connor, 2001.

[147] ForensicsWiki. Digital evidence. http://forensicswiki.org/wiki/
Digital_evidence. accessed: 06.02.2017.

[148] T. Fox-Brewster. Yahoo: Hackers stole data on another billion accounts –
updated. http://www.forbes.com/sites/thomasbrewster/2016/
12/14/yahoo-admits-another-billion-user-accounts-were-

leaked-in-2013/, December 2016. accessed: 20.12.2016.

[149] E. Frank, M. Hall, P. Reutemann, and L. Trigg. Weka 3: Data mining soft-
ware in Java. http://www.cs.waikato.ac.nz/ml/weka/. accessed:
10.4.2015.

[150] K. Franke. The Influence of Physical and Biomechanical Processes on
the Ink Trace: Methodological Foundations for the Forensic Analysis of
Signatures. Rijksuniv., 2005. ISBN 9783000173639. URL https:

//books.google.no/books?id=wSxmAAAACAAJ.

[151] K. Franke and S. N. Srihari. Computational Forensics: An Overview, pages
1–10. Springer Berlin Heidelberg, Berlin, Heidelberg, 2008. ISBN 978-
3-540-85303-9. doi: 10.1007/978-3-540-85303-9_1. URL http://dx.

doi.org/10.1007/978-3-540-85303-9_1.

[152] K. Franke, Y.-N. Zhang, and M. Köppen. Static signature verification em-
ploying a Kosko-Neuro-Fuzzy approach. In N. Pal and M. Sugeno, edit-
ors, Advances in Soft Computing — AFSS 2002, volume 2275 of Lecture
Notes in Computer Science, pages 185–190. Springer Berlin Heidelberg,
2002. ISBN 978-3-540-43150-3. doi: 10.1007/3-540-45631-7_26. URL
http://dx.doi.org/10.1007/3-540-45631-7_26.

http://doi.acm.org/10.1145/2388576.2388594
http://doi.acm.org/10.1145/2388576.2388594
http://forensicswiki.org/wiki/Digital_evidence
http://forensicswiki.org/wiki/Digital_evidence
http://www.forbes.com/sites/thomasbrewster/2016/12/14/yahoo-admits-another-billion-user-accounts-were-leaked-in-2013/
http://www.forbes.com/sites/thomasbrewster/2016/12/14/yahoo-admits-another-billion-user-accounts-were-leaked-in-2013/
http://www.forbes.com/sites/thomasbrewster/2016/12/14/yahoo-admits-another-billion-user-accounts-were-leaked-in-2013/
http://www.cs.waikato.ac.nz/ml/weka/
https://books.google.no/books?id=wSxmAAAACAAJ
https://books.google.no/books?id=wSxmAAAACAAJ
http://dx.doi.org/10.1007/978-3-540-85303-9_1
http://dx.doi.org/10.1007/978-3-540-85303-9_1
http://dx.doi.org/10.1007/3-540-45631-7_26

BIBLIOGRAPHY 285

[153] R. Freund, D. Mohr, and W. Wilson. Statistical Methods. Elsevier Sci-
ence, 2010. ISBN 9780080961033. URL https://books.google.no/

books?id=12LPWl6QxrsC.

[154] N. Friedman, D. Geiger, and M. Goldszmidt. Bayesian network classifiers.
Machine learning, 29(2-3):131–163, 1997.

[155] R. Fuller. Introduction to Neuro-Fuzzy Systems. Advances in Intelligent and
Soft Computing. Physica-Verlag HD, 2000. ISBN 9783790812565. URL
http://books.google.no/books?id=1ihxRjLGGIcC.

[156] M. Gacto, R. Alcalá, and F. Herrera. Interpretability of linguistic fuzzy
rule-based systems: An overview of interpretability measures. Information
Sciences, 181(20):4340 – 4360, 2011. ISSN 0020-0255. doi: http://dx.
doi.org/10.1016/j.ins.2011.02.021. URL http://www.sciencedirect.

com/science/article/pii/S0020025511001034. Special Issue on
Interpretable Fuzzy Systems.

[157] B. Gallagher and T. Eliassi-Rad. Classification of http attacks: a study on
the ECML/PKDD 2007 discovery challenge. In Center for Advanced Signal
and Image Sciences (CASIS) Workshop, 2008.

[158] E. Gandotra, D. Bansal, and S. Sofat. Malware analysis and classification:
A survey. Journal of Information Security, 2014, 2014.

[159] S. L. Garfinkel. Digital forensics research: The next 10 years. digital in-
vestigation, 7:S64–S73, 2010.

[160] D. Gavrilut, M. Cimpoesu, D. Anton, and L. Ciortuz. Malware detection
using machine learning. In Computer Science and Information Technology,
2009. IMCSIT ’09. International Multiconference on, pages 735–741, Oct
2009.

[161] R. Gentleman, R. Ihaka, D. Bates, et al. The R project for statistical com-
puting. http://www.r-project.org, 1997. accessed: 15.02.16.

[162] M. Geraily and M. V. Jahan. Fuzzy detection of malicious attacks on web
applications based on Hidden Markov Model ensemble. In Intelligent Sys-
tems, Modelling and Simulation (ISMS), 2012 Third International Confer-
ence on, pages 102–108. IEEE, 2012.

[163] T. Germano. Self Organizing Maps. http://davis.wpi.edu/~matt/

courses/soms/. accessed: 14.02.2017.

https://books.google.no/books?id=12LPWl6QxrsC
https://books.google.no/books?id=12LPWl6QxrsC
http://books.google.no/books?id=1ihxRjLGGIcC
http://www.sciencedirect.com/science/article/pii/S0020025511001034
http://www.sciencedirect.com/science/article/pii/S0020025511001034
http://www. r-project. org
http://davis.wpi.edu/~matt/courses/soms/
http://davis.wpi.edu/~matt/courses/soms/

286 BIBLIOGRAPHY

[164] Z. Ghahramani. Probabilistic modelling, machine learning, and the inform-
ation revolution. In presentation at MIT CSAIL, 2012.

[165] Google. App manifest. https://developer.android.com/guide/

topics/manifest/uses-sdk-element.html.

[166] S. Gordon and R. Ford. On the definition and classification of cyber-
crime. Journal in Computer Virology, 2(1):13–20, 2006. ISSN 1772-
9904. doi: 10.1007/s11416-006-0015-z. URL http://dx.doi.org/

10.1007/s11416-006-0015-z.

[167] L. S. Grini, A. Shalaginov, and K. Franke. Study of soft computing methods
for large-scale multinomial malware types and families detection. In The 6th
World Conference on Soft Computing, 2016.

[168] C. Grobler and C. Louwrens. Digital forensic readiness as a component of
information security best practice. New approaches for security, privacy
and trust in complex environments, pages 13–24, 2007.

[169] A. Guarino. Digital Forensics as a Big Data Challenge. In ISSE 2013
Securing Electronic Business Processes, pages 197–203. Springer, 2013.

[170] C. Guarnieri, A. Tanasi, J. Bremer, and M. Schloesser. The cuckoo Sandbox,
2012.

[171] S. Guillaume. Designing fuzzy inference systems from data: An
interpretability-oriented review. Trans. Fuz Sys., 9(3):426–443, June 2001.
ISSN 1063-6706. doi: 10.1109/91.928739. URL http://dx.doi.org/

10.1109/91.928739.

[172] N. R. Guo, C.-L. Kuo, and T.-J. Tsai. Design of an EP-based neuro-fuzzy
classification model. In Networking, Sensing and Control, 2009. ICNSC
’09. International Conference on, pages 918–923, March 2009.

[173] K. Hahn. Robust static analysis of portable executable malware. Mater
thesis, HTWK Leipzig, 2014.

[174] W. Halboob, R. Mahmod, N. I. Udzir, and M. T. Abdullah. Pri-
vacy levels for computer forensics: Toward a more efficient privacy-
preserving investigation. Procedia Computer Science, 56:370 – 375,
2015. ISSN 1877-0509. doi: http://dx.doi.org/10.1016/j.procs.2015.07.
222. URL http://www.sciencedirect.com/science/article/

pii/S1877050915017032.

https://developer.android.com/guide/topics/manifest/uses-sdk-element.html
https://developer.android.com/guide/topics/manifest/uses-sdk-element.html
http://dx.doi.org/10.1007/s11416-006-0015-z
http://dx.doi.org/10.1007/s11416-006-0015-z
http://dx.doi.org/10.1109/91.928739
http://dx.doi.org/10.1109/91.928739
http://www.sciencedirect.com/science/article/pii/S1877050915017032
http://www.sciencedirect.com/science/article/pii/S1877050915017032

BIBLIOGRAPHY 287

[175] M. A. Hall. Correlation-based feature selection for machine learning. PhD
thesis, The University of Waikato, 1999.

[176] G. Hallevy. Liability for Crimes Involving Artificial Intelligence Systems.
Springer International Publishing, Cham. ISBN 9783319101248. URL
https://books.google.no/books?id=xf05BQAAQBAJ.

[177] J. Han, M. Kamber, and J. Pei. Data mining: concepts and techniques:
concepts and techniques. Elsevier, 2011.

[178] R. M. Harris. Using artificial neural networks for forensic file type identi-
fication. Master’s Thesis, Purdue University, 2007.

[179] P. Harvey. ExifTool. http://www.sno.phy.queensu.ca/~phil/

exiftool/, November 2015. accessed: 04.11.2015.

[180] S. Hasan and S. M. Shamsuddin. Multistrategy self-organizing map learning
for classification problems. Computational Intelligence and Neuroscience,
2011:11, 2011.

[181] M. A. Hearst, S. T. Dumais, E. Osman, J. Platt, and B. Scholkopf. Support
vector machines. Intelligent Systems and their Applications, IEEE, 13(4):
18–28, 1998.

[182] J. L. Hernandez, M. Moreno, A. Jara, and A. F. Skarmeta. A soft computing
based location-aware access control for smart buildings. Soft Computing, 18
(9):1659–1674, 2014. ISSN 1432-7643. doi: 10.1007/s00500-014-1278-9.
URL http://dx.doi.org/10.1007/s00500-014-1278-9.

[183] L. Herrera, H. Pomares, I. Rojas, O. Valenzuela, and A. Prieto.
Tase, a taylor series-based fuzzy system model that combines inter-
pretability and accuracy. Fuzzy Sets and Systems, 153(3):403 – 427,
2005. ISSN 0165-0114. doi: http://dx.doi.org/10.1016/j.fss.2005.01.
012. URL http://www.sciencedirect.com/science/article/

pii/S0165011405000333.

[184] T. M. Heskes and B. Kappen. On-line learning processes in artificial neural
networks, 1993.

[185] Hex-Rays. IDA Pro. https://www.hex-rays.com/products/ida/.
accessed: 12.10.2015.

[186] J. Hollmen. Self-Organizing Map (SOM). http://users.ics.aalto.
fi/jhollmen/dippa/node9.html, March 1996. accessed: 14.02.2017.

https://books.google.no/books?id=xf05BQAAQBAJ
http://www.sno.phy.queensu.ca/~phil/exiftool/
http://www.sno.phy.queensu.ca/~phil/exiftool/
http://dx.doi.org/10.1007/s00500-014-1278-9
http://www.sciencedirect.com/science/article/pii/S0165011405000333
http://www.sciencedirect.com/science/article/pii/S0165011405000333
https://www.hex-rays.com/products/ida/
http://users.ics.aalto.fi/jhollmen/dippa/node9.html
http://users.ics.aalto.fi/jhollmen/dippa/node9.html

288 BIBLIOGRAPHY

[187] Y. Hong, C. Huang, B. Nandy, and N. Seddigh. Iterative-tuning support vec-
tor machine for network traffic classification. In Integrated Network Man-
agement (IM), 2015 IFIP/IEEE International Symposium on, pages 458–
466, May 2015.

[188] V. C. Hu, D. Ferraiolo, Rick, Schnitzer, Adam, Sandlin, Kenneth, Miller,
Robert, Scarfone, and K. Scarfone. Guide to attribute based access control
(ABAC) definition and considerations. Guide, National Institute of Stand-
ards and Technology, 2014.

[189] Z. Hu, Y. V. Bodyanskiy, and O. K. Tyshchenko. A deep cascade neuro-
fuzzy system for high-dimensional online fuzzy clustering. In 2016 IEEE
First International Conference on Data Stream Mining Processing (DSMP),
pages 318–322, Aug 2016. doi: 10.1109/DSMP.2016.7583567.

[190] S.-Y. Huang and Y. Huang. Network forensic analysis using growing hier-
archical SOM. In 2013 IEEE 13th International Conference on Data Min-
ing Workshops. Institute of Electrical & Electronics Engineers (IEEE), dec
2013. doi: 10.1109/icdmw.2013.66. URL http://dx.doi.org/10.

1109/icdmw.2013.66.

[191] S.-Y. Huang and Y.-N. Huang. Network traffic anomaly detection based on
growing hierarchical SOM. In 2013 43rd Annual IEEE/IFIP International
Conference on Dependable Systems and Networks (DSN). Institute of Elec-
trical & Electronics Engineers (IEEE), jun 2013. doi: 10.1109/dsn.2013.
6575338. URL http://dx.doi.org/10.1109/dsn.2013.6575338.

[192] J. S. Hurwitz. Error-correcting codes and applications to large scale classi-
fication systems. PhD thesis, Massachusetts Institute of Technology, 2009.

[193] R. Husain and S. Muhammad. A survey on soft computing techniques in
network security. Scholarly Journal of Mathematics and Computer Science,
2(3):28–32, June 2013.

[194] I. Iancu. A mamdani type fuzzy logic controller. http://cdn.

intechopen.com/pdfs-wm/34221.pdf. accessed: 23.09.2014.

[195] O. Ibanez, L. Ballerini, O. Cordon, S. Damas, and J. Santamaria. An exper-
imental study on the applicability of evolutionary algorithms to craniofa-
cial superimposition in forensic identification. Information Sciences, 179
(23):3998 – 4028, 2009. ISSN 0020-0255. doi: http://dx.doi.org/10.1016/
j.ins.2008.12.029. URL http://www.sciencedirect.com/science/

article/pii/S0020025509000085.

http://dx.doi.org/10.1109/icdmw.2013.66
http://dx.doi.org/10.1109/icdmw.2013.66
http://dx.doi.org/10.1109/dsn.2013.6575338
http://cdn.intechopen.com/pdfs-wm/34221.pdf
http://cdn.intechopen.com/pdfs-wm/34221.pdf
http://www.sciencedirect.com/science/article/pii/S0020025509000085
http://www.sciencedirect.com/science/article/pii/S0020025509000085

BIBLIOGRAPHY 289

[196] N. Idika and A. P. Mathur. A survey of malware detection techniques.
Purdue University, 48, 2007.

[197] Interpol. Cybercrime. https://www.interpol.int/Crime-areas/

Cybercrime/Cybercrime. accessed: 15.01.2017.

[198] H. Ishibuchi and T. Nakashima. Effect of rule weights in fuzzy rule-based
classification systems. IEEE Transactions on Fuzzy Systems, pages 260–
270, 2001.

[199] H. Ishibuchi and Y. Nojima. Discussions on interpretability of fuzzy sys-
tems using simple examples, 2009.

[200] H. Ishibuchi, T. Yamamoto, S. Member, P. H. Ishibuchi, H. Ishibuchi,
T. Yamamoto, and S. Member. Rule weight specification in fuzzy rule-
based classification systems. IEEE Trans. Fuzzy Syst, 13:428–435, 2005.

[201] G. Jacob, H. Debar, and E. Filiol. Behavioral detection of malware: from a
survey towards an established taxonomy. Journal in Computer Virology, 4
(3):251–266, 2008. ISSN 1772-9904.

[202] A. K. Jain, R. P. Duin, and J. Mao. Statistical pattern recognition: A review.
Pattern Analysis and Machine Intelligence, IEEE Transactions on, 22(1):
4–37, 2000.

[203] S. Jain and Y. K. Meena. Byte level n–gram analysis for malware detection.
In Computer Networks and Intelligent Computing, pages 51–59. Springer,
2011.

[204] J. I. James and P. Gladyshev. Challenges with automation in digital forensic
investigations. http://arxiv.org/pdf/1303.4498.pdf. accessed:
11.12.2014.

[205] Q. Jamil and M. A. Shah. Analysis of machine learning solutions to detect
malware in Android. In 2016 Sixth International Conference on Innovative
Computing Technology (INTECH), pages 226–232, Aug 2016. doi: 10.
1109/INTECH.2016.7845073.

[206] W. Jansen, R. Ayers, and S. Brothers. Guidelines on mobile device
forensics. NIST Special Publication, pages 800–101, 2014.

[207] C. J.Geyer. Stat 5102 notes: More on confidence intervals. http://www.
stat.umn.edu/geyer/old03/5102/notes/ci.pdf, February 2003.
accessed: 07.04.2015.

https://www.interpol.int/Crime-areas/Cybercrime/Cybercrime
https://www.interpol.int/Crime-areas/Cybercrime/Cybercrime
http://arxiv.org/pdf/1303.4498.pdf
http://www.stat.umn.edu/geyer/old03/5102/notes/ci.pdf
http://www.stat.umn.edu/geyer/old03/5102/notes/ci.pdf

290 BIBLIOGRAPHY

[208] Z. Jie, H. Long, and R. Sijing. RBF neural network adaptive sliding mode
control based on genetic algorithm optimization. In 2016 Chinese Control
and Decision Conference (CCDC), pages 6772–6775, May 2016.

[209] Y. Jin. Fuzzy modeling of high-dimensional systems: complexity reduction
and interpretability improvement. Fuzzy Systems, IEEE Transactions on, 8
(2):212–221, Apr 2000. ISSN 1063-6706. doi: 10.1109/91.842154.

[210] S. Kadirvelu and K. Arputharaj. Handling web and database requests using
fuzzy rules for anomaly intrusion detection. Journal of Computer Science,
7(2):255, 2011.

