
Doctoral theses at NTNU, 2018:33

Doctoral theses at N
TN

U, 2018:33
M

artin Strand

Martin Strand
Fully homomorphic encryption with
applications to electronic voting

ISBN 978-82-326-2864-3 (printed version)
ISBN 978-82-326-2865-0 (electronic version)

ISSN 1503-8181

NT
NU

N
or

w
eg

ia
n

Un
iv

er
si

ty
 o

f
Sc

ie
nc

e
an

d
Te

ch
no

lo
gy

Fa
cu

lty
 o

f I
nf

or
m

at
io

n
Te

ch
no

lo
gy

an
d

El
ec

tr
ic

al
 E

ng
in

ee
rin

g
De

pa
rt

m
en

t o
f M

at
he

m
at

ic
al

 S
ci

en
ce

s

Norwegian University of Science and Technology

Thesis for the degree of Philosophiae Doctor

Martin Strand

Fully homomorphic encryption with
applications to electronic voting

Trondheim, January 2018

Faculty of Information Technology
and Electrical Engineering
Department of Mathematical Sciences

NTNU
Norwegian University of Science and Technology

Thesis for the degree of Philosophiae Doctor

ISBN 978-82-326-2864-3 (printed version)
ISBN 978-82-326-2865-0 (electronic version)
ISSN 1503-8181

Doctoral theses at NTNU, 2018:33

© Martin Strand

Faculty of Information Technology
and Electrical Engineering
Department of Mathematical Sciences

Printed by Skipnes Kommunikasjon as

Preface

This thesis means that I am about to complete a PhD in cryptology.
It has been four challenging and instructive years, and as most PhD
students experience, my self confidence has swung between ‘world
champion’ and ‘impostor’. I was given some rest at Eurocrypt 2017:
in his invited talk Nigel Smart called for more research in the area
between new theoretical discoveries and ready-to-use products, and I
finally felt at home. My results are not at a stage of maturity where
they can be used out there. Neither are they new theoretical results.
Nonetheless, the hope is that my work can make it easier to design
new cryptographic tools, and perhaps help other researchers avoid
some blind alleys.

I am indebted to many for making it here. First and foremost,
I wish to thank my advisor Kristian Gjøsteen for taking the time to
answer any question I’ve had, and in particular for also answering the
questions I should have asked. Despite many obligations, there always
seems to be time to spare.

Next, to my coauthors Frederik, Colin, Chris, Kristian, Angela,
Christian, Ana and Gareth: it has been a pleasure working with you.
I am particularly grateful to Frederik Armknecht and the rest of the
group in Mannheim for hosting me in 2015, and making me feel wel-
come. This acknowledgement extends to the whole crypto community.
Even at my first major conference I found it easy to discuss both big
problems and banal questions with anyone, be it fellow PhD students
or highly merited IACR fellows.

The life of a PhD student is not just about writing papers. My
friends and colleagues have given me many opportunities to procras-
tinate, forget about unreasonable reviewers, play cards, solve world

3

problems – and in summary given me the breaks I needed to read-
just to what after all turned out to be insightful comments from the
reviewers.

I owe many thanks to my family for babysitting, careful reading
and for providing such great encouragement from the very first day of
my formal education. Ragnhild, you deserve the biggest hug of them
all. This last year you have put as much effort as anyone into making
this possible. Thank you.

Martin Strand
Trondheim, January 2018

4

Introduction

The connecting theme of the thesis is the theory and applications of
fully homomorphic encryption (FHE), in particular with respect to
electronic voting and the tools we need in voting protocols.

Fully homomorphic encryption

Fully homomorphic encryption was first envisioned by Rivest, Adle-
man and Dertouzos in 1978 [13], but it was only theoretically realised
by Gentry [9] over 30 years later. The concept of FHE is perhaps
best introduced as the solution to an apparent deadlock. Party A has
sensitive data that they would like to have analysed. Party B has
the best algorithm to analyse the data. However, A does not want to
disclose the data to B and B does not want to reveal the algorithm
to A, not even through a compiled program: such programs can be
reversed engineered. One solution is for party A to encrypt the data,
but party B needs to be able to compute on the data. Hence, we need a
cryptosystem that can evaluate algebraic operations. We can express
it mathematically: let P and C denote the plaintext and ciphertext
spaces, and let ⊕P ,⊕C and �P ,�C be operations on the spaces. We
then require that for any two ciphertexts c1 and c2, we have

Dec(c1 ⊕C c2) = Dec(c1)⊕P Dec(c2)

Dec(c1 �C c2) = Dec(c1)�P Dec(c2).

It has been known for decades how to compute either one of these
operations on encrypted data, but being able to do both at the same

5

6

time seemed so difficult it eventually became a ‘holy grail’ of cryptog-
raphy. Fully homomorphic schemes often express the homomorphic
property as a special algorithm Eval that on input of an evaluation
key, a circuit C and a set of ciphertexts, returns a new ciphertext that
encrypts the output of the circuit, as if it had been applied to the
plaintexts:

c1 ← Enc(m1), . . . , cn ← Enc(mn)

c← Eval(C, c1, . . . cn)
⇒ Dec(c) = C(m1, . . . ,mn)

A simple FHE scheme is as follows [16]. Let p be some odd integer,
and we will consider it as our key. To encrypt a bit m, select two
random numbers r and q from certain ranges, and set the ciphertext
as

c← pq + 2r +m.

To decrypt, reduce c modulo p and 2.
For sufficiently large p, q and r, m is hidden. Given two cipher-

texts, we see that

c1 + c2 = p(q1 + q2) + 2(r1 + r2) + (m1 +m2)

c2 · c2 = p(pq1q2 + 2r2q1 + 2r1q2 + q1m2 + q2m1)

+ 2(2r1r2 + r1m2 + r2m1) +m1m2,

which are both of the same form as the original ciphertext. Observe
that the multiplication increases both the ciphertext size and the term
multiplied by 2. For the middle term, that is a potential problem. The
term grows quadratically in the noise r, and will after sufficiently
many operations be of the same size as p. Once that happens, it will
‘flow over’ and may in the process flip the bit m in the pq + 2r +m
representation. We say that the noise has grown too much, and the
ciphertext can no longer be decrypted reliably.

The second problem of this scheme is its extreme inefficiency. With
a naïve implementation of this scheme, encrypting a single bit with
(supposedly) 160 bit security, we get a ciphertext of length 317 bits,
and it only handles less than five multiplications.

Introduction 7

One can also turn this scheme into a public key scheme. The im-
mediate performance drop illustrates the challenge with FHE. Gener-
ating key material for 7 (!) bits of security takes several minutes; an
encryption of a single bit requires 55023 bits; and the public key is
about 3 ·109 bits. We return to the tremendous development that has
taken place since this early scheme later in the introduction, as well
as in the first paper of the thesis. The thesis contributes new under-
standing of what can and cannot be achieved using fully homomorphic
encryption.

Paper i A Guide to Fully Homomorphic Encryption. The paper
gives a thorough review of the state of FHE when it was written
in 2014–2015. The version included in this thesis is identical to
the ePrint version, which seems to have been of use for several
authors.

FHE has evolved since our paper was written. One can almost
say that the paper was written while FHE still had a ‘sense of adven-
ture’ connected to it, and there were new schemes and problems being
proposed at a steady pace. Just a few years later, some ideas have
stood out, and we will now briefly consider some of the convergence
in the field since the guide was written. The following paragraphs are
closely tied to the first paper, so a reader unfamiliar with FHE the
reader might find it useful to return to these paragraphs later.

We start by discussing the concept of hops. In the survey, we
discuss the difference between levels and hops, where the level is the
allowed depth of a circuit, whereas the hops describe whether or not
a ciphertext output from an evaluation can be used again for new
computations. As far as the author is aware, there are no schemes
where this separation has been important, since all schemes in reality
only describe how to handle separate gates. The recent literature on
the field has not mentioned hops.

Gentry’s groundbreaking idea was that one could use a severely
limited scheme that could only support a small number of operations,
but then apply the decryption circuit with an encrypted key to create
new ciphertexts, and in the same process remove the noise that had
aggregated. Thus, under certain conditions, one can get unlimited
capacity from a noisy scheme. The first challenge was to make the de-

8

cryption circuit sufficiently shallow to make it possible to evaluate it
with the cryptosystem. Secondly, the bootstrapping procedure itself
had to be made practical. Starting with the novel paper by Brak-
erski, Gentry and Vaikuntanathan [6], bootstrapping is often viewed
as an optimisation rather than a necessity. The current trend is to
select suitable parameters for the concrete application. Larger pa-
rameters create bigger ciphertexts and each operation takes slightly
longer, but it is still a reasonable trade-off in order to avoid the very
costly bootstrapping operation. For even bigger computations it may
still be better to use smaller parameters and bootstrapping. In hind-
sight there is an irony to the development: Realising that an ‘exact’
solution (like ElGamal is for group homomorphic schemes) was infea-
sible, the bootstrapping idea to reach the same objective was the real
breakthrough. The definitive improvement since 2009 has been on the
noisy schemes, and the field is accepting that levelled homomorphic
encryption – without bootstrapping – can be as useful as schemes
supporting arbitrary depth circuits.

The first paper lists a number of schemes and implementations. If
we were to redo the table today, it would be far sparser, and essentially
only mention two directions: The BGV scheme [6] (starting with the
modulus switching introduced by Brakerski and Vaikuntanathan [7])
and the GSW scheme [10] with its variations, in particular the refor-
mulation by Alperin-Sheriff and Peikert [1]. Lately GSW has become
completely dominating in the research literature, and other lines of
work seem to have been completely abandoned.

We also list a number of security assumptions that early FHE
schemes used. These have mostly vanished, and current schemes al-
most exclusively base their security on the Learning with errors prob-
lem or its ring variant. When writing the survey paper, we ignored an
important catch when it comes to Ring-LWE. Let us quickly revisit
the problems here, starting with plain LWE.

Let q be some integer, and let χ be the discrete Gaussian distri-
bution on Zq = Z/qZ. Fix a dimension n and a vector ~s ∈ Zn

q . For
each sample, choose a vector ~a from Zn

q and a noise term e← χ, and
output

(~a, 〈~a,~s〉+ e) ∈ Zn
q × Zq.

Introduction 9

Given m independent samples, the adversary must output ~s. There
is a reduction from the problem of finding short vectors in the lattice
(GapSVP and SIVP) to LWE [12], and these related problems have
received much attention and are widely believed to be hard to solve
even for quantum computers.

It is natural to view RLWE as an instance where Zq is replaced
with a larger ring, typically R = Z[x]/(xd + 1), d = 2l for some l,
which allows us to set n = 1, and thus reduce the overall sample size.
Lyubashevsky, Peikert and Regev [11] demonstrate that this direct
approach gives a weaker problem. The reason is that the reduction
considers the embedding of Z[x]/(xd + 1) into Cr1 × Rr2 for some
r1, r2, by adjoining the all roots of xd + 1. This will create a skewed
distribution. The reader may find a mental image of an ellipse helpful,
where the security essentially depends on the shortest radius. The
three authors instead explain that one should sample s from the dual
fractional ideal of R, a from Rq = R/qR and the error term from
a spherical n-dimensional Gaussian distribution ψ. We refer to the
original source for the details. While this is of little significance for
the rest of the thesis, we include a mention of it here as a reminder
that some of the confusion from the early days of FHE is still present.

One can get an impression of the current status of FHE research
by reviewing the programs of some of the recent IACR flagship con-
ferences. Both Crypto and Eurocrypt 2015 had two full sessions ded-
icated to FHE, but the same venues in 2017 accepted no papers on
the field. Lattice-based cryptography is still a hot topic, and FHE
is often assumed as a primitive, for instance in papers on Functional
Encryption [2].

Fully homomorphic encryption may have hit a brick wall when it
comes to efficiency. Smart [15] discussed this as an example of the pro-
gression from a theoretical idea, to something that finds practical use
in implementations. The second paper in the thesis partly supports
this observation.

Paper ii Can there be efficient and natural FHE schemes? We
analyse the possibilities and limitations of FHE, and the analysis
partly supports the observation that there seems to be inherent

10

limitations to how good it can get. We either need to rely on
solutions with large ciphertext expansion, and any scheme radi-
cally outside of the current paradigm is likely to be homomorphic
over structures that have no or little use in the computations one
would like to do to in practice.

There appears to be a pattern in how new cryptography is in-
troduced. The first results, the proofs of concept, often deal with
single bits. It is still common to start by introducing bit commit-
ment schemes, and then zero-knowledge protocols with bit challenges,
oblivious transfer of bits, and so on. This holds for FHE as well. The
papers introducing new schemes typically demonstrate how to encrypt
a single bit. However, in contrast to the other examples, the schemes
sometimes rely extensively on this property. For instance, the analysis
of the noise growth in the Gentry-Sahai-Waters scheme [10] depends
crucially on the size of the message, and a consequence is that it is
non-trivial to extend the performance improvements to fields that are
sufficiently large to support interesting computations.

There are still routinely posted manuscripts on ePrint trying to re-
alise FHE with noiseless schemes. Just as routinely, they have proven
to be insecure, for instance using the techniques developed in the sec-
ond paper in this thesis.

Electronic voting with FHE

There is a large community researching how to carry out electronic
voting. Generally, there are two variations: on-site voting on automats
and remote internet voting. Each variant has different challenges, and
we focus on the latter in our work.

Remote internet voting is a controversial and challenging field.
Ryan [14] has described the problem as a triangle with corners ver-
ifiable (that the voter can be certain that the vote was counted as
intended), coercion resistance (anybody else than the voter should
not be able to verify how a ballot was cast and counted, to ensure
privacy and fight vote-buying) and useable (the user should be able
to use and understand the system in an easy manner), where one can
only satisfy two out of three. He then noted that the Norwegian sys-

Introduction 11

tem seemed to be a tradeoff to all three, with an emphasis on coercion
resistance and usability.

If the electorate does not trust the authorities, end-to-end veri-
fiability is more important. End-to-end verifiability means that the
voter, without help from any other parties, can check that his ballot
was counted as intended. The reader can appreciate how hard this is
to combine with coercion resistance, that a third party looking over
the voter’s shoulder or trying to buy the vote (and wanting a receipt)
should have no way of verifying that the voter did as instructed. Com-
bine this with the third requirement, that any non-expert should be
able to cast a ballot and understand what he or she is doing.

Norway ran a trial project for e-voting in 2011 and 2013. The
government cancelled the project in 2014, but a private company, New
Voting Technology Consulting has continued helping municipalities
with local referendums. We present a completely new way of carrying
out the Norwegian election in the thesis.

Paper iii A roadmap to fully homomorphic elections: Stronger
security, better verifiability. We demonstrate how one can deploy
a complicated e-voting protocol using FHE, and harvest stronger
security properties than one could do previously.

At the end, we provide some numbers to estimate the order of work
required to implement this protocol using the BGV scheme [6]. This
scheme belongs to what has been called 2nd generation FHE schemes.
While less sophisticated than the 3rd generation GSW scheme, it pro-
vides more flexibility, and is suitable for reasonably large plaintext
spaces. There have been several theorised applications of FHE, some
of which are described in the first paper. Many of these are unrealis-
tic in the foreseeable future. This work is unique in its dedication to
connect FHE with a highly complex real-world application.

The paper is previously published at VOTING’17. This version is
expanded and includes several improvements.

• The presentation has been updated. The algorithms are now
presented independently of the cryptosystem, so that the cor-
rectness becomes clearer.

12

• We have added more precise security requirements, and prove
that our system satisfy these. Due to page limitations, this
discussion had to be omitted in the previous version.

• Several technical improvements to the ballot expansion algo-
rithm which sits at the heart of the work.

Next, a verifiable shuffle is used whenever one wants to shuffle and
reencrypt a list of encrypted data such that nobody can tell the cor-
respondence between old and new ciphertexts, yet be fully convinced
that the responsible did not replace or modify any of the ciphertexts.
Shuffles are particularly useful in certain e-voting applications, but
also finds its use in network routing for privacy purposes.

Paper iv A verifiable shuffle for the GSW cryptosystem. The
paper introduces the primitive of verifiable shuffles to the realm
of FHE.

This proof of concept uses the GSW scheme. Bourse, del Pino,
Minelli and Wee [5] have provided a very elegant solution to the prob-
lem of circuit privacy. (We explore this term in more depth in the
initial survey paper.) Circuit privacy is necessary to hide the recryp-
tion ahead of the zero-knowledge proof. It turns out that shuffling
can be efficient for FHE, but so far only under the assumption that
the encryption scheme can handle sufficiently large numbers. As we
have already observed, BGV is better for large messages, but has no
known efficient method for getting circuit privacy. GSW can handle
large plaintexts, but only at the expense of higher noise growth.

The fact that different schemes have their own strengths and weak-
nesses leads us to the final paper in this collection.

Paper v Zero-Knowledge Proof of Decryption for FHE Cipher-
texts. The main objective is to provide a good technique for prov-
ing correct decryption of a ciphertext.

There is a strong line of research for proving plaintext knowledge,
where the efficiency is based on amortisation. Along the same lines,
there is a proof of correct decryption [4]. The fundamental problem
when working with a scheme based on LWE is that one wants to prove

Introduction 13

not only that some value exists, but also that it is smaller than some
bound. However, the naïve Schnorr-like idea will reveal information
about the secret, so one can only safely prove that it is smaller than
some constant times the bound. A line of research for the related prob-
lem of plaintext knowledge, starting with Baum, Damgård, Larsen and
Nielsen [3], with its latest iteration at Crypto 2017 by del Pino and
Lyubashevsky [8] mitigates this problem by using many instances, di-
viding them into baskets by random, and proving the claim for each
basket. Our idea is to find an FHE scheme which can support a stan-
dard Schnorr proof, and then use the original bootstrapping concept
to switch the ciphertext from the original scheme to the scheme that
supported simple zero knowledge proofs.

Unfortunately, our proof of concept needs to go back to the first
FHE scheme by Gentry, which is impractical by every measure. How-
ever, the scheme switching idea is generic, and can be used for any
application if the message spaces match and the target scheme can
evaluate the decryption circuit of the source.

References

[1] Jacob Alperin-Sheriff and Chris Peikert. Faster bootstrapping
with polynomial error. In Juan A. Garay and Rosario Gennaro,
editors, CRYPTO 2014, Part I, volume 8616 of LNCS, pages 297–
314, Santa Barbara, CA, USA, August 17–21, 2014. Springer,
Heidelberg, Germany. doi:10.1007/978-3-662-44371-2_17.

[2] Carmen Elisabetta Zaira Baltico, Dario Catalano, Dario Fiore,
and Romain Gay. Practical functional encryption for quadratic
functions with applications to predicate encryption. In Jonathan
Katz and Hovav Shacham, editors, CRYPTO 2017, Part I, vol-
ume 10401 of LNCS, pages 67–98, Santa Barbara, CA, USA,
August 20–24, 2017. Springer, Heidelberg, Germany.

[3] Carsten Baum, Ivan Damgård, Kasper Green Larsen, and
Michael Nielsen. How to prove knowledge of small secrets. In
Matthew Robshaw and Jonathan Katz, editors, CRYPTO 2016,
Part III, volume 9816 of LNCS, pages 478–498, Santa Barbara,

http://dx.doi.org/10.1007/978-3-662-44371-2_17

14

CA, USA, August 14–18, 2016. Springer, Heidelberg, Germany.
doi:10.1007/978-3-662-53015-3_17.

[4] Carsten Baum, Ivan Damgård, Sabine Oechsner, and Chris Peik-
ert. Efficient commitments and zero-knowledge protocols from
ring-SIS with applications to lattice-based threshold cryptosys-
tems. Cryptology ePrint Archive, Report 2016/997, 2016. http:
//eprint.iacr.org/2016/997.

[5] Florian Bourse, Rafaël del Pino, Michele Minelli, and Hoeteck
Wee. FHE circuit privacy almost for free. In Matthew Rob-
shaw and Jonathan Katz, editors, CRYPTO 2016, Part II, vol-
ume 9815 of LNCS, pages 62–89, Santa Barbara, CA, USA, Au-
gust 14–18, 2016. Springer, Heidelberg, Germany. doi:10.1007/
978-3-662-53008-5_3.

[6] Zvika Brakerski, Craig Gentry, and Vinod Vaikuntanathan. (Lev-
eled) fully homomorphic encryption without bootstrapping. In
Shafi Goldwasser, editor, ITCS 2012, pages 309–325, Cambridge,
MA, USA, January 8–10, 2012. ACM.

[7] Zvika Brakerski and Vinod Vaikuntanathan. Efficient fully homo-
morphic encryption from (standard) LWE. In Rafail Ostrovsky,
editor, 52nd FOCS, pages 97–106, Palm Springs, CA, USA, Oc-
tober 22–25, 2011. IEEE Computer Society Press.

[8] Rafaël del Pino and Vadim Lyubashevsky. Amortization with
fewer equations for proving knowledge of small secrets. In
Jonathan Katz and Hovav Shacham, editors, CRYPTO 2017,
Part III, volume 10403 of LNCS, pages 365–394, Santa Barbara,
CA, USA, August 20–24, 2017. Springer, Heidelberg, Germany.

[9] Craig Gentry. Fully homomorphic encryption using ideal lattices.
In Michael Mitzenmacher, editor, 41st ACM STOC, pages 169–
178, Bethesda, MD, USA, May 31 – June 2, 2009. ACM Press.

[10] Craig Gentry, Amit Sahai, and Brent Waters. Homomorphic
encryption from learning with errors: Conceptually-simpler,
asymptotically-faster, attribute-based. In Ran Canetti and

http://dx.doi.org/10.1007/978-3-662-53015-3_17
http://eprint.iacr.org/2016/997
http://eprint.iacr.org/2016/997
http://dx.doi.org/10.1007/978-3-662-53008-5_3
http://dx.doi.org/10.1007/978-3-662-53008-5_3

Introduction 15

Juan A. Garay, editors, CRYPTO 2013, Part I, volume 8042
of LNCS, pages 75–92, Santa Barbara, CA, USA, August 18–
22, 2013. Springer, Heidelberg, Germany. doi:10.1007/
978-3-642-40041-4_5.

[11] Vadim Lyubashevsky, Chris Peikert, and Oded Regev. A toolkit
for ring-LWE cryptography. In Thomas Johansson and Phong Q.
Nguyen, editors, EUROCRYPT 2013, volume 7881 of LNCS,
pages 35–54, Athens, Greece, May 26–30, 2013. Springer, Hei-
delberg, Germany. doi:10.1007/978-3-642-38348-9_3.

[12] Oded Regev. On lattices, learning with errors, random linear
codes, and cryptography. In Harold N. Gabow and Ronald Fagin,
editors, 37th ACM STOC, pages 84–93, Baltimore, MA, USA,
May 22–24, 2005. ACM Press.

[13] Ronald Rivest, Leonard Adleman, and Michael Dertouzos. On
data banks and privacy homomorphisms. Foundations of Secure
Computation, Academia Press, pages 169–179, 1978.

[14] Peter Ryan. In the PhD defence of Anders S. Lund, September
2015.

[15] Nigel Smart. Living between the ideal and real worlds. Invited
talk at Eurocrypt 2017, May 2017.

[16] Marten van Dijk, Craig Gentry, Shai Halevi, and Vinod Vaikun-
tanathan. Fully homomorphic encryption over the integers. In
Henri Gilbert, editor, EUROCRYPT 2010, volume 6110 of LNCS,
pages 24–43, French Riviera, May 30 – June 3, 2010. Springer,
Heidelberg, Germany.

http://dx.doi.org/10.1007/978-3-642-40041-4_5
http://dx.doi.org/10.1007/978-3-642-40041-4_5
http://dx.doi.org/10.1007/978-3-642-38348-9_3

16

Paper i

A Guide to Fully Homomorphic Encryption
Frederik Armknecht, Colin Boyd, Christopher Carr,

Kristian Gjøsteen, Angela Jäschke,
Christian A. Gorke and Martin Strand

ePrint 2015/1192

A Guide to Fully Homomorphic Encryption

Frederik Armknecht1, Colin Boyd2, Christopher Carr2,
Kristian Gjøsteen3, Angela Jäschke1, Christian A. Reuter1, and

Martin Strand3

1University of Mannheim
{armknecht, jaeschke, reuter}@uni-mannheim.de

2Department of Telematics, NTNU
{colin.boyd, ccarr}@item.ntnu.no

3Department of Mathematical Sciences, NTNU
{kristian.gjosteen, martin.strand}@ntnu.no

Abstract
Fully homomorphic encryption (FHE) has been dubbed the holy
grail of cryptography, an elusive goal which could solve the IT
world’s problems of security and trust. Research in the area
exploded after 2009 when Craig Gentry showed that FHE can be
realised in principle. Since that time considerable progress has
been made in finding more practical and more efficient solutions.
Whilst research quickly developed, terminology and concepts
became diverse and confusing so that today it can be difficult
to understand what the achievements of different works actually
are. The purpose of this paper is to address three fundamental
questions: What is FHE? What can FHE be used for? What
is the state of FHE today? As well as surveying the field,
we clarify different terminology in use and prove connections
between different FHE notions.

1 Introduction

The purpose of homomorphic encryption is to allow computation
on encrypted data. Thus data can remain confidential while it is

19

processed, enabling useful tasks to be accomplished with data residing
in untrusted environments. In a world of distributed computation and
heterogeneous networking this is a hugely valuable capability. Finding
a general method for computing on encrypted data had been a goal
in cryptography since it was proposed in 1978 by Rivest, Adleman
and Dertouzos [54]. Interest in this topic is due to its numerous
applications in the real world. The development of fully homomorphic
encryption is a revolutionary advance, greatly extending the scope
of the computations which can be applied to process encrypted data
homomorphically. Since Gentry published his idea in 2009 [28, 29]
there has been huge interest in the area, with regard to improving the
schemes, implementing them and applying them.

We look in detail at specific applications in Section 2, but to
give a feeling, consider cloud computing. As more and more data is
outsourced into cloud storage, often unencrypted, considerable trust is
required in the cloud storage providers. The Cloud Security Alliance
lists data breach as the top threat to cloud security [61]. Encrypting
the data with conventional encryption avoids the problem. However,
now the user cannot operate on the data and must download the
data to perform the computations locally. With fully homomorphic
encryption the cloud can perform computations on behalf of the user
and return only the encrypted result.