[211] Kaggle. Amazon.com - employee access challenge. https://www.

kaggle.com/c/amazon-employee-access-challenge, May 2013.
accessed: 20.05.2016.

[212] E. Kamar. Directions in hybrid intelligence: complementing ai systems with
human intelligence. Early Career Track, 2016.

[213] Y. Kanada. Optimizing neural-network learning rate by using a genetic
algorithm with per-epoch mutations. In 2016 International Joint Conference
on Neural Networks (IJCNN), pages 1472–1479, July 2016.

[214] N. Kandil, K. Khorasani, R. Patel, and V. Sood. Optimum learning rate for
backpropagation neural networks. In Electrical and Computer Engineering,
1993. Canadian Conference on, pages 465–468 vol.1, Sep 1993.

[215] A. Karpathy, F. Li, and J. Johnson. CS231n Convolutional neural network
for visual recognition. Online Course, 2016.

[216] F. O. Karray and C. W. De Silva. Soft computing and intelligent systems
design: theory, tools, and applications. Pearson Education, 2004.

[217] kaspersky. Types of malware. http://www.kaspersky.com/

internet-security-center/threats/types-of-malware. ac-
cessed: 06.07.2016.

[218] R. Kath. The Portable Executable file format from top to bottom. MSDN
Library, Microsoft Corporation, 1993.

[219] M. H. B. Katherine L Milkman, Dolly Chugh. How can decision making
be improved? Perspectives on Psychological Science, 4(4):379–383, July
2009.

https://www.kaggle.com/c/amazon-employee-access-challenge
https://www.kaggle.com/c/amazon-employee-access-challenge
http://www.kaspersky.com/internet-security-center/threats/types-of-malware
http://www.kaspersky.com/internet-security-center/threats/types-of-malware

BIBLIOGRAPHY 291

[220] A. Kaur and A. Kaur. Comparison of fuzzy logic and neuro-fuzzy al-
gorithms for air conditioning system.

[221] K. Kendall and C. McMillan. Practical malware analysis. In Black Hat
Conference, USA, 2007.

[222] M. Kheirkhahan, M. Yashtini, A. Youse, and H. Wehry. CAP6610 Machine
Learning Project. Technical report, Georgia Institute of Technology, School
of Mathematics, 2014.

[223] Z. Khorsand and A. Hamzeh. A novel compression-based approach for
malware detection using PE header. In Information and Knowledge Tech-
nology (IKT), 2013 5th Conference on, pages 127–133, May 2013. doi:
10.1109/IKT.2013.6620051.

[224] H. B. Kim, S. H. Jung, T. G. Kim, and K. H. Park. Fast learning method
for back-propagation neural network by evolutionary adaptation of learning
rates. Neurocomputing, 11(1):101 – 106, may 1996. ISSN 0925-2312.

[225] H. M. Kim and J. Mendel. Fuzzy basis functions: comparisons with other
basis functions. IEEE Trans. Fuzzy Syst., 3(2):158–168, may 1995. doi:
10.1109/91.388171. URL http://dx.doi.org/10.1109/91.388171.

[226] J.-S. Kim, D.-G. Kim, and B.-N. Noh. A fuzzy logic based expert system
as a network forensics. In IEEE International Conference on Fuzzy Systems
(IEEE Cat. No.04CH37542). Institute of Electrical & Electronics Engineers
(IEEE), 2004. doi: 10.1109/fuzzy.2004.1375521. URL http://dx.doi.

org/10.1109/fuzzy.2004.1375521.

[227] D. Kingma and J. Ba. Adam: A method for stochastic optimization. arXiv
preprint arXiv:1412.6980, 2014.

[228] B. Klimt and Y. Yang. Introducing the enron corpus. In CEAS, 2004.

[229] T. Kohonen. Self-organized formation of topologically correct feature maps.
Biological Cybernetics, 43(1):59–69, 1982. ISSN 1432-0770. doi: 10.1007/
BF00337288. URL http://dx.doi.org/10.1007/BF00337288.

[230] J. Z. Kolter and M. A. Maloof. Learning to detect malicious execut-
ables in the wild. In Proceedings of the Tenth ACM SIGKDD Interna-
tional Conference on Knowledge Discovery and Data Mining, KDD ’04,
pages 470–478, New York, NY, USA, 2004. ACM. ISBN 1-58113-888-
1. doi: 10.1145/1014052.1014105. URL http://doi.acm.org/10.

1145/1014052.1014105.

http://dx.doi.org/10.1109/91.388171
http://dx.doi.org/10.1109/fuzzy.2004.1375521
http://dx.doi.org/10.1109/fuzzy.2004.1375521
http://dx.doi.org/10.1007/BF00337288
http://doi.acm.org/10.1145/1014052.1014105
http://doi.acm.org/10.1145/1014052.1014105

292 BIBLIOGRAPHY

[231] J. Z. Kolter and M. A. Maloof. Learning to detect and classify malicious
executables in the wild. J. Mach. Learn. Res., 7:2721–2744, Dec. 2006.
ISSN 1532-4435.

[232] I. Kononenko and M. Kukar. Machine learning and data mining: introduc-
tion to principles and algorithms. Horwood Publishing, 2007.

[233] B. Kosko. Fuzzy Engineering. Number v. 1 in Fuzzy Engineering. Prentice
Hall, 1997. ISBN 9780131249912. URL http://books.google.no/

books?id=8QwoAQAAMAAJ.

[234] A. Kramer. Review of Windows 7 as a malware analysis environment. Sans
Reading Room, 2014.

[235] R. Kruse. Fuzzy neural network. Scholarpedia, 3(11):6043, 2008.

[236] K.-C. Kwak. An incremental adaptive neuro-fuzzy networks. In Control,
Automation and Systems, 2008. ICCAS 2008. International Conference on,
pages 1407–1410, Oct 2008. doi: 10.1109/ICCAS.2008.4694363.

[237] O. Köksoy and T. Yalcinoz. Robust design using pareto type optimization:
A genetic algorithm with arithmetic crossover. Computers & Industrial
Engineering, 55(1):208 – 218, aug 2008. ISSN 0360-8352.

[238] A. D. Landress. A hybrid approach to reducing the false positive rate in
unsupervised machine learning intrusion detection. In SoutheastCon 2016,
pages 1–6, March 2016. doi: 10.1109/SECON.2016.7506773.

[239] N. D. Lane, E. Miluzzo, H. Lu, D. Peebles, T. Choudhury, and A. T. Camp-
bell. A survey of mobile phone sensing. IEEE Communications magazine,
48(9):140–150, 2010.

[240] Lastline. The threat of evasive malware. White paper, Lastline Labs,
https://www.lastline.com/papers/evasive_threats.pdf,
February 2013. accessed: 29.10.2015.

[241] R. Lau, Y. Xia, and Y. Ye. A probabilistic generative model for mining
cybercriminal networks from online social media. Computational Intel-
ligence Magazine, IEEE, 9(1):31–43, Feb 2014. ISSN 1556-603X. doi:
10.1109/MCI.2013.2291689.

[242] F. Y. W. Law, P. P. F. Chan, S. M. Yiu, K. P. Chow, M. Y. K. Kwan, H. K. S.
Tse, and P. K. Y. Lai. Protecting digital data privacy in computer forensic
examination. In 2011 Sixth IEEE International Workshop on Systematic

http://books.google.no/books?id=8QwoAQAAMAAJ
http://books.google.no/books?id=8QwoAQAAMAAJ
https://www.lastline.com/papers/evasive_threats.pdf

BIBLIOGRAPHY 293

Approaches to Digital Forensic Engineering, pages 1–6, May 2011. doi:
10.1109/SADFE.2011.15.

[243] N. A. Le-Khac and A. Linke. Control flow change in assembly as a
classifier in malware analysis. In 2016 4th International Symposium on
Digital Forensic and Security (ISDFS), pages 38–43, April 2016. doi:
10.1109/ISDFS.2016.7473514.

[244] B. LeBlanc. 64-bit momentum surges with Windows 7. https:

//blogs.windows.com/windowsexperience/2010/07/08/64-

bit-momentum-surges-with-windows-7/, July 2010. accessed:
15.10.2015.

[245] H. C. Lee and E. M. Pagliaro. Forensic evidence and crime scene investiga-
tion. Journal of Forensic Investigation, 01(02), 2013. doi: 10.13188/2330-
0396.1000004. URL http://dx.doi.org/10.13188/2330-0396.

1000004.

[246] M. Leeds and T. Atkison. Preliminary results of applying machine learning
algorithms to Android malware detection. In 2016 International Conference
on Computational Science and Computational Intelligence (CSCI), pages
1070–1073, Dec 2016. doi: 10.1109/CSCI.2016.0204.

[247] W. Leonhard. ATMs will still run Windows XP – but a bigger shift in
security looms. http://www.infoworld.com/article/2610392/

microsoft-windows/atms-will-still-run-windows-xp----

but-a-bigger-shift-in-security-looms.html, March 2014.
accessed: 09.11.2015.

[248] S. Lian, S. Gritzalis, N. Nedjah, and I.-C. Lin. Special issue on soft com-
puting for information system security. Applied Soft Computing, 11(7):
4257 – 4259, 2011. ISSN 1568-4946. doi: http://dx.doi.org/10.1016/j.
asoc.2011.05.040. URL http://www.sciencedirect.com/science/

article/pii/S1568494611002006. Soft Computing for Information
System Security.

[249] N. Liao, S. Tian, and T. Wang. Network forensics based on fuzzy lo-
gic and expert system. Computer Communications, 32(17):1881 – 1892,
2009. ISSN 0140-3664. doi: http://dx.doi.org/10.1016/j.comcom.2009.07.
013. URL http://www.sciencedirect.com/science/article/

pii/S0140366409002060.

[250] M. Lichman. UCI machine learning repository, 2013. URL http://

archive.ics.uci.edu/ml.

https://blogs.windows.com/windowsexperience/2010/07/08/64-bit-momentum-surges-with-windows-7/
https://blogs.windows.com/windowsexperience/2010/07/08/64-bit-momentum-surges-with-windows-7/
https://blogs.windows.com/windowsexperience/2010/07/08/64-bit-momentum-surges-with-windows-7/
http://dx.doi.org/10.13188/2330-0396.1000004
http://dx.doi.org/10.13188/2330-0396.1000004
http://www.infoworld.com/article/2610392/microsoft-windows/atms-will-still-run-windows-xp----but-a-bigger-shift-in-security-looms.html
http://www.infoworld.com/article/2610392/microsoft-windows/atms-will-still-run-windows-xp----but-a-bigger-shift-in-security-looms.html
http://www.infoworld.com/article/2610392/microsoft-windows/atms-will-still-run-windows-xp----but-a-bigger-shift-in-security-looms.html
http://www.sciencedirect.com/science/article/pii/S1568494611002006
http://www.sciencedirect.com/science/article/pii/S1568494611002006
http://www.sciencedirect.com/science/article/pii/S0140366409002060
http://www.sciencedirect.com/science/article/pii/S0140366409002060
http://archive.ics.uci.edu/ml
http://archive.ics.uci.edu/ml

294 BIBLIOGRAPHY

[251] M. Ligh, S. Adair, B. Hartstein, and M. Richard. Malware analyst’s cook-
book and DVD: tools and techniques for fighting malicious code. Wiley
Publishing, 2010.

[252] C.-t. Lin. An Efficient Feature Selection and Extraction Analysis for Mal-
ware Behavior Classification. PhD thesis, 2015.

[253] Y.-H. Lin and M.-S. Tsai. Non-intrusive load monitoring by novel neuro-
fuzzy classification considering uncertainties. Smart Grid, IEEE Transac-
tions on, 5(5):2376–2384, Sept 2014. ISSN 1949-3053.

[254] Z. Lin, J. Rhee, X. Zhang, D. Xu, and X. Jiang. SigGraph: Brute force
scanning of kernel data structure instances using graph-based signatures. In
NDSS, 2011.

[255] M. Liu, D. Zhang, S. Chen, and H. Xue. Joint binary classifier learning
for ECOC-based multi-class classification. Pattern Analysis and Machine
Intelligence, IEEE Transactions on, PP(99):1–1, 2015. ISSN 0162-8828.

[256] D. G. Luenberger and Y. Ye. Linear and nonlinear programming, volume 2.
Springer, 1984.

[257] E. Lughofer. Evolving Fuzzy Systems - Methodologies, Advanced Concepts
and Applications. Studies in Fuzziness and Soft Computing. Springer, 2011.
ISBN 9783642180866. URL http://books.google.no/books?id=

CP0qmaGuZf0C.

[258] J. R. Lyle, D. R. White, and R. P. Ayers. Digital forensics at the national
institute of standards and technology. National Institute of Standards and
Technology, Interagency Report (NISTIR), 7490, 2008.

[259] G. Madzarov and D. Gjorgjevikj. Multi-class classification using support
vector machines in decision tree architecture. In IEEE EUROCON 2009,
pages 288–295, May 2009.

[260] F. Maiorana, N. Mastorakis, M. Poulos, V. Mladenov, Z. Bojkovic,
D. Simian, S. Kartalopoulos, A. Varonides, and C. Udriste. Performance im-
provements of a kohonen self organizing classification algorithm on sparse
data sets. In WSEAS International Conference. Proceedings. Mathematics
and Computers in Science and Engineering, number 10. WSEAS, 2008.

[261] A. Makiou, Y. Begriche, and A. Serhrouchni. Hybrid approach to detect
SQLi attacks and evasion techniques. In Collaborative Computing: Net-
working, Applications and Worksharing (CollaborateCom), 2014 Interna-
tional Conference on, pages 452–456, Oct 2014.

http://books.google.no/books?id=CP0qmaGuZf0C
http://books.google.no/books?id=CP0qmaGuZf0C

BIBLIOGRAPHY 295

[262] D. P. Mandic and J. A. Chambers. Towards the optimal learning rate for
backpropagation. Neural Process. Lett., 11(1):1–5, Feb. 2000. ISSN 1370-
4621. doi: 10.1023/A:1009686825582.

[263] T. C. K. Mark L. Berenson, David M. Levine. Basic Business Statistics,
11/E. Pearson, 2009.

[264] Z. Markel and M. Bilzor. Building a machine learning classifier for mal-
ware detection. In Anti-malware Testing Research (WATeR), 2014 Second
Workshop on, pages 1–4. IEEE, 2014.

[265] J. Marpaung, M. Sain, and H.-J. Lee. Survey on malware evasion tech-
niques: State of the art and challenges. In Advanced Communication Tech-
nology (ICACT), 2012 14th International Conference on, pages 744 –749,
feb. 2012.

[266] B. Marr. Why only one of the 5 Vs of big data really mat-
ters. http://www.ibmbigdatahub.com/blog/why-only-one-5-

vs-big-data-really-matters, March 2015. accessed: 23.12.2016.

[267] E. Martínez-Gómez, M. T. Richards, and D. S. P. Richards. Distance cor-
relation methods for discovering associations in large astrophysical data-
bases. The Astrophysical Journal, 781:39, Jan. 2014. doi: 10.1088/0004-
637X/781/1/39.

[268] M. Masud, L. Khan, and B. Thuraisingham. A hybrid model to detect mali-
cious executables. In Communications, 2007. ICC ’07. IEEE International
Conference on, pages 1443–1448, June 2007. doi: 10.1109/ICC.2007.242.

[269] K. Maxwell. Maltrieve - a tool to retrieve malware directly from the source
for security researchers. , May 2015. accessed: 06.10.2015.

[270] McAfee. Mobile threat report. what’s on the horizon for 2016.
http://www.mcafee.com/us/resources/reports/rp-mobile-

threat-report-2016.pdf, August 2016. accesed: 20.12.2016.

[271] McAfee. Part of Intel Security. Threats report. Technical report, McAfee,
August 2015. accessed: 19.09.2015.

[272] D. McAllester. Neural networks: Backpropagation general gradient des-
cent. http://ttic.uchicago.edu/~dmcallester/ttic101-07/

lectures/neural/neural.pdf. University of Chicago.

http://www.ibmbigdatahub.com/blog/why-only-one-5-vs-big-data-really-matters
http://www.ibmbigdatahub.com/blog/why-only-one-5-vs-big-data-really-matters
http://www.mcafee.com/us/resources/reports/rp-mobile-threat-report-2016.pdf
http://www.mcafee.com/us/resources/reports/rp-mobile-threat-report-2016.pdf
http://ttic.uchicago.edu/~dmcallester/ttic101-07/lectures/neural/neural.pdf
http://ttic.uchicago.edu/~dmcallester/ttic101-07/lectures/neural/neural.pdf

296 BIBLIOGRAPHY

[273] J. L. McClelland and D. E. Rumelhart. Explorations in Parallel Distributed
Processing: A Handbook of Models, Programs, and Exercises. MIT Press,
Cambridge, MA, USA, 1988. ISBN 0-262-63113-X.

[274] J. McHugh. Testing intrusion detection systems: a critique of the 1998
and 1999 DARPA intrusion detection system evaluations as performed by
lincoln laboratory. ACM Transactions on Information and System Security,
3(4):262–294, nov 2000. doi: 10.1145/382912.382923. URL https://

doi.org/10.1145%2F382912.382923.

[275] R. McKemmish. When is digital evidence forensically sound? In IFIP
— The International Federation for Information Processing, pages 3–15.
Springer Science+Business Media, 2008. doi: 10.1007/978-0-387-84927-
0_1. URL http://dx.doi.org/10.1007/978-0-387-84927-0_1.

[276] E. Menahem, A. Shabtai, L. Rokach, and Y. Elovici. Improving malware
detection by applying multi-inducer ensemble. Computational Statistics &
Data Analysis, 53(4):1483 – 1494, 2009. ISSN 0167-9473.

[277] Miccrosoft. Windows registry information for advanced users. https://
support.microsoft.com/en-us/kb/256986. accessed: 12.07.2016.