1.1 What is Fully Homomorphic Encryption?

Principally, FHE allows for arbitrary computations on encrypted data.
Computing on encrypted data means that if a user has a function f
and want to obtain f(m1, . . . ,mn) for some inputs m1, . . . ,mn, it is
possible to instead compute on encryptions of these inputs, c1, . . . , cn,
obtaining a result which decrypts to f(m1, . . . ,mn).

In some cryptosystems the input messages (plaintexts) lie within
some algebraic structure, often a group or a ring. In such cases the
ciphertexts will often also lie within some related structure, which
could be the same as that of the plaintexts. The function f in older
homomorphic encryption schemes is typically restricted to be an al-
gebraic operation associated with the structure of the plaintexts. For
instance, consider ElGamal. If the plaintext space is a group G, then

20 F. Armknecht et al.

the ciphertext space is the product G×G, and f is restricted to the
group operation on G. Indeed most schemes prior to 2009 fit such a
structure. We can express the aim of fully homomorphic encryption
to be to extend the function f to be any function. This aim can be
achieved if the scheme is homomorphic with respect to a functionally
complete set of operations and it is possible to iterate operations from
that set.

While it is always a requirement that encryption schemes are
efficient in a theoretical sense, namely running in polynomial time in
the security parameter, practical efficiency was not the first priority in
obtaining the first FHE schemes. One reason for the lack of efficiency
of these schemes is that they use a plaintext space consisting of a single
bit and are homomorphic with respect to addition and multiplication
modulo 2. While any function of any complexity can be built up
from such basic operations, that may require a large number of such
operations.

In order to move towards better efficiency, some recent variants of
FHE schemes restrict the functions f in different ways which we will
explore later.

Although a theoretical view of FHE cares only about maximising
the choices of f , a practical view cares also about keeping this choice
only as large as needed, and may also prefer a richer structure for the
plaintext and ciphertext spaces that just the binary case.

1.2 Relations of FHE: Functional Encryption and Pro-
gram Obfuscation

The fundamental idea behind FHE is to be able to apply functions on
encrypted data. Two other cryptographic notions formed with func-
tions in mind are functional encryption and obfuscation. Intriguingly,
obfuscation, functional encryption and fully homomorphic encryption
seem somehow intertwined, as has been previously recognised [3, 25].

Functional encryption (FE) is similar in essence to identity based
encryption and attribute based encryption. Boneh, Sahai and Waters
[13] give a concise explanation of the relations between these three
notions, as well as some discussion on FHE. The concepts of FHE and
FE do indeed have some overlap, and it has been demonstrated that

A Guide to Fully Homomorphic Encryption 21

functional encryption can work as FHE, with some slight adaptation [3].
Functional encryption allows a secret key to be issued using a

master key, dependent on a function f . Given a ciphertext, the secret
key allows the user to learn the value of f applied to the plaintext and
nothing else [12]. Computing functions on encrypted data links the
two concepts of homomorphic and functional encryption. A notable
difference is the way the functions are applied. FE grants control over
what functions can be applied to the data via a master key holder, who
issues keys based on a decision of the appropriateness of the function.
A key can be used to obtain the plaintext result of the function applied
on the encrypted data. FHE permits functions to be the run by anyone
with the evaluation key (see Section 3), however only the owner of the
secret key can decrypt the result into plaintext. The user running the
function only gets ciphertext.

Obfuscation was originally designed to be conceptually similar to
black box computation, where one gains knowledge of inputs to the
black box, and outputs from it, but nothing else [9, 25, 38]. With
obfuscation, one could place keys within the program to be run with-
out revealing knowledge of the keys. One could thus generate an
obfuscated program that contains the public and private keys, and
process the input by applying first the decryption algorithm, next the
required function, and finally encrypting the result. This would act as
a replacement for the homomorphic operation in FHE.

This ability to generate a FHE scheme from an obfuscation scheme
and a traditional encryption scheme may seem promising, but practi-
cally it remains unclear if this offers an advantage over direct FHE. We
would also need to consider the security constraints and implications
of hiding secret keys inside a published program.

1.3 Need for Systematization

Treatment of FHE can seem very confusing. Sometimes, two definitions
seem to say the same thing – for example, at first glance, being able
to evaluate an arbitrary circuit and being able to evaluate arbitrarily
many circuits consecutively seems to be the same thing. This, however,
is not the case as will be explained in Remark 5.

To help understand the distinction, consider the cloud computing

22 F. Armknecht et al.

example: FHE is usually sold as the solution. However, if we can only
evaluate one circuit of arbitrary size, then we cannot use intermediate
results for further computations later; everything has to be computed
from scratch through the original ciphertexts. This satisfies the usual
definition of FHE (Definition 9), but is unintuitive and is hardly an
optimal solution. What is needed in this scenario is the ability to
evaluate arbitrarily many circuits consecutively.

This highlights another problem in this field: in some cases, def-
initions do not express what one would intuitively assume. In other
cases, one intuition has different definitions in different papers. This,
for example, is the case for an attribute called compactness, which
intuitively says that the ciphertext size should not be growing through
homomorphic operations. Gentry defines it through one character-
ization in his original work, while in subsequent works a different
characterization is used. Seeing that both definitions are equivalent is
not as straightforward as one may assume, and actually requires an
additional assumption.

Sometimes, attributes are not properly defined at all, and some-
times implications are used that have not been mentioned in the same
paper. Figure 1 gives an idea of how complex this jungle of definitions
is. Starting with the definitions and properties (white rectangles in the
figure) we can give classifications of the different kinds of homomorphic
schemes (shaded round rectangles). Furthermore, these classifications
can again be combined with hop correctness, which yields another set
of homomorphic schemes (darker oval shapes).

1.4 Our Contribution

First, in Section 2, we gather existing applications of (fully) homomor-
phic encryption mentioned in the literature, examine their usefulness
both in practice and as building blocks for other cryptographic schemes
and point out their limitations.

Next, we provide the much needed organization of terminology. We
present existing definitions in a consistent way, reconciling different
definitions for one notion when they exist, and explaining points
of potential confusion. Furthermore, we introduce new definitions,
enabling a better understanding of existing schemes and existing

A Guide to Fully Homomorphic Encryption 23

C = {allowed binary circuits}

C–evaluation scheme (Def 1, p.)

Correct decryption (Def. 2, p.)

Correct evaluation (Def. 3, p.)

Somewhat homomorphic (Def. 7, p.)

Compactness (Def. 4, p.)

Max depth of circuits in C is d

Length of Eval output is independent of d

Levelled homomorphic (Def. 8, p.)

C = {all binary circuits}

Levelled fully homomorphic (Def. 8, p.)

Fully homomorphic (Def. 9, p.)

– any one –

i-hop correctness (Def. 10, p.)

i-hop scheme (Def. 11, p.)

∞-hop correctness (Def. 14, p.)

∞-hop scheme (Def. 14, p.)

Figure 1: Classifying FHE. The definitions are white rectangles. The
classes are shaded round rectangles. The round shapes below represent
the add-on properties of hops. The arrows between the elements of the
graph show their dependencies. The integer d specifies the maximum
depth of circuits in the set of allowed binary circuits C.

24 F. Armknecht et al.

definitions. This contribution constitutes Section 3 and is summarised
in Figure 1. In Section 4, we formally prove some elementary relations
between notions presented in Section 3. To give an overview of the
current landscape in FHE research, Section 5 summarises some existing
schemes along with the underlying hardness assumptions and runtimes
where available.

2 Applications of FHE

This section explores the numerous applications of the various flavours
of homomorphic encryption. Some require fully homomorphic encryp-
tion, while others just need somewhat homomorphic encryption. The
distinction will become clear in Section 3. For now, it suffices to know
that a fully homomorphic scheme can compute anything on encrypted
data, while a somewhat homomorphic scheme is more restricted.

This section is divided into three parts. The first part deals with
applications that are feasible today, the second examines constructions
that use homomorphic encryption as building blocks, and the third
looks at current limitations of FHE.

2.1 Practical Applications of FHE

Although still slow (see Section 5), homomorphic encryption has been
proposed for several practical uses. This section lists those applications
that are conceivable with the technology we have today.

2.1.1 Consumer Privacy in Advertising

Though often unwanted, advertising can be useful when tailored to user
needs, e.g. through recommender systems or through location-based
advertising. However, many users are concerned about the privacy of
their data, in this case their preferences or location. There have been
several approaches to this problem.

Jeckmans et al. [43] sketch a scenario where a user wants recommen-
dations for a product. The scenario is designed around a social network
where recommendations are based on the tastes of the user’s friends
with the condition of confidentiality. The proposed system applies

A Guide to Fully Homomorphic Encryption 25

homomorphic encryption to allow a user to obtain recommendations
from friends without the identity of the recommender being revealed.

Armknecht and Strufe [6] presented a recommender system where a
user gets encrypted recommendations without the system being aware
of the content. This system builds upon a very simple but highly
efficient homomorphic encryption scheme which has been developed for
this purpose. This allows a function to be computed which chooses the
advertisement for each user while the advertising remains encrypted.

In another approach to personalized advertising [50] a mobile device
sends a user’s location to a provider, who sends customized ads, such
as discount vouchers for nearby shops, back to the user. Of course,
this potentially allows the provider to monitor everything about the
user’s habits and preferences. However, this problem can be solved by
homomorphic encryption – provided the advertisements come from a
third party (or several) and there is no collusion with the provider.

2.1.2 Data Mining

Mining from large data sets offers great value, but the price for this
is the user’s privacy. While Yang, Zhong and Wright [64] are often
cited as using homomorphic encryption as a solution to this problem,
the scheme actually uses functional encryption, a common confusion
discussed in Section 1.2. However, applying homomorphic encryption
is certainly conceivable as a solution.

2.1.3 Medical Applications

Naehrig et al. [50] propose a scenario where a patient’s medical data is
(continuously) uploaded to a service provider in encrypted form. Here,
the user is the data owner, so the data is encrypted under the user’s
public key and only the user can decrypt. The service provider then
computes on the encrypted data, which could consist of things like
blood pressure, heart rate, weight or blood sugar reading to predict the
likelihood of certain conditions occurring or more generally to just keep
track of the user’s health. The main benefit here is to allow real-time
health analysis based on readings from various sources without having
to disclose this data to any one source. Lauter [45] described an actual

26 F. Armknecht et al.

implementation of a heart attack prediction by Microsoft.

2.1.4 Financial Privacy

Imagine a scenario where a corporation has sensitive data and also
proprietary algorithms that they do not want disclosed, e.g. stock price
prediction algorithms in the financial sector. Naehrig et al. [50] propose
the use of homomorphic encryption to upload both the data and the
algorithm in encrypted form in order to outsource the computations
to a cloud service. However, keeping the algorithm secret is not
something that homomorphic encryption offers, but is rather part of
obfuscation research (see section 1.2). The attribute that comes closest
in fully homomorphic schemes is called circuit privacy, but this merely
guarantees that no information about the function is leaked by the
output – not that one can encrypt the function itself.

What homomorphic encryption offers is the solution to a related
problem. Imagine that a corporation A has sensitive data, like a
stock portfolio, and another company B has secret algorithms that
make predictions about the stock price. If A would like to use B’s
algorithms (for a price, of course), either A would have to disclose
the stock portfolio to B, or B has to give the algorithm to A. With
homomorphic encryption, however, A can encrypt the data with a
circuit private scheme and send it to B, who runs the proprietary
algorithm and only sends back the result, which can only be decrypted
by A’s secret key. This way, B does not learn anything about A’s data,
and A does not learn anything about the algorithms used.

2.1.5 Forensic Image Recognition

Bösch et al. [14] describe how to outsource forensic image recognition.
Tools similar to this are being used by the police and other law
enforcement agencies to detect illegal images in a hard drive, network
data streams and other data sets. The police use a database containing
hash values of “bad” pictures. in. A major concern is that perpetrators
could obtain this database, check if their images would be detected
and, if so, change them.

This scheme uses a somewhat homomorphic encryption scheme

A Guide to Fully Homomorphic Encryption 27

proposed by Brakerski and Vaikuntanathan [17] to realise a scenario
where the police database is encrypted while at the same time the
company’s legitimate network traffic stays private. The company
compares the hashed and encrypted picture data stream with the
encrypted database created by the police. The service provider learns
nothing about the encrypted database itself, and after a given time
interval or threshold, the temporary variable is sent to the police.

2.2 Homomorphic Encryption as a Building Block

Homomorphic encryption schemes can be used to construct crypto-
graphic tools such as zero knowledge proofs, signatures, MACs and
multiparty computation implementations.

2.2.1 Zero Knowledge Proofs

Gentry shows in his dissertation [28] that homomorphic encryption
can be used in the construction of non-interactive zero knowledge
(NIZK) proofs of small size. A user wants to prove knowledge of a
satisfying assignment of bits π1, . . . , πt for a boolean circuit C. The
NIZK proof consists of generating a public key, encrypting the πi’s
and homomorphically evaluating C on these encryptions. A standard
NIZK proof is attached to prove that each ciphertext encrypts either
0 or 1 and that the output of the evaluation encrypts 1.

2.2.2 Delegation of Computation

Outsourcing computation is the second big pillar in cloud computing,
besides outsourcing data. A user may want to delegate the computation
of a function f to the server. However, the server may be malicious
or just prone to malfunctions, meaning the user may not trust the
result of the computation. The user wants to have a proof that the
computation was done correctly and verifying this proof should also
be significantly more efficient than the user doing the computation.

Chung et al. [18] use fully homomorphic encryption to design
schemes for delegating computation, improving the results of Gennaro
et al. [26], while van Dijk and Juels [63] examine the infeasibility of
FHE alone solving privacy issues in cloud computing.

28 F. Armknecht et al.

One example for the delegation of computation is message au-
thenticators. A user who has outsourced computation on a data set
might want to check that the return value is really the correct result.
The tag should be independent of the size of the original data set,
and only verifiable for the holder of the private key. Gennaro and
Wichs [27] propose such a scheme based on a fully homomorphic en-
cryption scheme, which can be considered as a symmetric-key version
of fully homomorphic signatures [10]. However, it only supports a
bounded number of verification queries.

2.2.3 Signatures

Gorbunov et al. [39] presented a construction of levelled fully homo-
morphic signature schemes. The scheme can evaluate arbitrary circuits
with maximal depth d over signed data and homomorphically produce
a short signature which can be verified by anybody using the public
verification key. The user uploads the signed data x, then the server
runs some function g over the data which yields y = g(x). Additionally,
the server publishes the signature σg,y to verify the computation.

This work also introduces the notion of homomorphic trapdoor
functions (HTDF), one of the building blocks for the signature con-
struction. HTDF themselves are based on the small integer solution
(SIS) problem. The first definition of fully homomorphic signatures
was given in Boneh and Freeman [10].

2.2.4 Multiparty Computation

Multiparty computation protocols require interaction between partici-
pants. Damgård et al. [21] provide a description of how a somewhat
homomorphic scheme can be used to construct offline multiplication
during the computations. The players use the somewhat homomorphic
scheme in a preprocessing phase, but return to the much more efficient
techniques of multiparty computation in the computation phase.

2.3 Limitations of FHE

Both in literature and intuitively, there are several applications which
permit fully homomorphic encryption as a solution. However, in this

A Guide to Fully Homomorphic Encryption 29

subsection, we discuss three main limitations of FHE in real-world
scenarios.

The first limitation is support for multiple users. Suppose there are
many users of the same system (which relies on an internal database
that is used in computations), and who wish to protect their personal
data from the provider. One solution would be for the provider to have
a separate database for every user, encrypted under that user’s public
key. If this database is very large and there are many users, this would
quickly become infeasible. López-Alt et al. [46] have shown promising
directions to address this problem by defining and constructing multi-
key FHE.

Next, there are limitations for applications that involve running very
large and complex algorithms homomorphically. All fully homomor-
phic encryption schemes today have a large computational overhead,
which describes the ratio of computation time in the encrypted version
versus computation time in the clear. Although polynomial in size, this
overhead tends to be a rather large polynomial, which increases run-
times substantially and makes homomorphic computation of complex
functions impractical. Even if in the future an extremely efficient FHE
should be found, other problems remain. For example, for circuits,
there is no concept of aborting an algorithm when operating on en-
crypted data. In the case of comparison, this would require to run the
full circuit which is large by itself. In other words, certain mechanisms
seems to get significantly more involved just because values remain
hidden. One way to solve this problem is suggested by Goldwasser et
al. [37] by using Turing machines instead of circuits.

Finally, FHE does not necessarily imply secret function evaluation.
We already encountered this in the discussion of the applicability to
financial data above. This issue belongs to the research on obfuscation.

3 Definitions

This section gives an overview of the terminology used in the liter-
ature on FHE. Some of our definitions come directly from existing
papers while others have been rephrased, either because there were no
satisfactory formal definitions or to fit the definitions into our formal

30 F. Armknecht et al.

framework; we give citations in the first case.
We begin with a space P = {0, 1}, which we call the plaintext space,

and a family F of functions from tuples of plaintexts to P. We can
express such a function as a Boolean circuit on its inputs. If we denote
this circuit by C, we use ordinary function notation C(m1,m2, . . . ,mn)
to denote the evaluation of the circuit on the tuple (m1,m2, . . . ,mn).
Our first definition follows Brakerski and Vaikuntanathan [16].

Definition 1 (C–Evaluation Scheme). Let C be a set of circuits. A
C–evaluation scheme for C is a tuple of probabilistic polynomial–time
algorithms (Gen,Enc,Eval,Dec) such that:

Gen(1λ, α) is the key generation algorithm. It takes two inputs, secu-
rity parameter λ and auxiliary input α, and outputs a key triple
(pk, sk, evk), where pk is the key used for encryption, sk is the
key used for decryption and evk is the key used for evaluation.

Enc(pk,m) is the encryption algorithm. As input it takes the en-
cryption key pk and a plaintext m. Its output is a ciphertext
c.

Eval(evk, C, c1, . . . , cn) is the evaluation algorithm. It takes as inputs
the evaluation key evk, a circuit C ∈ C and a tuple of inputs
that can be a mix of ciphertexts and previous evaluation results.
It produces an evaluation output.

Dec(sk, c) is the decryption algorithm. It takes as input the decryption
key sk and either a ciphertext or an evaluation output and
produces a plaintext m.

Here X denotes the ciphertext space which contains the fresh cipher-
texts (see equation (1)), Y denotes the space of evaluation outputs and
Z is the union of both X and Y. Z∗ contains arbitrary length tuples
made up of elements in Z. The key spaces are denoted by Kp,Ks
and Ke, respectively, for pk, sk and evk. The public key contains a
description of the plaintext and ciphertext spaces. The input to the
key generation algorithm Gen is given in unary notation, i.e., 1λ. Gen
may also take another optional input α from the space A, this is the
auxiliary input and will become clear in Remark 3. Finally, C is the

A Guide to Fully Homomorphic Encryption 31

set of permitted circuits, i.e. all the circuits which the scheme can
evaluate.

With these spaces defined, the domain and range of the algorithms
are given by

Gen : N×A → Kp ×Ks ×Ke
Enc : Kp × P → X
Dec : Ks ×Z → P
Eval : Ke × C × Z∗ → Y

where X ∪ Y = Z and A is an auxiliary space. Note that in general
the evaluation space can be disjoint from the ciphertext space.

Throughout this paper, we treat the ciphertext space X as the
image of encryption, and the evaluation space Y as the image of
evaluation. Therefore Z cannot contain an element that is not a
possible output of the encryption algorithm or the evaluation algorithm.
Formally,

X = {c | Pr[Enc(pk,m) = c] > 0,m ∈ P} (1)

and

Y = {z | Pr[Eval(evk, C, c1, . . . , cn) = z] > 0, ci ∈ Z, C ∈ C}.

Notably, the evaluation key is often also part of the public key. By
defining the scheme this way, with a separate evaluation key, we are
not forbidding pk = evk but asserting that it is not strictly necessary.
Separate pk and evk is becoming a standard definition [16, § 3.1].

Remark 1 (Ciphertext decryption). Brakerski and Vaikuntanathan [17]
mention that running the decryption algorithm on an output of the
encryption algorithm is not strictly necessary: “. . . we do not require
that the ciphertexts ci are decryptable themselves, only that they
become decryptable after homomorphic evaluation.” They point out
that one can always evaluate the encrypted ciphertext with a blank
circuit (essentially a circuit computing the function f(x) = x) before
decryption, thus simplifying the allowed inputs to the decryption
algorithm. From now on, we allow the decryption of fresh ciphertexts,

32 F. Armknecht et al.

as this seems a more natural approach and applies to most known
FHE schemes. The decryption algorithm can operate on ciphertexts
or evaluations (take values from both the ciphertext space and the
evaluation space). This choice removes the need for a blank circuit.
In general though, this distinction is not necessary, especially when
the evaluation space and the ciphertext space are the same.

3.1 Attributes

Here we present the attributes of homomorphic encryption schemes.
On the one hand, we need things like correctness to even call this an
encryption scheme, and on the other hand we define attributes like
compactness and circuit privacy which exclude trivial solutions to the
problem of homomorphic encryption.

Definition 2 (Correct Decryption). A C–evaluation scheme (Gen, Enc,
Eval, Dec) is said to correctly decrypt if for all m ∈ P,

Pr[Dec(sk,Enc(pk,m)) = m] = 1,

where sk and pk are outputs of Gen(1λ, α).

This means that we must be able to decrypt a ciphertext to the
correct plaintext, without error.

Definition 3 (Correct Evaluation, [16, Def. 3.3]). A C–evaluation
scheme (Gen, Enc, Eval, Dec) correctly evaluates all circuits in C if
for all ci ∈ X , where mi ← Dec(sk, ci), for every C ∈ C, and some
negligible function ε,

Pr[Dec(sk,Eval(evk, C, c1, . . . , cn)) = C(m1, . . . ,mn)] = 1− ε(λ)

where sk, pk and evk are outputs of Gen(1λ, α).

This means that with overwhelming probability, decryption of the
homomorphic evaluation of a permitted circuit yields the correct result.
Note that for Definition 2 and 3 we are intentionally restricting to X
and not to Y. This is developed further in Section 3.3.

From now on, we say a C–evaluation scheme is correct if it has the
properties of both correct evaluation and correct decryption.

A Guide to Fully Homomorphic Encryption 33

Definition 4 (Compactness [62, Def. 3]). A C–evaluation scheme
is compact if there is a polynomial p, such that for any key-triple
(sk, pk, evk) output by Gen(1λ, α), any circuit C ∈ C and all ciphertexts
ci ∈ X , the size of the output Eval(evk, C, c1, . . . , cn) is not more than
p(λ) bits, independent of the size of the circuit.

This means that the ciphertext size does not grow much through
homomorphic operations and the output length only depends on the
security parameter. This also rules out a trivial homomorphic scheme
where the evaluation algorithm is the identity function (that is, it
outputs (C, c1, . . . , cn)), and the decryption function is defined to
decrypt the input ciphertexts c1, . . . , cn, apply the appropriate function
to the corresponding plaintexts, and output this result [30].

Remark 2 (On compactness). Gentry’s original definition was slightly
different, which could informally be paraphrased as: The scheme is
compact if there exists a circuit CD of “reasonable” length that computes
the decryption circuit. This definition relies on the size of the decryption
circuit. However, we feel that the first definition, which relies on the
length of Eval’s output – given intuitively in his work – and used as
the definition of compactness in following works [16,62], provides for a
better understanding. We further examine the relationship between
these two concepts (and state the latter one formally) in Section 4.1.

In anticipation of following results, we introduce another definition,
originally used by Gentry, that groups all of the definitions seen so far
in this section [28, Def 2.1.2].

Definition 5 (Compactly Evaluate). A C–evaluation scheme (Gen,
Enc, Eval, Dec) compactly evaluates all circuits in C if the scheme is
compact and correct.

We now define circuit privacy. One may easily confuse circuit
privacy semantically with circuit obfuscation, because both seem to
keep the circuit secret or private. However, circuit obfuscation deals
with the concealing of the circuit. This is important if the used
algorithms themselves are valuable and ought to be secret. In contrast,
circuit privacy characterizes the distributions of the output of the
algorithms Eval and Enc.

34 F. Armknecht et al.

Definition 6 (Circuit Privacy [28, Def. 2.1.6]). We say that a C–eval-
uation scheme (Gen, Enc, Eval, Dec) is perfectly/statistically/computa-
tionally circuit private if for any key-triple (sk, pk, evk) output by
Gen(1λ, α), for all circuits C ∈ C and all ci ∈ X , such that mi ←
Dec(sk, ci), the two distributions on Z

D1 = Eval(evk, C, c1, . . . , cn)

and
D2 = Enc(pk, C(m1, . . . ,mn)),

both taken over the randomness of each algorithm, are perfectly, sta-
tistically or computationally indistinguishable, respectively.

Why this definition implies that the circuit is private may not
be immediately clear. Essentially, it states that the output from the
evaluation of a specific circuit on ciphertexts looks like the output
from the encryption of a plaintext value v, generated in this case by
the circuit and the corresponding plaintexts. As v is just another
plaintext (i.e. v = C(m1,m2, . . . ,mn)), it is difficult for determine
how it was generated (the level of difficulty is hierarchical from perfect
to computational).

Circuit privacy has also been known by the name strongly homo-
morphic [19, 56] in the literature, and there still remains a slight point
of divergence within the community on the accurate definition of circuit
privacy. Whilst we keep the original definition as given by Gentry [28],
a slightly weaker notion exists that is similar, namely function privacy.
The important difference is that function privacy only requires that
evaluating different circuits on encrypted data produces distributions
that are statistically close, computationally close or identical. Circuit
privacy, on the other hand, requires that these distributions are the
same as those of fresh ciphertexts.1

3.2 Classifications

Not all homomorphic schemes have the same properties. This part of
the paper examines definitions that allow us to classify and distinguish

1We would like to thank Shai Halevi for bringing this issue to our attention.

A Guide to Fully Homomorphic Encryption 35

between different types of schemes, depending on what circuits they
can evaluate.

Definition 7 (Somewhat Homomorphic). If a C–evaluation scheme
(Gen, Enc, Eval, Dec) also satisfies correct decryption and correct
evaluation, then it is called a somewhat homomorphic encryption
scheme (SHE).

There is no requirement for compactness, so the ciphertexts can
increase substantially in length with each homomorphic operation.
Also, the set C of permitted circuits consists of some circuits; there is
no requirement here as to which circuits this must include.

Definition 8 (Levelled Homomorphic [16, Def. 3.6]). A C–evaluation
scheme (Gen, Enc, Eval, Dec) is called a levelled homomorphic scheme if
it takes an auxiliary input α = d to Gen which specifies the maximum
depth of circuits that can be evaluated. Further requirements are
correctness, compactness and that the length of the evaluation output
does not depend on d.

Other than circuit depth, there is no restriction on C. If we require
that C is the set of all binary circuits with depth at most d, the scheme
is called levelled fully homomorphic.

The difference between somewhat homomorphic and levelled ho-
momorphic schemes is a potential point of confusion. The depth of
circuits which a somewhat homomorphic encryption can handle can
be increased through parameter choice – this usually means that the
ciphertext size will increase with the depth of the circuits allowed. For
a levelled homomorphic encryption scheme, the maximum depth is an
input parameter and the length of the ciphertext does not depend on
it.

Remark 3. The parameter α was introduced in Definition 1 specifically
to allow specifying the maximum depth of circuit that can be evaluated.
Thus, when we later assume that α is polynomial in λ, this is justified
because in all existing schemes α = d, a constant. However, we aim
to work with the most general framework possible, so we also allow
cases where α might have a different functionality and be substantially
larger.

36 F. Armknecht et al.

Definition 9 (Fully Homomorphic [16, Def. 3.5]). A fully homomor-
phic encryption scheme is a C–evaluation scheme (Gen, Enc, Eval, Dec)
that is compact, correct and where C is the set of all circuits.

This definition means that the scheme can evaluate any circuit
of arbitrary size, which does not need to be known when setting the
parameters.

3.3 Evaluating in Stages

Sometimes we want to compute a result in two or more stages, where
the results from one stage could be used as input for a later stage. In
this case, we want to evaluate on ciphertexts that were output by Eval
in addition to ciphertexts that were output by Enc.

The definition of correct evaluation (Definition 3) only guarantees
that the algorithm Eval works when its input ciphertexts are in X , the
set of fresh ciphertexts that can be output by the Enc algorithm. We
want to study under which conditions we can hope that the evalua-
tion algorithm will work when given evaluation outputs (we present
implications in Section 4.2).

Evaluation in stages is known as i-hop homomorphic encryption
([56, Section 2.2], [34, Section 1.4]), where i is either an integer or can
be replaced by “multi”,“poly” or∞ (see Definitions 12, 13 and 14 below).
We now define computation in stages (also staged computation).

A computation Ci,n in i stages of width n is defined by a set of
circuits {Ck`} indexed by 1 ≤ k ≤ i, 1 ≤ ` ≤ n, where Ck` has kn
inputs. Given initial plaintexts m01,m02, . . . ,m0n, we compute

mk` = Ck`(m01,m02, . . . ,m0n, . . . ,mk−1,1, . . . ,mk−1,n)

for 1 ≤ k ≤ i and 1 ≤ ` ≤ n. The output of the staged computation
after Eval and Dec is mi1,mi2, . . . ,min. Denoting the initial plaintexts
by ~m0 and the output plaintexts by ~mi, we introduce the natural
notation ~mi = Ci,n(~m0).

Let (pk, evk, sk) be a key triple output by Gen, and let c01, c02,
. . ., c0n be a sequence of ciphertexts from X . Compute the ciphertexts
{ck`} for 1 ≤ k ≤ i, 1 ≤ ` ≤ n recursively by

ck` = Eval(evk, Ck`, c01, . . . , c0n, . . . , ck−1,1, . . . , ck−1,n).

A Guide to Fully Homomorphic Encryption 37

The output of the encrypted staged computation is the sequence of
ciphertexts ci1, ci2, . . . , cin. Denoting the fresh ciphertexts by ~c0 and
the ouput ciphertexts by ~ci, we introduce the natural notation of Eval
having multiple outputs

~ci = Eval(evk,Ci,n,~c0).

Remark 4. A slightly narrower view [34,56] of computation in stages is
that the only ciphertext output by one stage can be input for the next
stage. Since it is normally considered possible to apply the identity
function to a ciphertext, this formulation is usually no weaker than
our more general view.

Let ~c = (c1, . . . , cn) and ~m = (m1, . . . ,mn) be tuples of cipher-
texts and plaintexts respectively, such that under a secret key sk,
Dec(sk, ck) = mk for 1 ≤ k ≤ n. We then introduce the natural
notation

~m = Dec(sk,~c).

Definition 10 (i-Hop Correctness). Let pk, evk, sk be keys output
by Gen(1λ), and let Ci,n = {Ck`} be any staged computation where
n is polynomial in λ and ~c0 = (c01, . . . , c0n) in X n. A C–evaluation
scheme (Gen, Enc, Eval, Dec) is i-hop correct if

Pr[Dec(sk,Eval(evk,Ci,n,~c0) = Ci,n(Dec(sk,~c0))] = 1− ε(λ),

where ε is a negligible function and the probability is taken over the
coins of the Eval algorithm invocations.

While previous definitions of i-hop (and multi-hop, see below)
implicitly use a construction like i-hop correctness, it was never clearly
defined in the literature. Additionally, we allow Eval to fail, although
only with negligible probability. In Figure 2 staged evaluation is
illustrated for i = 2 and n = 2, where each invocation of Eval outputs
n results, but not all of them must be used in the next iteration of
Eval which is indicated by a dotted arrow. Furthermore, Eval may use
i · n = 4 different circuits in the whole process.

Now we have defined i-hop correctness, we can define i-hop, multi-
hop, poly-hop and ∞-hop. Similar definitions of i-hop and multi-
hop can be found in the work of Gentry et al. [34, Section 1.4] and

38 F. Armknecht et al.

m01 m02Enc Enc

1st stage

2nd stage

EvalC11

EvalC12

EvalC21

EvalC22

c01 c02

c11 c12

c21 c22

Dec

Figure 2: Staged evaluation for i = 2 stages and n = 2 in- and outputs.
After encrypting, a subset of the resulting (fresh) ciphertexts is used
for the Eval algorithms as input successively. This is the appropri-
ate diagram for the formula ~c2 = (c21, c22) ← Eval(evk,C2,2,~c0) =
Eval (evk,C2,2, (Enc(pk,m01),Enc(pk,m02))). A circuit may not use
all inputs, the dotted arrows represent the ignored inputs. The light
shaded shapes belong to 1-hop and the darker shaded shapes to 2-hop.

A Guide to Fully Homomorphic Encryption 39

Rothblum [56]. The main difference is that we allow inputs from each
of the predecessor Eval algorithms as well as fresh ciphertexts. The
previous definitions allow only the output of the direct predecessor
Eval invocations as input.

Definition 11 (i-Hop, [34,56]). Let i ∈ N. We say that a C–evaluation
scheme (Gen, Enc, Eval, Dec) is i-hop if j-hop correctness holds for all
j with 1 ≤ j ≤ i.

Remark 5 (FHE and i-Hop). The relation between fully homomorphic
and i-hop is another possible source of confusion. One may expect that
if it is possible to evaluate an arbitrary circuit (fully homomorphic
encryption), it would be possible to execute arbitrarily many circuits
consecutively. This, however, is not the case. Outputs of Eval might
look very different from fresh ciphertexts and there is no guarantee
that they form valid inputs to Eval. For example, assume we have a
1-hop fully homomorphic encryption scheme, a circuit C that takes
as input c1, . . . , cn and outputs c′1, . . . , c′v, and a circuit C ′ that takes
as input c1, . . . , cv and outputs c′1, . . . , c′w. If we run Eval(evk, C ′ ◦
C, c1, . . . , cn) (where C ′ ◦ C is the concatenation of the two circuits),
this is certainly a valid operation, because we are evaluating one circuit
(not to be confused with staged computation). However, if we first
run Eval(evk, C, c1, . . . , cn) to obtain c′1, . . . , c′v, then attempting to run
Eval(evk, C ′, c′1, . . . , c

′
v), is not supported by the 1-hop scheme, because

c′1, . . . , c
′
v will not be valid inputs. This observation is important for

applications where two separate entities compute on some encrypted
data, and the second entity evaluates the output of the first. In this
scenario, the second entity does not have access to the fresh ciphertexts
and is forced to operate on the output of the evaluation given by the
first. This would be impossible with a 1-hop scheme.

Instead of being bounded by an integer, the hops may be bounded
by some polynomial depending on λ which leads us to the next defini-
tion.

Definition 12 (Multi-Hop, [34, Sec. 1.4], [56]). Let p be some poly-
nomial. We say that a C–evaluation scheme (Gen, Enc, Eval, Dec) is
multi-hop if j-hop correctness holds for all j with 1 ≤ j ≤ p(λ).

40 F. Armknecht et al.

Definition 13 (Poly-Hop). Let p be some polynomial and let α ∈ A.
We say that a C–evaluation scheme (Gen, Enc, Eval, Dec) is poly-hop
if j-hop correctness holds for all j with 1 ≤ j ≤ p(λ, α).

As far as we are aware, this is the first proposed definition of
poly-hop. It seems to be a natural extension to the existing definitions
of i-hop and multi-hop. This way, the auxiliary input may influence
the number of keys and therefore the number of possible evaluations.

Definition 14 (∞-Hop). We say that a C–evaluation scheme (Gen,
Enc, Eval, Dec) is ∞-hop if j-hop correctness holds for all j.

Again, as far as we know, ∞-hop was not yet mentioned in the
literature. Like poly-hop, ∞-hop is a natural extension of the existing
definitions. It allows an unlimited number of hops. Hence, there are
direct implications for FHE. See Section 4 for further discussions on
this topic.

Remark 6 (Hops and classifications). We are not requiring a fully
homomorphic scheme for the notion of hop correctness – the definition
is applicable to any homomorphic scheme of Section 3.2 (somewhat
homomorphic, levelled homomorphic, levelled fully homomorphic and
fully homomorphic).

Remark 7 (Poly-hop vs. multi-hop). What is the difference between
poly-hop and multi-hop? If you need a security parameter to output a
public key, then any bound on the security parameter is also a bound
on the public key. This makes sense if a user cannot increase the size
of the public key independently (or to some degree of independence)
of the security parameter. This, however, is allowed by Definition 1, as
some form of auxiliary input to the key generation algorithm. There
is nothing stopping an auxiliary input defining the public key size,
independent of the security parameter. This relates to poly-hop because
in practice, levelled homomorphic schemes can be achieved by having
several key pairs with which one can perform the recrypt operation (see
Section 5.1 for a more detailed explanation). This means the public
key size increases multiplicatively by this number of keys. Of course,
if the number of key pairs is polynomial in λ (or more generally, if α
is polynomial in λ), poly-hop and multi-hop are the same.

A Guide to Fully Homomorphic Encryption 41

4 Implications

We now detail the implications of the definitions given in the previous
section. First we return to the issue of compactness and its two,
seemingly separate, definitions.

4.1 Consolidating compactness

As noted, there is a difference between Definition 4 and the definition
of compactness originally given by Gentry [28]. This section is devoted
to reconciliation of these two definitions of compactness. The definition
presented by Gentry is given below, and also the definition of compact
evaluation, which is important for Lemma 1.
Remark 8. Here, many results only hold if the auxiliary input to the
key generation algorithm, α, is polynomially bounded by λ. For all
meaningful applications (and for all homomorphic encryption schemes
known to date) this appears to be the case, but we cannot formally
guarantee it (see also Remark 7). Thus, we state explicitly when we
need this requirement for a statement to hold.

Definition 15 (G-Compactness [28, Def. 2.1.2]). A C–evaluation
scheme is G-compact if there is a polynomial f such that, for every
value of the security parameter λ, the decryption algorithm can be
expressed as a circuit CD of size at most f(λ).

Definition 16 (G-Compact Evaluation [28, Def. 2.1.3]). A C–evalua-
tion scheme (Gen, Enc, Eval, Dec) is said to G-compactly evaluate all
permitted circuits in C if the scheme is G-compact and is correct for
all permitted circuits.

Recall that the size of a circuit is just the total number of gates it
has. Picturing a circuit as a directed graph, this is the sum of all the
vertices minus the sum of the input vertices [44, §1.2, p.13]. It is not
immediately clear that this definition of compactness is the same as
the definition we gave earlier.

Theorem 1. Let α be bounded by a polynomial in λ. A C–evaluation
scheme (Gen, Enc, Eval, Dec) G-compactly evaluates C if and only if
the scheme compactly evaluates C.

42 F. Armknecht et al.

C–evaluation scheme

Perfect circuit privacy

∞-hop correctness

NAND∈ C

Correct evaluation

Correct decryption

Theorem
2

Theorem
4

Theorem
5

Corollary
1

Theorem
3

Fully homomorphic
Compactness

Statistical circuit privacy

∞-hop scheme

Multi-hop scheme

Figure 3: Overview of Theorem 2 through Theorem 5 and Corollary 1
and their dependencies. White rectangles are definitions, gray rounded
rectangles are classifications, black shapes are hop schemes and light
gray circles are theorems. Simple arrows pointing towards a theorem
or corollary represent the requirements for a theoreom/corollary while
double arrows represent the implication.

The proof can be found in Appendix A.

Theorem 2. A C–evaluation scheme (Gen, Enc, Eval, Dec) with perfect
circuit privacy implies compactness if α is polynomially bounded in λ.

The proof can be found in Appendix B.

4.2 FHE and Hop Results

We now present results relating to FHE schemes and hop correctness,
assuming that α is polynomially bounded by λ. Figure 3 shows a
comprehensive overview of these results, also including Theorem 2.
The diagram is formulated as in Figure 1, where there are two different
kind of arrows. The simple black arrow is a requirement, so for example
Theorem 4 has the two requirements of perfect circuit privacy and fully
homomorphic. All of the requirements are needed for each theorem.
The second arrow type is double-lined, which represents the implication
of the theorem. As for Theorem 4, the given requirements yield an
infinity-hop scheme.

Theorem 3. A fully homomorphic encryption scheme (Gen, Enc, Eval,
Dec) that is statistically circuit private is multi-hop.

A Guide to Fully Homomorphic Encryption 43

The proof can be found in Appendix C. We now investigate
the relationship between fully homomorphic and i-hop, noting what
properties a somewhat homomorphic encryption scheme needs to be be
fully. First, we examine under which conditions a fully homomorphic
scheme allows infinite stages of computation (∞-hop):

Theorem 4. A somewhat homomorphic encryption scheme (Gen, Enc,
Eval, Dec) which is perfect circuit private is ∞-hop.

Proof. Since the scheme has perfect circuit privacy, the outputs of Eval
are distributed identically to fresh encryptions. This means that they
are of exactly the same form (X = Y = Z) and decrypt correctly. So
they are ciphertexts and constitute a valid input to Eval again. This
holds no matter how often we apply evaluate, as the output is always
of the same form as the input.

The following theorem considers the other direction – when an
∞-hop scheme is fully homomorphic.

Theorem 5. A somewhat homomorphic encryption scheme (Gen, Enc,
Eval, Dec) with NAND in C that is perfect circuit private and ∞-hop
is fully homomorphic.

Proof. Since the scheme has perfect circuit privacy, it has compactness
by Theorem 2. Thus, all we need to show is that the scheme can
evaluate any circuit. Assume that this is not the case, so there exists a
circuit C which the scheme cannot correctly evaluate. But then we can
express C as a circuit composed only of NAND-gates. Since the scheme
is∞-hop and NAND ∈ C, we can correctly evaluate each NAND-gate on
the corresponding input, no matter what level of evaluation iteration
this input has. Thus, we have found a way to correctly evaluate this
circuit with the scheme, meaning C ∈ C. This is a contradiction to our
assumption and thus shows that the scheme is fully homomorphic.

Corollary 1. A somewhat homomorphic encryption scheme (Gen,
Enc, Eval, Dec) that is perfect circuit private and has NAND ∈ C is
fully homomorphic.

Proof. By Theorem 2 and Theorem 4, then Theorem 5.

44 F. Armknecht et al.

5 Existing schemes

In this section we briefly survey existing fully homomorphic encryption
schemes. Only limited steps towards full homomorphism were made
before Gentry’s breakthrough. Fellows and Koblitz’s Polly Cracker [24]
is fully homomorphic except that it lacks compactness. It was anyway
not intended to be practical. Albrecht et al. [2] show that nearly all
SHE schemes are variants of Polly Cracker. The Boneh-Goh-Nissim
scheme [11] is compact, but can only handle a single multiplication.
Obviously these schemes are not fully homomorphic by Definition 9,
or by contemporary treatments of FHE [28].

Table 1 lists a number of prominent fully homomorphic encryption
schemes, starting with Gentry’s 2009 scheme. For each scheme the
table mentions the underlying computational assumption (described
below) and an indication of the asymptotic or concrete runtime where
available.

5.1 Bootstrapping and Alternatives

A key concept in the development of the first fully homomorphic
scheme is Gentry’s bootstrapping technique. Schemes based on Gentry’s
blueprint are noise-based, which means that the plaintext is hidden
by noise which can be removed by decryption. However, this noise
increases with each homomorphic evaluation, and once it exceeds a
certain threshold, decryption will fail.

To overcome this problem, Gentry introduced the notion of re-
cryption which works by encrypting a ciphertext anew (so that it
becomes doubly encrypted) and then removing the inner encryption
by homomorphically evaluating the doubly encrypted plaintext and
the encrypted decryption key using the decryption circuit. As long as
the evaluation algorithm can handle the decryption process plus one
more gate, progress can be made in evaluating the circuit of interest.

Definition 17 (Bootstrappable). A C–evaluation scheme is called boot-
strappable if it is able to homomorphically evaluate its own decryption
circuit plus one additional NAND gate.

This informal definition essentially captures the more precise one in

A Guide to Fully Homomorphic Encryption 45

Scheme

Under-
lying
Prob-
lems

Asymptotic Runtime Concrete Runtime

Gentry: A Fully
Homomorphic Encryption
Scheme [28]

BDDP
& SSSP

O(λ3.5) per gate for
ciphertext refreshing [60] -

van Dijk, Gentry, Halevi,
Vaikuntanathan: FHE
over the Integers [62]

AGCD
& SSSP

Public key size: O(λ10), no
gate cost given -

Coron, Naccache,
Tibouchi: Public Key
Compression and Modulus
Switching for FHE over
the Integers [20]

DAGCD
& SSSP

Public key size:
O(λ5 log(λ)), no gate cost
given

Recryption takes about 11
minutes.

Brakerski,
Vaikuntanathan: Efficient
FHE from (standard)
LWE [16]

DLWE

Evaluation key size:
O(λ2C log(λ)) where C is a
very large parameter that
ensures bootstrappability.

-

Brakerski,
Vaikuntanathan: FHE
from Ring-LWE and
Security for Key
Dependent Messages [17]

PLWE Very cheap key generation,
unknown for bootstrapping -

Brakerski, Gentry,
Vaikuntanathan: FHE
without
Bootstrapping [15]

RLWE

Per-gate computation
overhead O(log λ · λ · d3)
(where d is the depth of
the circuit) without
bootstrapping, O(log λ ·λ2)
with bootstrapping.

36 hours for AES encryption on
supercomputer [32]. Updated
impl. [33] runs AES-128 enc with 2
s/block (3 GB RAM). With
bootstrapping 6 sec/block (3.7 GB
RAM). Vectors of 1024 elements
from GF(216) were recrypted in 5.5
min at sec. level ≈ 76, single CPU
core [40].

Smart, Vercauteren: FHE
with Relatively Small Key
and Ciphertext Sizes [58]

PCP &
SSSP

Key gen. is O(log n · n2.5)
where n is the lattice
dimension [31]

Key gen. took several hours even
for small parameters which do not
deliver a fully homomorphic
scheme, for larger parameters the
keys could not be generated.

Rohloff, Cousins: A
Scalable Implementation
of Fully Homomorphic
Encryption Built on
NTRU [55]

SVP &
RLWE - Recryption at 275 seconds on 20

cores with 64-bit security.

Gentry, Halevi:
Implementing Gentry’s
Fully-Homomorphic
Encryption Scheme [31]

SVP &
BDD

Key generation is
O(log n · n1.5) where n is
the dimension of the lattice

Bootstrapping: From 30 s for small
setting, to 30 min for large setting.

Table 1: Selected FHE schemes with underlying security problems.
Authors often provide different runtime analyses for schemes, so figures
may not be comparable. The concrete experiments have been run by
the respective authors on different hardware, but still give an indication.
Blank cells are, to the best of our knowledge, not publicly known.

46 F. Armknecht et al.

the literature [28]. Now the question is: Does publishing an encryption
of the secret key under its own public key impair security?

If we assume it is safe to publish the encryption of the secret key
under its corresponding public key, we achieve fully homomorphic
encryption and even i-hop [17, 28, 58, 62]. This assumption is called
circular security. However, if circular security does not hold then
one possibility is to use a chain of public key/secret key pairs, where
the secret key is always encrypted under the next public key. This
allows suitable somewhat homomorphic schemes to become levelled
homomorphic, where the level depends on the number of key pairs.

An alternative way to achieve homomorphic encryption is due to
Brakerski et al. [15]. The challenge is still how to manage the noise,
but this time it is achieved by reducing the modulus of the ciphertext
space along with the noise. A security parameter that dictates how
small the modulus can be gives a bound on the number of levels. This
line of work yields native levelled homomorphic schemes [15, 16, 55].
However, authors usually note that one can apply bootstrapping as an
optimisation, as well as a means to get to a fully homomorphic i-hop
scheme, again assuming circular security.

5.2 Security Assumptions

We now give a brief overview of the problems that existing schemes
are based on. The formal definitions are often taken directly from the
corresponding papers, but simplified by omitting parameters whenever
possible. Many of these problems were studied by Ajtai [1].

Most of the problems below have reductions to either the Shortest
Vector Problem (SVP) or the Closest Vector Problem (CVP), which
informally requires a player to provide a shortest possible vector in the
lattice and the vector closest to a point respectively. These problems
have decisional variants as well. For instance, GapSVPγ is the problem
of proving that there is a vector shorter than 1, or that all vectors are
longer than γ. In addition, we mention the shortest independent vector
problem (SIVP), which is essentially to compute a lattice basis with
only short vectors.

We first consider the Learning With Errors problem family. All of
these problems exist in both search and decision variants, just like the

A Guide to Fully Homomorphic Encryption 47

computational Diffie-Hellman and decisional Diffie-Hellman problems.
LWE: [53] The Learning With Errors problem is a generalization

of the “learning parity with noise” problem. For an integer q = q(n)
and an error distibution χ = χ(n) on Zq, define the distribution As,χ
for some s ∈ Znq as the distribution obtained by choosing a vector
a← Znq uniformly at random and a noise term e← χ and outputting
(a, 〈a, s〉 + e) ∈ Znq × Zq. Then the (n,m, q, χ)-LWE problem is to
output s, given m independent samples from As,χ.

The decisional version is to distinguish between m samples chosen
according to As,χ for some uniformly random s and m samples from
the uniform distribution over Znq × Zq.

PLWE: [16] The Polynomial LWE problem is a variant of the
Ring Learning With Errors Problem (RLWE) and is closely related
to DLWE. For a parameter λ, let f(x) ∈ Z[x] be a polynomial of
degree n = n(λ), and let q = q(λ) ∈ Z be a prime. Consider the
rings R = Z[x]/ 〈f(x)〉 and Rq = R/qR, and let χ denote the Gaussian
distribution over R. Then the PLWEf,q,χ assumption states that for all
λ and for all l = poly(λ), the two distributions D1 = {(ai, ai · s+ ei)}
and D2 = {(ai, ui)}, i = 1, . . . , l, are computationally indistinguishable.
Here, s, ai and ui are uniform in Rq and the ei are sampled from χ.

RLWE: [49] This is the same problem as PLWE where f(x) =
xd + 1 and d = d(λ) is a power of 2. There also exists a variant with
augmented data in the error term, named Augmented LWE. For certain
parameters, A-LWE is as hard as LWE [8].

There exists a quantum reduction from LWE to SVP and SIVP by
Regev [53]. It is also known that the search and decision variants are
equally hard [47].

SSSP: [28] This is called the Sparse Subset Sum Problem. In his
original work, Gentry “squashed the decryption circuit”, which reduces
the size of the decryption circuit such that it is in the set of circuits
that the scheme can homomorphically evaluate. The idea is that the
secret key is written as the sum of some elements, and these elements
are “hidden” in a much larger set of elements. This large set becomes
part of the public key, and the secret key includes an indicator vector
of which elements belong to the smaller set (i.e. sum up to the secret
key). This gives the adversary information about the secret key, so we

48 F. Armknecht et al.

must ensure that it cannot be extracted from the public key. SSSP
formalizes this requirement. Since all papers that follow Gentry’s
blueprint use this squashing technique, the SSSP problem appears
several times in the table. It is formally defined as follows:

Let S and T be two natural numbers with S � T , and let q
be a prime number. The challenger sets b ← {0, 1}. If b = 0, it
generates a set τ with cardinality |τ | = T of uniformly random integers
in [−q/2, q/2] such that there exists a subset of cardinality S whose
elements sum to 0 mod q. If b = 1, the set τ is generated without this
requirement. The challenge is to guess b.

BDD: The Bounded Distance Decoding problem is identical to the
Closest Vector Problem, except that for BDD, there is a guarantee that
the vector t is very close to the lattice. The Closest Vector Problem is
a problem from lattice theory that informally asks for the point on a
lattice that is closest to a given vector t ∈ Rn.

There exists quantum reductions proving that GapSVP, BDD and
SIVP are equally hard, as well as an equivalence between SVP and
CVP [53]. An equivalence between SVIP and BDD, however, remains
an open problem [48].

AGCD: [41] The Approximate Greatest Common Divisor problem
is the task of given near multiples of a number p, to find that number
p. Given polynomially many numbers of the form xi = qi · p+ ri where
ri is much smaller than qi · p, output p.