[278] Microsoft. Malware families cleaned by the malicious software
removal tool. https://www.microsoft.com/security/pc-

security/malware-families.aspx, .

[279] Microsoft. A history of Windows. http://windows.microsoft.com/
en-us/windows/history, . accessed: 08.01.2016.

[280] Microsoft. The Microsoft Windows malicious software removal tool helps
remove specific, prevalent malicious software from computers that are run-
ning supported versions of windows. https://support.microsoft.

com/en-us/kb/890830, July 2016. accessed: 15.07.2016.

[281] Microsoft Malware Protection Center. Naming malware.

[282] N. Milosevic. History of malware. arXiv preprint arXiv:1302.5392, 2013.

[283] A. A. Minai and R. D. Williams. On the derivatives of the sigmoid. Neural
Networks, 6(6):845 – 853, 1993. ISSN 0893-6080.

[284] T. M. Mitchell. Machine learning. 1997. Burr Ridge, IL: McGraw Hill, 45:
37, 1997.

https://doi.org/10.1145%2F382912.382923
https://doi.org/10.1145%2F382912.382923
http://dx.doi.org/10.1007/978-0-387-84927-0_1
https://support.microsoft.com/en-us/kb/256986
https://support.microsoft.com/en-us/kb/256986
https://www.microsoft.com/security/pc-security/malware-families.aspx
https://www.microsoft.com/security/pc-security/malware-families.aspx
http://windows.microsoft.com/en-us/windows/history
http://windows.microsoft.com/en-us/windows/history
https://support.microsoft.com/en-us/kb/890830
https://support.microsoft.com/en-us/kb/890830

BIBLIOGRAPHY 297

[285] S. Mitra, S. K. Pal, and P. Mitra. Data mining in soft computing framework:
a survey. IEEE transactions on neural networks, 13(1):3–14, 2002.

[286] D. Mo. A survey on deep learning: one small step toward AI. Dept. Com-
puter Science, Univ. of New Mexico, USA, 2012.

[287] A. Modi, Z. Sun, A. Panwar, T. Khairnar, Z. Zhao, A. Doupé, G. J. Ahn, and
P. Black. Towards automated threat intelligence fusion. In 2016 IEEE 2nd
International Conference on Collaboration and Internet Computing (CIC),
pages 408–416, Nov 2016. doi: 10.1109/CIC.2016.060.

[288] A. Moser, C. Kruegel, and E. Kirda. Limits of static analysis for mal-
ware detection. In Computer Security Applications Conference, 2007.
ACSAC 2007. Twenty-Third Annual, pages 421 –430, dec. 2007. doi:
10.1109/ACSAC.2007.21.

[289] A. K. Muda, Y.-H. Choo, A. Abraham, and S. N. Srihari, editors. Computa-
tional Intelligence in Digital Forensics: Forensic Investigation and Applic-
ations. Springer International Publishing, 2014. doi: 10.1007/978-3-319-
05885-6. URL http://dx.doi.org/10.1007/978-3-319-05885-6.

[290] S. Mukkamala and A. H. Sung. Identifying significant features for net-
work forensic analysis using artificial intelligent techniques. International
Journal of digital evidence, 1(4):1–17, 2003.

[291] A. Mushtaq. World’s top malware. https://www.fireeye.com/blog/
threat-research/2010/07/worlds_top_modern_malware.html,
July 2010. accessed: 15.07.2016.

[292] S. Naaz, A. Alam, and R. Biswas. Effect of different defuzzification
methods in a fuzzy based load balancing application. IJCSI-International
Journal of Computer Science Issues, 8(5), 2011.

[293] O. Nelles, M. Fischer, and B. Muller. Fuzzy rule extraction by a genetic
algorithm and constrained nonlinear optimization of membership func-
tions. In Fuzzy Systems, 1996., Proceedings of the Fifth IEEE Interna-
tional Conference on, volume 1, pages 213–219 vol.1, Sep 1996. doi:
10.1109/FUZZY.1996.551744.

[294] H. Nguyen, K. Franke, and S. Petrovic. Improving effectiveness of intrusion
detection by correlation feature selection. In Availability, Reliability, and
Security, 2010. ARES’10 International Conference on, pages 17–24. IEEE,
2010.

http://dx.doi.org/10.1007/978-3-319-05885-6
https://www.fireeye.com/blog/threat-research/2010/07/worlds_top_modern_malware.html
https://www.fireeye.com/blog/threat-research/2010/07/worlds_top_modern_malware.html

298 BIBLIOGRAPHY

[295] L. A. T. Nguyen and H. K. Nguyen. Phishing identification: An efficient
neuro-fuzzy model without using rule sets. In Control Conference (ASCC),
2015 10th Asian, pages 1–6, May 2015.

[296] Norton. What is cybercrime? https://us.norton.com/cybercrime-

definition. accessed: 17.01.2017.

[297] L. Null and J. Lobur. The Essentials of Computer Organization and Archi-
tecture. Jones and Bartlett Publishers, Inc., USA, 4th edition, 2014. ISBN
1284045617, 9781284045611.

[298] I. L. Nunes and M. Simões-Marques. Applications of Fuzzy Logic in Risk
Assessment - The RA_X Case. INTECH Open Access Publisher, 2012.

[299] K. K. Oad, X. DeZhi, and P. K. Butt. A fuzzy rule based approach to pre-
dict risk level of heart disease. Global Journal of Computer Science and
Technology, 14(3), 2014.

[300] U. D. of Homeland Security. National software reference library project.
http://www.nsrl.nist.gov/. accessed: 29.11.2015.

[301] C. Olah. Neural networks, manifolds, and topology. http:

//colah.github.io/posts/2014-03-NN-Manifolds-Topology/,
March 2014. accessed: 03.11.2016.

[302] OSDev. PE - Portable executable. http://wiki.osdev.org/PE. ac-
cessed: 10.10.2015.

[303] G. Ou and Y. L. Murphey. Multi-class pattern classification using neural
networks. Pattern Recogn., 40(1):4–18, Jan. 2007. ISSN 0031-3203.

[304] S. J. Ovaska, H. F. VanLandingham, and A. Kamiya. Fusion of soft com-
puting and hard computing in industrial applications: An overview. Trans.
Sys. Man Cyber Part C, 32(2):72–79, May 2002. ISSN 1094-6977. doi:
10.1109/TSMCC.2002.801354. URL http://dx.doi.org/10.1109/

TSMCC.2002.801354.

[305] T. OWASP. Top 10–2013. The Ten Most Critical Web Application Security
Risks, 2013.

[306] K. Pachopoulos, D. Valsamou, D. Mavroeidis, and M. Vazirgiannis. Fea-
ture extraction from web traffic data for the application of data mining al-
gorithms in attack identification. In Proceedings of the ECML/PKDD, pages
65–70, 2007.

https://us.norton.com/cybercrime-definition
https://us.norton.com/cybercrime-definition
http://www.nsrl.nist.gov/
http://colah.github.io/posts/2014-03-NN-Manifolds-Topology/
http://colah.github.io/posts/2014-03-NN-Manifolds-Topology/
http://wiki.osdev.org/PE
http://dx.doi.org/10.1109/TSMCC.2002.801354
http://dx.doi.org/10.1109/TSMCC.2002.801354

BIBLIOGRAPHY 299

[307] S. Pal, A. Petrosino, and L. Maddalena. Handbook on Soft Computing for
Video Surveillance. Chapman & Hall/CRC Cryptography and Network
Security Series. Taylor & Francis, 2012. ISBN 9781439856840. URL
http://books.google.no/books?id=ekW_-1B0fb0C.

[308] E. Palomo, J. North, D. Elizondo, R. Luque, and T. Watson. Visual-
isation of network forensics traffic data with a self-organising map for
qualitative features. In The 2011 International Joint Conference on
Neural Networks. Institute of Electrical & Electronics Engineers (IEEE),
jul 2011. doi: 10.1109/ijcnn.2011.6033434. URL http://dx.doi.org/

10.1109/ijcnn.2011.6033434.

[309] S. Park and D. P. O’Leary. Portfolio selection using tikhonov filtering to
estimate the covariance matrix. SIAM Journal on Financial Mathematics, 1
(1):932–961, jan 2010. doi: 10.1137/090749372. URL http://dx.doi.

org/10.1137/090749372.

[310] M. Pergler and A. Freeman. Probabilistic modeling as an exploratory
decision-making tool. In McKinsey Working Paper on Risk, volume 6. 2008.

[311] B. Pfaff. PSPP. https://www.gnu.org/software/pspp/. accessed:
10.05.2015.

[312] A. Piegat. Fuzzy Modeling and Control. Studies in Fuzziness and Soft
Computing. Physica-Verlag HD, 2001. ISBN 9783790813852. URL http:

//books.google.no/books?id=329oSfh-vxsC.

[313] D. W. Pitz and J. W. Shavlik. Dynamically adding symbolically meaningful
nodes to knowledge-based neural networks. Knowledge-Based Systems, 8
(6):301 – 311, 1995. ISSN 0950-7051. doi: http://dx.doi.org/10.1016/0950-
7051(96)81915-0. Knowledge-based neural networks.

[314] V. Plagianakos, D. Sotiropoulos, and M. Vrahatis. Automatic adaptation
of learning rate for backpropagation neural networks. Recent Advances in
Circuits and Systems, (337), 2014.

[315] J. Planquart. Application of neural networks to intrusion detection. SANS
Institute, 2001.

[316] A. Plonk and A. Carblanc. Malicious software (malware): A security threat
to the internet economy. 2008.

[317] S. Posel. Facebook designing AI ‘thought police’ to monitor
posts. http://www.occupycorporatism.com/home/facebook-

http://books.google.no/books?id=ekW_-1B0fb0C
http://dx.doi.org/10.1109/ijcnn.2011.6033434
http://dx.doi.org/10.1109/ijcnn.2011.6033434
http://dx.doi.org/10.1137/090749372
http://dx.doi.org/10.1137/090749372
https://www.gnu.org/software/pspp/
http://books.google.no/books?id=329oSfh-vxsC
http://books.google.no/books?id=329oSfh-vxsC
http://www.occupycorporatism.com/home/facebook-designing-ai-thought-police-monitor-posts/
http://www.occupycorporatism.com/home/facebook-designing-ai-thought-police-monitor-posts/
http://www.occupycorporatism.com/home/facebook-designing-ai-thought-police-monitor-posts/

300 BIBLIOGRAPHY

designing-ai-thought-police-monitor-posts/, December
2014. accessed: 12.12.2014.

[318] A. Prakash, E. Venkataramani, H. Yin, and Z. Lin. On the trustworthiness
of memory analysis - an empirical study from the perspective of binary
execution. IEEE Transactions on Dependable and Secure Computing, 12
(5):557–570, Sept 2015. ISSN 1545-5971.

[319] S. Prandl, M. Lazarescu, and D.-S. Pham. A study of web application fire-
wall solutions. In Information Systems Security, pages 501–510. Springer,
2015.

[320] M. Pratama, J. Lu, E. Lughofer, G. Zhang, and M. J. Er. Incremental learn-
ing of concept drift using evolving type-2 recurrent fuzzy neural network.
IEEE Transactions on Fuzzy Systems, PP(99):1–1, 2016. ISSN 1063-6706.
doi: 10.1109/TFUZZ.2016.2599855.

[321] W. Press. Numerical Recipes 3rd Edition: The Art of Scientific Computing.
Cambridge University Press, 2007. ISBN 9780521880688.

[322] E. Principle. Extension principle. http://equipe.nce.ufrj.

br/adriano/fuzzy/transparencias/ExtensionPrinciple/

extensionprinciplehandout.pdf, September 2011. access:
18.09.2014.

[323] V. Prokhorenko, K.-K. R. Choo, and H. Ashman. Web application protec-
tion techniques: A taxonomy. Journal of Network and Computer Applica-
tions, 60:95–112, 2016.

[324] M. Pugh, J. Brewer, and J. Kvam. Sensor fusion for intrusion detection un-
der false alarm constraints. In 2015 IEEE Sensors Applications Symposium
(SAS), pages 1–6, April 2015. doi: 10.1109/SAS.2015.7133634.

[325] R. Puzyriov. Digital forensics tool testing. Master thesis, Gjøvik University
College, 2013.

[326] S. Qi, M. Xu, and N. Zheng. A malware variant detection method based on
byte randomness test. Journal of Computers, 8(10):2469–2477, 2013.

[327] F. Qiu. Neuro-fuzzy based analysis of hyperspectral imagery. volume 74,
pages 1235–1247. American Society for Photogrammetry and Remote
Sensing, oct 2008. doi: 10.14358/pers.74.10.1235. URL http://dx.

doi.org/10.14358/pers.74.10.1235.

http://www.occupycorporatism.com/home/facebook-designing-ai-thought-police-monitor-posts/
http://www.occupycorporatism.com/home/facebook-designing-ai-thought-police-monitor-posts/
http://www.occupycorporatism.com/home/facebook-designing-ai-thought-police-monitor-posts/
http://equipe.nce.ufrj.br/adriano/fuzzy/transparencias/ExtensionPrinciple/extensionprinciplehandout.pdf
http://equipe.nce.ufrj.br/adriano/fuzzy/transparencias/ExtensionPrinciple/extensionprinciplehandout.pdf
http://equipe.nce.ufrj.br/adriano/fuzzy/transparencias/ExtensionPrinciple/extensionprinciplehandout.pdf
http://dx.doi.org/10.14358/pers.74.10.1235
http://dx.doi.org/10.14358/pers.74.10.1235

BIBLIOGRAPHY 301

[328] F. Qiu. Hyperspectral image classification using an unsupervised neuro-
fuzzy system. Journal of Applied Remote Sensing, 6(1):063515, apr 2012.
doi: 10.1117/1.jrs.6.063515. URL http://dx.doi.org/10.1117/1.

jrs.6.063515.

[329] D. Quick and K.-K. R. Choo. Impacts of increasing volume of digital
forensic data: A survey and future research challenges. Digital Investig-
ation, 11(4):273 – 294, 2014. ISSN 1742-2876. doi: http://dx.doi.org/
10.1016/j.diin.2014.09.002. URL http://www.sciencedirect.com/

science/article/pii/S1742287614001066.

[330] K. S. M. Raja and K. J. Kumar. Diversified intrusion detection using various
detection methodologies with sensor fusion. In 2014 International Con-
ference on Computation of Power, Energy, Information and Communica-
tion (ICCPEIC), pages 442–448, April 2014. doi: 10.1109/ICCPEIC.2014.
6915405.

[331] S. Ravi, N. Balakrishnan, and B. Venkatesh. Behavior-based malware ana-
lysis using profile hidden markov models. In Security and Cryptography
(SECRYPT), 2013 International Conference on, pages 1–12, July 2013.

[332] D. K. S. Reddy and A. K. Pujari. N-gram analysis for computer virus de-
tection. Journal in Computer Virology, 2(3):231–239, 2006.

[333] K. Rieck, T. Holz, C. Willems, P. Düssel, and P. Laskov. Learning and
classification of malware behavior. In Proceedings of the 5th International
Conference on Detection of Intrusions and Malware, and Vulnerability As-
sessment, DIMVA ’08, pages 108–125, Berlin, Heidelberg, 2008. Springer-
Verlag. ISBN 978-3-540-70541-3.

[334] K. Rieck, P. Trinius, C. Willems, and T. Holz. Automatic analysis of mal-
ware behavior using machine learning. Journal of Computer Security, 19
(4):639–668, 2011.

[335] I. Rish. An empirical study of the naive Bayes classifier. In IJCAI 2001
workshop on empirical methods in artificial intelligence, volume 3, pages
41–46. IBM New York, 2001.

[336] R. Rojas and J. Feldman. Neural Networks: A Systematic Introduction.
Springer Berlin Heidelberg, 2013. ISBN 9783642610684.

[337] H. J. Rommelfanger. Fuzzy logic based decision support systems. In
EUSFLAT Conf., pages 305–307, 2001.

http://dx.doi.org/10.1117/1.jrs.6.063515
http://dx.doi.org/10.1117/1.jrs.6.063515
http://www.sciencedirect.com/science/article/pii/S1742287614001066
http://www.sciencedirect.com/science/article/pii/S1742287614001066

302 BIBLIOGRAPHY

[338] D. Roobaert, G. Karakoulas, and N. V. Chawla. Information gain, correl-
ation and support vector machines. In Feature Extraction, pages 463–470.
Springer, 2006.

[339] T. Ross. Fuzzy Logic with Engineering Applications. Wiley, 2009.
ISBN 9780470748510. URL http://books.google.no/books?id=

nhz1f9j6_SMC.

[340] M. Rostamipour and B. Sadeghiyan. Network attack origin forensics with
fuzzy logic. In 2015 5th International Conference on Computer and Know-
ledge Engineering (ICCKE). Institute of Electrical & Electronics Engin-
eers (IEEE), oct 2015. doi: 10.1109/iccke.2015.7365863. URL http:

//dx.doi.org/10.1109/iccke.2015.7365863.

[341] R. Rowlingson. A ten step process for forensic readiness. International
Journal of Digital Evidence, 2(3):1–28, 2004.

[342] S. Roy. Factors influencing the choice of a learning rate for a backpropaga-
tion neural network. In Neural Networks, 1994. IEEE World Congress
on Computational Intelligence., 1994 IEEE International Conference on,
volume 1, pages 503–507 vol.1, Jun 1994.

[343] S. Rughooputh and H. Rughooputh. Forensic application of a novel hybrid
neural network. In Neural Networks, 1999. IJCNN ’99. International Joint
Conference on, volume 5, pages 3143–3146 vol.5, 1999. doi: 10.1109/
IJCNN.1999.836154.

[344] D. Saad and S. A. Solla. On-line learning in multilayer neural networks. In
Mathematics of Neural Networks, pages 306–311. Springer, 1997.

[345] E. Sahafizadeh and S. Parsa. Survey on access control models. In Future
Computer and Communication (ICFCC), 2010 2nd International Confer-
ence on, volume 1, pages V1–1–V1–3, May 2010.