The decisional variant includes an an additional integer z = x+b ·α.
Here, x is of the same form as the xi’s, b is either 0 or 1, and α is from
an appropriate interval depending on the parameters. The task is to
find b.

PCP: The Polynomial Coset Problem [58] is a decisional problem
that can informally be described as having to decide whether a given
value is the evaluation of a small polynomial modp, or randomly
sampled from Fp. More formally, we can describe the problem in a
challenge scenario:

The challenger first selects b← {0, 1} randomly and runs the key
generation algorithm of the scheme, which outputs a prime p and a
value α ∈ Fp, derived under some constraints which we will not go
into here. If b = 0, the challenger randomly chooses a polynomial R(x)

A Guide to Fully Homomorphic Encryption 49

with coefficients in a certain range and computes r = R(α) mod p. If
b = 1, the challenger chooses r ← Fp randomly. The problem now is:
Given (p, α, r), decide whether b = 0 or b = 1.

Notably, this problem differs from other problems in that it is
defined with respect to a corresponding scheme, making it less natural
and harder to explaining in outline. The PCP problem is related to
the Ideal Coset Problem as defined by Gentry [28].

5.3 Implementations

It is fair to say that FHE mostly exists on paper. However, there also
exist implementations, as suggested in the above table. The foremost
among those is Halevi and Shoup’s HElib [40], which implements the
BGV scheme [15] along with optimisations such as ciphertext pack-
ing [59], which allows several plaintexts to be encoded in a single
ciphertext. In 2014, bootstrapping was introduced to the library [40].
However, at the time of writing the secure Gaussian randomness distri-
bution is not yet implemented, hence there are no security proofs for
HElib. The library was used by the IBM, Microsoft and Stanford/MIT
teams at the 2015 iDASH Secure Genome Analysis Contest [45].

There exists another library called FHEW [22] which is based on
the FHE scheme of Ducas and Micciancio [23].

6 Conclusion

In this paper we have simplified and structured the jungle of definitions
in the field of homomorphic encryption. We investigated whether
existing applications need homomorphic encryption as a solution to
their problems, both in theory and in practice. Furthermore, we
reviewed the current state of the art and presented it systematically.

There is still much work to be done. Current schemes have some
way to go to be practical in daily applications. Thus we can expect
continuing focus on making existing schemes more efficient and on
constructing new efficient schemes. In fact, given that several applica-
tions do not require fully homomorphic encryption, an important and
promising line of research is to identify applications which would bene-

50 F. Armknecht et al.

fit from appropriate homomorphic encryption schemes and afterwards
tailor schemes for respective use cases.

Then there is the more theoretical line of work. While a framework
for group homomorphic encryption schemes has been presented [5] and
to some extent for FHE [4], an equivalent result is lacking for fully (or
at least somewhat) homomorphic encryption schemes in full generality.
As explained in Section 5, all secure schemes which go beyond simple
group-homomorphic operations are noise-based and one of the main
challenges is to control the noise. In fact this is often the reason why
fully homomorphic encryption schemes are considerably less efficient.
A unified view on somewhat/fully homomorphic encryption schemes
may be very useful in gaining a better understanding of the expected
security and on the possible design space.

All in all, the topic of FHE is an interesting and challenging research
area with great potential, and there is much to be done. However, if
research (specifically the advancement of efficiency) continues at its
current pace, we are confident that real-world applications may be
right around the corner.

Acknowledgements This work was supported by the German Aca-
demic Exchange Service (DAAD), project number 57068907 and the
Juniorprofessoren-Programm Baden-Württemberg 2013.

References

[1] Miklós Ajtai. Generating hard instances of lattice problems (ex-
tended abstract). In Gary L. Miller, editor, Proceedings of the
Twenty-Eighth Annual ACM Symposium on the Theory of Com-
puting, pages 99–108. ACM, 1996.

[2] Martin R. Albrecht, Jean-Charles Faugère, Pooya Farshim, Got-
tfried Herold, and Ludovic Perret. Polly cracker, revisited. Designs,
Codes and Cryptography, pages 1–42, 2015.

[3] Joël Alwen, Manuel Barbosa, Pooya Farshim, Rosario Gennaro,
S. Dov Gordon, Stefano Tessaro, and David A. Wilson. On the
relationship between functional encryption, obfuscation, and fully

A Guide to Fully Homomorphic Encryption 51

homomorphic encryption. In Martijn Stam, editor, Cryptography
and Coding – 14th IMA International Conference, IMACC 2013,
volume 8308 of Lecture Notes in Computer Science, pages 65–84.
Springer, 2013.

[4] Frederik Armknecht, Stefan Katzenbeisser, and Andreas Peter.
Shift-type homomorphic encryption and its application to fully
homomorphic encryption. In Aikaterini Mitrokotsa and Serge
Vaudenay, editors, Progress in Cryptology – AFRICACRYPT
2012, volume 7374 of Lecture Notes in Computer Science, pages
234–251. Springer, 2012.

[5] Frederik Armknecht, Stefan Katzenbeisser, and Andreas Peter.
Group homomorphic encryption: characterizations, impossibility
results, and applications. Des. Codes Cryptography, 67(2):209–232,
2013.

[6] Frederik Armknecht and Thorsten Strufe. An efficient distributed
privacy-preserving recommendation system. In The 10th IFIP
Annual Mediterranean Ad Hoc Networking Workshop, Med-Hoc-
Net 2011, pages 65–70. IEEE, 2011.

[7] Sanjeev Arora and Boaz Barak. Computational complexity: A
modern approach (draft). Accessed 27 Oct 2014, 2007.

[8] Rachid El Bansarkhani, Özgür Dagdelen, and Johannes A. Buch-
mann. Augmented learning with errors: The untapped potential of
the error term. In Rainer Böhme and Tatsuaki Okamoto, editors,
Financial Cryptography and Data Security, FC 2015, volume 8975
of Lecture Notes in Computer Science, pages 333–352. Springer,
2015.

[9] Boaz Barak, Oded Goldreich, Russell Impagliazzo, Steven Rudich,
Amit Sahai, Salil P. Vadhan, and Ke Yang. On the (im)possibility
of obfuscating programs. In Joe Kilian, editor, Advances in
Cryptology – CRYPTO 2001, volume 2139 of Lecture Notes in
Computer Science, pages 1–18. Springer, 2001.

[10] Dan Boneh and David Mandell Freeman. Homomorphic signatures
for polynomial functions. In Paterson [51], pages 149–168.

52 F. Armknecht et al.

[11] Dan Boneh, Eu-Jin Goh, and Kobbi Nissim. Evaluating 2-DNF
formulas on ciphertexts. In Joe Kilian, editor, Theory of Cryp-
tography, Second Theory of Cryptography Conference, TCC 2005,
volume 3378 of Lecture Notes in Computer Science, pages 325–341.
Springer, 2005.

[12] Dan Boneh, Amit Sahai, and Brent Waters. Functional encryption:
Definitions and challenges. In Ishai [42], pages 253–273.

[13] Dan Boneh, Amit Sahai, and Brent Waters. Functional encryp-
tion: a new vision for public-key cryptography. Commun. ACM,
55(11):56–64, 2012.

[14] Christoph Bösch, Andreas Peter, Pieter H. Hartel, and Willem
Jonker. SOFIR: securely outsourced forensic image recognition. In
IEEE International Conference on Acoustics, Speech and Signal
Processing, ICASSP 2014, pages 2694–2698. IEEE, 2014.

[15] Zvika Brakerski, Craig Gentry, and Vinod Vaikuntanathan. Fully
homomorphic encryption without bootstrapping. Electronic Col-
loquium on Computational Complexity (ECCC), 18:111, 2011.

[16] Zvika Brakerski and Vinod Vaikuntanathan. Efficient fully homo-
morphic encryption from (standard) LWE. In Rafail Ostrovsky,
editor, IEEE 52nd Annual Symposium on Foundations of Com-
puter Science, FOCS 2011, pages 97–106. IEEE, 2011.

[17] Zvika Brakerski and Vinod Vaikuntanathan. Fully homomor-
phic encryption from ring-LWE and security for key dependent
messages. In Phillip Rogaway, editor, Advances in Cryptology
– CRYPTO 2011, volume 6841 of Lecture Notes in Computer
Science, pages 505–524. Springer, 2011.

[18] Kai-Min Chung, Yael Tauman Kalai, and Salil P. Vadhan. Im-
proved delegation of computation using fully homomorphic en-
cryption. In Rabin [52], pages 483–501.

[19] Michael Clear, Arthur Hughes, and Hitesh Tewari. Homomorphic
encryption with access policies: Characterization and new con-
structions. In Amr Youssef, Abderrahmane Nitaj, and Aboul Ella

A Guide to Fully Homomorphic Encryption 53

Hassanien, editors, Progress in Cryptology - AFRICACRYPT
2013, 6th International Conference on Cryptology in Africa, Cairo,
Egypt, June 22-24, 2013. Proceedings, volume 7918 of Lecture
Notes in Computer Science, pages 61–87. Springer, 2013.

[20] Jean-Sébastien Coron, David Naccache, and Mehdi Tibouchi. Pub-
lic key compression and modulus switching for fully homomorphic
encryption over the integers. In David Pointcheval and Thomas
Johansson, editors, Advances in Cryptology – EUROCRYPT 2012,
volume 7237 of Lecture Notes in Computer Science, pages 446–464.
Springer, 2012.

[21] Ivan Damgård, Valerio Pastro, Nigel P. Smart, and Sarah Zakarias.
Multiparty computation from somewhat homomorphic encryption.
In Safavi-Naini and Canetti [57], pages 643–662.

[22] Léo Ducas and Daniele Micciancio. Fhew: Fastest homomorphic
encryption in the west. a fully homomorphic encryption library.
https://github.com/lducas/FHEW. Accessed 2016-01-18.

[23] Léo Ducas and Daniele Micciancio. FHEW: bootstrapping homo-
morphic encryption in less than a second. In Elisabeth Oswald and
Marc Fischlin, editors, Advances in Cryptology - EUROCRYPT
2015 - 34th Annual International Conference on the Theory and
Applications of Cryptographic Techniques, Sofia, Bulgaria, April
26-30, 2015, Proceedings, Part I, volume 9056 of Lecture Notes in
Computer Science, pages 617–640. Springer, 2015.

[24] Michael Fellows and Neal Koblitz. Combinatorial cryptosystems
galore! In Finite fields: theory, applications, and algorithms,
volume 168 of Contemp. Math., pages 51–61. Amer. Math. Soc.,
Providence, RI, 1994.

[25] Sanjam Garg, Craig Gentry, Shai Halevi, Mariana Raykova, Amit
Sahai, and Brent Waters. Candidate indistinguishability obfus-
cation and functional encryption for all circuits. In 54th Annual
IEEE Symposium on Foundations of Computer Science, FOCS
2013, pages 40–49. IEEE Computer Society, 2013.

54 F. Armknecht et al.

[26] Rosario Gennaro, Craig Gentry, and Bryan Parno. Non-interactive
verifiable computing: Outsourcing computation to untrusted work-
ers. In Rabin [52], pages 465–482.

[27] Rosario Gennaro and Daniel Wichs. Fully homomorphic message
authenticators. In Kazue Sako and Palash Sarkar, editors, Ad-
vances in Cryptology – ASIACRYPT 2013, volume 8270 of Lecture
Notes in Computer Science, pages 301–320. Springer, 2013.

[28] Craig Gentry. A fully homomorphic encryption scheme. PhD
thesis, Stanford University, 2009. crypto.stanford.edu/craig.

[29] Craig Gentry. Fully homomorphic encryption using ideal lattices.
In Michael Mitzenmacher, editor, Proceedings of the 41st Annual
ACM Symposium on Theory of Computing, STOC 2009, pages
169–178. ACM, 2009.

[30] Craig Gentry. Computing on the edge of chaos: Structure and
randomness in encrypted computation. Electronic Colloquium on
Computational Complexity (ECCC), 21:106, 2014.

[31] Craig Gentry and Shai Halevi. Implementing Gentry’s fully-
homomorphic encryption scheme. In Paterson [51], pages 129–148.

[32] Craig Gentry, Shai Halevi, and Nigel P. Smart. Homomorphic
evaluation of the AES circuit. In Safavi-Naini and Canetti [57],
pages 850–867.

[33] Craig Gentry, Shai Halevi, and Nigel P. Smart. Homomorphic
evaluation of the AES circuit. IACR Cryptology ePrint Archive,
2012:99, 2012.

[34] Craig Gentry, Shai Halevi, and Vinod Vaikuntanathan. i-hop
homomorphic encryption and rerandomizable Yao circuits. In
Rabin [52], pages 155–172.

[35] Henri Gilbert, editor. Advances in Cryptology – EUROCRYPT
2010, volume 6110 of Lecture Notes in Computer Science. Springer,
2010.

A Guide to Fully Homomorphic Encryption 55

[36] Oded Goldreich. Introduction to complexity theory, online lecture
notes. Accessed 27 Oct 2014, 1999.

[37] Shafi Goldwasser, Yael Tauman Kalai, Raluca A. Popa, Vinod
Vaikuntanathan, and Nickolai Zeldovich. How to run Turing
machines on encrypted data. In Ran Canetti and Juan A. Garay,
editors, Advances in Cryptology – CRYPTO 2013, volume 8043
of Lecture Notes in Computer Science, pages 536–553. Springer,
2013.

[38] Shafi Goldwasser and Guy N. Rothblum. On best-possible ob-
fuscation. In Salil P. Vadhan, editor, Theory of Cryptography,
4th Theory of Cryptography Conference, TCC 2007, volume 4392
of Lecture Notes in Computer Science, pages 194–213. Springer,
2007.

[39] Sergey Gorbunov, Vinod Vaikuntanathan, and Daniel Wichs.
Leveled fully homomorphic signatures from standard lattices. In
Rocco A. Servedio and Ronitt Rubinfeld, editors, Proceedings
of the Forty-Seventh Annual ACM on Symposium on Theory of
Computing, STOC 2015, pages 469–477. ACM, 2015.

[40] Shai Halevi and Victor Shoup. Bootstrapping for helib. In Elisa-
beth Oswald and Marc Fischlin, editors, Advances in Cryptology –
EUROCRYPT 2015, volume 9056 of Lecture Notes in Computer
Science, pages 641–670. Springer, 2015.

[41] Nick Howgrave-Graham. Approximate integer common divisors.
In Joseph H. Silverman, editor, Cryptography and Lattices, Inter-
national Conference, CaLC 2001, volume 2146 of Lecture Notes
in Computer Science, pages 51–66. Springer, 2001.

[42] Yuval Ishai, editor. Theory of Cryptography – 8th Theory of
Cryptography Conference, TCC, volume 6597 of Lecture Notes in
Computer Science. Springer, 2011.

[43] Arjan Jeckmans, Andreas Peter, and Pieter H. Hartel. Efficient
privacy-enhanced familiarity-based recommender system. In Jason
Crampton et al., editors, Computer Security – ESORICS 2013,

56 F. Armknecht et al.

volume 8134 of Lecture Notes in Computer Science, pages 400–417.
Springer, 2013.

[44] Stasys Jukna. Boolean Function Complexity – Advances and
Frontiers, volume 27 of Algorithms and combinatorics. Springer,
2012.

[45] Kristin Lauter. Practical applications of homomorphic encryption,
2015.

[46] Adriana López-Alt, Eran Tromer, and Vinod Vaikuntanathan.
On-the-fly multiparty computation on the cloud via multikey fully
homomorphic encryption. In Howard J. Karloff and Toniann
Pitassi, editors, Proceedings of the 44th Symposium on Theory
of Computing Conference, STOC 2012, pages 1219–1234. ACM,
2012.

[47] Vadim Lyubashevsky. Search to decision reduction for the learning
with errors over rings problem. In 2011 IEEE Information Theory
Workshop, ITW 2011, pages 410–414. IEEE, 2011.

[48] Vadim Lyubashevsky and Daniele Micciancio. On bounded dis-
tance decoding, unique shortest vectors, and the minimum dis-
tance problem. In Shai Halevi, editor, Advances in Cryptology
– CRYPTO 2009, volume 5677 of Lecture Notes in Computer
Science, pages 577–594. Springer, 2009.

[49] Vadim Lyubashevsky, Chris Peikert, and Oded Regev. On ideal
lattices and learning with errors over rings. In Gilbert [35], pages
1–23.

[50] Michael Naehrig, Kristin E. Lauter, and Vinod Vaikuntanathan.
Can homomorphic encryption be practical? In Christian Cachin
and Thomas Ristenpart, editors, Proceedings of the 3rd ACM
Cloud Computing Security Workshop, CCSW, pages 113–124.
ACM, 2011.

[51] Kenneth G. Paterson, editor. Advances in Cryptology – EURO-
CRYPT 2011, volume 6632 of Lecture Notes in Computer Science.
Springer, 2011.

A Guide to Fully Homomorphic Encryption 57

[52] Tal Rabin, editor. Advances in Cryptology – CRYPTO 2010,
volume 6223 of Lecture Notes in Computer Science. Springer,
2010.

[53] Oded Regev. On lattices, learning with errors, random linear codes,
and cryptography. In Harold N. Gabow and Ronald Fagin, editors,
Proceedings of the 37th Annual ACM Symposium on Theory of
Computing, pages 84–93. ACM, 2005.

[54] R. L. Rivest, L. Adleman, and M. L. Dertouzos. On data banks
and privacy homomorphisms. Foundations of Secure Computation,
Academia Press, pages 169–179, 1978.

[55] Kurt Rohloff and David Bruce Cousins. A scalable implementation
of fully homomorphic encryption built on NTRU. In Rainer Böhme
et al., editors, Financial Cryptography and Data Security – FC
2014 Workshops, BITCOIN and WAHC 2014, volume 8438 of
Lecture Notes in Computer Science, pages 221–234. Springer, 2014.

[56] Ron Rothblum. Homomorphic encryption: From private-key to
public-key. In Ishai [42], pages 219–234.

[57] Reihaneh Safavi-Naini and Ran Canetti, editors. Advances in
Cryptology – CRYPTO 2012, volume 7417 of Lecture Notes in
Computer Science. Springer, 2012.

[58] Nigel P. Smart and Frederik Vercauteren. Fully homomorphic en-
cryption with relatively small key and ciphertext sizes. In Phong Q.
Nguyen and David Pointcheval, editors, Public Key Cryptography
– PKC 2010, volume 6056 of Lecture Notes in Computer Science,
pages 420–443. Springer, 2010.

[59] Nigel P. Smart and Frederik Vercauteren. Fully homomorphic
SIMD operations. Des. Codes Cryptography, 71(1):57–81, 2014.

[60] Damien Stehlé and Ron Steinfeld. Faster fully homomorphic
encryption. In Masayuki Abe, editor, Advances in Cryptology –
ASIACRYPT 2010, volume 6477 of Lecture Notes in Computer
Science, pages 377–394. Springer, 2010.

58 F. Armknecht et al.

[61] Top Threats Working Group. The notorious nine: Cloud comput-
ing top threats in 2013. Report, Cloud Security Alliance, February
2013. Accessed 7 Apr 2015.

[62] Marten van Dijk, Craig Gentry, Shai Halevi, and Vinod Vaikun-
tanathan. Fully homomorphic encryption over the integers. In
Gilbert [35], pages 24–43.

[63] Marten van Dijk and Ari Juels. On the impossibility of cryptog-
raphy alone for privacy-preserving cloud computing. In Wietse
Venema, editor, 5th USENIX Workshop on Hot Topics in Security,
HotSec’10. USENIX Association, 2010.

[64] Zhiqiang Yang et al. Privacy-preserving classification of customer
data without loss of accuracy. In Hillol Kargupta et al., editors,
Proceedings of the 2005 SIAM International Conference on Data
Mining, SDM 2005, pages 92–102. SIAM, 2005.

A Proof of Theorem 1

We prove Theorem 1 with the following lemmas.

Lemma 1. A scheme with G-compactness and correctness is compact.

This lemma holds only when we assume correct decryption and
correct evaluation. To understand why we must have correctness,
consider G-compactness without it. In this case, we have a decryption
circuit of polynomial size but it does not have to actually decrypt.
This means we could form a trivial decryption circuit that takes any
Eval output, trims the bits to a specified maximum size and runs
the decryption circuit on that. Obviously, this would not bound the
output of Eval, so G-compactness without correctness does not imply
compactness.

Proof. Given the security parameter λ, we can find a decryption circuit
with size at most p(λ). As each gate takes at most 2 inputs, the bound
on the number of inputs to the circuit is less or equal to 2p(λ) = q(λ)

A Guide to Fully Homomorphic Encryption 59

where q is a polynomial.2 This bound on the input length means
that the output from the Eval algorithm must output a ciphertext less
than q(λ) bits in length. Otherwise, we would be unable to run the
decryption algorithm correctly, contradicting our assumption. Noting
that q(λ) is a bound independent of the size of the circuit being
evaluated, this gives us compactness.

Lemma 2. A scheme with compactness and correctness is G-compact
when α is polynomially bounded by λ.

Proving this lemma relies on results from complexity theory, al-
lowing us to construct a polynomially sized circuit from a polynomial
algorithm. For details on the relationship between algorithm running
time and circuit size see Gentry [30, §2.1 Circuits], Goldreich [36, Ch.
2, Ch. 20 §1.2] or Arora & Barak [7, Ch. 6].

Proof. All outputs of Eval are no more than b(λ) bits long, meaning
input to the decryption algorithm after evaluation is at most b(λ) bits
in length. Eval is a poly-time algorithm, and so its running time is
bounded polynomially by the length of its input.

The algorithm Enc also has a polynomial bound on the length of its
output. Firstly note, the number of outputs from an algorithm cannot
be greater than the algorithm running time. Next, we know Enc is a
poly-time algorithm taking two inputs, pk and m ∈ P , where pk is an
output from Gen, a poly-time algorithm taking the input parameters
λ and α = α(λ). P is described in pk. Now, the running time of Enc
is bounded by some polynomial on the input parameters, themselves
bounded polynomially by the input parameter λ. Thus, the output
from Enc is bounded by a polynomial, a(λ) say. Since sk is again an
output of Gen, we can also bound its length by a polynomial c(λ).
Taking d(λ) = max{a(λ), b(λ)}, which is also a polynomial in λ, we
can define v = d+ c. Clearly v is a polynomial in λ and bounds the
size of the inputs to Dec. Thus, Dec has a running time of p(v(λ)) for
some polynomial p.

2Any circuit where each gate takes n inputs (for some bounded n) can be
constructed as a circuit with gates taking at maximum two inputs, with only a
constant factor increase in size. [36, §1.2]

60 F. Armknecht et al.

Using the results cited above, we can now construct a decryption
circuit that replicates the algorithm, where the circuit size will be some
polynomial q on the running time of the algorithm. Thus the size of the
decryption circuit is q(p(v(λ))), which is a polynomial, independent of
C. This completes the proof.

B Proof of Theorem 2

We prove Theorem 2 with the following lemmas.

Lemma 3. A C–evaluation scheme (Gen, Enc, Eval, Dec) with perfect
circuit privacy implies X = Y.
Lemma 4. A C–evaluation scheme (Gen, Enc, Eval, Dec) with X = Y
implies compactness when α is polynomially bounded in λ.

Recall that X is the set of all possible outputs of the encryption
algorithm and Y is the set of all possible outputs of the evaluation
algorithm.

When we are dealing with perfect circuit privacy, perfect indistin-
guishability means that

|Pr[Enc(pk, C(Dec(sk, c1), . . . ,Dec(sk, cn))) = x]

− Pr[Eval(evk, C, c1, . . . , cn) = x]| = 0

holds for every key tuple (pk, sk, evk) output by Gen(1λ, α), for all
ci ∈ X and all C ∈ C.

Proof of Lemma 3. Y ⊆ X :
Assume Y * X , then there exists a ∈ Y such that a /∈ X . Hence

a is a possible output of Eval with probability p > 0, but is not a
possible output of Enc. This means that for some ci ∈ X , and some
C ∈ C

|Pr[Enc(pk, C(Dec(sk, c1), . . . ,Dec(sk, cn))) = a]

− Pr[Eval(evk, C, c1, . . . , cn) = a]| = |0− p| = p > 0,

which is a contradiction to perfect circuit privacy.
For X ⊆ Y , we use the strategy from above. So X ⊆ Y and Y ⊆ X ,

hence X = Y.

A Guide to Fully Homomorphic Encryption 61

Proof of Lemma 4. If X = Y then all outputs of Eval are also outputs
of Enc. Thus, by the argument in Lemma 1 on the length of outputs
of Enc,

length(c) ≤ a(λ)

for some polynomial a for all fresh ciphertexts c, where λ is the
input parameter. Hence, all evaluation outputs are bounded by some
polynomial on the input parameter.

C Proof of Theorem 3

Proof. We first show that the probability that the evaluation algorithm
outputs a ciphertext that is not fresh or does not decrypt correctly is
negligible. The result then follows from the structure of a computation
in stages.

Since the scheme is fully homomorphic, there is a negligible function
ε′ such that if pk, evk, sk have been output by Gen(1λ, α), then for
any circuit C ∈ C and ciphertexts c1, c2, . . . , cn ∈ X , we have

Pr[Dec(sk,Eval(evk, C, c1, . . . , cn)) =

C(Dec(sk, c1), . . . ,Dec(sk, cn))] = 1− ε′(λ).

Since the scheme has statistical circuit privacy, there is a negligible
function ε′′ such that if pk, evk, sk have been output by Gen(1λ, α),
then for any circuit C ∈ C and ciphertexts c1, c2, . . . , cn ∈ X , we have

∆ =
∑

y∈Z
|Pr[Enc(pk,C(Dec(sk, c1), . . . ,Dec(sk, cn))) = y]

− Pr[Eval(evk, C, c1, . . . , cn) = y]| ≤ ε′′(λ).

Since Enc will never output ciphertexts in Z \ X , we have

Pr[Eval(evk, C, c1, . . . , cn) ∈ X]

≥ 1−
∑

y∈Z\X
Pr[Eval(evk, C, c1, . . . , cn) = y]

≥ 1−∆ ≥ 1− ε′′(λ).