[346] J. Sahs and L. Khan. A machine learning approach to Android malware
detection. In Intelligence and security informatics conference (eisic), 2012
european, pages 141–147. IEEE, 2012.

[347] K. S. Sajan, B. Tyagi, and V. Kumar. Genetic algorithm based artificial
neural network model for voltage stability monitoring. In Power Systems
Conference (NPSC), 2014 Eighteenth National, pages 1–5, Dec 2014.

[348] S. Saleem. Protecting the Integrity of Digital Evidence and Basic Human
Rights During the Process of Digital Forensics. PhD thesis, Department of
Computer and Systems Sciences, Stockholm University, 2015.

http://books.google.no/books?id=nhz1f9j6_SMC
http://books.google.no/books?id=nhz1f9j6_SMC
http://dx.doi.org/10.1109/iccke.2015.7365863
http://dx.doi.org/10.1109/iccke.2015.7365863

BIBLIOGRAPHY 303

[349] S. Saleem, O. Popov, and I. Bagilli. Extended abstract digital forensics
model with preservation and protection as umbrella principles. Procedia
Computer Science, 35:812 – 821, 2014. ISSN 1877-0509. doi: http://dx.doi.
org/10.1016/j.procs.2014.08.246. URL http://www.sciencedirect.

com/science/article/pii/S1877050914012113.

[350] Z. Salek, F. M. Madani, and R. Azmi. Intrusion detection using neuarl
networks trained by differential evaluation algorithm. In Information Se-
curity and Cryptology (ISCISC), 2013 10th International ISC Conference
on, pages 1–6, Aug 2013. doi: 10.1109/ISCISC.2013.6767341.

[351] R. Salomon. The curse of high-dimensional search spaces: observing pre-
mature convergence in unimodal functions. In Evolutionary Computation,
2004. CEC2004. Congress on, volume 1, pages 918–923 Vol.1, June 2004.

[352] A. Sami, B. Yadegari, H. Rahimi, N. Peiravian, S. Hashemi, and A. Hamze.
Malware detection based on mining API calls. In Proceedings of the 2010
ACM Symposium on Applied Computing, SAC ’10, pages 1020–1025, New
York, NY, USA, 2010. ACM. ISBN 978-1-60558-639-7. doi: 10.1145/
1774088.1774303. URL http://doi.acm.org/10.1145/1774088.

1774303.

[353] I. Santos, X. Ugarte-Pedrero, B. Sanz, C. Laorden, and P. G. Bringas. Col-
lective classification for packed executable identification. In Proceedings
of the 8th Annual Collaboration, Electronic Messaging, Anti-Abuse and
Spam Conference, CEAS ’11, pages 23–30, New York, NY, USA, 2011.
ACM. ISBN 978-1-4503-0788-8. doi: 10.1145/2030376.2030379. URL
http://doi.acm.org/10.1145/2030376.2030379.

[354] I. Santos, F. Brezo, X. Ugarte-Pedrero, and P. G. Bringas. Opcode sequences
as representation of executables for data-mining-based unknown malware
detection. Information Sciences, 231:64–82, 2013.

[355] P. Sarlin and T. Eklund. Fuzzy clustering of the self-organizing map: Some
applications on financial time series. In Proceedings of the 8th International
Conference on Advances in Self-organizing Maps, WSOM’11, pages 40–50,
Berlin, Heidelberg, 2011. Springer-Verlag. ISBN 978-3-642-21565-0.

[356] M. Schiffman. A brief history of malware obfuscation. http:

//blogs.cisco.com/security/a_brief_history_of_malware_

obfuscation_part_1_of_2, 2010. accessed: 13.07.2016.

[357] J. Schmidhuber. Deep learning in neural networks: An overview. Neural
Networks, 61:85–117, 2015.

http://www.sciencedirect.com/science/article/pii/S1877050914012113
http://www.sciencedirect.com/science/article/pii/S1877050914012113
http://doi.acm.org/10.1145/1774088.1774303
http://doi.acm.org/10.1145/1774088.1774303
http://doi.acm.org/10.1145/2030376.2030379
http://blogs.cisco.com/security/a_brief_history_of_malware_obfuscation_part_1_of_2
http://blogs.cisco.com/security/a_brief_history_of_malware_obfuscation_part_1_of_2
http://blogs.cisco.com/security/a_brief_history_of_malware_obfuscation_part_1_of_2

304 BIBLIOGRAPHY

[358] C. R. Schmidt. Effect of irregular topology in shperical Self-Organizing
Maps. PhD thesis, San Diego State University, December 2008.

[359] I. Schmidtmann, G. Hammer, M. Sariyar, A. Gerhold-Ay, and K. des öf-
fentlichen Rechts. Evaluation des krebsregisters NRW schwerpunkt record
linkage. Abschlußbericht vom, 11, 2009.

[360] G. Schudel. Bandwidth, packets per second, and other network performance
metrics. Abgerufen am, 10:2010, 2010.

[361] S. Senel-Kleine, J. Bouche, and M. Kappes. On the usefulness of machine
learning techniques in collaborative anomaly detection. In Internet Techno-
logies and Applications (ITA), 2015, pages 213–218, Sept 2015.

[362] M. Z. Shafiq, M. Farooq, and S. A. Khayam. A comparative study of fuzzy
inference systems, neural networks and adaptive neuro fuzzy inference sys-
tems for portscan detection. In Applications of Evolutionary Computing,
pages 52–61. Springer, 2008.

[363] K. Shah, N. Dave, and S. Chavon. Adaptive neuro-fuzzy intrusion detection
system. Proceeding IEEE International Conference Information Techno-
logy: Coding and Computing, 2004.

[364] S. Shah. Top ten web attacks. White paper, 2002.

[365] H. Shahriar, M. Islam, and V. Clincy. Android malware detection using
permission analysis. In SoutheastCon 2017, pages 1–6, March 2017. doi:
10.1109/SECON.2017.7925347.

[366] R. Shahzad, N. Lavesson, and H. Johnson. Accurate adware detection
using opcode sequence extraction. In Availability, Reliability and Secur-
ity (ARES), 2011 Sixth International Conference on, pages 189–195, Aug
2011. doi: 10.1109/ARES.2011.35.

[367] A. Shalaginov. Soft computing and hybrid intelligence for decision support
in forensics science. In IEEE Intelligence and Security Informatics 2016,
pages 304–309, 2016.

[368] A. Shalaginov. Dynamic feature-based expansion of fuzzy sets in neuro-
fuzzy for proactive malware detection. In Information Fusion (Fusion),
2017 20th International Conference on, pages 1–8. IEEE, 2017.

[369] A. Shalaginov. Fuzzy logic model for digital forensics: A trade-off between
accuracy, complexity and interpretability. In 26th International Joint Con-
ference on Artificial Intelligence (IJCAI), 2017.

BIBLIOGRAPHY 305

[370] A. Shalaginov. Evolutionary optimization of on-line multilayer perceptron
for similarity-based access control. In 2017 International Joint Conference
on Neural Networks (IJCNN), pages 823–830, May 2017. doi: 10.1109/
IJCNN.2017.7965937.

[371] A. Shalaginov and K. Franke. Automatic rule-mining for malware detection
employing neuro-fuzzy approach. Norsk informasjonssikkerhetskonferanse
(NISK), 2013.

[372] A. Shalaginov and K. Franke. Towards improvement of multinomial classi-
fication accuracy of neuro-fuzzy for digital forensics applications. In 15th
International Conference on Hybrid Intelligent Systems (HIS 2015), volume
420, pages 199–210. Springer Publishing, 2015.

[373] A. Shalaginov and K. Franke. A new method of fuzzy patches construction
in neuro-fuzzy for malware detection. In Conference of the International
Fuzzy Systems Association and European Society for Fuzzy Logic and Tech-
nology (IFSA-EUSFLAT). Atlantis Press, 2015.

[374] A. Shalaginov and K. Franke. A new method for an optimal som size de-
termination in neuro-fuzzy for the digital forensics applications. In Inter-
national Work-Conference on Artificial Neural Networks, pages 549–563.
Springer International Publishing, 2015.

[375] A. Shalaginov and K. Franke. Automated generation of fuzzy rules from
large-scale network traffic analysis in digital forensics investigations. In
7th International Conference on Soft Computing and Pattern Recognition
(SoCPaR 2015). IEEE, 2015.

[376] A. Shalaginov and K. Franke. Big data analytics by automated generation of
fuzzy rules for network forensics readiness. Applied Soft Computing, 2016.

[377] A. Shalaginov and K. Franke. Multinomial classification of web attacks
using improved fuzzy rules learning by neuro-fuzzy. International Journal
of Hybrid Intelligent Systems, 13(1):15–26, 2016.

[378] A. Shalaginov and K. Franke. Intelligent generation of fuzzy rules for
network firewalls based on the analysis of large-scale network traffic
dumps. International Journal of Hybrid Intelligent Systems, 13(3-4):195–
206, 2016.

[379] A. Shalaginov and K. Franke. Automated intelligent multinomial classific-
ation of malware species using dynamic behavioural analysis. In 2016 14th

306 BIBLIOGRAPHY

Annual Conference on Privacy, Security and Trust (PST), pages 70–77, Dec
2016. doi: 10.1109/PST.2016.7906939.

[380] A. Shalaginov and K. Franke. A deep neuro-fuzzy method for multi-label
Windows PE32 malware classification. IEEE Symposium Series on Compu-
tational Intelligence (IEEE SSCI 2017), 2017. (Submitted).

[381] A. Shalaginov, L. S. Grini, and K. Franke. Understanding neuro-fuzzy on
a class of multinomial malware detection problems. In IEEE International
Joint Conference on Neural Networks (IJCNN) 2016, pages 684–691. Re-
search Publishing Services, 2016.

[382] A. Shalaginov, S. Banin, A. Dehghantanha, and K. Franke. Machine learn-
ing aided static malware analysis: A survey and tutorial. Cyber Threat
Intelligence 2017, 2017.

[383] C. R. Shalizi. Advanced data analysis from elementary point of view. Tech-
nical report, Undergraduate Advanced Data Analysis, Department of Stat-
istics, Carnegie Mellon University, 2013.

[384] K. Shang and Z. Hossen. Applying fuzzy logic to risk assessment and
decision-making. Technical report, CAS/CIA/SOA Join Risk Management
Section, 2013.

[385] M. Shankarapani, K. Kancherla, S. Ramammoorthy, R. Movva, and
S. Mukkamala. Kernel machines for malware classification and similar-
ity analysis. In Neural Networks (IJCNN), The 2010 International Joint
Conference on, pages 1–6. IEEE, 2010.

[386] R. Shanmugavadivu and N. Nagarajan. Network intrusion detection system
using fuzzy logic. Indian Journal of computer Science and Engineering,
2011.

[387] A. F. Shapiro and M.-C. Koissi. Risk assessment applications of fuzzy logic.
Technical report, Canadian Institute of Actuaries, 2015.

[388] N. M. Share. Desktop operating system market share. http:

//www.netmarketshare.com/report.aspx?qprid=10&

qptimeframe=M&qpsp=200&qpch=350&qpcustomd=0, September
2015. accessed: 15.10.2015.

[389] S. Shiaeles. Real time detection and response of distributed denial of service
attacks for web services. PhD thesis, Democritus University of Thrace,
2013.

http://www.netmarketshare.com/report.aspx?qprid=10&qptimeframe=M&qpsp=200&qpch=350&qpcustomd=0
http://www.netmarketshare.com/report.aspx?qprid=10&qptimeframe=M&qpsp=200&qpch=350&qpcustomd=0
http://www.netmarketshare.com/report.aspx?qprid=10&qptimeframe=M&qpsp=200&qpch=350&qpcustomd=0

BIBLIOGRAPHY 307

[390] D. Shinder. The pros and cons of behavioral based, signature based
and whitelist based security. http://www.windowsecurity.com/

articles-tutorials/misc_network_security/Pros-Cons-

Behavioral-Signature-Whitelist-Security.html, November
2008. Accessed: 25.07.2016.

[391] R. Sindal and S. Tokekar. Adaptive soft handoff based neuro-fuzzy call
admission control scheme for multiclass calls in cdma cellular network. In
Recent Advances in Information Technology (RAIT), 2012 1st International
Conference on, pages 279–284, March 2012.

[392] H. Singh. Performance analysis of unsupervised machine learning tech-
niques for network traffic classification. In Advanced Computing Com-
munication Technologies (ACCT), 2015 Fifth International Conference on,
pages 401–404, Feb 2015. doi: 10.1109/ACCT.2015.54.

[393] J. Singh and M. J. Nene. A survey on machine learning techniques for
intrusion detection systems. International Journal of Advanced Research in
Computer and Communication Engineering, 2(11), 2013.

[394] R. Singh, H. Kumar, and R. Singla. Review of soft computing in malware
detection. Special issues on IP Multimedia Communications, 1(1):55–60,
October 2011. Full text available.

[395] W. Siripanwattana and S. Srinoy. Information security based on soft com-
puting techniques, 2008.

[396] L. I. Smith. A tutorial on principal components analysis. Tech-
nical report, Cornell University, USA, February 26 2002. URL
http://www.cs.otago.ac.nz/cosc453/student_tutorials/

principal_components.pdf.

[397] M. Sokolova and G. Lapalme. A systematic analysis of performance meas-
ures for classification tasks. Information Processing & Management, 45(4):
427 – 437, 2009. ISSN 0306-4573.

[398] R. Sommer and V. Paxson. Outside the closed world: On using machine
learning for network intrusion detection. In 2010 IEEE symposium on se-
curity and privacy, pages 305–316. IEEE, 2010.

[399] Sophos. When malware goes mobile. https://www.sophos.com/en-

us/security-news-trends/security-trends/malware-goes-

mobile.aspx. accessed: 03.05.2017.

http://www.windowsecurity.com/articles-tutorials/misc_network_security/Pros-Cons-Behavioral-Signature-Whitelist-Security.html
http://www.windowsecurity.com/articles-tutorials/misc_network_security/Pros-Cons-Behavioral-Signature-Whitelist-Security.html
http://www.windowsecurity.com/articles-tutorials/misc_network_security/Pros-Cons-Behavioral-Signature-Whitelist-Security.html
http://www.cs.otago.ac.nz/cosc453/student_tutorials/principal_components.pdf
http://www.cs.otago.ac.nz/cosc453/student_tutorials/principal_components.pdf
https://www.sophos.com/en-us/security-news-trends/security-trends/malware-goes-mobile.aspx
https://www.sophos.com/en-us/security-news-trends/security-trends/malware-goes-mobile.aspx
https://www.sophos.com/en-us/security-news-trends/security-trends/malware-goes-mobile.aspx

308 BIBLIOGRAPHY

[400] J. Stallkamp, M. Schlipsing, J. Salmen, and C. Igel. The german traffic
sign recognition benchmark: a multi-class classification competition. In
Neural Networks (IJCNN), The 2011 International Joint Conference on,
pages 1453–1460. IEEE, 2011.

[401] A. Stein. Properties of limits. http://www.math.uconn.edu/~stein/
math115/slides/math115-130notes.pdf.

[402] K. Stoffel, P. Cotofrei, and D. Han. Fuzzy methods for forensic data ana-
lysis. In SoCPaR, pages 23–28, 2010.

[403] D. Sule. Importance of forensic readiness. ISACA journal,
https://www.isaca.org/Journal/archives/2014/Volume-

1/Pages/JOnline-Importance-of-Forensic-Readiness.aspx,
2014. accessed: 18.05.2017.

[404] L. Sun, S. Versteeg, S. Boztaş, and T. Yann. Pattern recognition techniques
for the classification of malware packers. In Information security and pri-
vacy, pages 370–390. Springer, 2010.

[405] G. Surman. Understanding security using the osi model. SANS Institute
InfoSec Reading Room, 2002.

[406] SWGDE. Best practices for computer forensics. https:

//www.swgde.org/documents/Current%20Documents/SWGDE%

20Best%20Practices%20for%20Computer%20Forensics, Septem-
ber 2014. accessed: 03.02.2017.

[407] J. Székely, M. L. Rizzo, and N. K. Bakirov. Measuring and testing depend-
ence by correlation of distances.

[408] S. Tahilyani, M. Darbari, and P. K. Shukla. Soft computing approaches
in traffic control systems: A review. {AASRI} Procedia, 4(0):206 – 211,
2013. ISSN 2212-6716. doi: http://dx.doi.org/10.1016/j.aasri.2013.10.
032. URL http://www.sciencedirect.com/science/article/

pii/S2212671613000334. 2013 {AASRI} Conference on Intelligent
Systems and Control.

[409] M. Takács. Parameters and rules of fuzzy-based risk management models.
2011.

[410] S. Tang. The detection of trojan horse based on the data mining. In Fuzzy
Systems and Knowledge Discovery, 2009. FSKD ’09. Sixth International
Conference on, volume 1, pages 311–314, Aug 2009. doi: 10.1109/FSKD.
2009.354.

http://www.math.uconn.edu/~stein/math115/slides/math115-130notes.pdf
http://www.math.uconn.edu/~stein/math115/slides/math115-130notes.pdf
https://www.isaca.org/Journal/archives/2014/Volume-1/Pages/JOnline-Importance-of-Forensic-Readiness.aspx
https://www.isaca.org/Journal/archives/2014/Volume-1/Pages/JOnline-Importance-of-Forensic-Readiness.aspx
https://www.swgde.org/documents/Current%20Documents/SWGDE%20Best%20Practices%20for%20Computer%20Forensics
https://www.swgde.org/documents/Current%20Documents/SWGDE%20Best%20Practices%20for%20Computer%20Forensics
https://www.swgde.org/documents/Current%20Documents/SWGDE%20Best%20Practices%20for%20Computer%20Forensics
http://www.sciencedirect.com/science/article/pii/S2212671613000334
http://www.sciencedirect.com/science/article/pii/S2212671613000334

BIBLIOGRAPHY 309

[411] S. Tano, T. Oyama, and T. Arnould. Deep combination of fuzzy inference
and neural network in fuzzy inference software—finest. Fuzzy Sets and
Systems, 82(2):151–160, 1996.

[412] M. Tavallaee, E. Bagheri, W. Lu, and A. A. Ghorbani. A detailed analysis
of the KDD CUP 99 data set. In Computational Intelligence for Security
and Defense Applications, 2009. CISDA 2009. IEEE Symposium on, pages
1–6. IEEE, 2009.

[413] C. Thang, P. Q. Toan, E. Cooper, and K. Kamei. Application of soft com-
puting to tax fraud detection in small businesses. In Communications and
Electronics, 2006. ICCE ’06. First International Conference on, pages 402–
407, Oct 2006. doi: 10.1109/CCE.2006.350887.

[414] G. Thimm and E. Fiesler. High-order and multilayer perceptron initializa-
tion. Neural Networks, IEEE Transactions on, 8(2):349–359, 1997.

[415] T. Tieleman and G. Hinton. Lecture 6.5-rmsprop: Divide the gradient by a
running average of its recent magnitude. COURSERA: Neural Networks for
Machine Learning, 4(2), 2012.

[416] V. Torra. Trends in information fusion in data mining. In Information fusion
in data mining, pages 1–6. Springer, 2003.

[417] I. Triguero, D. Peralta, J. Bacardit, S. García, and F. Herrera. MRPR:
A MapReduce solution for prototype reduction in big data classification.
Neurocomputing, 150:331–345, feb 2015. doi: 10.1016/j.neucom.2014.04.
078. URL http://dx.doi.org/10.1016/j.neucom.2014.04.078.

[418] J. V. Tu. Advantages and disadvantages of using artificial neural networks
versus logistic regression for predicting medical outcomes. Journal of Clin-
ical Epidemiology, 49(11):1225 – 1231, 1996. ISSN 0895-4356. doi:
http://dx.doi.org/10.1016/S0895-4356(96)00002-9.

[419] B. u. Islam, Z. Baharudin, M. Q. Raza, and P. Nallagownden. Optimization
of neural network architecture using genetic algorithm for load forecasting.
In Intelligent and Advanced Systems (ICIAS), 2014 5th International Con-
ference on, pages 1–6, June 2014.

[420] X. Ugarte-Pedrero, I. Santos, P. Bringas, M. Gastesi, and J. Esparza. Semi-
supervised learning for packed executable detection. In Network and System
Security (NSS), 2011 5th International Conference on, pages 342–346, Sept
2011. doi: 10.1109/ICNSS.2011.6060027.

http://dx.doi.org/10.1016/j.neucom.2014.04.078

310 BIBLIOGRAPHY

[421] R. Unuchek. Mobile malware evolution 2016. https://securelist.

com/analysis/kaspersky-security-bulletin/77681/mobile-

malware-evolution-2016/, February 2017. accessed: 03.05.2017.

[422] D. Uppal, R. Sinha, V. Mehra, and V. Jain. Malware detection and classi-
fication based on extraction of API sequences. In Advances in Computing,
Communications and Informatics (ICACCI, 2014 International Conference
on, pages 2337–2342. IEEE, 2014.

[423] J. Vesanto and E. Alhoniemi. Clustering of the self-organizing map. IEEE
transactions on neural networks, 11(3):586–600, 2000.

[424] J. Vesanto, J. Himberg, E. Alhoniemi, and J. Parhankangas. Self-organizing
map in matlab: the SOM Toolbox. In In Proceedings of the Matlab DSP
Conference, pages 35–40, 2000.

[425] J. Vieira, F. M. Dias, and A. Mota. Neuro-fuzzy systems: a survey. In 5th
WSEAS NNA International Conference, 2004.

[426] J. Vincent. 99.6 percent of new smartphones run Android or iOS.
https://www.theverge.com/2017/2/16/14634656/android-

ios-market-share-blackberry-2016, February 2017. accessed:
19.05.2017.

[427] C. Visual and B. Unit. Microsoft Portable Executable and common object
file format specification, 1999.

[428] I. Vural and H. Venter. Using network forensics and artificial intelligence
techniques to detect bot-nets on an organizational network. In 2010 Seventh
International Conference on Information Technology: New Generations. In-
stitute of Electrical & Electronics Engineers (IEEE), 2010. doi: 10.1109/
itng.2010.67. URL http://dx.doi.org/10.1109/itng.2010.67.

[429] C. Wang, Z. Qin, J. Zhang, and H. Yin. A malware variants detection meth-
odology with an opcode based feature method and a fast density based clus-
tering algorithm. In 2016 12th International Conference on Natural Com-
putation, Fuzzy Systems and Knowledge Discovery (ICNC-FSKD), pages
481–487, Aug 2016. doi: 10.1109/FSKD.2016.7603221.

[430] N. Wang, D. Wang, and Z. Wu. An online self-organizing neuro-fuzzy sys-
tem from training data. In Advanced Computational Intelligence (IWACI),
2010 Third International Workshop on, pages 26–31, Aug 2010. doi:
10.1109/IWACI.2010.5585231.

https://securelist.com/analysis/kaspersky-security-bulletin/77681/mobile-malware-evolution-2016/
https://securelist.com/analysis/kaspersky-security-bulletin/77681/mobile-malware-evolution-2016/
https://securelist.com/analysis/kaspersky-security-bulletin/77681/mobile-malware-evolution-2016/
https://www.theverge.com/2017/2/16/14634656/android-ios-market-share-blackberry-2016
https://www.theverge.com/2017/2/16/14634656/android-ios-market-share-blackberry-2016
http://dx.doi.org/10.1109/itng.2010.67

BIBLIOGRAPHY 311

[431] T.-Y. Wang, C.-H. Wu, and C.-C. Hsieh. Detecting unknown malicious
executables using portable executable headers. In INC, IMS and IDC, 2009.
NCM ’09. Fifth International Joint Conference on, pages 278–284, Aug
2009. doi: 10.1109/NCM.2009.385.

[432] G. Wangen and A. Shalaginov. Quantitative risk, statistical methods and
the four quadrants for information security. In The 10th International Con-
ference on Risks and Security of Internet and Systems, 2015. CRiSIS’15.
Springer, 2015.

[433] G. Wangen, A. Shalaginov, and C. Hallstensen. Cyber security risk as-
sessment of a DDoS attack. In International Conference on Information
Security, pages 183–202. Springer International Publishing, 2016.

[434] E. W. Weisstein. Central limit theorem. http://mathworld.wolfram.
com/CentralLimitTheorem.html. accessed: 20.02.2017.

[435] J. Weizenbaum. Computer Power and Human Reason: From Judgment to
Calculation. W. H. Freeman & Co., New York, NY, USA, 1976. ISBN
0716704641.

[436] R. Wentworth. Computer virus! http://uanr.com/articles/virus.
html. accessed: 09.02.2016.

[437] S. Whiteson and D. Whiteson. Machine learning for event selection in high
energy physics. Engineering Applications of Artificial Intelligence, 22(8):
1203–1217, dec 2009. doi: 10.1016/j.engappai.2009.05.004. URL http:

//dx.doi.org/10.1016/j.engappai.2009.05.004.

[438] B. Widrow and M. A. Lehr. The handbook of brain theory and neural net-
works. chapter Perceptrons, Adalines, and Backpropagation, pages 719–
724. MIT Press, Cambridge, MA, USA, 1998. ISBN 0-262-51102-9.

[439] Wikipedia. Timeline of computer viruses and worms. https:

//en.wikipedia.org/wiki/Timeline_of_computer_viruses_

and_worms, . accessed: 09.02.2016.

[440] Wikipedia. Timeline of Microsoft Windows. https://en.

wikipedia.org/wiki/Timeline_of_Microsoft_Windows, . ac-
cessed: 08.02.2016.

[441] D. R. Wilson and T. R. Martinez. The general inefficiency of batch training
for gradient descent learning. Neural Networks, 16(10):1429–1451, 2003.

http://mathworld.wolfram.com/CentralLimitTheorem.html
http://mathworld.wolfram.com/CentralLimitTheorem.html
http://uanr.com/articles/virus.html
http://uanr.com/articles/virus.html
http://dx.doi.org/10.1016/j.engappai.2009.05.004
http://dx.doi.org/10.1016/j.engappai.2009.05.004
https://en.wikipedia.org/wiki/Timeline_of_computer_viruses_and_worms
https://en.wikipedia.org/wiki/Timeline_of_computer_viruses_and_worms
https://en.wikipedia.org/wiki/Timeline_of_computer_viruses_and_worms
https://en.wikipedia.org/wiki/Timeline_of_Microsoft_Windows
https://en.wikipedia.org/wiki/Timeline_of_Microsoft_Windows

312 BIBLIOGRAPHY

[442] D. H. Wolpert and W. G. Macready. No free lunch theorems for optimiza-
tion. Evolutionary Computation, IEEE Transactions on, 1(1):67–82, 1997.

[443] S. Woodall. Firewall design principles. Computer Networks and Computer
Security. Coursework paper, North Carolina State University, USA, 2004.

[444] C. Wu and J. Irwin. Introduction to Computer Networks and Cybersecurity.
CRC Press, 2016. ISBN 9781466572140.

[445] D. Yadron, S. Ackerman, and S. Thielman. Inside the fbi’s encryption battle
with Apple. Guardian, 2016.

[446] Y. Yamamoto and K. Iwanuma. Online pattern mining for high-dimensional
data streams. In Big Data (Big Data), 2015 IEEE International Conference
on, pages 2880–2882, Oct 2015.

[447] X. Yan. Study on the dynamic forensics method based on BP neural net-
work. In 2011 International Conference on Future Computer Sciences
and Application. Institute of Electrical & Electronics Engineers (IEEE),
jun 2011. doi: 10.1109/icfcsa.2011.58. URL http://dx.doi.org/10.

1109/icfcsa.2011.58.

[448] X.-S. Yang. Nature-inspired metaheuristic algorithms. Luniver press, 2010.

[449] Y. Ye, D. Wang, T. Li, and D. Ye. IMDS: intelligent malware detection
system. In Proceedings of the 13th ACM SIGKDD International Conference
on Knowledge Discovery and Data Mining, KDD ’07, pages 1043–1047,
New York, NY, USA, 2007. ACM. ISBN 978-1-59593-609-7.

[450] S. Yu, G. Gu, A. Barnawi, S. Guo, and I. Stojmenovic. Malware propaga-
tion in large-scale networks. IEEE Transactions on Knowledge & Data
Engineering, (1):170–179, 2015.

[451] X.-H. Yu and G.-A. Chen. Efficient backpropagation learning using optimal
learning rate and momentum. Neural Netw., 10(3):517–527, Apr. 1997.
ISSN 0893-6080.

[452] M. Zabidi, M. Maarof, and A. Zainal. Malware analysis with multiple
features. In Computer Modelling and Simulation (UKSim), 2012 UK-
Sim 14th International Conference on, pages 231–235, March 2012. doi:
10.1109/UKSim.2012.40.

[453] L. A. Zadeh. Fuzzy sets. Information and control, 8(3):338–353, 1965.

http://dx.doi.org/10.1109/icfcsa.2011.58
http://dx.doi.org/10.1109/icfcsa.2011.58

BIBLIOGRAPHY 313

[454] L. A. Zadeh. Fuzzy sets as a basis for a theory of possibility. Fuzzy sets and
systems, 1(1):3–28, 1978.

[455] L. A. Zadeh. Fuzzy logic, neural networks, and soft computing. Commun.
ACM, 37(3):77–84, Mar. 1994. ISSN 0001-0782. doi: 10.1145/175247.
175255. URL http://doi.acm.org/10.1145/175247.175255.

[456] M. Zamani. Machine learning techniques for intrusion detection. 2013.

[457] L. Zeltser. Tools for analyzing static properties of suspicious files on Win-
dows. http://digital-forensics.sans.org/blog/2014/03/04/
tools-for-analyzing-static-properties-of-suspicious-

files-on-windows. accessed: 09.02.2016.

[458] B. Zhang, J. Yin, J. Hao, D. Zhang, and S. Wang. Malicious codes detection
based on ensemble learning. In Proceedings of the 4th International Con-
ference on Autonomic and Trusted Computing, ATC’07, pages 468–477,
Berlin, Heidelberg, 2007. Springer-Verlag. ISBN 3-540-73546-1, 978-3-
540-73546-5.

[459] Y. Zhang, editor. Machine Learning. INFTECH, isbn 978-953-307-033-9,
edition, February 2010.

[460] S. Zhao, M. Chandrashekar, Y. Lee, and D. Medhi. Real-time network
anomaly detection system using machine learning. In Design of Reliable
Communication Networks (DRCN), 2015 11th International Conference on
the, pages 267–270, March 2015.

[461] Z. Zhao. A virus detection scheme based on features of control flow graph.
In Artificial Intelligence, Management Science and Electronic Commerce
(AIMSEC), 2011 2nd International Conference on, pages 943–947, Aug
2011. doi: 10.1109/AIMSEC.2011.6010676.

[462] S. Zhou, Q. Chen, and X. Wang. Fuzzy deep belief networks for semi-
supervised sentiment classification. Neurocomputing, 131:312–322, 2014.

[463] H. Zimmermann. Osi reference model–the ISO model of architecture for
open systems interconnection. IEEE Transactions on communications, 28
(4):425–432, 1980.

http://doi.acm.org/10.1145/175247.175255
http://digital-forensics.sans.org/blog/2014/03/04/tools-for-analyzing-static-properties-of-suspicious-files-on-windows
http://digital-forensics.sans.org/blog/2014/03/04/tools-for-analyzing-static-properties-of-suspicious-files-on-windows
http://digital-forensics.sans.org/blog/2014/03/04/tools-for-analyzing-static-properties-of-suspicious-files-on-windows

314 BIBLIOGRAPHY

Appendix A

Computational Setup & Used
Hardware

This work was done to improve existing Neuro-Fuzzy that also required compre-
hensive experimental evaluation and implementation of various functionality for
proof of concept demonstration. To be able to fulfil this we in timely matter I
used Dedicated Server available at NTNU Digital Forensics and also implemented
a number to tools. The details are given below.

A.1 Developed Software
Novel theoretical contributions required designing and development of corres-
ponding software tools that should be capable of demonstrating not only newly
proposed improvements of Neuro-Fuzzy, but also comparison to original meth-
ods, including Kosko Fuzzy Inference System. In addition, this thesis investigates
analysis of large-scale data in a timely manner, meaning that we had to perform
rigorous mathematical and parallel optimization. Below it will be given an outline
of the specific software tools and also report by CLOC1 to show the quantitative
statistics of the code.

A.1.1 Implementation of Neuro-Fuzzy Method and Self-Organizing Map Library

Improvement of the Neuro-Fuzzy method for Digital Forensics Investigation re-
quired proof-of-concept demonstration to be able to highlight not only theoretical
enhancement, yet also show the practical benefits when it comes to complex and
large-scale data. I implemented all the steps described in the Chapter 3. In ad-

1http://cloc.sourceforge.net/

315

http://cloc.sourceforge.net/

316 APPENDIX A

dition to this it was implemented functionality also for Simple Rectangular and
Kosko Fuzzy Inference Systems as was reviewed in the Chapter 2. The method
consisted of two stages. The first part was based on the designed and implemented
Self-Organizing Map library using C++ and STL, Boost, Eigen, OpenMP libraries
in order to be able to process large-scale data in a fast matter using optimized mat-
rix operations on several execution threads. Chapter 4 showed different aspects
and time complexity of the implemented method. Second stage was based on the
ANN learning, where automatically extracted fuzzy rules where used to train and
tune the classification model. It should be mentioned that implemented library
is fast and verified during many experiments, also scalable and does not depend
on number of features, classes, data site or number of execution threads on the
processor within the hardware capabilities.

A.1.2 Processing of PE32 malware files and VirusTotal response

The first part of this work was devoted to implementation of automated engine
that will be processing PE32 malware files and store all necessary information
(features, anti-virus reports, etc.). PEframe2 and VirusTotal3 were chosen to be
sources of the relevant characteristic of the binary files. Virus Total in addition
to PE32 header fields provide reports from about 60 anti-virus vendors. PHP and
MySQL were used to retrieve all relevant information using VirusTotal Private
API. Files preprocessing was performed using Linux native bash, while analysis
of the reports in JSON were done with PHP and Python.

Second part of the experiments included development of the automated procedure
for malware analysis in a sandbox. Sandbox and files rotation was done with a
help of bash and VirtualBox API, while parts written in PHP were used to ana-
lyse the data and derives corresponding numerical features from CaptureBAT and
WinDUMP reports to store them in MySQL.

A.2 Experimental Setups & Used Computing Environments
This chapter contains practical aspects of performed experiments and details of
proof of concept demonstration for each of the experimental setup mentions earlier.
These guidelines may help to reproduce the flow of the data analysis and prepro-
cessing. The computations have been carried out on (i) 4-threaded VDS with In-
tel(R) Core(TM) i7-3820 CPU @ 3.60GHz with 4 cores (8 threads), 16GB RAM
and SSD RAID storage and installed OS Ubuntu 14.04 64 bit.

1. The software in [377] was implemented in C++ and compiled by gcc-4.8.2.
2https://github.com/guelfoweb/peframe
3https://www.virustotal.com/

https://github.com/guelfoweb/peframe
https://www.virustotal.com/

A.2. Experimental Setups & Used Computing Environments 317

To perform a part of mathematical operations, we utilized Boost and Ei-
gen libraries. Each experiments included: SOM grouping, extracting three
type of fuzzy regions parameters (rectangular, Kosko, proposed method) and
models training. To estimate the speed of the execution, relative times of the
experiments were measured for all samples in training set.