62 F. Armknecht et al.

It is then clear that there is a negligible function ε such that the
probability for an evaluation to be correct and the resulting ciphertext
is in X is at least 1− ε(λ).

Suppose pk, evk, sk have been output by Gen(1λ, α), that Ci,n is
a computation in i stages of width n and that c01, c02, . . . , c0n ∈ X .
We are interested in the probability

Pr[Dec(sk,Eval(evk,Ci,n,~c0)) = Ci,n(Dec(sk,~c0))].

Let Ej be the event that after the jth stage, all of the ciphertexts
computed so far are in X and decrypt to the correct value. It is clear
that Pr[Ei] is no greater than the probability we are interested in.
Since different executions of Eval are independent, we have:

Pr[Ej] ≥ Pr[Ej | Ej−1] Pr[Ej−1] ≥ (1− ε(λ))n Pr[Ej−1].

It quickly follows that

Pr[Ei] ≥ (1− ε(λ))in.

To conclude the proof, we must show that 1 − (1 − ε(λ))in is
negligible when in is polynomial in λ. For simplicity, we will write
ε instead of ε(λ) and show that 1 − (1 − ε)k is negligible when k is
polynomial in λ.

We will show this by induction:

1. k = 1 : 1− (1− ε)1 = ε, which is negligible by definition.

2. Now let µ := 1− (1− ε)k be negligible. Then we have:

1− (1− ε)k+1 = 1− (1− ε)k+1 − µ+ µ
= 1− (1− ε)k+1 − (1− (1− ε)k) + µ
= (1− ε)k − (1− ε)k+1 + µ
= (1− ε)k · (1− (1− ε)) + µ
= (1− ε)k · (−ε) + µ
This shows that by increasing the exponent from k to k + 1, we
get an increase of (1−ε)k ·(−ε). If we can show that this increase
is negligible, we have completed our proof. We again show this
by induction:

A Guide to Fully Homomorphic Encryption 63

(a) k = 1 : (1− ε) · (−ε) = ε2 − ε. Noting that
|ε2 − ε| < ε and ε negligible, the claim holds for k = 1.

(b) Let α := (1− ε)k · (−ε) be negligible. Then we have:
(1− ε)k+1 · (−ε) = (1− ε) · (1− ε)k · (−ε)
= (1− ε) · α < α,
so for the case of k + 1 it is also negligible.

3. Thus, we have shown that we start out with something negligible
and add something negligible in each step. So, as long as we
take polynomially many steps, the result will always also be
negligible.

64 F. Armknecht et al.

Paper ii

Can there be efficient and natural FHE
schemes?

Kristian Gjøsteen and Martin Strand

ePrint 2016/105, submitted to J. Math. Cryptology

Can there be efficient and natural FHE

schemes?

Kristian Gjøsteen and Martin Strand

Department of Mathematical Sciences, NTNU
{kristian.gjosteen, martin.strand}@ntnu.no

January 7, 2018

Abstract

In 1978, Rivest, Adleman and Dertouzos asked for algebraic
systems for which useful privacy homomorphisms exist. To
date, the only acknowledged result is noise based encryption
combined with bootstrapping. Before that, there were several
failed attempts.

We prove that fully homomorphic schemes are impossible
for several algebraic structures. Then we develop a character-
isation of all fully homomorphic schemes and use it to analyse
three examples. Finally, we propose a conjecture stating that
secure FHE schemes must either have a significant ciphertext
expansion or use unusual algebraic structures.

1 Introduction

In 1978 Rivest, Adleman and Dertouzos [32] posed two questions
about privacy homomorphisms:

Q1 Does this approach have enough utility to make it worthwhile
in practice?

Q2 For what algebraic systems does a useful privacy homomor-
phism exist?

67

A privacy homomorphism was defined to be an encryption function
that would permit direct computations on the encrypted data. Gen-
try’s construction of the first fully homomorphic encryption (FHE)
scheme [19] answers this goal, but in a slightly different manner than
what Rivest et al. envisioned. The original problem considered clear
algebraic structures and mappings between them, while Gentry suc-
ceeded using noise-based constructions, putting less emphasis on the
mappings.

One could say that both questions are still open. Gentry’s 2009
breakthrough [19] in creating the first fully homomorphic encryption
scheme has been followed by a number of much more efficient schemes
[8,10,14,15,21,26]. There have been several earlier attempts at finding
privacy homomorphisms, but none have been successful. Instead,
there have been some negative results. Ahituv et al. [1] proved that
a vector space isomorphism on Fn2 cannot be secure.

The answer to the first question seems to be positive. Some FHE
applications have been demonstrated, but the list of theoretical ap-
plications is far longer than the list of viable implementations.

The first part of this work aims at closing some doors for the
second question. To do this, we try to analyse the possibility for
natural schemes based on automorphisms or isomorphisms on vari-
ous structures. An example of such a scheme is the Pohlig-Hellman
blockcipher. For completeness, we also survey previous results in this
line of research.

Note that the analysis in the first part does not include modern
noise-based FHE schemes. Although one can define operations on the
ciphertext spaces by always performing a bootstrapping operation af-
ter an addition or multiplication, the ciphertext spaces do not become
rings or any other well-known structure.

A second approach to achieve security is to embed the plaintexts
into a larger set, such as for instance in ElGamal. We extend our
arguments to show that this kind of scheme is also impossible for
some of the structures we study. In this part of the work we do not
assume a public encryption key, only that the adversary can perform
evaluation of ciphertexts.

Furthermore, we extend the earlier characterisation of Armknecht,

68 K. Gjøsteen and M. Strand

Katzenbeisser and Peter [4] to handle all public-key FHE schemes over
any algebraic structure. This yields a simple transformation from any
scheme to a suitable decision problem in order to analyse whether
the scheme can be secure or not. Our results immediately allow us
to prove that two proposed schemes are insecure, while our analysis
supports the existing work on a third scheme.

The sum of our results make us propose the (informal) conjecture
that FHE schemes either need to have a rather big expansion – which
to date has not been efficient – although the plaintext spaces are usu-
ally nice fields, or alternatively, some suggested noise-free schemes
have a homomorphic structure which will not easily permit the op-
erations that the user would like to perform. Such structures will
normally not look very natural to practitioners. The conjecture is
an initial answer to Gentry’s challenge to the mathematical commu-
nity [20, p. 616]. The overall pursuit for an FHE scheme which both
admits a natural-looking algebraic structure and maintains good effi-
ciency is still open.

The paper is organised as follows. In Section 3, we analyse the
possibility of fully homomorphic schemes on a number of common
algebraic structures, and reach negative answers for the most useful
structures. This technique does not allow us to consider the current
FHE schemes, so we proceed to extend Armknecht et al.’s character-
isation in Section 4. A brief recap of the algebra used in this paper is
provided in the next section. The appendix contains a section with ar-
guments aimed at refining the characterisation with topology. While
the argument seems fruitless so far, it indicates that noise-based FHE
schemes truly need an embedding in an infinite space.

1.1 Our contribution

All of the acknowledged FHE schemes in existence today are based
on lattices, and usually feature a large ciphertext expansion. While
one could say that some schemes are almost practical [13], we should
not expect to see them in widespread use just yet. The main reason
is often the communication cost, which consequently influences the
computational cost. The big question is to find out if this can be
reduced significantly while maintaining usefulness and security.

Can there be efficient and natural FHE schemes? 69

We are not proposing new schemes, and any discussion of existing
schemes is only to demonstrate our new techniques for analysis. Our
contribution can be summarised in two points.

• We provide a general tool for analysing new public-key FHE
schemes, and we believe that the technique will easily distin-
guish between secure and insecure constructions.

• We extend existing results by proving that a number of possible
FHE schemes must be insecure.

1.2 Related work

Following the original problem, there were a few attempts at creating
privacy homomorphisms, usually followed by attacks: see Yu et al. [35]
for a brief survey. Earlier impossibility results include Ahituv et al. [1]
as mentioned above and Yu et al. who proved that a FHE scheme
cannot achieve IND-CCA2 security.

Boneh and Lipton [7] demonstrated that any deterministic fully
homomorphic encryption scheme over Z/nZ can be broken in sub-
exponential time.

Finally, Armknecht, Gagliardoni, Katzenbeisser and Peter [3] have
proven that a group-homomorphic scheme will be vulnerable against
a quantum adversary. A subset of the same authors also showed
that no group-homomorphic scheme with a prime-order ciphertext
group can be IND-CPA secure [5]. Our characterisation extends the
construction provided by Armknecht, Katzenbeisser and Peter [4].

2 Preliminaries

We assume that the reader has some familiarity with fully homomor-
phic encryption, so we only give a brief overview. The interested
reader should look up the survey by Armknecht et al. [2]. The term
FHE has come to mean two things: Either that the scheme can eval-
uate both addition and multiplication, or that it can evaluate any
circuit of any multiplicative depth. The scheme is i-hop if it can eval-
uate i circuits after each other, or ∞-hop if there is no limit. Note

70 K. Gjøsteen and M. Strand

that all somewhat homomorphic schemes with a sufficiently small de-
cryption circuit can be made fully homomorphic and ∞-hop using
Gentry’s original bootstrapping theorem [19]. A levelled scheme can
compute any circuit with multiplicative depth up to its designated
level.

Throughout the text, P will denote the plaintext space and C will
denote the ciphertext space.

2.1 Algebraic structures

We assume that the reader is familiar with the definitions of groups,
rings, fields and vector spaces. Recall that a division ring is a ring
where every non-zero element has an inverse, and that all finite di-
vision rings are commutative, hence fields. We assume that all rings
have an identity element. Furthermore, we also need two more con-
cepts, namely modules and algebras. A module is a generalization of
vectors spaces where the coefficients come from a ring. For a ring
R, a (left) R-module is an additive abelian group M together with
a scalar multiplication with ring elements on the left. We also have
right R-modules, but for commutative rings, left and right R-modules
are the same.

It is well known that any vector space of dimension n is isomorphic
to n copies of the field. This is not true for modules. In particular,
even the word “dimension” is not well-defined, and not all modules
have a basis. Those that have are called free modules, and if every
basis has the same number of elements, some n, we say that the
module is of rank n.

• If I is an ideal of R, then I is also an R-module. In particular,
R itself is an R-module.

• Any vector space over a field or division ring is also a module.

• Matrices over a ring R form an R-module.

We are interested in mappings between modules. Let M and N
be R-modules. An R-homomorphism f is a function f : M → N such

Can there be efficient and natural FHE schemes? 71

that for all r ∈ R and m,m1,m2 ∈M ,

f(rm) = rf(m)

f(m1 +m2) = f(m1) + f(m2).

For a field k, a k-algebra A is a k-vector space which is also
equipped with a multiplication operation compatible with the scalar
multiplication, such that A is a ring in its own respect. An algebra
mapping is a function which is both a linear transformation on A as
a vector space and a ring homomorphism on A.

2.2 The Wedderburn-Artin theorem

Recall that the structure theorem for finitely generated abelian groups
states that any such group is isomorphic to a direct sum of copies of Z
and cyclic groups of prime order. Rings generally lack a corresponding
theorem. However for certain classes of rings we know the structure
in detail. For instance, every finite field with the same cardinality is
isomorphic. In the case of semisimple rings, we have the Wedderburn-
Artin theorem.

Theorem 1 ([6], p. 382). Let R be a left (or right) artinian ring
with unity and no non-zero nilpotent ideals. Then R is isomorphic to
a finite direct sum of matrix rings over division rings.

The first sentence of the theorem is one of several equivalent def-
initions of a semisimple ring. An artinian ring is one where any de-
scending chain (under inclusion) of ideals becomes constant after a
finite number. Any finite ring is trivially artinian, while the integers
Z are not. Consider this chain of ideals

(2) ⊇ (22) ⊇ (23) ⊇ · · ·

to see that it need not stabilise.

Also recall that an ideal I is nilpotent if there exists an integer n
such that In = (0).

72 K. Gjøsteen and M. Strand

3 Isomorphisms on structures

We now consider specific structures. In this section, we treat them
in the symmetric case. This is partly for a practical reason – one
motivation behind this work was to explore the possibility for very
efficient schemes without any expansion. The conclusion seems to
be that they are unlikely or at best, not practical. We divide our
potential schemes into four types.

1. Identical spaces P = C

2. Isomorphic spaces P ' C (but possibly with different descrip-
tions)

3. C is larger than P, but only with a constant expansion

4. C is larger than P, and the expansion depends on the parameters

In all scenarios, we assume that both P and C share the same kind of
algebraic structure. For instance, if P is a vector space over a field k,
then C must also be a k-vector space. For schemes of the second type,
we stress that the spaces really must be isomorphic. The next section
will deal with the situation where P is isomorphic to the residue
classes of C.

Since we are primarily looking for very efficient schemes, we will
not use any energy on schemes of Type 4. Note that there is still
a certain jump from that to the state of art today. The ciphertext
spaces of modern noise-based schemes are not rings, even if you con-
sider bootstrapping as a part of every multiplication operation. The
underlying reason is that the noise generation hinders the space from
being closed under even the normally “cheap” addition operation.
Also, one is not guaranteed to have the associative property for ei-
ther operation.1 One should rather use the techniques of Section 4 to
analyse these schemes.

From now on, we will refer to these cases by their numbers. It is
straightforward to observe that any scheme of Type 1 or 2 must be

1The GSW scheme [21] is a good example of this, where noise propagates very
differently based on how the multiplication is performed.

Can there be efficient and natural FHE schemes? 73

deterministic, and hence not achieve semantic security, while those of
Type 3 typically should be randomised, such as ElGamal or Paillier,
which always feature data doubling.

3.1 Achievable security

As a consequence of the discussion from the previous section, we need
a weaker security notion than that of semantic security for schemes of
Type 1 or 2. We want to describe a notion where it is hard to distin-
guish encryption from a random isomorphism. Typically, the former
will be a subset of all isomorphisms, but may not be exhaustive. Fur-
thermore, any encryption isomorphism must be hard to invert: even
if a scheme trivially achieves indistinguishability with two sets that
are identical, it could be practically insecure, since it may be easy to
invert.

Thus we want a definition that catches the same principle as pseu-
dorandom permutations, taking algebraic structure into account, and
also adding the invertibility requirement. This is the closest we can
come to semantic security under these restricted conditions.

We assume that we have access to a black box that can efficiently
compute any mapping ε into C such that there exists another mapping
δ : C → P such that δ ◦ ε acts as the identity on P. For instance in
Type 1 above, ε would be any isomorphism on P. Essentially, the
black box should be able to compute everything that could have been
an encryption, whereas the scheme is limited to the isomorphisms
indexed by the keys.

Definition 1. Let Π be an encryption scheme of Type 1 or 2 with
plaintext space P and some isomorphic ciphertext space C. Let εK be
the mapping induced by the encryption algorithm under a key K, and
let O denote the collection of all such mappings. Finally, let Iso(P, C)
denote all isomorphisms from P to C. We say that Π is secure if

1. the adversary can only distinguish O and Iso(P, C) with negli-
gible probability, and

2. any mapping εK ∈ O is hard to invert.

74 K. Gjøsteen and M. Strand

There is a straightforward real-or-random game for the first prop-
erty: the challenger randomly selects whether to use a random iso-
morphism or an instance of the cryptosystem. The adversary wins
if it can distinguish with non-negligible probability. To align with
the IND-CPA notion, we allow the adversary to query a number of
encryptions before giving its answer, but no decryptions.

3.2 Groups

There exist secure group homomorphic schemes of Type 1, and there-
fore of Type 2–4 as well.

This statement is straightforward to prove constructively by pro-
viding a concrete example, for instance the Pohlig-Hellman exponen-
tiation cipher [30]. Let G be a cyclic group of secret order n, and
choose e, d such that ed ≡ 1 (mod φ(n)). Encryption and decryption
is as with RSA. Then all automorphisms on the group are indexed
by e, so the scheme trivially satisfies the first condition since the sets
are identical. The second condition holds under standard number-
theoretic assumptions.

It is straightforward to construct an example to show that this
implies the existence of a secure scheme when the groups are isomor-
phic but with different descriptions, or if we add further copies of the
group. However, ElGamal is a better example in that respect.

Textbook RSA is not secure according to our definition. For sim-
plicity, assume that n = pq = (2p′ + 1)(2q′ + 1) with p, q, p′, q′ prime,
and let G be the group of multiplicative units in Z/nZ. We then know
that, as groups

G ' Z/p′Z× Z/q′Z× Z/2Z× Z/2Z.

This group has 6p′q′ automorphisms [22], where the factor 6 comes
from the permutation of the order 2 elements in the Klein 4-subgroup
V . RSA is able to produce p′q′ of these automorphisms, all of which
leave the four elements of V fixed. The automorphisms outside the
RSA subset either leave -1 alone, or swap it with one of the other
order 2 elements. In the latter case, it is possible to distinguish. In
the first case, a distinguisher must find one of the two other special

Can there be efficient and natural FHE schemes? 75

elements. That will allow the adversary to factor n, using the same
idea as in Rabin’s oblivious transfer [31].

3.3 Vector spaces

Ahituv, Lativ and Neumann [1] showed that a homomorphism f :
Fn2 → Fn2 cannot be secure, by using f on the basis to essentially
compute the inverse. Their argument easily extends to a vector space
over any field.

For spaces of different sizes, fix a field k, and let P and C be k-
vector spaces, with p = dimP ≤ dim C = q. Get encryptions of at
least pq linearly independent vectors. There exists a matrix D such
that Dci = mi for each pair (mi, ci). Solve the resulting system for D,
which is essentially the decryption key. Hence, such a scheme cannot
be secure.

The reader might come up with an apparent counterexample to
the claim, the Goldwasser-Micali cryptosystem. Let n be a product
of two primes, let y be a non-quadratic residue modulo n and let
xi be units modulo n. To encrypt a vector m in F`2, compute a tu-
ple (c1, · · · , c`) where ci = ymix2

i modulo n. The ciphertext space is
then a Z/nZ-module where addition is given by pointwise multiplica-
tion and scalar multiplication is done by exponentiation. Decrypt by
checking whether each component is a quadratic residue or not. How-
ever, C is not an F2-vector space, so it does not fit in our system. It
shows that one doesn’t need to go far away from these constructions
to find something that is secure, although with a certain expansion
factor.

This argument proves the following theorem.

Theorem 2. Let k be a field and let P and C be k-vector spaces.
Then there are no secure encryption schemes between P and C.

3.4 Fields

We only consider finite fields, and we can consider prime fields and
extension fields separately. For prime fields, there are only fields of the
kind Z/pZ, possibly with some strange description, but nonetheless

76 K. Gjøsteen and M. Strand

straightforward to convert into the canonical form. There is only the
identity automorphism.

For extension fields, where P ' C, an algorithm by Lenstra [23]
demonstrates that it is feasible to convert the original presentation
to practical descriptions of the fields, and then compute any isomor-
phisms between those fields. Hence, there can be no secure homo-
morphic schemes between fields of the same size.

Let us tackle the third type. First note that the fields must have
the same characteristic, otherwise there would be no structure pre-
serving mappings between them. We can therefore assume that both
P and C are extensions of the same prime field Fp. We can conse-
quently also view P and C as Fp-vector spaces, reducing the problem
to the one in the previous subsection.

Alternatively, one can adjoin extra elements to P to make it iso-
morphic to C, and then compute an isomorphism based on known
plaintext-ciphertext pairs.

If the encryption is merely a deterministic injection into a larger
ciphertext space it can still not be secure, as we can view the image
as a field in its own right.

We summarise the discussion in a theorem.

Theorem 3. Let P and C be k fields. Then there are no secure
encryption schemes between P and C.

3.5 Rings

Rings are far harder to tackle than the previous structures, and we
are not able to give a definitive answer. The key information is the set
of automorphisms on a ring. We start by getting an overview of those
for reduced rings, that is, rings with no non-zero nilpotent elements.

3.5.1 Reduced rings

Note that since R is finite, it is in particular left (and right) artinian.
Assume that R has no non-zero nilpotent ideals, then R is semisimple.
By the Wedderburn-Artin theorem, R is then isomorphic to a finite

Can there be efficient and natural FHE schemes? 77

direct product of matrix rings over division rings,

R 'Mn1(D1)⊕ · · · ⊕Mn`
(D`).

We have assumed that R has no nilpotent ideals. Since R is
artinian, nil and nilpotent ideals are the same, so we have simulta-
neously assumed there are no non-zero nil ideals. In particular, this
means that the radical of R, which is precisely all nil elements, is the
zero ideal.

Now, if at least one ni ≥ 2, then one can create a nilpotent element
in that matrix ring, a contradiction. Furthermore, a finite division
ring is always a field, so we reach the simplification

R ' k1 ⊕ · · · ⊕ k`.

Assume that there are m distinct fields up to isomorphism, and with
`i fields in each set, 1 ≤ i ≤ m. Gather isomorphic fields together.
For each i, let di be the degree of the field extension. Let φ be an au-
tomorphism on R. We can write it as (φ1,1, . . . φ1,`1 , . . . , φ1,`m). There
are di automorphisms on each field, and one can use any permutation
on each set of isomorphic fields. This yields a total of

m∏

i=1

(di − 1)! `i!

automorphisms on R, which bounds the size of the key space.
To see why there are no more isomorphisms, consider R = k1 +k2,

where k1 = k2 are extension fields over k. Define a function φ : R→ R
which is the identity on k × k, and swaps the components otherwise.
Take (x1, x2) ∈ k2 and (x′1, x

′
2) /∈ k2. If one applies φ on the sum,

one can see that it differs from φ(x1, x2) + φ(x′1, x
′
2), so φ cannot be

a ring homomorphism.
Now consider the special case where we letR be a k-algebra. Friedl

and Rónyai and others [11, 16] have described polynomial time algo-
rithms to compute a Wedderburn-Artin decomposition explicitly. We
say “a” rather than “the”, since there can be several isomorphic de-
compositions, given by permutations on isomorphic summands. One
can therefore compute the automorphisms for each field separately

78 K. Gjøsteen and M. Strand

by the techniques described above. The feasibility of the computa-
tion of any automorphism therefore depends only on

∏m
i=1 `i! being

sufficiently large.

3.5.2 Semisimple k-algebras

We shift the assumptions slightly. We now allow more nilpotent el-
ements, but only for algebras over a field k. The aforementioned
algorithms also work in this setting; one can compute orthogonal
idempotents in the centre of each summand, and next a basis for
each matrix ring. Computing the mapping between the algebra and
the decomposition is feasible: multiply with the idempotents to de-
compose the element, and then use linear algebra. We therefore have
a canonical description of any ring element, up to permutations of
components and bases.

In particular, this setting includes many matrix rings. Note that
we cannot automatically use our reasoning about vector spaces here
since linear mappings are different from ring homomorphisms. How-
ever, vector transformations is a subset of all algebra homomorphisms.
Brakerski [9] has proven that whenever decryption is an inner prod-
uct computation involving the secret key, then the scheme cannot be
CPA secure. In particular, this involves all schemes using inner auto-
morphisms on matrix rings, i.e. where a square matrix M (possibly
encoding the ciphertext from a subring) is conjugated, C = A−1MA.
If the ring is commutative, one can rewrite the above equation and the
corresponding decryption formula as inner products. By the Skolem-
Noether theorem, every automorphism of a matrix ring over a field is
inner.

One attempt to avoid this problem is by first embedding the plain-
text space in the noncommutative quaternions or octonions, four- or
eight-dimension division algebras constructed by adjoining three or
seven extra elements to a ring in a similar manner as when construct-
ing the two-dimensional complex numbers by adjoining the special
symbol i =

√
−1 to the real numbers. The construction is also valid

if performed over rings like Z/qZ. However, there exist straightfor-
ward embeddings of the quaternions and the octonions over a ring R
as subrings of the 4 × 4 and 8 × 8 matrix rings over R, respectively.

Can there be efficient and natural FHE schemes? 79

Hence, one can always ignore the extra noncommutative structure by
considering larger matrices.

3.5.3 Large ciphertext rings

Finally, consider the case where both P and C are rings, and let
I = kerDec = Dec−1(0). By the reasoning in Section 4 and the first
isomorphism theorem, we therefore know that P ' C/I, so we can
identify P as a subring of C. If P is commutative, then C becomes an
associative P-algebra. When P is a field, this reduces to the vector
space scenario above, hence not secure. The general challenge is to
distinguish elements of I and R.

3.6 Modules

Modules can be quite similar to vector spaces, so in particular for
free modules over well-behaved rings, one would expect that the same
techniques should apply. On the other hand, an abelian group is a
Z-module, and Z is certainly a very well-behaved ring, despite its lack
of nontrivial units.

4 Characterisation

In this section we treat fully homomorphic schemes with as much
generality as we can, by considering various algebraic structures. An
algebraic structure is an object that consists of a set of elements, is
closed under at least one operation and satisfies certain axioms on the
operations. Examples include groups, rings, vector spaces and so on.
Note in particular that we ignore somewhat and levelled homomorphic
schemes, although some of the reasoning can also be applied to those.
The reason is that the spaces involved in somewhat homomorphic
schemes are neither closed under addition nor multiplication, since
once the noise level grows too large, the ciphertext will no longer
decrypt to the correct value.

The short version of this section is that any homomorphic encryp-
tion consists of a mapping into the ciphertext space and an addition

80 K. Gjøsteen and M. Strand

with a random encryption of zero. For the scheme to be secure, at
least one of those operations must protect the message.

In this section, we use the more conventional security definition
of IND-CPA.

Definition 2 (IND-CPA). Let Π = (Gen,Enc,Dec) be a public-key
encryption scheme. Define the following experiment IND-CPAb

Π(A, λ)
between an adversary A and a challenger.

1. The challenger runs (sk, pk)← Gen(1λ) and gives pk to A.

2. A outputs to messages m0, m1 of the same length.

3. The challenger computes Enc(pk,mb) and gives it to A.

4. A outputs a bit b′, and the challenger returns b′ as the output
of the game.

The scheme Π is IND-CPA secure if for any λ and for any proba-
bilistic polynomial time adversary A,

Adv(A) = |Pr
[
IND-CPA0

Π(A, λ) = 1
]
−

Pr
[
IND-CPA1

Π(A, λ)
]

= 1| ≤ ε(λ)

Let S be an algebraic structure with n ≥ 1 operations ∗1, . . . , ∗n,
where ∗1 is a binary operation such that for any object O with struc-
ture S, we have a neutral element 0 with respect to ∗1, and that ∗1 is
a bijection when the second coordinate is fixed. This implies that all
elements have inverses with respect to the first operation. We stress
that we do not put any assumptions on the other operations.