2. To show how the malware analysis can be done automatically using differ-
ent ML techniques in the contribution [382], we perform following steps
for data preprocessing and experimental design. Also we described how we
tackled different challenges experienced during experiments. All the exper-
iments were performed on a Virtual Dedicated Server. Files pre-processing
were performed using bash scripts due to native support in Linux OS. To
store extracted features we are going to use MySQL 5.5 database engine
together with Python and PH connectors. So, following steps are employed:

(a) Unprocessed malware and benign files were placed into two directories
"malware/" and "benign/".

(b) To eliminate duplicates, we renamed all the files to their MD5 sums.
(c) PE32 files were selected in the folder, which was done by executing

Linux file command:
1 \ $ f i l e 000000 b 4 d c c f b a a 5 b d 9 8 1 a f 2 c 1 b b f 5 9 a
2 000000 b 4 d c c f b a a 5 b d 9 8 1 a f 2 c 1 b b f 5 9 a : PE32 e x e c u t a b l e (DLL)

(GUI) I n t e l 80386 , for MS Windows

(d) We scrapped all the files from current directory that and move it to a
dedicated one:

1 #!/bin/sh
2 cd . . / windows1 ;
3 c o u n t e r =0;
4 for i in ∗ ; do
5 c o u n t e r =$ ((c o u n t e r +1)) ;
6 echo "$counter" ;
7 VAR="file $i | grep PE32 " ;
8 VAR1=$ (eval "$VAR") ;
9 l e n 1 =${#VAR1};

10 if [−n "$VAR1"] && ["$len1" −g t "1"] ;
11 then
12 echo "$VAR1" | awk ’{ p r i n t $1 } ’ | awk ’{ gsub (/ :

$ / ,"") ; p r i n t $1 " ../windows/PE/" $1 } ’ |
x a r g s mv −f ;

13 else
14 echo "other" ;
15 f i l e $ i | awk ’{ p r i n t $1 } ’ | awk ’{ gsub (/ : $

/ ,"") ; p r i n t $1 " ../windows/other/" $1 } ’
| x a r g s mv −f ;

318 APPENDIX A

16 fi
17 done

3. Practical experiments and computations on the Network Forensics Readi-
ness [376] have been carried on the Virtual Machine The implementation of
NF was complited using C++ 11 standard with Boost libraries version 1.55,
OpenMP libraries version 3.1 and Eigen libraries version 3.2.0-8. The func-
tionality, including SOM grouping, NF training and performance estimation,
were implemented in C++ and compiled by gcc version 4.8.2 with paramet-
ers "-m 64 -std=c++11 -fopenmp -DEIGEN_NO_DEBUG". Each experi-
ment included: SOM grouping, extracting three types of fuzzy patches para-
meters (Simple method, Kosko method, Proposed method), learning three
models and performance estimation for each sample using defined three
models. During the experiments the dataset were first loaded into contingent
containers into RAM by the program and then analyzed. No transformation
on the original data was done. The performance metrics were collected us-
ing double-precision floating-point data structures, so the errors from over-
flowing the computational grid are neglected at this point. The size of the
datasets were: 8.1GB for HIGGS 1, 2.4GB for SUSY 2, 0.2GB for Record
Linkage 3, 0.15GB and 0.04GB for full and 10% datasets of KDD CUP
1999 challenge 4 respectively. The files were read by fread() function and
put into std :: vector < boost :: numeric :: ublas :: vector < double >>
containers for easier further processing.

4. All the experiments on mutlinomial malware analysis in [167] were per-
formed on a Virtual Server. Files pre-processing were performed using
bash scripts due to native support in Linux OS. To store extracted features
MySQL 5.5.46 database engine was used. Characteristics harvesting and
feature extraction was implemented in PHP 5.5.9 and run for many days
without time limitation. Further, pre-processing, feature selection and clas-
sification was performed using opensource Weka v 3.7.13 package [149] that
contains community-accepted ML methods.

5. All the experiments in the contribution [381] were performed on a Virtual
Server. Files pre-processing were performed using bash scripts due to native
support in Linux OS. However, some tricks were used to handle large data-
sets with> 100k files such that ls −A | wc − l for fast counting number of
files. To store extracted features MySQL 5.5.46 database engine was used.
Characteristics harvesting and feature extraction was implemented in PHP
5.5.9 and run for many days without script time limitation.

6. Our experiments for dynamic PE32 malware analysis in [379] were divided

A.2. Experimental Setups & Used Computing Environments 319

into two parts: (i) acquisition of behavioural characteristics from execution
in a controlled environment and (ii) raw log files processing to extract nu-
merical features.

(i) The experiment was performed using bash scripts due to native support
in Linux OS. The automation was done on the Virtual Box 5.0.20 with Win-
dows 7 32 bits to collect dynamic characteristics. According to studies, this
version is still present on 49.05 % of computers in the world, ‘being the most
widely installed OS [34]. As a handbook we referred partially to the SANS
tutorial by Kramer [234] that describes deploying Windows 7 with corres-
ponding tools for malware analysis. Disk activities and processes in memory
were monitored using pre-installed CaptureBat 2.0.0-5574 [24] that is also
able to dump all modified and deleted files. The tool comes as a part of the
The Honeypot Project and designed to allow malware analyst to investigate
different activities that are performed during malware execution. Further-
more, network packets were acquired through CaptureBat inside VM with
help of WinDump 3.9.5 (tcpdump for MS Windows) [22], which stores all
raw network traffic into a pcap file. This however needs to be further pro-
cessed by tshark 1.10.6 [15] and capinfos v 2.1.1 into readable format.

(ii) The raw logs, network traffic and corresponding collected data were pre-
cessed. To store extracted features, we are going to use MySQL 5.5.49
database engine together with and PHP 5.5.9 connectors. Weka 3.7.13 [149]
was used to evaluate the performance of community-accepted ML methods.

7. All the experiments for Deep Neuro-Fuzzy in [380] were performed on the
Virtual Dedicated Server. The following tasks were executed consequently:
(1) execution and processing of malware files collection inside a Windows
PE32 virtual testing laboratory environment. The automation was done on
the Virtual Box 5.0.20 with Windows 7 32bits to collect dynamic character-
istics as recommended in the SANS tutorial by Kramer [234]. Disk activit-
ies and processes in memory were monitored using pre-installed CaptureBat
2.0.0-5574 [24], while network packets were acquired through CaptureBat
inside VM with help of WinDump 3.9.5 (tcpdump for MS Windows) [22],
which stores all raw network traffic into a pcap file. This however needs
to be further processed by tshark 1.10.6 [15] and capinfos v 2.1.1 into a
readable format. In addition to this, static characteristics were retrieved by
PEframe [57] 5.0 as well as from VirusTotal collection [18]. (2) Learn-
ing and testing classification performance of NF, ANN ad Deep NF. Weka
3.7.13 [149] and RapidMiner [14] 7.2.003 were used to evaluate the per-
formance of community-accepted ML methods. Additionally, we imple-
mented the proposed methodology. Plots were made with a help of statistical

320 APPENDIX A

environment R [2] 3.3.2 / RapidMiner.

Appendix B

Empirical Study of the
Neuro-Fuzzy Method

During our experiments with Vesanto data have not used bootstrap aggregation,
because according to observation it reduces the execution time only on 10-20%.
It takes 27 days with parallel optimization to train the proposed method for the
SUSY dataset, which is enormous amount of time. It should be also noted that we
were not able to get the results for the HIGGS dataset after running the original
method over 6 months on the Virtual Server. To contrary, suggested improvements
allowed to use no more than couple hours to execute all required experiments on all
datasets without reduction in the accuracy, which is one of the major achievements.
Finally, inference of the fuzzy rules took around 1-10 milliseconds for all datasets,
which is a considerable delay in comparison to the suggested method.

Further, am pbstacle arose when we processed such large datasets. To deal with
ill-posed problem that appear in covariance matrix and inverse covariance matrix
calculations the Tikhonov regularization was employed as suggested by Park et
al. [309]:

Cov = Cov + diag (B.1)

where each element of diagonal matrix is a small offset diagi = 10−6.

B.1 Example of Derived Fuzzy Rules using Proposed Method
The log of extracted fuzzy rules from KDD CUP 1999 10% dataset using proposed
method is given in Figure B.1. It contains numerical measures for each centroid,
inverse covariance matrix used in Equation 3.17.

321

322 APPENDIX B

Figure B.1: Parameters of the extracted fuzzy rules using proposed method

Previous mentioned elliptic fuzzy rules can be sketched using 2D ellipses as show
in Figures B.2. For demonstration purposes we used 8th and 9th attributes in the
KDD CUP 1999 dataset, which are dst_host_srv_diff_host_rate and dst_host_srv_
rerror_rate respectively. Also for better visualization we used scaled ellipse.

(a) Rule number 0 extracted from KDD CUP
1999 10% dataset, class 1

(b) Rule number 34 extracted from KDD
CUP 1999 10% dataset, class 2

Figure B.2: Visualization of fuzzy rules extracted by Neuro-Fuzzy

B.2 Accuracy of Neuro-Fuzzy with Manually-defined SOM Size
To evaluated the hypothesis about SOM size we performed comparison of cross-
validated results with bootstrapped training data set as mentioned earlier. Here we
made an assumption that 95% of the samples should contain in each of the fuzzy
patches. However, this can be changed automatically depending on the values of
spread with respect to central tendency. The SOM size over 10x10 on the 1st stage

B.2. Accuracy of Neuro-Fuzzy with Manually-defined SOM Size 323

of NF was not considered since the amount of rules will be about 100 that makes
the model complicated to perceive. The performance was evaluated using the (i)
regression performance metrics Mean Absolute Error MAE = 1

N

∑N
i=1 |yi − di|,

Mean Absolute Percent Error MAPE = 1
N

∑N
i=1 |

yi−di
di
| · 100% and Relative

Absolute Error RAE =
∑N
i=1 |yi−di|∑N
i=1 |di−d̄|

for the output of the 2nd stage of the Neuro-
Fuzzy and (ii) classification accuracy ("Acc, %") of derived rule-based model
based on the min-max principle. The results for all 8 datasets are presented in
the Tables B.1-B.8 .

Table B.1: Performance comparison of the simple rectangular, Kosko and Gaussian on
the Climate Model Simulation Crashes dataset

SOM Eff.rules Method Performance
MAE MAPE,% RAE Acc ,%

3x3 15
Simple 0.712 37.049 4.485 23.333
Kosko 0.912 45.640 5.743 91.481
Gaussian 0.031 3.150 0.1982 97.037

5x5 31
Simple 0.457 25.855 2.8814 21.296
Kosko 0.859 43.232 5.408 91.296
Gaussian 0.046 4.632 0.291 95.370

10x10 62
Simple 0.210 14.459 1.323 31.111
Kosko 0.994 50.003 6.257 91.296
Gaussian 0.053 4.869 0.339 90.185

Table B.2: Performance comparison of the simple rectangular, Kosko and Gaussian on
the Fertility dataset

SOM Eff.rules MF method Performance
MAE MAPE,% RAE Acc ,%

3x3 9
Simple 0.186 13.031 0.884 88.000
Kosko 0.120 6.000 0.568 88.000
Gaussian 0.076 4.323 0.362 88.000

5x5 9
Simple 0.284 22.949 1.345 87.000
Kosko 0.172 12.179 0.816 78.000
Gaussian 0.092 5.414 0.437 78.000

10x10 9
Simple 0.232 18.270 1.101 88.000
Kosko 0.149 9.499 0.706 85.000
Gaussian 0.101 6.456 0.480 92.000

324 APPENDIX B

Table B.3: Performance comparison of the simple rectangular, Kosko and Gaussian on
the Banknote Authentication dataset

SOM Eff.rules MF method Performance
MAE MAPE,% RAE Acc ,%

3x3 17
Simple 0.103 5.654 0.209 96.1370
Kosko 0.446 22.369 0.903 92.638
Gaussian 0.063 6.284 0.128 100.000

5x5 37
Simple 0.045 3.9438 0.092 95.55
Kosko 0.428 30.727 0.867 96.282
Gaussian 0.038 3.839 0.078 99.927

10x10 94
Simple 0.438 21.938 0.888 55.539
Kosko 0.450 22.782 0.911 99.198
Gaussian 0.042 4.168 0.086 100.000

Table B.4: Performance comparison of the simple rectangular, Kosko and Gaussian on
the Mobile Malware dataset

SOM Eff.rules MF method Performance
MAE MAPE,% RAE Acc,%

3x3 18
Simple 0.572 37.616 1.179 41.344
Kosko 0.407 40.704 0.839 58.487
Gaussian 0.070 4.973 0.144 91.764

5x5 46
Simple 0.599 39.675 1.234 17.647
Kosko 0.309 28.355 0.637 70.420
Gaussian 0.094 7.109 0.194 90.588

10x10 61
Simple 0.571 40.103 1.177 40.840
Kosko 0.292 24.992 0.602 77.815
Gaussian 0.122 9.226 0.253 86.890

B.2. Accuracy of Neuro-Fuzzy with Manually-defined SOM Size 325

Table B.5: Performance comparison of the simple rectangular, Kosko and Gaussian on
the Ionosphere dataset

SOM Eff.rules Method Performance
MAE MAPE,% RAE Acc ,%

3x3 16
Simple 0.3976 26.0414 0.8639 59.5442
Kosko 0.5134 47.8038 1.1154 40.7407
Gaussian 0.1442 11.5710 0.3133 88.6040

5x5 23
Simple 0.4653 34.3080 1.0111 45.2991
Kosko 0.4832 44.4185 1.0499 51.8519
Gaussian 0.2174 17.9925 0.4724 84.3305

10x10 17
Simple 0.4711 32.9836 1.0237 30.1994
Kosko 0.2533 12.7915 0.5505 51.2821
Gaussian 0.3017 21.8703 0.6555 74.3590

Table B.6: Performance comparison of the simple rectangular, Kosko and Gaussian on
the SPECTF Heart dataset

SOM Eff.rules Method Performance
MAE MAPE,% RAE Acc ,%

3x3 4
Simple 0.6164 35.3766 1.2327 45.0000
Kosko 0.4928 31.3602 0.9857 72.5000
Gaussian 0.1594 10.3125 0.3187 85.0000

5x5 3
Simple 0.6677 40.7887 1.3353 41.2500
Kosko 0.4942 33.6323 0.9885 72.5000
Gaussian 0.1833 13.3333 0.3667 85.0000

10x10 2
Simple 0.9801 67.6425 1.9603 31.2500
Kosko 0.5000 25.0000 1.0000 75.0000
Gaussian 0.2000 16.5625 0.4000 86.2500

326 APPENDIX B

Table B.7: Performance comparison of the simple rectangular, Kosko and Gaussian on
the Madelon dataset

SOM Eff.rules Method Performance
MAE MAPE,% RAE Acc ,%

3x3 18
Simple 0.5078 37.1075 1.0157 49.4500
Kosko 0.5005 27.1667 1.0009 56.3500
Gaussian 0.5395 36.1000 1.0790 82.1500

5x5 50
Simple 0.5110 39.9980 1.0220 49.3000
Kosko 0.5000 37.5092 0.9999 57.4000
Gaussian 0.5395 36.1000 1.0790 82.1500

10x10 132
Simple 0.5024 38.7080 1.0047 49.7500
Kosko 0.5230 26.7380 1.0461 50.0000
Gaussian 0.5925 39.8500 1.1850 80.6000

Table B.8: Performance comparison of the simple rectangular, Kosko and Gaussian on
the QSAR bioddegradation dataset

SOM Eff.rules Method Performance
MAE MAPE,% RAE Acc ,%

3x3 18
Simple 0.4380 29.4652 0.9794 47.5829
Kosko 0.4001 29.8527 0.8947 67.2038
Gaussian 0.1233 11.0065 0.2758 86.1611

5x5 41
Simple 0.3658 22.4755 0.8182 49.2891
Kosko 0.3695 29.2198 0.8263 68.8152
Gaussian 0.1281 10.3817 0.2865 85.4028

10x10 71
Simple 0.3582 24.0573 0.8011 49.5735
Kosko 0.3480 28.1561 0.7784 72.1327
Gaussian 0.1880 14.0119 0.4204 76.4929

Appendix C

Multinomial Malware
Classification - A Novel Dataset

The motivation was to perform a study of different malware categories and famil-
ies that are available for Windows OS. If we look on previous studies that involve
PE32 file formats for MS Windows, we can see that majority only target differen-
tiation between "malicious" and "benign" samples. However, there are quite many
malware categories that have different characteristics and functionality. Therefore,
our idea is to study how static analysis of PE32 files with help of Machine Learning
can facilitate large-scale malware detection into families and categories.

C.1 Acquisition of Raw Characteristics
Malware samples acquisition. There was a malware collection initiative that
took place within the Testimon Research group1 at HiG during April - June 2015.
It resulted in a number of samples from students, 10 first archives of Virustotal
and files from VxHeaven were collected in addition. After thorough analysis and
filtering, we derived all possible PE32 files and removed other types of files. In
overall we ended up with 407,741 malware samples, yet some of them will be
eliminated. The total size of all the executables is 136GB.

Characteristics acquisition. Since we targeted a static analysis due to large
number of samples, it was decided to extract as much characteristic raw data as
possible. Two main sources that we used were PEFRAME and VIRUSTOTAL.
PEFRAME presents comprehensive set of attributes that can be found in the PE
header. There were some works before showing that it can be possible to identify

1https://testimon.ccis.no/

327

328 APPENDIX C

malware using such headers information. VIRUSTOTAL presents scan results from
over 50 anti-virus databases, information about possible packers and compressors
in addition to basis PE headers data. Moreover, we used standard linux tools to
get more file characteristics, e.g. size of different sections, strings and also en-
tropy. Finally, we created a MySQL database that contains raw characteristics of
the PE32 windows executables (all malware) filtered out of the mess of different
malwares that were present in gathered earlier sets. Fields in the SQl dataset are
following:

1. md5 - md5 of the file

2. virustotal_file_report - retrieved Virustotal report using private API, serial-
ized JSON-formatted2

3. virustotal_file_behaviour - retrieved Virustotal report using private API, seri-
alized JSON-formatted3

4. virustotal_file_network_traffic - retrieved Virustotal report using private API,
serialized JSON-formatted 4

5. peframe - Report from executing the peframe script agains the malware,
JSON-formatted5

6. file - output of the Linux command ‘file‘, particularly interesting different
architectures and so on.

7. strings - output of the Linux command ‘strings‘, we can think of counting
the number of strings, etc.

8. size - output of the second string of the Linux command ‘size‘, contains
information about size of different sections of the binary file

text data bss dec hex filename
105182 2044 3424 110650 1b03a /bin/ls

9. file_entropy - entropy of the file, may indicate strong encryption in case if
close to 8.0

10. size_of_file - size of the file in bytes.

2https://www.virustotal.com/en/documentation/private-api/#get-report
3https://www.virustotal.com/en/documentation/private-api/#get-behaviour
4https://www.virustotal.com/en/documentation/private-api/#get-network-traffic
5https://github.com/guelfoweb/peframe

C.2. List of PE32 Architectures 329

11. do_not_process - just a binary flag, used to indicate which malwares could
not be processed by peframe script due to time-out and have to be excluded
from further experiments.

The target of the project is to process raw characteristics into numerical features
and extract more or less consistent/conventional names of malware families and
malware categories. Both can be used later in classification tasks. Malware famil-
ies defined in work by Microsoft 6

C.2 List of PE32 Architectures
The top PE32 architectures that can be found in the raw dataset are listed in the
Table C.1.

6http://www.microsoft.com/security/pc-security/malware-families.aspx

330 APPENDIX C

Table C.1: PE32 architectures list from the dataset

Samples Architecture
231445 PE32 executable (GUI) Intel 80386, for MS Windows
57012 PE32 executable (DLL) (GUI) Intel 80386, for MS Windows
50608 PE32 executable (GUI) Intel 80386, for MS Windows, UPX compressed
11009 PE32 executable (GUI) Intel 80386, for MS Windows, Nullsoft Installer self-extracting archive
9349 PE32 executable (GUI) Intel 80386, for MS Windows, PECompact2 compressed
8668 PE32 executable (DLL) (GUI) Intel 80386, for MS Windows, UPX compressed
8507 PE32 executable (native) Intel 80386, for MS Windows
8117 PE32 executable (GUI) Intel 80386 (stripped to external PDB), for MS Windows
5004 PE32 executable (console) Intel 80386, for MS Windows
4758 PE32 executable (GUI) Intel 80386 Mono/.Net assembly, for MS Windows
1604 PE32 executable (DLL) (GUI) Intel 80386, for MS Windows, PECompact2 compressed
1314 PE32 executable (DLL) (console) Intel 80386, for MS Windows
1134 PE32 executable (GUI) Intel 80386, for MS Windows, Petite compressed
1061 PE32 executable (GUI) Intel 80386 (stripped to external PDB), for MS Windows, UPX compressed
825 PE32 executable (console) Intel 80386 (stripped to external PDB), for MS Windows
748 PE32+ executable (GUI) x86-64, for MS Windows
743 PE32 executable (DLL) (native) Intel 80386, for MS Windows
733 PE32 executable (GUI) Intel 80386 (stripped to external PDB), for MS Windows, Nullsoft Installer

self-extracting archive
625 PE32 executable (DLL) Intel 80386, for MS Windows
547 PE32 executable (DLL) (GUI) Intel 80386 (stripped to external PDB), for MS Windows
520 PE32 executable (console) Intel 80386, for MS Windows, UPX compressed
431 PE32 executable (GUI) Intel 80386, for MS Windows, InnoSetup self-extracting archive
336 PE32 executable (GUI) Intel 80386, for MS Windows, UPX compressed, RAR self-extracting

archive
220 PE32 executable (GUI) Intel 80386, for MS Windows, RAR self-extracting archive
202 PE32 executable (GUI) Intel 80386 (stripped to external PDB), for MS Windows, PECompact2

compressed
185 PE32 executable (DLL) (console) Intel 80386 Mono/.Net assembly, for MS Windows
178 PE32 executable (console) Intel 80386 Mono/.Net assembly, for MS Windows
169 PE32 executable (DLL) (console) Intel 80386 (stripped to external PDB), for MS Windows
141 PE32 executable (GUI) Intel 80386, for MS Windows, InstallShield self-extracting archive
139 PE32+ executable (native) x86-64, for MS Windows

C.3. Raw Characteristics 331

C.3 Raw Characteristics
A number of raw characteristic have been collected to make the multinomial mal-
ware analysis feasible. The examples are given below.

C.3.1 PEframe

Example of PEframe output as of 2016 showed in the Listing C.1.

Listing C.1: Example of PEframe output in JSON

1 [{
2 " S h o r t I n f o " : {
3 " Xor " : t r u e ,
4 " Compile Time " : " 1970−01−01 02 : 08 : 16 " ,
5 " D i r e c t o r i e s " : [
6 " I m p or t " ,
7 " E x p or t " ,
8 " Resource " ,
9 " R e l o c a t i o n "

10] ,
11 " Hash SHA−1 " : " 27333588 c 6 f 2b7 c 076 e 9 a 279bb40 f a 6d6 f 9

a f e c 1 " ,
12 "DLL" : t r u e ,
13 " F i l e S i z e " : " 21670 " ,
14 " D e t e c t e d " : [
15 " Pa ck e r "
16] ,
17 " Hash MD5 " : " 000000b4 d c c f b a a 5bd981 a f 2 c 1 bbf 59 a " ,
18 " I mp or t Hash " : " 87 bed 5 a 7 cba 00 c 7 e 1 f 4015 f 1 bdae 2183 " ,
19 " S e c t i o n s " : 2 ,
20 " F i l e Name" : " 000000b4 d c c f b a a 5bd981 a f 2 c 1 bbf 59 a "
21 }
22 } , {
23 " D i g i t a l S i g n a t u r e " : {
24 " Block S i z e " : 0 ,
25 " V i r t u a l Address " : 0 ,
26 " Hash MD5 " : f a l s e ,
27 " Hash SHA−1 " : f a l s e
28 }
29 } , {
30 " Pa ck e r " : [
31 " Upack V0 . 36−V0 . 37 (DLL) −> Dwing " ,
32 " Upack V0 . 28−V0 . 399 −> Dwing ; ;∗ Sign . By .

f l y ∗ 20080321 " ,
33 " Upack_Patch o r any V e r s i o n −> Dwing " ,
34 " Upack v0 . 28 − 0 . 39 (r e l o c a t e d image base − De l p h i ,

332 APPENDIX C

. NET , DLL or some th ing e l s e :) −> Dwing (h) "
35]
36 } , {
37 " An t i Debug " : []
38 } , {
39 " An t i VM" : []
40 } , {
41 " Xor " : t r u e ,
42 " O f f s e t " : []
43 } , {
44 " S u s p i c i o u s API " : [
45 " Ge tP rocAddres s " ,
46 " LoadLibraryA "
47]
48 } , {
49 " S u s p i c i o u s S e c t i o n s " : [
50 {
51 " S e c t i o n " : " . Upack \ u0000 \ u0000 " ,
52 " Hash MD5 " : " d41d8 cd 98 f 00b204 e 9800998 e c f 8427 e " ,
53 " Hash SHA−1 " : " da 39 a 3 ee 5 e 6b4b0d3255 b f e f 95601890

a f d 80709 "
54 } ,
55 {
56 " S e c t i o n " : " . r s r c \ u0000 \ u0000 \ u0000 " ,
57 " Hash MD5 " : " 76 b a e f 1d5 e 7 c 419db489 e 7 df 3 bed f 462 " ,
58 " Hash SHA−1 " : " b9 c 1077bb056 c 92 bc 2147902b51135 e 0

5 df 8 fb 17 "
59 }
60]
61 } , {
62 " Ur l " : [] ,
63 " F i l e Name" : [
64 [
65 " L i b r a r y " ,
66 [
67 "MZKERNEL32 . DLL"
68]
69]
70]
71 } , {
72 " Meta Data " : [
73 " L e g a l C o p y r i g h t : (C) M i c r o s o f t C o r p o r a t i o n . A l l

r i g h t s r e s a d . " ,
74 " I n t e r n a l N a m e : msplay 32 " ,
75 " F i l e V e r s i o n : 5 . 1 . 2600 . 3099 " ,

C.3. Raw Characteristics 333

76 "CompanyName : M i c r o s o f t C o r p o r a t i o n " ,
77 " Lega lTrademarks : M i c r o s o f t " ,
78 " Comments : " ,
79 " ProductName : M i c r o s o f t (R) Windows (R) O p e r a t i n g

System " ,
80 " P r o d u c t V e r s i o n : 5 . 1 . 2600 . 3099 (xpsp_sp 2 _gdr . 070308

−0222) " ,
81 " F i l e D e s c r i p t i o n : Windows XP MSPLAY API DLL" ,
82 " O r i g i n a l F i l e n a m e : msplay 32 " ,
83 " T r a n s l a t i o n : 0x0804 0x03 a 8 "
84]
85 }
86]

C.3.2 VirusTotal

Example of VirusTotal report showed in the Listing C.2.

Listing C.2: Example of PEframe output in JSON

1 s t d C l a s s O b j e c t
2 (
3 [vhash] => 12402 f 0 f 7 bz 2 ? z 7
4 [submiss ion_names] => Array
5 (
6 [0] => 000000b4 d c c f b a a 5bd981 a f 2 c 1 bbf 59 a 27333588

c 6 f 2b7 c 076 e 9 a 279bb40 f a 6d6 f 9 a f e c 121670 . d l l
7 [1] => msplay 32
8 [2] => 000000b4 d c c f b a a 5bd981 a f 2 c 1 bbf 59 a . d l l
9 [3] => / v a r / newbot / vh / Tro jan−GameThief . Win32 .

OnLineGames . i k b
10 [4] => Tro jan−GameThief . Win32 . OnLineGames . i k b
11 [5] => 000000B4DCCFBAA5BD981AF2C1BBF59A
12 [6] => 000000b4 d c c f b a a 5bd981 a f 2 c 1 bbf 59 a
13)
14

15 [s c a n _ d a t e] => 2014−04−04 18 : 38 : 08
16 [f i r s t _ s e e n] => 2011−07−04 16 : 19 : 24
17 [t i m e s _ s u b m i t t e d] => 15
18 [a d d i t i o n a l _ i n f o] => s t d C l a s s O b j e c t
19 (
20 [e x p o r t s] => Array
21 (
22 [0] => DllCanUnloadNow
23 [1] => D l l G e t C l a s s O b j e c t
24 [2] => D l l R e g i s t e r S e r v e r

334 APPENDIX C

25 [3] => D l l U n r e g i s t e r S e r v e r
26 [4] => JumpOff
27 [5] => JumpOn
28 [6] => ThreadPro
29)
30

31 [e x i f t o o l] => s t d C l a s s O b j e c t
32 (
33 [Lega lTrademarks] => M i c r o s o f t
34 [F i l e D e s c r i p t i o n] => Windows XP MSPLAY

API DLL
35 [I n i t i a l i z e d D a t a S i z e] => 10752
36 [ImageVers ion] => 0 . 0
37 [ProductName] => M i c r o s o f t (R) Windows (R

) O p e r a t i n g System
38 [F i l eVer s ionNumber] => 5 . 1 . 2600 . 3099
39 [LanguageCode] => Chinese (S i m p l i f i e d)
40 [F i l e F l a g s M a s k] => 0x003 f
41 [C h a r a c t e r S e t] => Windows , Ch inese (

S i m p l i f i e d)
42 [L i n k e r V e r s i o n] => 0 . 58
43 [O r i g i n a l F i l e n a m e] => msplay 32
44 [MIMEType] => a p p l i c a t i o n / o c t e t−s t r e a m
45 [Subsys tem] => Windows GUI
46 [F i l e V e r s i o n] => 5 . 1 . 2600 . 3099
47 [TimeStamp] => 1970 : 01 : 01 02 : 08 : 16+01 : 0

0
48 [F i l e T y p e] => Win32 DLL
49 [PEType] => PE32
50 [I n t e r n a l N a m e] => msplay 32
51 [Subsys t emVers ion] => 4 . 0
52 [F i l e A c c e s s D a t e] => 2014 : 04 : 04 19 : 39 : 27

+01 : 00
53 [P r o d u c t V e r s i o n] => 5 . 1 . 2600 . 3099 (

xpsp_sp 2 _gdr . 070308−0222)
54 [U n i n i t i a l i z e d D a t a S i z e] => 0
55 [OSVersion] => 4 . 0
56 [F i l e C r e a t e D a t e] => 2014 : 04 : 04 19 : 39 : 27

+01 : 00
57 [F i leOS] => Win32
58 [L e g a l C o p y r i g h t] => (C) M i c r o s o f t

C o r p o r a t i o n . A l l r i g h t s r e s a d .
59 [MachineType] => I n t e l 386 or l a t e r ,

and c o m p a t i b l e s
60 [CompanyName] => M i c r o s o f t C o r p o r a t i o n

C.3. Raw Characteristics 335

61 [CodeSize] => 4096
62 [F i l e S u b t y p e] => 0
63 [P roduc tVers ionNumber] => 5 . 1 . 2600 . 3099
64 [E n t r y P o i n t] => 0x16 ed 7
65 [O b j e c t F i l e T y p e] => E x e c u t a b l e

a p p l i c a t i o n
66)
67

68 [t r i d] => DOS E x e c u t a b l e G e n e r i c (100 . 0%)
69 [pe−imphash] => 87 bed 5 a 7 cba 00 c 7 e 1 f 4015 f 1 bdae 218

3
70 [pe−r e s o u r c e−l a n g s] => s t d C l a s s O b j e c t
71 (
72 [NEUTRAL] => 2
73 [CHINESE SIMPLIFIED] => 3
74)
75

76 [clam−av−pua] => ClamAV PUA (P o s s i b l y Unwanted
A p p l i c a t i o n) d e t e c t i o n :

77 While n o t n e c e s s a r i l y m a l i c i o u s , t h e scanned f i l e p r e s e n t s
c e r t a i n

78 c h a r a c t e r i s t i c s which depend ing on t h e u s e r p o l i c i e s and
e n v i r o n m e n t may

79 or may n o t c o n f i g u r e a t h r e a t .
80 For f u l l d e t a i l s s e e : h t t p : / /www. clamav . n e t / s u p p o r t / f a q / pua
81 [magic] => PE32 e x e c u t a b l e f o r MS Windows (DLL)

(GUI) I n t e l 80386 32−b i t
82 [s i g c h e c k] => s t d C l a s s O b j e c t
83 (
84 [p u b l i s h e r] => M i c r o s o f t C o r p o r a t i o n
85 [p r o d u c t] => M i c r o s o f t (R) Windows (R)

O p e r a t i n g System
86 [d e s c r i p t i o n] => Windows XP MSPLAY API

DLL
87 [c o p y r i g h t] => (C) M i c r o s o f t

C o r p o r a t i o n . A l l r i g h t s r e s a d .
88 [o r i g i n a l name] => msplay 32
89 [f i l e v e r s i o n] => 5 . 1 . 2600 . 3099
90 [i n t e r n a l name] => msplay 32
91 [l i n k d a t e] => 2 : 08 AM 1 / 1 / 1970
92)
93

94 [c o m p r e s s e d _ p a r e n t s] => Array
95 (
96 [0] => b484 f 4 f 5 ed 824 a 75 c 32 f 765 c 3d5 f 85 c 1

336 APPENDIX C

9 c f d 860 ea 41 cce 09 c 8 cc 977 f 7 fb 2 bf 61
97)
98

99 [i m p o r t s] => s t d C l a s s O b j e c t
100 (
101 [KERNEL32 . DLL] => Array
102 (
103 [0] => LoadLibraryA
104 [1] => Ge tP rocAddre s s
105)
106

107)
108

109 [f−p r o t−u n p a c k e r] => UPack , PE_Patch . MaskPE
110 [p e i d] => WinUpack v0 . 39 f i n a l (r e l o c a t e d image

base) −> By Dwing (c) 2005 (h2)
111 [pe−r e s o u r c e−t y p e s] => s t d C l a s s O b j e c t
112 (
113 [RT_ICON] => 1
114 [RT_GROUP_ICON] => 1
115 [RT_VERSION] => 1
116 [RT_RCDATA] => 2
117)
118

119 [pe−t imes t amp] => 4096
120 [pe−r e s o u r c e− l i s t] => s t d C l a s s O b j e c t
121 (
122 [e 3b0 c 44298 f c 1 c 149 a f b f 4 c 8996 fb 92427 ae 41

e 4649b934 ca 495991b7852b855] =>
E n g l i s h t e x t

123 [513bd37 a 0 ce 952 e 5142954 c 6373b2d58 e 7 f 078
bd17d2 f 52125 d a a e f c b 53 bee 30] => d a t a

124)
125

126 [pe−e n t r y−p o i n t] => 93911
127 [s e c t i o n s] => Array
128 (
129 [0] => Array
130 (
131 [0] => . Upack
132 [1] => 4096
133 [2] => 69632
134 [3] => 0
135 [4] => 0 . 00
136 [5] => d41d8 cd 98 f 00b204 e 9800998

C.3. Raw Characteristics 337

e c f 8427 e
137)
138

139 [1] => Array
140 (
141 [0] => . r s r c
142 [1] => 73728
143 [2] => 53248
144 [3] => 21106
145 [4] => 7 . 88
146 [5] => 76 b a e f 1d5 e 7 c 419db489 e 7 df

3 bed f 462
147)
148

149)
150

151 [pe−machine−t y p e] => 332
152 [command−u n p a c k e r] => UPack , PE_Patch . MaskPE
153)
154

155 [s i z e] => 21670
156 [s c a n _ i d] => 3 ab 5d534d493 e 65 f 01 ee 5dd12d650091 c b f 5 a 5 a 833