Any structure that contains a group structure satisfies this re-
quirement when ∗1 is taken to be the group operation, typically ad-
dition. For the binary case, it requires either XOR or AND. If the set
of binary operators is functionally complete, we can add either to the
set and rearrange.

Let P be an object with structure S, let C be a set (without any
structure) with operations ∗′1, . . . , ∗′n, and let 1P be the identity map
on P. Let ε : P → C and δ : C → P be maps such that δ ◦ ε = 1P ,

Can there be efficient and natural FHE schemes? 81

and for all 1 ≤ i ≤ n and all c1, . . . , cai where ai is the number of
elements that ∗i takes as input, we have

δ(∗′i(c1, . . . , cai)) = ∗i(δ(c1), . . . , δ(cai)).

We call (P, C, ε, δ) an S-homomorphic tuple.

Now assume we have a set (Instance, Epsilon, Sample, Delta, Op)
of algorithms such that:

Instance takes in security parameter λ and returns a S-homomorphic
tuple

Sample takes in (C, ε) and returns a random element from δ−1(0)

Epsilon takes in (C, ε,m) and computes ε(m)

Delta takes in (C, δ, c) and computes δ(c)

Op computes ∗′i(c1, . . . , cai) on input (C, ε, i, c1, . . . , cai).

Based on this, we can construct an abstract encryption scheme.

Definition 3. Define the Abstract Homomorphic Encryption Scheme
(AHES) as an encryption scheme (Gen, Enc, Eval, Dec) with the fol-
lowing algorithms

Gen Run Instance(1λ) to get (C, ε, δ). Output pk = evk = (C, ε) and
sk = (C, δ),

Enc On input pk,m, return

Op(C, ε, 1,Epsilon(pk,m), Sample(pk)),

Dec On input sk, c, return Delta(C, δ, c) = δ(c),

Eval On input evk, ∗i, c1, . . . , cai , output

Op(C, ε, i, c1, . . . , cai).

82 K. Gjøsteen and M. Strand

To see why this encryption makes sense, observe that we can in-
duce the structure from P onto a subset of C through ε and δ. Define
a equivalence relation ∼ on C by c1 ∼ c2 if δ(c1) = δ(c2). Each equiv-
alence class now corresponds to a unique plaintext, so we can identify
P with C/∼. For each m, we mark ε(m) as a distinguished repre-
sentative of its class, creating the subset. Encryption is therefore to
go to the corresponding equivalence class, and then using the oper-
ator ∗′1 with something that decrypts to 0. That amounts to using
∗1 with the neutral element in the second coordinate, i.e. nothing
(“adding encryptions of zero”). The result will be in the same class,
but randomly distributed.

Let c0 be sampled from δ−1(0) using Sample. Correctness is en-
sured since

Dec(sk,Enc(pk,m)) = δ(Op(evk, 1,Epsilon(pk,m), Sample(pk)))

= δ(∗′1(ε(m), c0))

= ∗1(δ(ε(m)), δ(c0)) = m ∗1 0 = m.

Evaluation is well-defined by the properties of the S-homomorphic
tuple and the same arguments as above.

Theorem 4. The Abstract Homomorphic Encryption Scheme is a
homomorphic ∞-hop scheme. Any homomorphic ∞-hop scheme E
over a given algebraic structure S can be expressed in terms of the
above.

Proof. The scheme is fully homomorphic. Express any evaluation in
terms of the operations on P. Note that the evaluation and ciphertext
spaces are the same, so it is ∞-hop.

Now for a given homomorphic ∞-hop encryption scheme (E.Gen,
E.Enc, E.Eval, E.Dec), we need to construct the algorithms for our
abstract scheme. Define operations ∗1, . . . , ∗n on P based on the
allowed computations, and identify the neutral element 0 with respect
to ∗1.

Instance Run E.Gen to get E.C and keys. Fix some a, and define
ε(m) = E.Enc(E.pk,m) using a as randomness, and δ(c) =
E.Dec(E.sk, c). Return (C, ε, δ).

Can there be efficient and natural FHE schemes? 83

Sample Compute a random encryption of 0.

Op Use E.Eval.

The algorithms Epsilon and Delta follows from ε and δ. The homo-
morphic properties of ε and δ are satisfied by definition, and we can
use the construction above to create an instance of the AHES.

The security is based on an assumption that all the equivalence
classes are of about the same size. The following lemma ensures that
this is the case in certain special cases.

Lemma 1. If ∗′1 is a bijection when the first element is fixed, and the
whole of δ−1(0) is samplable, then all equivalence classes as described
above in the ciphertext space of the Abstract Homomorphic Encryption
Scheme have the same cardinality.

Proof. Let m be an arbitrary message, c = ε(m) and let c0 be the
element sampled from δ−1(0) in the encryption algorithm. Recall
that the encryption is then defined as

Op(C, ε, 1,Epsilon(pk,m), Sample(pk)) = ∗′1(c, c0).

Then the restricted function fc : δ−1(0) → δ−1(m) given by fc(x) =
c ∗′1 x is an injection (as it is a bijection on all of C), so it is clear that
|δ−1(0)| ≤ |δ−1(m)|.

Now let m′ be such that m′ ∗1 m = 0, which we know exists.
Consider the images A = fc(δ

−1(0)), B = δ−1(m) and C = fε(m′)(B).
By the homomorphic property, fε(m′) maps elements of δ−1(m) to
δ−1(0), so C ⊆ δ−1(0).

Since fε(m′) is an injection, then |δ−1(m)| = |B| = |fε(m′)(B)| =
|C| ≤ |δ−1(0)|, but then |δ−1(0)| = |δ−1(m)| for any m.

The scheme is semantically secure if it is hard to decide if an
element is in a given equivalence class.

Definition 4 (Subset membership problem (SMP)). Let C be an
efficiently samplable set, and let R be a subset of C. The challenger
selects a random bit b. If b = 0, c is sampled uniformly from R, else
from C, and sent to the adversary. The adversary wins if it outputs
the correct b.

84 K. Gjøsteen and M. Strand

We modify the standard problem slightly. Replace the subset R
with an efficient structure preserving mapping δ : C → P as above.
We now sample from the subset δ−1(0).

The following theorem should not come as a surprise, as it is to a
large extent a reformulation of IND-CPA security. However, its proof
contains a transformation that can be used on any FHE scheme, and
that should return a suitable problem to study. As the following ex-
amples will show, this enables us to quickly analyse schemes proposed
in good faith, and thus may be a valuable tool.

Theorem 5. Let Π be a fully homomorphic encryption scheme with
ciphertext space C and a mapping δ induced by the decryption algo-
rithm. Assume that the equivalence classes in C are of about the same

size: for all plaintexts m1,m2 the inequality |1 − |δ−1(m1)|
|δ−1(m2)| | ≤ ε holds

where ε is negligible. The scheme Π is then semantically secure if and
only if the subset membership problem is hard.

Proof. First we show that an adversary AAHES with non-negligible
advantage ε against a real-or-random game implies a distinguisher for
the subset membership problem SMP. Our adversary ASMP receives
the challenge (C, δ−1, x) from SMP. We create an instance of AHES
with C and δ−1 as a part of the public key. Note that we can construct
ε by selecting an element from δ−1(m) for each m.2 It is clear that δ ◦
ε = 1P , and this will induce the required structure on the equivalence
classes δ−1(m) on C. The homomorphic property holds since δ is
defined to be structure preserving.

Transmit the public key. Upon receiving the plaintext m from
the adversary, we encrypt it as c← Op(evk, 1,Epsilon(pk,m), x), and
return the challenge ciphertext. When AAHES returns a d with d = 0
if c is an encryption of m, we simply set b′ = d and replies with b′ to
the SMP instance.

If b = 0, then x is an encryption of 0, and the encryption is as
usual. Otherwise, x can be interpreted as a random ciphertext, so
c encrypts a random element, and the distribution is near uniform

2This could potentially take a long time for a large plaintext space. Luckily,
we note it can usually be done by encrypting with zero randomness, hence ε is
typically fully described in constant time.

Can there be efficient and natural FHE schemes? 85

since the equivalence classes are of approximately the same size. It is
clear that ASMP has the same advantage against SMP as AAHES has
against Abstract Homomorphic Encryption Scheme.

For the opposite direction we again play a real-or-random game
with a similar idea as AKP are using. Set up an Abstract Homomor-
phic Encryption Scheme instance (AHES), and send the public key
to the adversary AAHES. Then select a message m. Note that the
message will be invertible with respect to ∗1. AHES responds with
a ciphertext c, and AAHES computes x ← c ∗′1 Epsilon(pk,m−1) and
submits x to ASMP along with C and ε. Upon receiving d from ASMP,
AAHES forwards b′ = d to the AHES instance.

If b = 0, then the ciphertext was real, which means that x encrypts
0, and hence selected from the inverse image of δ. Otherwise, c will be
a random encryption, and it will just be shifted by AAHES, so it will
still be a random element selected from C. This means that AAHES

will have the same advantage as ASMP.

Remark 1. We define the Splitting Oracle-Assisted Subgroup Mem-
bership Problem (SOAP) problem in the same way as in AKP [5],
replacing “subgroup” with “subset”.

Informally, the SOAP problem is the same as the SMP problem,
except that before receiving the challenge, the adversary has access
to an oracle that on input c outputs (ε(m), c0) where c = ε(m) ∗′1 c0,
thus ”splitting“ a ciphertext into the distinguished representative of
its equivalence class and its corresponding encryption of 0. Theorem 3
from AKP will then hold with only minor changes to the proof. To
find out if the SOAP problem is hard outside a generic group remains
an interesting problem.

We give the theorem with the few relevant words changed.

Theorem 6 (Characterization of IND-CCA Security, Theorem 3,
[5]). Let E = (Gen,Enc,Eval,Dec) be an ∞-hop fully homomorphic
encryption scheme. Then:

E is IND-CCA1 secure⇔ SOAP is hard

86 K. Gjøsteen and M. Strand

4.1 Examples

We now apply our construction to one successful and two less suc-
cessful schemes to prove the power of our approach. Our attacks
spring directly from our characterisation. For the Nuida-Kurosawa
scheme [29], it does not provide new insight, as the scheme is already
quite close to this construction.

4.1.1 FHE over integers with non-binary space

Nuida and Kurosawa have suggsted a simple scheme over the integers
[29]. Let Q be a fixed prime, and let p and q0 be large, secret primes
such that N = pq0 is hard to factor. A base encryption of m is of the
form m + pk + Qr, and decryption is given by taking modulo p and
then Q. Let x′ be an encryption of 1 and {xi} be a set of encryptions
of 0. The public key is (N, x′, {xi}). To encrypt using the public key,
transform the message m from ZQ into ZN by multiplying with x′,
and add a random sum of encryptions of 0. See the original paper for
details on the bootstrapping.

Note that this scheme by design is similar to our general descrip-
tion. The base problem that needs to be hard is therefore easily
isolated, namely distinguishing the following two distributions,

{m+ pk +Qr | m < Q� p} = Zpq0

and

{pk +Qr | Q� p} ,

along with additional data available for bootstrapping. This is essen-
tially the same problem studied by Cheon et al. [12].

4.1.2 Liu’s scheme

In May 2015, Liu published a candidate scheme on IACR’s ePrint
archive [25]. Although it was quickly proven insecure [34], it provides
a series of valuable lessons. We refer to the original paper for details
about the scheme.

Can there be efficient and natural FHE schemes? 87

The instance algorithm outputs P = Z/qZ as a field and C =
(Z/qZ)n+1 as a P-algebra with ordinary addition and scalar multipli-
cation, but with a key-dependent multiplication operation. Let ∗1 be
addition. The public key is the tuple (Θ,Φ, {Enc(skiskj)}i,j=1,...n+1),
and the private key is the vector sk = (sk1, . . . , skn+1).

Define ε as encryption using 0 for all randomisers. Now, δ is
just the linear mapping Pn+1 → P given by x 7→ 〈sk, x〉, and the
problem is to decide whether the given element is in the kernel. It is
clear that the kernel is an n-dimensional subspace of Pn+1. Sample
m ≥ n vectors from the subspace, and append x to form a matrix,
and compute the rank. If x /∈ δ−1(0), then the rank will be n+1 with
high probability, giving the adversary an advantage. The scheme can
therefore not be secure.

4.1.3 Li-Wang scheme

Wang and Li proposed a new scheme based on multiplication of matri-
ces over noncommutative rings [24]. As key, select a secret invertible
matrix H and compute H−1. To encrypt, place the message m in
the top left corner of a upper triangular matrix M . The remaining
places are filled with random values. Then compute the ciphertext
as C = HMH−1. Addition and multiplication works in the natural
way.

The authors speculate that the scheme may be IND-CCA1 secure.
However, we believe that it is insecure. Note that the scheme is
symmetric, but the same reasoning as above implies that we only need
to be able to distinguish encryptions of 0 from a random encryption.

Observe that the diagonal of M completely determines the invert-
ibility of C, and that an encryption of 0 cannot be invertible. How-
ever, there is not an equivalence, since it can also be non-invertible if
any element of the diagonal is a non-unit. To improve the probability,
we can ask the encryption oracle for additional encryptions of 0, and
add them to C, checking the invertibility for each.

With high probability one can then distinguish encryptions of
units from encryptions of non-units, which is already sufficient to
win a left-or-right game. The advantage against a real-or-random
game will depend on the number of non-units in the ring. If the

88 K. Gjøsteen and M. Strand

underlying ring is a division ring, then there are no other non-units
than 0. One can efficiently compute inverses by using a variant of LU
decomposition suited for noncommutative rings.

Another tool for deciding invertibility, and which could give fur-
ther information on the linear dependencies of the rows and columns,
is the notion of quasideterminants, introduced by Gelfand and Retakh
in 1991 [17]. In contrast to determinants for matrices over commuta-
tive rings there is not just one quasideterminant for an n× n matrix,
but n2. They may not always be computable, but provide useful
information whenever they are.

Proposition ([18], Proposition 1.4.6). If the quasideterminant |A|ij
is defined, then the following statements are equivalent.

1. |A|ij = 0

2. the i-th row of the matrix A is a left linear combination of the
other rows of A

3. the j-th column of the matrix A is a right linear combination of
the other columns of A

The multiplicative identities for quasideterminants could also pro-
vide additional equations in order to perform a message-recovery at-
tack.

5 Conclusion

We summarise the findings of Section 3 in Table 1. We cannot give a
definitive answer to Rivest et al.’s questions, but the trend seems to
be that nice structures also make it easier to break schemes. This is
unfortunate, as we would like to be able to perform our computations
over nicely behaved structures. The contemporary solution to this
is to allow a nice plaintext space – even fields – but compensate by
having ciphertext spaces with very little structure. In particular, they
are not closed under addition and multiplication until the expensive
bootstrapping procedure is introduced.

Can there be efficient and natural FHE schemes? 89

Structure
Abelian
groups

Vector
spaces

Fields Rings

Identical sets X × × ?
Non-trivially
isomorphic

X × × ?

Constant
expansion

X × × ?

Table 1: ×: No secure schemes. ?: No final conclusion. X: Examples
of secure schemes exist.

Nuida [28] has proposed a framework for noise-free FHE schemes,
but he also notes that the schemes look “somewhat ‘artificial’ ”, and
continues: “more ‘natural’ constructions of the underlying groups
[...] would be more desirable [...]. Here we note, however, that such a
natural instantiation of our schemes seems not easy to find.” [28, p. 3]
We summarise this in the following informal conjecture, which agrees
with what seems to be the consensus. Still, it remains to be proven.

Conjecture. The security of a fully homomorphic encryption scehme
either depends on a massive and noisy ciphertext expansion or using
an algebraic structure which admits few of the computations one would
like to perform in real world applications.

Acknowledgements The work was partially financed by the Nor-
wegian Research Council grant no. 233977 and the German Aca-
demic Exchange Service (DAAD), project number 57068907. The
authors wish to thank Frederik Armknecht, Angela Jäschke, Colin
Boyd, Christopher Carr and Christian Reuter for valuable discus-
sion. Parts of this work was done while the second author visited
Armknecht in Mannheim.

References

[1] Niv Ahituv, Yeheskel Lapid, and Seev Neumann. Processing
encrypted data. Commun. ACM, 30(9):777–780, 1987.

90 K. Gjøsteen and M. Strand

[2] Frederik Armknecht, Colin Boyd, Christopher Carr, Kristian
Gjøsteen, Angela Jäschke, Christian A. Reuter, and Martin
Strand. A guide to fully homomorphic encryption. Cryptology
ePrint Archive, Report 2015/1192, 2015. http://eprint.iacr.
org/.

[3] Frederik Armknecht, Tommaso Gagliardoni, Stefan Katzen-
beisser, and Andreas Peter. General impossibility of group homo-
morphic encryption in the quantum world. In Hugo Krawczyk,
editor, Public-Key Cryptography - PKC 2014, volume 8383 of
Lecture Notes in Computer Science, pages 556–573. Springer,
2014.

[4] Frederik Armknecht, Stefan Katzenbeisser, and Andreas Peter.
Shift-type homomorphic encryption and its application to fully
homomorphic encryption. In Aikaterini Mitrokotsa and Serge
Vaudenay, editors, Progress in Cryptology – AFRICACRYPT
2012, volume 7374 of Lecture Notes in Computer Science, pages
234–251. Springer, 2012.

[5] Frederik Armknecht, Stefan Katzenbeisser, and Andreas Peter.
Group homomorphic encryption: characterizations, impossibility
results, and applications. Des. Codes Cryptography, 67(2):209–
232, 2013.

[6] P. B. Bhattacharya, S. K. Jain, and S. R. Nagpaul. Basic abstract
algebra. Cambridge University Press, Cambridge, second edition,
1994.

[7] Dan Boneh and Richard J. Lipton. Algorithms for black-box
fields and their application to cryptography (extended abstract).
In Neal Koblitz, editor, Advances in Cryptology - CRYPTO ’96,
volume 1109 of Lecture Notes in Computer Science, pages 283–
297. Springer, 1996.

[8] Joppe W. Bos, Kristin E. Lauter, Jake Loftus, and Michael
Naehrig. Improved security for a ring-based fully homomorphic
encryption scheme. In Martijn Stam, editor, Cryptography and

Can there be efficient and natural FHE schemes? 91

Coding - 14th IMA International Conference, IMACC 2013, Ox-
ford, UK, December 17-19, 2013. Proceedings, volume 8308 of
Lecture Notes in Computer Science, pages 45–64. Springer, 2013.

[9] Zvika Brakerski. When homomorphism becomes a liability. In
TCC, pages 143–161, 2013.

[10] Zvika Brakerski, Craig Gentry, and Vinod Vaikuntanathan. Fully
homomorphic encryption without bootstrapping. Electronic Col-
loquium on Computational Complexity (ECCC), 18:111, 2011.

[11] Murray R. Bremner. How to compute the wedderburn decompo-
sition of a finite-dimensional associative algebra. Groups Com-
plexity Cryptology, 3(1):47–66, 2011.

[12] Jung Hee Cheon, Jean-Sébastien Coron, Jinsu Kim, Moon Sung
Lee, Tancrède Lepoint, Mehdi Tibouchi, and Aaram Yun. Batch
fully homomorphic encryption over the integers. In Thomas Jo-
hansson and Phong Q. Nguyen, editors, Advances in Cryptology -
EUROCRYPT 2013, volume 7881 of Lecture Notes in Computer
Science, pages 315–335. Springer, 2013.

[13] Ana Costache and Nigel P. Smart. Which ring based somewhat
homomorphic encryption scheme is best? In Kazue Sako, editor,
Topics in Cryptology - CT-RSA 2016, volume 9610 of Lecture
Notes in Computer Science, pages 325–340. Springer, 2016.

[14] Yarkın Doröz, Yin Hu, and Berk Sunar. Homomorphic aes eval-
uation using the modified ltv scheme. Designs, Codes and Cryp-
tography, pages 1–26, 2015.

[15] Junfeng Fan and Frederik Vercauteren. Somewhat practical
fully homomorphic encryption. IACR Cryptology ePrint Archive,
2012:144, 2012.

[16] Katalin Friedl and Lajos Rónyai. Polynomial time solutions of
some problems in computational algebra. In Robert Sedgewick,
editor, Proceedings of the 17th Annual ACM Symposium on The-
ory of Computing, pages 153–162. ACM, 1985.

92 K. Gjøsteen and M. Strand

[17] I.M. Gel’fand and V.S. Retakh. Determinants of matrices over
noncommutative rings. Functional Analysis and Its Applications,
25(2):91–102, 1991.

[18] Israel Gelfand, Sergei Gelfand, Vladimir Retakh, and Robert Lee
Wilson. Quasideterminants. Advances in Mathematics, 193(1):56
– 141, 2005.

[19] Craig Gentry. A fully homomorphic encryption scheme. PhD
thesis, Stanford University, 2009. crypto.stanford.edu/craig.

[20] Craig Gentry. Computing on the edge of chaos: Structure and
randomness in encrypted computation. Electronic Colloquium
on Computational Complexity (ECCC), 21:106, 2014.

[21] Craig Gentry, Amit Sahai, and Brent Waters. Homomorphic
encryption from learning with errors: Conceptually-simpler,
asymptotically-faster, attribute-based. In Ran Canetti and
Juan A. Garay, editors, Advances in Cryptology - CRYPTO
2013. Proceedings, Part I, volume 8042 of Lecture Notes in Com-
puter Science, pages 75–92. Springer, 2013.

[22] Christopher J. Hillar and Darren L. Rhea. Automorphisms of
finite abelian groups. The American Mathematical Monthly,
114(10):917–923, 2007.

[23] H. W. Lenstra, Jr. Finding isomorphisms between finite fields.
Math. Comp., 56(193):329–347, 1991.

[24] Jing Li and Licheng Wang. Noise-free symmetric fully homo-
morphic encryption based on noncommutative rings. Cryptology
ePrint Archive, Report 2015/641, 2015. http://eprint.iacr.

org/.

[25] Dongxi Liu. Practical fully homomorphic encryption without
noise reduction. Cryptology ePrint Archive, Report 2015/468,
2015. http://eprint.iacr.org/.

[26] Adriana López-Alt, Eran Tromer, and Vinod Vaikuntanathan.
On-the-fly multiparty computation on the cloud via multikey

Can there be efficient and natural FHE schemes? 93

fully homomorphic encryption. In Howard J. Karloff and Toniann
Pitassi, editors, Proceedings of the 44th Symposium on Theory of
Computing Conference, STOC 2012, New York, NY, USA, May
19 - 22, 2012, pages 1219–1234. ACM, 2012.

[27] Vadim Lyubashevsky, Chris Peikert, and Oded Regev. On ideal
lattices and learning with errors over rings. J. ACM, 60(6):43,
2013.

[28] Koji Nuida. Candidate constructions of fully homomorphic en-
cryption on finite simple groups without ciphertext noise. Cryp-
tology ePrint Archive, Report 2014/097, 2014. http://eprint.
iacr.org/.

[29] Koji Nuida and Kaoru Kurosawa. (Batch) fully homomorphic
encryption over integers for non-binary message spaces. In Elisa-
beth Oswald and Marc Fischlin, editors, Advances in Cryptology
- EUROCRYPT 2015, volume 9056 of Lecture Notes in Com-
puter Science, pages 537–555. Springer, 2015.

[30] Stephen C. Pohlig and Martin E. Hellman. An improved algo-
rithm for computing logarithms over gf(p) and its cryptographic
significance (corresp.). IEEE Transactions on Information The-
ory, 24(1):106–110, 1978.

[31] Michael O. Rabin. How to exchange secrets with oblivious trans-
fer. IACR Cryptology ePrint Archive, 2005:187, 2005.

[32] Ronald Rivest, Leonard Adleman, and Michael Dertouzos. On
data banks and privacy homomorphisms. Foundations of Secure
Computation, Academia Press, pages 169–179, 1978.

[33] Marten van Dijk, Craig Gentry, Shai Halevi, and Vinod Vaikun-
tanathan. Fully homomorphic encryption over the integers. In
Henri Gilbert, editor, Advances in Cryptology – EUROCRYPT
2010, volume 6110 of Lecture Notes in Computer Science, pages
24–43. Springer, 2010.

94 K. Gjøsteen and M. Strand

[34] Yongge Wang. Notes on two fully homomorphic encryption
schemes without bootstrapping. Cryptology ePrint Archive, Re-
port 2015/519, 2015. http://eprint.iacr.org/.

[35] Yu Yu, Jussipekka Leiwo, and A. Benjamin Premkumar. A study
on the security of privacy homomorphism. I. J. Network Security,
6(1):33–39, 2008.

A Can we do better?

The characterisation could still be more powerful by modelling noise-
based encryption schemes in a precise way. Our work has not resulted
in a concrete result for this case, but this section contains the argu-
ments that have been tried. The main finding is that noise-based
systems may depend on an embedding in some infinite space.

Remark 2 (Topology and metrics). This is a short introduction to the
main tools in this section.

A topology is a selection of subsets that are defined to be open, and
they – roughly speaking – generalise the open intervals from the real
line and the interior of circles in the plane, that is, all points strictly
within some distance from a set centre. Open sets in a topology can
be used to measure concepts such as nearness and connectedness,
although one could claim that the main objective is to study what
continuous functions can do.

A metric is real-valued symmetric function which is positive for
all pairs of points x and y unless x = y. Furthermore, we also require
that the triangle inequality holds.

We are unable to model the concept of growing noise using our
algebraic characterisation. Hence, it cannot be used to give a natural
description of somewhat homomorphic schemes. This could be solved
if we were able to describe metrics or perhaps a topology on the ci-
phertext space. Any metric will describe a topology, but the converse
is not true. The most general approach is therefore to search for a
topology, and hope that it has a corresponding metric.