56 c b f 3 f 8 a b f 7 ad 5350 ed 72−1396636688
157 [t o t a l] => 51
158 [h a r m l e s s _ v o t e s] => 0
159 [verbose_msg] => Scan f i n i s h e d , i n f o r m a t i o n embedded
160 [sha 256] => 3 ab 5d534d493 e 65 f 01 ee 5dd12d650091 c b f 5 a 5 a 8335

6 c b f 3 f 8 a b f 7 ad 5350 ed 72
161 [t y p e] => Win32 DLL
162 [s c a n s] => s t d C l a s s O b j e c t
163 (
164 [Bkav] => s t d C l a s s O b j e c t
165 (
166 [d e t e c t e d] => 1
167 [v e r s i o n] => 1 . 3 . 0 . 4959
168 [r e s u l t] => W32 . WowStealBDll . T r o j a n
169 [u p d a t e] => 20140404
170)
171 .
172 [Qihoo−360] => s t d C l a s s O b j e c t
173 (
174 [d e t e c t e d] => 1
175 [v e r s i o n] => 1 . 0 . 0 . 1015
176 [r e s u l t] => T r o j a n .PSW. Win32 .WOW.D
177 [u p d a t e] => 20140404

338 APPENDIX C

178)
179

180)
181

182 [t a g s] => Array
183 (
184 [0] => upack
185 [1] => p e d l l
186)
187

188 [u n i q u e _ s o u r c e s] => 9
189 [p o s i t i v e s] => 46
190 [s s d e e p] => 384 :bWWTEcWWcL9bXUU4Y1 t z c z 7O/ vTHIreN7zNyM3

t s b F x J 26IbMpBdGUEf3GR+MAd/ : UVhtoHO / vVwZIbvf3BFwvzA
191 [md5] => 000000b4 d c c f b a a 5bd981 a f 2 c 1 bbf 59 a
192 [p e r m a l i n k] => h t t p s : / /www. v i r u s t o t a l . com / f i l e / 3 ab 5d534

d493 e 65 f 01 ee 5dd12d650091 c b f 5 a 5 a 83356 c b f 3 f 8 a b f 7 ad 5350
ed 72 / a n a l y s i s / 1396636688 /

193 [sha 1] => 27333588 c 6 f 2b7 c 076 e 9 a 279bb40 f a 6d6 f 9 a f e c 1
194 [r e s o u r c e] => 000000B4DCCFBAA5BD981AF2C1BBF59A
195 [r e s p o n s e _ c o d e] => 1
196 [c o m m u n i t y _ r e p u t a t i o n] => 0
197 [m a l i c i o u s _ v o t e s] => 0
198 [ITW_urls] => Array
199 (
200)
201

202 [l a s t _ s e e n] => 2014−04−04 18 : 38 : 08
203)

Appendix D

Author’s Biography

D.1 Curriculum Vitae
Andrii Shalaginov graduated in 2011 from the National Technical University of
Ukraine “Kiev Polytechnic Institute”, Faculty “Institute of Applied Systems Ana-
lysis”, Department of Computer Aided Design, where he pursued his B.Sc. and 1st

M.Sc. in System Design. In addition to this he had R& D and industrial experience
following the study.

Later on Andrii finished his 2nd M.Sc. in Information Security, Digital Forensics
track at the Gjøvik University College in 2013. As a PhD Candidate he joined
Digital Forensics Group at the Norwegian University of Science and Technology
and is currently doing his research in the area of Computational Forensics under
supervision of Prof. Dr. Katrin Franke and Prof. Dr. Slobodan Petrovic. This
work is related to a Digital Forensics and Machine Learning that includes malware
analysis, intrusion detection and analysis of large-scale digital forensics data. In
addition to this Andrii was a work package editor for the SuPLight project respons-
ible for deploying secure collaborative platform for plugins interaction.

In 2015 Andrii was elected as a representative in steering committee for the COINS
Research School of Computer and Information Security. During 2013-2017 Andrii
has also been participating in a variety of conferences, seminars and summer and
winter schools devoted to Information Security and Artificial Intelligence where
he presented his research. He also was awarded with a travel grant by Artificial In-
telligence journal in 2017. Moreover, Andrii has been actively writing reviews for
a number of channels such that book, Cyber Threat Intelligence, ACM Computing
Surveys, journal Applied Soft Computing, journal IEEE Transactions on Big Data,

339

340 APPENDIX D

IEEE Privacy, Security and Trust. He also supervised several M.Sc. students with
first class honours theses, while the results of research was published in proceed-
ings of international conferences. One of the M.Sc. students, Lars Strande Grini,
had received ISACA Norway Chapter’s stipent for best MSc thesis in 2016.

D.2 List of Publications
Papers in Conference Proceedings

1. Shalaginov, Andrii; Franke, Katrin. A Deep Neuro-Fuzzy method for
multi-label Windows PE32 malware classification. IEEE Symposium Series
on Computational Intelligence (IEEE SSCI), 2017.

2. Shalaginov, Andrii. Fuzzy logic model for Digital Forensics: A trade-off
between accuracy, complexity and interpretability. 26th International Joint
Conference on Artificial Intelligence (IJCAI), 2017.

3. Shalaginov, Andrii. Evolutionary Optimization of On-line Multilayer Per-
ceptron for Similarity-Based Access Control. IEEE International Joint Con-
ference on Neural Networks (IJCNN), 2017.

4. Shalaginov, Andrii. Dynamic feature-based expansion of fuzzy sets in
Neuro-Fuzzy for proactive malware detection. IEEE 20th International Con-
ference on Information Fusion (Fusion), 2017.

5. Shalaginov, Andrii; Franke, Katrin. Automated intelligent multinomial
classification of malware species using dynamic behavioural analysis. 14th
Annual Conference on Privacy, Security and Trust (PST), 2016.

6. Andersen, Lars Christian; Franke, Katrin; Shalaginov, Andrii. Data-driven
Approach to Information Sharing using Data Fusion and Machine Learning
for Intrusion Detection. Norsk Informasjonssikkerhetskonferanse (NISK)
2016; Volume 2016. s. 19-30.

7. Banin, Sergii; Shalaginov, Andrii; Franke, Katrin. Memory access patterns
for malware detection. Norsk Informasjonssikkerhetskonferanse (NISK) 2016;
Volume 2016. s. 96-107.

8. Shalaginov, Andrii. Soft Computing and Hybrid Intelligence for Decision
Support in Forensics Science. IEEE International Conference on Intelli-
gence and Security Informatics: Cybersecurity and Big Data. IEEE 2016
ISBN 978-1-5090-3865-7. s. 304-306.

D.2. List of Publications 341

9. Shalaginov, Andrii; Grini, Lars Strande; Franke, Katrin. Understanding
Neuro-Fuzzy on a Class of Multinomial Malware Detection Problems. IEEE
International Joint Conference on Neural Networks (IJCNN). Research Pub-
lishing Services 2016 ISBN 978-1-5090-0619-9. s. 684-691.

10. Grini, Lars Strande; Shalaginov, Andrii; Franke, Katrin. Study of Soft
Computing methods for large-scale multinomial malware types and families
detection, 6th World Conference on Soft Computing, Berkeley, California,
2016.

11. Shalaginov, Andrii; Franke, Katrin. A new method of fuzzy patches con-
struction in Neuro-Fuzzy for malware detection. Proceedings of the 2015
Conference of the International Fuzzy Systems Association and the European
Society for Fuzzy Logic and Technology, Eusflat-15. Atlantis Press 2015
ISBN 978-94-62520-77-6. s. 170-177.

12. Shalaginov, Andrii; Franke, Katrin. Automated generation of fuzzy rules
from large-scale network traffic analysis in Digital Forensics Investigations.
2015 Seventh International Conference of Soft Computing and Pattern Re-
cognition (SoCPaR 2015). IEEE 2015 ISBN 978-1-4673-9360-7. s. 31-36.

13. Shalaginov, Andrii; Franke, Katrin. Automatic rule-mining for malware
detection employing Neuro-Fuzzy Approach. Proceeding of Norwegian In-
formation Security Conference / Norsk informasjonssikkerhetskonferanse -
NISK 2013 - Stavanger, 18th-20th November 2013. Akademika forlag 2013
ISBN 978-82-321-0366-9. s. 100-111.

14. Kiseleva, Aanna; Shalaginov, Andrii ; Yamnenko, Yulia. Prediction of
the active zone in the control system power consumption using Expectation
Maximization procedure. Proceedings of the II International Conference
“Automation control and intelligent system and environment”, pp. 67-71,
2011, in Russian.

15. Shalaginov, Andrii. Cubic spline extrapolation of time series. Proceed-
ings of the XIII International Scientific and Technical Conference “System
Analysis and Information Technologies”, p. 397, 2011, in Russian.

16. Shalaginov, Andrii; Tsios, Sergii; Kadin, Eugeniy. Full text search in
knowledge bases of information web portals. Proceedings of the XIII In-
ternational Scientific and Technical Conference “System Analysis and In-
formation Technologies”, p. 514, 2011, in Russian.

342 APPENDIX D

17. Kiseleva, Anna; Kiselev, Gennadiy; Shalaginov, Aandrii. Application of
methods of linear prediction and extrapolation to the context-dependent ap-
plications. Proceedings of the XI Scientific Conference on behalf of T. A.
Taran “Intelligent analysis of Information”, pp. 269-276, 2011, in Russian.

18. Kiseleva, Anna; Shalaginov, Andrii. Hidden Markov Model for Dealing
with Context Application. Proceedings of the XVIII Ukrainian-Polish Con-
ference “CAD in Machinery Design. Implementation and Education prob-
lems”, pp. 20-22, 2010.

19. Shalaginov, Andrii. Search optimization of institute department web site
in the Internet. Proceedings of the XII International Scientific and Technical
Conference “System Analysis and Information Technologies”, p. 504, in
Ukrainian.

20. Shalaginov, Andrii. 32-bit applications and 64-bit operating systems. Pro-
ceedings of the Student Conference “Innovations in Technology”, p. 250.

Chapters in Books

1. Shalaginov, Andrii; Banin, Sergii; Dehghantanha, Ali; Franke, Katrin. Ma-
chine Learning Aided Static Malware Analysis: A Survey and Tutorial. Cy-
ber Threat Intelligence, 2017.

2. Wangen, Gaute; Shalaginov, Andrii. Quantitative Risk, Statistical Methods
and the Four Quadrants for Information Security. Risks and Security of In-
ternet and Systems: 10th International Conference, CRiSIS 2015, Mytilene,
Lesbos Island, Greece, July 20-22, 2015, Revised Selected Papers. Springer
2016 ISBN 978-3-319-31811-0. s. 127-143.

3. Wangen, Gaute; Shalaginov, Andrii; Hallstensen, Christoffer V. Cyber se-
curity risk assessment of a DDoS attack. Lecture Notes in Computer Science
2016; Volume 9866. s. 183-202.

4. Shalaginov, Andrii; Franke, Katrin. A New Method for an Optimal SOM
Size Determination in Neuro-Fuzzy for the Digital Forensics Applications.
Advances in Computational Intelligence; 13th International Work-Conference
on Artificial Neural Networks, IWANN 2015, Palma de Mallorca, Spain,
June 10-12, 2015. Proceedings, Part II. Springer 2015 ISBN 978-3-319-
19222-2. s. 549-563.

5. Shalaginov, Andrii; Franke, Katrin. Towards Improvement of Multinomial
Classification Accuracy of Neuro-Fuzzy for Digital Forensics Applications.

D.2. List of Publications 343

Hybrid Intelligent Systems - proceedings of 15th International Conference
HIS 2015 on Hybrid Intelligent Systems. Springer Publishing Company
2015 ISBN 978-3-319-27220-7. s. 199-210.

Journal Articles

1. Shalaginov, Andrii; Franke, Katrin. Big data analytics by automated gener-
ation of fuzzy rules for Network Forensics Readiness. Journal Applied Soft
Computing 2017; Volume 52. s. 359-375.

2. Shalaginov, Andrii; Franke, Katrin. Intelligent generation of fuzzy rules for
network firewalls based on the analysis of large-scale network traffic dumps.
International Journal of Hybrid Intelligent Systems 2016; Volume 13.(3-4)
s. 195-206.

3. Shalaginov, Andrii; Franke, Katrin. Multinomial classification of web at-
tacks using improved fuzzy rules learning by Neuro-Fuzzy. International
Journal of Hybrid Intelligent Systems 2016; Volume 13.(1) s. 15-26.

4. Shalaginov, Andrii; Franke, Katrin; Huang, Xiongwei. Malware Beacon-
ing Detection by Mining Large-scale DNS Logs for Targeted Attack Iden-
tification. World Academy of Science, Engineering and Technology: An In-
ternational Journal of Science, Engineering and Technology 2016; Volume
10.(4) s. 617-629.

5. Kiseleva, Anna; Kiselev, Gennadiy; Sergeev, Aalexey; Shalaginov, Andrii.
Processing the input data in multimodal applications. Scientific and Tech-
nical Journal “Electronics and Communications”, volume 2, pp. 86-92,
2011, in Russian.

Posters & Selected Talks

1. Shalaginov, Andrii. Machine Learning Aided Malware Analysis - Research
at NTNU. NorCERT sikkerhetsforum; 2017-03-30.

2. Shalaginov, Andrii. Application of Computational Intelligence for Digital
Forensics. COINS PhD Seminar; 2015-10-18.

3. Shalaginov, Andrii. Automated generation of the human-understandable
rules from network traffic dumps. 3rd National Workshop on Data Science
(SweDS); 2015-09-30.

344 APPENDIX D

4. Shalaginov, Andrii; Franke, Katrin. Generation of the human-understandable
fuzzy rules from large-scale datasets for Digital Forensics applications using
Neuro-Fuzzy. NordSec 2015; 2015-10-19.

Technical Reports

1. Shalaginov, Andrii; Franke, Katrin. Statistical Analysis of Material Prop-
erties. SuPLight Project, 2013.

List of Abbreviations

AC Access Control

AI Artificial Intelligence

ASCII American Standard Code for Information Interchange

ANFIS Adaptive Neuro-Fuzzy Inference System

ANN Artificial Neural Networks

API Application Programming Interface

APK Android Package File

APT Advanced Persistent Threats

AV Anti-Virus

BMU Best Matching Unit

BYOD Bring Your Own Device

C4.5 Name of Decision Tree algorithm

CARO Computer Antivirus Research Organization

CF Computational Forensics

CFS Correlation-based Feature Selection

CI Computational Intelligence

345

346 APPENDIX D

CNN Convolution Neural Networks

COFF Common Object File Format

CPU Central Processing Unit

DAC Discretionary Access Control

DC Distance Correlation

DDoS Distributed Denial-of-Service Attack

DoS Denial-of-Service Attack

DENF Dynamically-Expanded Neuro-Fuzzy

DLL Dynamic-Link Library

DF Digital Forensics

DNN Deep Neural Network

DT Decision Tree

EBP Error Back Propagation

EC Evolutionary Computing

ECOC Error Correcting Output Coding

EM Expectation Maximization

FIS Fuzzy Inference Systems

FL Fuzzy Logic

FP False Positive

FPR False Positive Rate

FS Feature Selection

HTTP Hypertext Transfer Protocol

GA Genetic Algorithm

GD Gradient Descent

GPU Graphics Processing Unit

D.2. List of Publications 347

GSS Golden Section Search

GUI Graphic User Interface

HDD Hard Disk Drive

HI Hybrid Intelligence

HIGGS Higgs bosons dataset

IAT Import Address Table

ICT Information and Communication Technology

IDS Intrusion Detection System

ISRA Information Security Risk Assessment

JSON JavaScript Object Notation

k-NN k-Nearest Neighbours

KDD Knowledge Discovery in Databases

MAC Mandatory Access Control

MAE Mean Absolute Error

MAPE Mean Absolute Percentage Error

MF Membership Function

MIC Maximal Information Coefficient

ML Machine Learning

MLP Multilayer Perceptron

NB Naive Bayes

NF Neuro-Fuzzy

NN Neural Networks

OS Operating System

OSI Open Systems Interconnection

PC Personal Computers

348 APPENDIX D

PCA Principle Component Analysis

PCC Pearson Correlation Coefficient

PE32 Portable Executable 32-bit

PM Probabilistic Modelling

PR Packet Rate

PSO Particle Swam Intelligence

QQ Quantile-Quantile plot

RAM Random-Access Memory

RAE Relative Absolute Error

RL Record Linkage dataset

RMSE Root Mean Square Error

RRSE Root Relative Squared Error

SBAC Similarity-Based Access Control

SC Soft Computing

SI Swarm Intelligence

SOM Self-Organizing Map

SUSY Supersymmetric particles dataset

SVM Support Vector Machine

TR True Positive

TPR True Positive Rate

UCI University of California, Irvine

VM Virtual Machine

WAF Web Application Firewall

XML Extensible Markup Language

List of Glossaries

Features Extraction A process of deriving features from the raw
measurable data or characteristics within a
mobile device

Fuzzy Logic A variant of the classical logic, which uses
truth degree for each linguistic variable rather
than simple binary true or false statements

Fuzzy Rule A conditional IF-THEN statements that are
composed from linguistic variables

Linguistic Terms The discrete linguistic variable in fuzzy the-
ory that can have truth degree (instead of clas-
sical true or false)

Linguistic Rules In this study means fuzzy rules used for mal-
ware detection

Linguistic Variables The variables in fuzzy logic theory, which can
take linguistic terms as values. In this work
security metrics are considered as linguistic
variables

Membership Function In fuzzy logic represents degree of truth that
a given value belongs to some fuzzy term

Neuro-Fuzzy Fuzzy logic theory that uses artificial neural
network to derive the estimate and derive the
rules

Rules Construction A process of composing rules from the secur-
ity metrics consist of two stages: all possible
rules extraction and selection of the most rel-
evant rules

349