The motivation for this thought is Gentry’s construction of a met-
ric in his thesis [19]. Define the distance d(L, t) from the lattice L to

Can there be efficient and natural FHE schemes? 95

a vector t by taking the minimum distance in Rn from a lattice vector
to t. Each lattice vector is an encryption of 0, so we can measure how
far a ciphertext is from being the canonical 0 encryption. Consider
the following construction.

To equip C and P with a reasonable topology, we make a few
assumptions. All operations should be continuous (this corresponds
with the definition of topological groups and rings), and encryption
and decryption should be continuous functions between the spaces.
It is also reasonable to require that each equivalence class is an open
set, i.e. having a neighbourhood around any ciphertext inside it. If
encryption can reach the whole corresponding equivalence class, then
P has the discrete topology, since the preimage of an open set must
be open. The discrete topology hardly gives any information.

This also proves that C is disconnected. The complement of an
equivalence class is closed by definition. It is also expressible as the
union of all other classes, hence open. Hence there are |P| clopen sets
in C. For the moment being, we don’t know anything more about the
structure inside these sets.

For the sake of argument, assume that C is finite, as it is in classical
group based constructions, or would be if we were working in some
finite extension of Z/nZ.

It is a fact that a finite topological space is metrisable if and only if
it is discrete. Hence, we can only measure how far a ciphertext is from
its distinguished representative if we sacrifice all other topological
structure on the space.

To relax the requirements, consider a pseudometric instead. A
pseudometric does not require non-degeneracy, i.e. the distance be-
tween two points may be 0 even if they are different points. One can
then define a pseudometric on C by d(x, y) = 1 only if the points have
neighbourhoods not contained in each other, otherwise 0. This, how-
ever, means that the distance between all points in the same equiva-
lence classes have distance 0, so the topology will not give any infor-
mation about the noise.

These arguments together seem to suggest that it is too restrictive
to assume that C is finite. Further noise-based constructions of FHE
schemes should therefore continue to focus on ciphertexts inside some

96 K. Gjøsteen and M. Strand

infinite set. This is precisely what happens when existing schemes use
rounding, as well as describing secret keys as rational numbers instead
of inverses in a finite ring.

We ignore the topology for now, and restrict our attention to
metric spaces. Assume that our scheme has a function f that can
embed the noise into Rn for some n. In the case of ElGamal, this
would be to output the discrete log of the first coordinate, whereas for
the DGHV [33] scheme, it could be to identify the small random noise,
by reducing modulo the key and subtracting the plaintext. Generally,
it is (part of) the random input used to sample the random encryption
of 0.

Now define d : C × C → [0,∞] as follows

d(c1, c2) =

{
∞ if δ(c1) 6= δ(c2)

‖f(c1)− f(c2)‖ otherwise

A metric that can also output infinite distances is sometimes called
an extended metric, and does not alter any of the usual properties
of ordinary metrics. As it is becoming more common, we will simply
call it a metric. Notice that d is a metric if any only if f is injective.
That may not be the case, and then d is a pseudometric, which is
sufficient, albeit not optimal.

One could circumvent this problem by stating that f should out-
put all randomness that went info the ciphertext. Then it is injective.
However, then we might lose our main goal, which is to measure the
noise. In the case of the symmetric DGHV scheme, it would be a
tuple with the coefficient to the key along with the small random
noise. For the ordinary 2-norm, the first component would dominate
the second, leaving the distance function useless.

For the special case of RLWE, we have the canonical embedding
into Cn [27], in which one can compute distances properly.

Can there be efficient and natural FHE schemes? 97

Paper iii

A roadmap to fully homomorphic elections:
Stronger security, better verifiability

Kristian Gjøsteen and Martin Strand

ePrint 2016/105, published in the proceedings of Voting’17: 2nd
Workshop on Advances in Secure Electronic Voting

A roadmap to fully homomorphic elections:
Stronger security, better verifiability

Kristian Gjøsteen and Martin Strand

Department of Mathematical Sciences, NTNU
{kristian.gjosteen, martin.strand}@ntnu.no

Abstract
After the trials of remote internet voting for local elections in
2011 and parliamentary elections in 2013, a number of local
referendums has renewed interest in internet voting in Norway.

The voting scheme used in Norway is not quantum-safe and
it has limited voter verifiability. In this case study, we consider
how we can use fully homomorphic encryption to construct a
quantum-safe voting scheme with better voter verifiability.

While fully homomorphic cryptosystems are not efficient
enough for the the system we sketch to be implemented and
run today, we expect future improvements in fully homomor-
phic encryption which may eventually make these techniques
practical. This study explains which improvements are needed,
both in terms of performance and features.

1 Introduction
Norway conducted trials of remote internet voting for the 2011 lo-
cal elections and the 2013 parliamentary elections. The government
discontinued the trials in 2014, but a number of local referendums in
2016 has caused renewed interest in remote internet voting, especially
for referendums.

There are two issues with the scheme used in 2013 that should be
improved. The scheme is not quantum-safe, and voter verifiability is

101

weak due to an auditing protocol that can only be run by accredited
organisations. This is a study to see if we can improve on both of
these shortcomings concurrently.

It is unclear if a sufficiently large and reliable quantum computer
will ever be built to threaten the security of discrete logarithm-based
systems, but the mere possibility that the encryption protecting ballot
confidentiality may be compromised in 10–30 years from now is a
serious problem that needs to be adressed.

Verifiability is difficult in Norway for two reasons. Revoting is
used as an anti-coercion tactic, and Norwegian ballots are sufficiently
complicated to allow Italian attacks, i.e., marking a ballot with a
number of insignificant yet unique changes. Also, the entire ballot
is required for the count, so the election can not be considered as
a collection of independent races. Voter verifiability is in general
not considered to be important by the Norwegian electorate (polls
and other studies generally finds high levels of trust in Norwegian
elections [21]), but given recent discussions about machines counting
paper ballots, better voter verifiability than in the 2013 scheme would
still be useful.

There are many schemes in the literature that achieve better
voter verifiability than the 2013 scheme, but in general, these are not
quantum-safe and do not facilitate very complicated ballots. All of the
mainstream fully homomorphic schemes are believed to be quantum-
safe.

While the 2013 protocol [14] exploited the multiplicative structure
of the ElGamal scheme, a fully homomorphic scheme can allow us to
use both addition and multiplication. This enables much more flexible
computations, which means that we can arrange the decryption and
counting process such that it is more voter verifiable.

1.1 Alternative approaches
There have been earlier attempts at completing election tallies while
the ballots are still encrypted, but not at this level of complexity.
Salamonsen [24] tried to apply Pailler encryption to Norwegian county
elections, possibly the easiest variant, and timed the effort needed to
compute ciphertexts and the necessary zero knowledge proofs, clock-

102 K. Gjøsteen and M. Strand

ing in at between 2 and 5 hours of work for the voter. Peeking ahead
to Section 8, we see that our solution is far more efficient than this.

Benaloh et al. [4] have described how one can use single-operation
homomorphic encryption to tally a single transferable vote election.
However, we tackle a more intricate problem in this work that cannot
be solved with the same techniques. Chilotti et al. [8] have con-
structed a LWE based voting system in detail, but assume that their
bulletin board is honest. We remove that restriction, and also get a
scheme that can handle more complex (yet compact) ballots.

1.2 Contributions

At a theoretical level, we are exploring the limits of practical ap-
plications of fully homomorphic encryption. The idea of FHE was
first proposed in 1978 [23], but was first properly realised with Gen-
try’s 2009 breakthrough [12]. There have been several proposed ap-
plications [1,20], but many of those are purely theoretical due to the
tremendous amount of redundant data that would be needed per user.
This application is realistic, yet pushing the boundaries of what FHE
at its current state can be applied to.

Next, this is a case study on how FHE could be used to make
future Norwegian elections both quantum-safe and more voter veri-
fiable. Our proposed protocol is borderline practical, at least taking
into account the number of zero knowledge proofs the existing proto-
col must check, and it can be further optimised by implementation ex-
perts. We provide some experimental data to give a rough estimate of
the computation efforts needed. There are still some primitives lack-
ing before this roadmap can be implemented completely. We expect
further progress in fully homomorphic encryption, which means that
this protocol can eventually become practical in the not-too-distant
future.

1.3 Organisation

The paper is organised as follows. The next section introduces lattice
cryptography, fully homomorphic encryption and the BGV scheme in

A roadmap to fully homomorphic elections 103

particular. We also discuss some of the primitives we will be using
throughout the paper.

Section 3 discusses Norwegian local elections and the security ex-
pectations by the public. There are many ways to count ballots, and
in Section 4 we describe one algorithm that consists of a mix of eas-
ily auditable procedures and some fairly simple circuits, where some
of the circuits carry out a partial audit of other procedures. This
is followed by a more formal discussion of the security model the
final protocol must satisfy. In Section 6, we use the already devel-
oped counting algorithm in a larger protocol, and apply encryption
to the data and evaluating the circuits homomorphically. After that,
in Section 7, we argue that this scheme is secure, and discuss how it
improves the previous versions. Finally, we discuss parameter selec-
tion, and give a rough idea of the order of magnitude of runtime if
this system is to be implemented.

2 Preliminaries
Lattices have long been important in cryptography, both as a tool
to attack systems and as basis for new cryptographic systems. Two
recent developments have made such lattice-based cryptography even
more important, namely the development of fully homomorphic en-
cryption (FHE) and the renewed interest in quantum-safe crypto-
graphic schemes.

Fully homomorphic encryption is a form of encryption that allows
one to do certain computations on encrypted data. While first defined
in 1978 [23], the first theoretical solution was Gentry’s breakthrough
2009 construction [12].

2.1 Fully homomorphic encryption

Fully homomorphic encryption allows us to evaluate a function de-
scribed by a circuit on a set of encrypted inputs, resulting in an
encryption of the result we would have gotten if we instead just com-
puted the circuit on (unencrypted) inputs. Compactness – that the
size of the output ciphertext is independent of the number of inputs

104 K. Gjøsteen and M. Strand

and the circuit evaluated – is needed to get interesting solutions.
Lattice problems such as (ring) learning with errors ((R)LWE)

are generally considered to be hard to solve, even for a large quantum
computer. Lattice cryptography has seen a tremendous development
since Regev [22] found a quantum reduction from the natural lattice
problems of finding the shortest vector (SVP) or finding a short basis
of independent vectors (SIVP), to LWE.

Several authors have used LWE and RLWE to create fully homo-
morphic encryption. The main ideas remain the same as in Gentry’s
original construction. The plaintext is masked with inner and outer
randomness, where the innermost is denoted as noise. One can then
typically perform additions and multiplications, though sometimes a
NAND gate must be used. However, for each operation, the noise
level grows. When it reaches the same size as the outer randomness,
the ciphertext is no longer decryptable. Multiplications are usually
expensive in terms of noise, causing the noise to grow quickly, while
additions are cheap.

The noise problem can sometimes be solved using a technique
called bootstrapping. Since the scheme is homomorphic, one can ap-
ply the decryption circuit to the ciphertext, but using the key in an
encrypted state. The result is a new encryption of the same value,
but where the noise is independent of the original noise level. One
can fine-tune the parameters such that the resulting ciphertext has a
lower noise level than the original one. However, the bootstrapping
process is computationally expensive, so it is more common to select
parameters based on the function one wants to compute, so as to
achieve a designated [multiplicative] depth (so-called levelled fully ho-
momorphic encryption). Many schemes have also provided solutions
for limiting the noise growth, increasing the practical depth that can
be reached without bootstrapping.

Formally, a FHE scheme consists of algorithms (Gen, Enc, Eval,
Dec). The unusual member of the set is Eval, which accepts a special
evaluation key evk, a circuit C and a number of ciphertexts c1, . . . cn
such that

Dec(sk,Eval(evk, C, c1, . . . , cn)) = C(Dec(sk, c1), . . . ,Dec(sk, cn)).
We will simplify this notation whenever it is convenient, and often

A roadmap to fully homomorphic elections 105

just express the circuit (or function) directly on the ciphertexts, even
when we really want them to be applied to the encrypted data.
Remark 1. We clarify some terminology for the benefit of the reader.
The term fully homomorphic encryption has two meanings, either
that the scheme in question can process any circuits of any depth
(typically by using bootstrapping) or that it can evaluate two oper-
ations, in contrast to group homomorphic schemes like ElGamal. In
principle, we only need a levelled homomorphic scheme, but will use
the word fully to denote the concept.

2.2 The BGV cryptosystem

The presentation of the circuits in this paper is fairly general, but we
have made sure to only use features supported by the BGV scheme.
We refer to the original publication [5] for the technical details, but
quickly introduce some of the high-level features provided by the
scheme.

Plaintext slots Following an idea of Smart and Vercauteren [26],
one can pack several plaintexts into a single ciphertext and do
SIMD operations (single-instruction multiple-data) on the vec-
tor of plaintexts. The advantage is that one saves space, and
that one can perform operations on tuples of data in the time it
would to do it on a single value. All slots must have the same
size. The plaintext space of the BGV scheme can thus be set to
any space Fn

q` for some integers q, ` and n, where n denotes the
number of slots.

Noise management The authors use a system of modulus reduc-
tion for each multiplication, such that the noise increases slower
than it would otherwise do. Hence, one can have smaller cipher-
texts. The number of times one can do the modulus reduction
decides the maximal multiplicative depth.

Key switching In addition to reducing the modulus, one can also
efficiently transform ciphertexts from one key to another. The
transformation key is dependent on both of the private keys,

106 K. Gjøsteen and M. Strand

so knowledge of one private key is not sufficient to produce the
switch key.

Note that these features together satisfy the setup requirements
in Section 5.1.

FHE has reached a level of maturity where it is practical for
some applications and security levels [10]. We expect performance
to increase still further. The BGV [5] cryptosystem has been imple-
mented by Halevi and Shoup [16], and among others, Microsoft has
also worked with implementations [19].

2.3 Tools
We will describe our counting algorithm in terms of a small set of
standard algorithms:

Eq On two values from F, it outputs 1 if they are equal, otherwise 0.

In If given a value a ∈ F and a set A ⊂ F, it outputs 1 if a ∈ A,
otherwise 0.

Normalise For any nonzero input from F, return 1. On 0, return 0.

It is possible to express these algorithms as circuits over any field.
A circuit for equality checking for the BGV scheme has been pro-

vided by Kim et al. [17]. We will denote it as a function

Eq(a, b) =
{

1 if a = b

0 otherwise.

The multiplicative depth for equality checking in the BGV scheme is
given as dlog(q− 1)e+ dlog `e where q is the characteristic of the field
and ` is the order of the extension. Although this will be a fairly high
number, most equality checks will turn out to run in parallell, which
will help keep the noise under control.

Define In(a, S) = ∑
s∈S Eq(a, s), which will return 1 if and only if

a is a member of set the S. Note that checking the ≤ operator can
be interpreted as a special membership test.

A roadmap to fully homomorphic elections 107

Normalisation can be done using the algorithm of Kim et al. [17],
which depends on the Frobenius automorphism x 7→ xq. This partic-
ular exponentiation can be done for free in the BGV system.

The most intricate primitive we need is an efficient zero knowledge
proof or argument for correct decryption. These are well known for
schemes such as ElGamal [7], but for FHE, they only become efficient
when applied to many ciphertexts concurrently [2,3]. However, much
of the work can be done ahead of time, and the protocol also supports
distributed decryption, which will essentially guarantee the security
of the complete scheme. Note that one possible instantiation of the
following protocol would only require the verifiable decryption of a
single ciphertext. Providing an efficient zero knowledge proof for that
case can still be considered an open problem.

We later provide optional sections sketching how to compute the
distribution of representatives using FHE. For that we need algo-
rithms for sorting and division by rational numbers. Emmadi et
al. [11] analysed a number of algorithms and concluded that Odd-Even
Merge sort would work best for the Smart-Vercauteren scheme [25].
It is reasonable that some of their results will apply to the BGV
scheme as well. Chung and Kim proposed that one can use a contin-
ued fraction representation of rational numbers to reduce the storage
requirement for rational numbers with a given precision, and also
described how to perform divisions [9]. Çetin et al. [6] have demon-
strated that it is possible to compute fractions and even square roots
by applying numerical methods to the encrypted data.

3 Norwegian elections

The main idea in this paper is to do most of the ballot processing as
computations on encrypted data. This means that we need to give
an arithmetic circuit for counting. In order for this circuit to make
sense, we first need to explain the mechanics of Norwegian elections in
some detail. In all Norwegian elections, each district elects multiple
members roughly as follows. Parties nominate lists of candidates for
each district. The voter chooses one of these party lists as their ballot.
Here we only discuss the details of the local elections, since these are

108 K. Gjøsteen and M. Strand

the most complicated and are also most realistic for renewed interest
in internet voting.

To vote in a municipal election, the voter must first pick a party
list. Choosing a given party list gives that party a certain number of
list votes. The total number of list votes in a district will determine
the number of representatives each party gets.

The voter can then give person votes to zero or more candidates on
the list. The number of person votes each candidate gets determines
which candidates are actually elected as members for that party.

The party may also prefer a subset of their candidates. These
candidates will then automatically get an additional number of person
votes equal to 25 % of the number of ballots submitted for that party.

Optionally, the voter can also write in a certain number of can-
didates from other party lists. Arbitrary write-ins are not allowed.
These candidates will then receive person votes. However, writing in
a candidate from a different party list will also transfer a list vote from
the voter’s party of choice to the party that the write-in candidate
belongs to.

Consider the example ballot from Figure 1. If the number of
members to be elected is 29, each submitted ballot will initially give
29 list votes to the indicated party, in this case the Crypto Party. But
on this ballot, the voter has listed four candidates from other lists,
which means that the Crypto Party only gets 25 list votes, while
the Hacker Party (HP) gets two list votes, and the Analyst Party
(AP) and the Eavesdropper Party (EP) get one list vote each. When
tallying, one first counts the list votes each party gets, and decide
how many representatives each party gets using a modified Sainte-
Laguë’s method. The original Sainte-Laguë’s method is to create a
table with one column for each party, and with each party’s number
of list votes written in the first row. In the ith row, the number
from the first row of the same column divided by 2i − 1 is written.
The k representatives to be elected are then distributed to the parties
with the k largest numbers. The modification used in Norway is that
the numbers in the first row are divided by 1.4 before distributing
candidates, a modification that slightly favours larger parties.

The next step when tallying is to decide which candidates are

A roadmap to fully homomorphic elections 109

Crypto Party
Candidate list for the local elections 2019

1. � Gaius Julius Caesar

2. � Giovan Battista Bellaso

3. � Al-Khalil ibn Ahmad al-Farahidi

4. � Auguste Kerckhoffs
...

34. � Charles Wheatstone

Candidates from other lists
NAME PARTY
Alan Turing HP
Konrad Zuse HP
Charles Babbage AP
Eve Mallory EP

Figure 1: An example ballot for a local election

110 K. Gjøsteen and M. Strand

actually elected. To do this, one counts all person votes given by
voters (either to a candidate on the party list, or by writing in a
candidate from another party list) and the person votes resulting
from party preference. The candidates are then ranked according to
the number of person votes received. In the event of a tie, the order
of the candidates on the party list is used.

Today’s manual counting is being done so that as to minimise the
number of discarded ballots. Inconsistent alterations to the ballot are
ignored, as long as the voter’s main intent remains clear. We strive
to achieve the same in this work. Our general rule will be that any
ballot that can be tied to a party, is registered as such. It will only
be completely invalidated if it is impossible to decide which party list
the voter wanted to choose. Interestingly, we get a large performance
benefit from this practice, in particular by stating that if the voter
writes in the same candidate from a different list multiple times, then
the candidate only receives a one extra vote, but multiple list votes
are transferred to the candidate’s party. We define the ideal counting
functionality to follow the same rule.

3.1 General security context
Privacy is important in Norwegian elections. The ballot should ob-
viously be confidential, but even the list of who voted is considered
confidential in Norway. In particular, this means that any voter veri-
fiable scheme that reveals the identities of the voters is unacceptable
in Norway.

A second constraint is coercion resistance. It seems the main de-
fence against coercion in Norway must be revoting, and the revoting
could possibly be paper revoting. Paper voting cannot involve any
secrets or other material from previous electronic voting, and a paper
ballot should also supercede any subsequent electronic ballot submis-
sion. Italian attacks are easy in Norway, since adding a random set of
marks to a ballot will most likely make it unique and have negligible
electoral effect. This means that we must avoid publishing complete
ballots, even for verification purposes. Today, the election authorities
publish lists for each municipality consisting of the number of bal-
lots for each party, list votes received and sent from the list, and the

A roadmap to fully homomorphic elections 111

number of write-ins and extra votes for each person. There are also
separate lists tracing the number of write-ins for each candidate from
the other party lists [18].

It seems that electronic voting must coexist with paper voting
for the forseeable future. This means that the electronic count must
somehow combine with the paper count before the final result is de-
clared. All paper votes must be digitalised and encrypted if one wants
to do an all-encrypted computation of the election result.

4 Counting algorithm

Recall the algorithms Eq, In and Normalise that we discussed in Sec-
tion 2. This section is dedicated to explaining how one can count
the ballots in the election, and expressing these algorithms as poly-
nomials over a sufficiently large field F, also known as circuits. These
circuits will be suitable for fully homomorphic encryption, which we
will apply in Section 6.

Let m be the number of parties taking part in the election and n
be the total number of candidates from all the parties. Furthermore,
let v be the maximal number of voters from the voting district, and
let k be the number of candidates. The voter may list up to k/4
candidates from other lists, which also places an upper bound on how
many list votes that may be transferred from the chosen party to
another.

4.1 Ballot expansion and verification

The first algorithm we describe is one that will take as input a ballot
tuple

b = (p, s1, . . . , snp , e1, . . . , en′),

where p is the index of the chosen party list. Assume there is a
canonical list of all candidates from all parties, and that each party
has no more than np candidates. Then s1 through snp are slots that
can be filled with (unique) indices for candidates belonging to party
p and that the voter wants to give a person vote. Finally, e1, . . . , en′

112 K. Gjøsteen and M. Strand

are the indices of the candidates from other lists representing ballot
write-ins.

This format is unsuitable for tallying, so we want to change it to
an expanded form. However, we prefer having the voter submitting
his ballot in the above way, due to ease of verification. Almost all
combinations of values will constitute a valid, or at least not harmful,
ballot, so we design the algorithm to tolerate small errors, and turn
a completely malformed ballot into a blank vote.

As output, we get the expanded ballot

eb = (p1, . . . , pm, p
′
1, . . . , p

′
m, p

′′
1, . . . , p

′′
m, c1, . . . , cn).

A valid ballot has the following characteristics

• Exactly one of the first m coordinates is 1, and the rest are 0.
The position of the 1 determines which party the voter selected.
Let the single 1 be in the ith position.

• At most one of the followingm places is non-zero, and if so holds
an integer counting the number of list votes to deduct from the
party. The non-zero number must be in position m+ i.

• The third section of m shows to which parties the deducted list
votes are distributed, under the conditions that they sum up to
the number of list votes given away, that the sum is smaller than
k/4, and that no list votes are distributed back to the party
chosen by the voter. In particular, this means that position
2m+ i must be 0.

• Finally, the last section consists of values in {0, 1}, where a 1
indicates that the voter have given the candidate a person vote
or as a write-in from a different list.

The zero vector is called the blank ballot.
We now develop the ballot expansion circuit, which is summarised

in Algorithm 1.

• We first want to identify the correct party on the ballot submit-
ted by the voter, and place a 1 in the correct coordinate. This is

A roadmap to fully homomorphic elections 113

Algorithm 1 Transform tuples and verify ballot
1: for i← 1 to m do
2: pi ← Eq(i, p)
3: ρ ← ∑m

i=1 pi
4: for i← 1 to m do
5: p′′i ← ρ

(∑n′
j=1 In(ej , Pi)

)

6: for i← 1 to m do
7: p′i ← Eq(i, p) ·∑m

j=1 p
′′
j

8: for i← 1 to n do
9: t1 ← Eq(i, e1) + . . .+ Eq(i, en′)

10: t2 ← Eq(i, s1) + . . .+ Eq(i, snp)
11: ci ← ρ · Normalise

(

(1− Eq(p, Pci))t1+
(Eq(p, Pci))t2

)

12: return (p1, . . . , pm, p′1, . . . , p
′
m, p

′′
1, . . . , p

′′
m, c1, . . . , cn)

straightforward since there can be at most one match between
an increasing index and a number provided by the voter. Note
that if the party indicated by the voter is out of range, then the
ballot will effectively become blank.

• We compute a value ρ, which is 1 if and only if the ballot con-
tains a valid party, and 0 otherwise. Since a ballot with an
invalid party should result in a blank ballot, this intermediate
result greatly simplifies the remaining computations.

• Next we compute all list votes for other parties, as described in
the third section above. Let {Pi} denote all parties taking part
in the election, and let p′′i be the number of list votes transferred
to party Pi. By abuse of notation, let Pi also denote the set of
indices for the candidates of that party. The number p′′i of list
votes transferred to party Pi is therefore a count of how many
of the candidates on the ballot that belong in Pi. We multiply
with ρ to ensure that the value is non-zero only if the voter has
selected a party.

114 K. Gjøsteen and M. Strand

• The number of outgoing votes is the sum of all the incoming list
votes to other parties. To ensure that the sum is in the correct
position, we do the equivalent of an if-statement. Using the
same technique as we did to place a 1 at the right party, we can
use that bit to select the right slot, and then scale it with the
sum of all p′′i .

• Finally, we correctly place the person votes and write-ins on
candidates. For each candidate i, let the bit t1 = 1 if and only
if i is equal to any of the write-in candidates e1, . . . , en′ , and let
bit t2 = 1 if and only if i is equal to any of the party candidates
s1, . . . , snp . These can be computed using two sums. The first
will be 0 or 1 by the same reason that only one party can be
selected. The second can be greater if the voter lists the same
candidate multiple times, so we eventually need to normalise the
whole sum. One can only give write-in votes if the candidate
belongs to a different party, so we must perform an inequality
check in front of t1, so ensure that the candidate i does not
belong to the party p. Likewise, only candidates belonging to
the party can receive person votes, so we do an equality check
in front of t2, which is 1 if and only if candidate i belongs in
the selected party p. Sum these two and normalise to 1, which
means that even if the voter wrote the same candidate multiple
times, it still only counts once, and a multiplication by ρ verifies
that a party list is chosen.

To summarise, the only way to invalidate a ballot is to choose a
party index out of bounds, and then the whole ballot is expanded
into the blank ballot. Assume p was out of range. Then ρ = 0, so
all p′′i = 0. Also, p′i can only be nonzero if some i equals the party
index. Hence, also all p′i will be zero when the party was invalid. For
the person votes, ρ will null all votes unless a valid party is chosen.
Otherwise, ρ = 1, and we verify that∑m

i=1 p
′′
i −

∑m
i=1 p

′
i = 0 by noting

that exactly one of Eq(i, p) will be 1.
Finally, we notice that each candidate at most gets a single person

vote, due to the normalisation, so the expanded ballot satisfies the
above validity requirements. This discussion can be summarised in

A roadmap to fully homomorphic elections 115

the following lemma.

Lemma 1. Let eb be the expansion of b under Algorithm 1. Then eb
is always a valid (or blank) ballot and represents the same vote as b
if b is valid.

4.2 Optional feature: Reject all malformed ballots
There is a possibility of inconsistency in the ballot if the voter lists
the same person from another party twice. The result will be that
the person is given only a single person vote, while several party votes
are transferred to that party. However, the voter is still bounded by
the maximal number of votes that can be transferred, and he could
achieve the same effect by listing a different candidate which was
either almost guaranteed a seat, or one with hardly any chance of
getting one.

This is not in keeping with the current voting regulations, but
showcases that variations with hardly any consequence, can influence
the computational complexity. We can catch this scenario by com-
puting

Normalise

∏

i≤j
(ei − ej)

and store the result in a verification bit ue that can be used to select
valid ballots.

Jumping ahead, we can accept the situation given in the previous
subsection if the behaviour is predictable and return codes are gener-
ated by the expanded ballot so that the voter can inspect the change.
The official software should never allow this malformed ballot to be
posted so a user would need to go out of its way to be able to submit
such a ballot.

4.3 Selecting ballots and tallying
Whenever a new ballot is submitted, the ballot box expands it using
Algorithm 1 and stores it with the identity of the voter and a strictly
increasing sequence number. Recall that we need to cancel all current
and future electronic votes if a person votes on paper. If the voter

116 K. Gjøsteen and M. Strand

submits a paper ballot, the ballot box creates a blank ballot under
the voter’s identity and assigns a greater sequence number than will
be used for any real ballot. For simplicity, we denote that number by
∞.

The ballot box replaces all identities with pseudonyms once voting
has closed, and sorts the list of tuples lexicographically, i.e. first by
pseudonym pv and then sequence number s. The list is then randomly
shifted, and one should consider the first element as the ‘next’ element
of the last item.

At the end, the latest ballot from each person is to be selected as
the final, and all others should be discarded. We therefore introduce a
function to verify that all entries from the identity are correctly sorted
by sequence number. For identities vi, vj and timestamps si, sj , define

f(vi, vj , si, sj) =
{

1 if vi 6= vj or si < sj ; and
0 otherwise

and apply f to consecutive tuples in the list. We get 0 if there is
an error in the sorting by timestamps. All values should be 1, so we
can multiply all u, and the product will be 1 if and only if the list
is correctly sorted. We return to how we verify that the ballots from
the same voter have not been partitioned and spread out in order to
count more than one.

Next we want to select the last entry for each person. Define

g(vi, vj) =
{

1 vi 6= vj ; and
0 otherwise,

and run g over all consecutive entries. It will only output 1 for the
last entry of each identity, and we can multiply the ballots with the
output of g to select exactly the ballots those that are to be counted-

To complete the tally now, one can simply compute the sum of all
submitted ballots, where each is scaled by the bit described above.

Lemma 2. Consider the following ideal functionalities. Let select
be a function from the set of paper ballots and lists of (v, s, b), to
lists of b. It correctly chooses the ballots that should be counted. The

A roadmap to fully homomorphic elections 117

Algorithm 2 Storing and selecting ballots to be tallied
Precondition: The ballot box has initialised a list L of ballots
Postcondition: u = 1

1: function Add-Ballot(v, eb)
v is voter identity, b is the ballot, eb is the expanded ballot

2: Create tuple (v, s, b, eb), s.t. s greater than any finite s in L
3: Insert (v, s, b, eb) in L

4: function Cancel-Electronic-Ballots({v})
5: Let b be a blank vote and eb be the expanded blank ballot
6: for all v in {v} do
7: Add tuple (v,∞, b, eb) to L.

8: function Prepare-Ballot-List
L0 is the list of ballots

9: for all unique identities v do
10: pv ← (random pseudonym)
11: Replace all occurrences of v with pv

L is the new list {(v, s, b, eb)} of length N
12: Sort L lexicographically and send privately to the auditor
13: k ← Random(0, . . . , N − 1)
14: Set L = (tuplek, tuplek+1, . . . , tupleN−1, tuple0, . . . , tuplek−1)

15: function Check-Correctness-Of-Ballot-List
16: for all vi do
17: ui ← f(vi, vi+1 mod N , si, si+1 mod N)
18: u ← ∏

i ui
19: for all (vi, bi) do
20: zi ← g(vi, vi+1 mod N)
21: eb′i ← zi ebi

22: return (eb′1, . . . , eb′l, u)

23: function Tally(L′ = (eb′1, . . . , eb′l))
24: return ∑l

i=1 eb
′
i

118 K. Gjøsteen and M. Strand

function tally takes as input a list {b} of ballots and returns the cor-
rect result. Their concatenation then computes the correct result from
all the electronically submitted ballots after cancelling with respect to
paper ballots. Let res denote their result.

Let C1 be the circuit described in Algorithm 1, let C2 be the circuit
we get from Algorithm 2 up to and including Check-Correctness-
Of-Ballot-List, and let C3 be the final tallying circuit. Futhermore,
let L1 be a list {(v, s, b)}. Let L2 = ({(v, s, b, eb)} = C1(L1), (L3, u) =
C2(L2, {v}paper) and r = C3(L3). If u = 1 and L3 is correctly sorted,
then res = r.

The correctness of C1 follows from Lemma 1, the rest follows from
the above discussion.

4.4 Optional: Computing the distribution of represen-
tatives

Recall from Section 2.3 and 3 that it is theoretically possible to com-
pute the media-ready outcome of the election. We briefly sketch how.

From previously in the section we have a tuple

eb = (p1, . . . , pm, p
′
1, . . . , p

′
m, p

′′
1, . . . , p

′′
m, c1, . . . , cn),

which now is summed. The first block of coordinates now says how
many times each list was chosen by the voters. We can convert this
into list votes by multiplying by the number of seats k in the council.
The final number of list votes for party i is then

li = k · pi − p′i + p′′i .

Compute all such numbers, divide by the Sainte-Laguë numbers 1.4,
3, 5, 7, . . . and create a long list (with all parties) consisting of pairs
of a party identifier p and the divisions of li. We can do this since
there exists a circuit to handle rational numbers. Finally sort the list
descending by the divisions using the sorting circuit. The top k pairs
then identify the seat allocation.

To pair seats and candidates, cut the list of candidates into party
lists. Some candidates receive the extra votes, 25 % of the number
pi. Add this to the respective candidates and their person votes and
write-in votes, and sort by number of votes.

A roadmap to fully homomorphic elections 119

5 Security model
We model our system with the same players that already existed in
the Norwegian e-voting project, namely the voter V with her com-
puter and mobile phone, a ballot box B, a receipt generator R, a
decryption service D and an auditor A. We quickly explain the exist-
ing motivation before proceeding. For more details, see Gjøsteen [14].

A premise for Gjøsteen’s work is that the users may not be in con-
trol of their own equipment, for instance due to malware. One should
therefore distinguish the voter’s intention and what the computer ac-
tually does. When the ballot box receives an encrypted ballot from
the voter’s computer, it transforms and partially decrypts the ballot,
and forwards it to the receipt generator. Then the transformed ballot
is completely decrypted, and the correct receipt code is sent by SMS
to the voter’s mobile phone.

Both the ballot box and the receipt generator give the auditor
a log of everything they have seen, so that the auditor can compare
logs and make sure no one of them is ignoring information seen by the
other. Any information dropped by the ballot box should ideally be
detected by the voter, because of a text message. (The soundness of
this protocol is based on an assumption that the phone is independent
of the device used to vote. While this may have been an acceptable
assumption when the system was first introduced, it is less so today.
Finding another solution may be necessary, but is outside the scope
of this paper.)

Next consider what happens when the election closes. Then the
ballot box should provide ciphertexts to the decryption service, which
outputs the public result of the election. The auditor verifies that the
decryption service got the right ciphertexts from the ballot box, and
that the output was correct.

5.1 Setup assumptions

We assume the existence of the following algorithms.

K takes in a security parameter 1λ, and outputs a tuple (pk1, sk1,
sk2, evk, tk), where pk1 is the public encryption key, sk1 and

120 K. Gjøsteen and M. Strand

sk2 are private decryption keys, evk is an evaluation key and tk
is a transformation key to switch from decryption under sk1 to
sk2.

S takes in all voters {vi} within the vote counting district and sys-
tem key material and outputs a family of personalised functions
{hvi} and other receipt material described in Section 6.1.1.

E takes in pk1 and a ballot b and outputs a ciphertext c.

T takes in a ciphertext c which can be decrypted by sk1 and a trans-
formation key tk, and outputs a ciphertext c′ that can be de-
crypted by sk2.

Eval takes in an allowed circuit C, ciphertexts c1, . . . , cn and the eval-
uation key evk, and outputs a ciphertext c′ which encrypts the
output of C on the decryptions of c1, . . . , cn.

D takes in a ciphertext and a corresponding decryption key and out-
puts a message.

5.2 Security requirements for counting

The security requirements can be summarised in the following list.
The definitions are close to those of the original protocol, in order
to be able to compare apples and apples. However, some properties
must necessarily be changed to correspond to our updated model.
The formal definitions are available in Gjøsteen [14].

D-privacy The decryption service should not be able to correlate its
input to voter identities.
Generate parameters. Let V be a voter, let {ci} be all cipher-
texts containing ballots, and let c′ be the output of the tally
circuit. The distribution of c′ should be independent of V .

B-privacy An adversary that knows the transformation key should
not be able to say anything about the content of the ciphertext
he sees.

A roadmap to fully homomorphic elections 121

R-privacy An adversary that controls the pre-code decryption key
and sees many transformed encryptions of valid ballots should
not be able to say anything non-trivial about the content of
those encryptions.

One can formalise the notion by letting an adversary with access
to the encryption key and the decryption key of transformed
ballots submit a sequence of ballots to the simulator, who in
turn encrypts either the sequence or the sequence under some
permutation. The simulator transforms the ballots, and sends
back original ciphertexts and transformed ciphertexts to the
adversary, who must distinguish.

A-privacy An adversary that sees the insertion of blank ballots, can
correlate all ciphertexts to real identities, and verifies all de-
cryptions should not be able to learn how anyone voted.

This definition differs considerably from previous work. We play
the following game between a simulator and an adversary, and
probability of the adversary winning should be close to 1/2.
The simulator selects a random bit b, and runs K and S. The
adversary gets pk1, and produces a set {Vi} of voters and two
sets {m0

i }, {m1
i } of corresponding ballots that will create iden-

tical election outcomes. The simulator uses the set {(Vi,mb
i)}

to simulate an election with the adversary playing the part of
the auditor. The adversary outputs a bit b′ and wins if b = b′.
The probability that the adversary wins should be close to 1/2.

B-integrity An adversary that knows all the key material, and can
choose the per-voter key material, should not be able to create
an identity, a ciphertext and a transformed ciphertext such that
the transformed ciphertext decryption is inconsistent with the
decryption of the ciphertext.

D-integrity The decryption service must not be able to alter the
election outcome.

The focus in this work will be on D/A-privacy and D-integrity.

122 K. Gjøsteen and M. Strand

6 The voting protocol

The previous sections established a correct circuit for computing the
election result. However, the sensitive data were left completely un-
protected, and there is no overall protocol. In this section, we describe
that protocol and apply a fully homomorphic encryption scheme to
the data, thus securing them, while making it possible to still do all
computations. The main idea is that anyone can compute the algo-
rithms themselves, and verify that they reach the same results.

6.1 Protocol description

The protocol consists of a the same players as in Gjøsteen’s original
protocol [14].

• The voter’s PC encrypts the ballot and sends it to the ballot
box over a private channel.

• The ballot box relays the ballot to the return code generator,
which signs it, and returns the signature to the ballot box, which
also signs it, and returns both signatures to the voter’s PC.
Hence, the ballot has been seen by two independent players.

• The ballot box expands the ballot and stores it in accordingly.
The return code generator and the ballot box runs the sub-
protocol to generate return codes to the voter, as sketched be-
low.

• The ballot box runs the functions in Algorithm 2, and finally
sends the output from Tally to the decryption service.

• The decryption service decrypts using multiparty computations
and produces a proof of decryption [3].

• The auditor receives logs from all other centralised players, ver-
ifies any proofs, and runs the verification procedures outlined
below.

A roadmap to fully homomorphic elections 123

6.1.1 Return codes

The voter is to get a receipt to prove that the ballot has been received
and processed correctly. Without specification, we assume that there
for each voter v exists a one-way function hv that produces what we
call pre-codes.

Ahead of the election, the key generation service applies hv pri-
vately to all possible choices made by the voter. Next, human readable
codes are associated to the output of hv, and the table of choices and
human readable codes is sent to the voter. Send the table of pre-codes
and human readable codes to the receipt generator. Finally, the key
generation service erases all information.

Upon receiving a ballot b from a voter v, the ballot box applies hv
to the expanded ballot eb, and sends hv(eb) to the receipt generator.
The receipt generator looks up the human readable code, and sends
it to the voter, who verifies.

Return codes are not the main focus of this paper, so they will
not be discussed further.

6.1.2 Verification

To verify the outcome is correct, namely that the adversary has not
altered any of the ballots, an auditor should complete the following
steps. At the current point, we assume that all computations have
been performed honestly, and we will return to that assumption at a
later stage in the paper.

1. Verify that blank records with sequence number ∞ have been
inserted for each voter submitting a paper ballot.

2. Check that u generated by f is 1, which guarantees correct
sorting.

6.2 Encrypting data
The following list describes what data should be encrypted, and which
data that must be kept secret. The complete overview is shown in
Figure 6.2.

124 K. Gjøsteen and M. Strand

co
nt

in
uo

us
ly

af
te

rv
ot

in
g

en
ds

pu
bl

ish

. . .
(v
i,
s i
,b
i,
k
i)

. . .

. . .
(v
i,
s i
,b
i,
eb
i)

. . .

. . .
(v
i,
∞
,b

lan
k,
k
i)

. . .

. . .
(v
i,
h

(e
b i

))
. . .

. . .
(p
v i
,s
i,
b i
,e
b i

)
. . .

(p
v i

′ ,
s i

′ ,
b i
,e
b i

′)
(p
v i

′ ,
g i

′ ,
eb
i′
,s
i′
)

...

. . .
(p
v i

′ ,
s i

′ ,
eb
i′
,z
i′
)

. . .

∑
l i′

=
1
z i

′ e
b i

′

ex
pa

nd
ps
eu

do
ny

m
s

pr
e-
co
de

s
fo
r
e-
vo

te
s

ex
pa

nd

so
rt

cy
cl
ic

sh
ift

se
le
ct

cu
t

Fi
gu

re
2:

A
n
ov
er
vi
ew

ov
er

th
e
co
m
pl
et
e
sy
st
em

.
Le

ge
nd

:R
ed

–
A
ES

;b
lu
e
–
BG

V
;G

re
en

–
BG

V
un

de
r

ne
w

ke
y

A roadmap to fully homomorphic elections 125

1. The voter encrypts his ballot using AES, and appends the AES
key k encrypted under BGV.

2. The ballot box converts from AES to BGV [13], and computes
Algorithm 1 on the encrypted data.

3. In Algorithm 2, the voter identity is kept secret, while the ballot
is stored in its encrypted form. The shuffled list of identities is
sent to the auditor through a secure channel. The sequence
numbers must be encrypted, and be published along with the
original AES ciphertexts with encrypted keys.

4. Finally, perform a verifiable decryption of the result and the u
generated from the sorting verification.

Remark 2. If one opts to compute the validity bit ue, one should
consider decrypting it for each ballot, to save multiplicative depth.

7 Security
We verify that our scheme satisfies the security requirements from
Section 5.2.

Theorem 1. The voting system satisfies A-privacy and D-privacy.

Proof. Recall the definitions in Section 5.2. D-privacy follows from
the fact that the tally circuit outputs a single ciphertext that contains
the result, as well as the sorting verification bit. Since the circuits
are correct, the decryption reveals nothing else than what is revealed
by the election result, which is independent of identities.

For A-privacy, assume we have an adversary with a non-negligible
advantage. We can then build a distinguisher with non-negligible
advantage in the IND-CPA game for the BGV cryptosystem. Upon
receiving the two sets og ballots from the adversary {m0

i }, {m1
i }, use

the IND-CPA simulator to encrypt the ballots on behalf of the A-
privacy simulator instead of using AES and then decrypting homo-
morphically into BGV. The adversary can then detect which set was
used to generate the ballots. Use the response from the adversary as
response to the IND-CPA challenge.

126 K. Gjøsteen and M. Strand

The integrity follows directly from the correctness of the circuits.

Theorem 2. If the auditor checks that the blank ballots have been
added correctly, that the sorting is correct, all public computations
and the proof of decryption, then the election result is correct. This
implies D-integrity.

We now discuss some of the less quantifiable security properties we
achieve. Consider public verifiability, which possibly was the largest
drawback in the original system used in Norway. Originally, the users
could verify that the ballot was correctly stored in the ballot box,
but after that, they had to trust the auditor completely. Our gap
in verifiability lies in the selection of votes to be counted, where a
corrupt ballot box may insert fake votes that a corrupt auditor may
choose to ignore. An honest auditor should either notice that elec-
tronic votes lack a valid digital signature, or that fake paper votes
have been inserted. Even with this gap, however, our proposal is a
significant improvement on previous schemes used in Norway, since
any voter now can compute the election result based on the published
ciphertexts, and then get a verified decryption of that result.

We defend against coercion by letting a voter revote electronically
any number of times, and decreeing that a paper ballot will override
any earlier or later electronic votes. This is within the requirement of
the Norwegian Election Act, which states that “[t]he purpose of this
Act is to establish such conditions that citizens shall be able to elect
their representatives to the Storting, county councils and municipal
councils by means of a secret ballot in free and direct elections.” [27]
Let us now consider how a coercer could be able to succeed.

It is clear that any coercer cooperating with a corrupt ballot box
or auditor will be able to defeat revoting as an anti-coercion strategy.
We therefore assume a coercer that sits next to the voter as she casts
her ballot, and assume that the coercer is also able to record the
precise ciphertext, and himself transform it into the FHE ciphertext
ci that will appear in the public records.

If the voter now revotes electronically, and the coercer afterwards
returns and forces her to vote under surveillance again, then the public
list of ciphertexts will reveal that the voter revoted. However, any

A roadmap to fully homomorphic elections 127

paper vote will be sorted after the last electronic vote, so it cannot
be discovered by the adversary. Also note that since the identities
are replaced with pseudonyms and then sorted (while still encrypted)
the attacker cannot guarantee that a paper vote will be sandwiched
between an electronic vote and the first vote of someone of whom he
knows the identity, making the paper ballot truly anonymous.

8 Parameter selection
Using the above algorithms, we can estimate the parameters needed
for the protocol. For a conservative estimate, we can look at the
numbers for the largest municipality, Oslo. There are about 500,000
eligible voters, and the last local election saw 17 different party lists
with a total of 659 candidates. The city council consists of 59 mem-
bers. This means that the voter can list at most 15 names from other
parties on her ballot, so the greatest number we need to handle is
about 7,500,000 ≈ 223. Then equality checks will need a depth 23
circuit. We can now compute how much depth we will need after
converting from the symmetric ciphertext.

• p′′i can be computed with many equality checks in parallell, and
must be multiplied to a second equality check, hence depth 24.
For pi, we need a maximum depth of 23.

• p′i is one equality check multiplied with a sum of p′′i , so we need
24 multiplications. The candidate slots are also the result of a
multiplication of two equality checks.

• If we wish to compute the validity check, we require
(15

2
)
mul-

tiplications. However, they can be arranged in a tree of depth
7.

• Each value ũi requires an equality check and an inequality check.
After that, all such ciphertexts must be multiplied, which can
be done with depth of approximately 20.

• The selection bit z̃i takes a single comparison, and is multiplied
to the rest of the ballot, adding one level to some of the previous
results.

128 K. Gjøsteen and M. Strand

In addition comes the depth required to send the receipt, but that is
dependent of the function employed to generate the return codes.

Finally, we can conclude that no part of the computation requires
a depth greater than 50.

The number of slots needed in the Oslo case is 3 · 17 + 659 = 710.
We ran the bundled general test program of HElib [15, 16] with

the above parameters on a server running Ubuntu 14.04 on Intel Xeon
2.67 GHz processors with a total of 24 cores and 256 GB of memory.
The program ran the key generation on a single core, and used a
maximum of 8 cores for some sample ciphertext operations. The
maximum memory usage was in the order of 20 GB. The complete
process took 4:52 minutes, with key generation taking about half of
that time. While this order of magnitude is unreasonable for a single
voter, it may be feasible for an election system, as long as the feedback
to the voter is sufficiently quick. Implementing the above algorithms
efficiently is an open problem.

Acknowledgements The authors wish to thank the anonymous
reviewers of Voting’17 for constructive and useful suggestions.

References
[1] Frederik Armknecht, Colin Boyd, Christopher Carr, Kristian

Gjøsteen, Angela Jäschke, Christian A. Reuter, and Martin
Strand. A guide to fully homomorphic encryption. Cryptology
ePrint Archive, Report 2015/1192, 2015. http://eprint.iacr.
org/.

[2] Carsten Baum, Ivan Damgård, Tomas Toft, and RasmusWinther
Zakarias. Better preprocessing for secure multiparty computa-
tion. In Mark Manulis, Ahmad-Reza Sadeghi, and Steve Schnei-
der, editors, Applied Cryptography and Network Security - 14th
International Conference, ACNS 2016, volume 9696 of Lecture
Notes in Computer Science, pages 327–345. Springer, 2016.

[3] Carsten Baum, Ivan Damgård, Sabine Oechsner, and Chris
Peikert. Efficient commitments and zero-knowledge protocols

A roadmap to fully homomorphic elections 129

from ring-sis with applications to lattice-based threshold cryp-
tosystems. Cryptology ePrint Archive, Report 2016/997, 2016.
http://eprint.iacr.org/2016/997.

[4] Josh Benaloh, Tal Moran, Lee Naish, Kim Ramchen, and
Vanessa Teague. Shuffle-sum: coercion-resistant verifiable tal-
lying for STV voting. IEEE Trans. Information Forensics and
Security, 4(4):685–698, 2009.

[5] Zvika Brakerski, Craig Gentry, and Vinod Vaikuntanathan. Fully
homomorphic encryption without bootstrapping. Electronic Col-
loquium on Computational Complexity (ECCC), 18:111, 2011.

[6] Gizem S. Cetin, Yarkin Doroz, Berk Sunar, and William J.
Martin. Arithmetic using word-wise homomorphic encryption.
Cryptology ePrint Archive, Report 2015/1195, 2015. http:
//eprint.iacr.org/2015/1195.

[7] David Chaum and Torben P. Pedersen. Wallet databases with
observers. In Ernest F. Brickell, editor, Advances in Cryptology -
CRYPTO ’92, volume 740 of Lecture Notes in Computer Science,
pages 89–105. Springer, 1992.

[8] Ilaria Chillotti, Nicolas Gama, Mariya Georgieva, and Malika
Izabachène. A homomorphic LWE based e-voting scheme. In
Tsuyoshi Takagi, editor, Post-Quantum Cryptography - 7th In-
ternational Workshop, PQCrypto 2016, volume 9606 of Lecture
Notes in Computer Science, pages 245–265. Springer, 2016.

[9] HeeWon Chung and Myungsun Kim. Encoding rational numbers
for FHE-based applications. Cryptology ePrint Archive, Report
2016/344, 2016. http://eprint.iacr.org/.

[10] Nathan Dowlin, Ran Gilad-Bachrach, Kim Laine, Kristin Lauter,
Michael Naehrig, and John Wernsing. Cryptonets: Applying
neural networks to encrypted data with high throughput and
accuracy. Technical report, Microsoft Research, February 2016.

130 K. Gjøsteen and M. Strand

[11] Nitesh Emmadi, Praveen Gauravaram, Harika Narumanchi, and
Habeeb Syed. Updates on sorting of fully homomorphic en-
crypted data. Cryptology ePrint Archive, Report 2015/995,
2015. http://eprint.iacr.org/.

[12] Craig Gentry. A fully homomorphic encryption scheme. PhD
thesis, Stanford University, 2009. crypto.stanford.edu/craig.

[13] Craig Gentry, Shai Halevi, and Nigel P. Smart. Homomorphic
evaluation of the AES circuit. In Reihaneh Safavi-Naini and
Ran Canetti, editors, Advances in Cryptology – CRYPTO 2012,
volume 7417 of Lecture Notes in Computer Science, pages 850–
867. Springer, 2012.

[14] Kristian Gjøsteen. The Norwegian internet voting protocol.
Cryptology ePrint Archive, Report 2013/473, 2013. http://
eprint.iacr.org/.

[15] Shai Halevi and Victor Shoup. Algorithms in HElib. In Juan A.
Garay and Rosario Gennaro, editors, Advances in Cryptology
- CRYPTO 2014, volume 8616 of Lecture Notes in Computer
Science, pages 554–571. Springer, 2014.

[16] Shai Halevi and Victor Shoup. Bootstrapping for HElib. In
Elisabeth Oswald and Marc Fischlin, editors, Advances in Cryp-
tology – EUROCRYPT 2015, volume 9056 of Lecture Notes in
Computer Science, pages 641–670. Springer, 2015.

[17] M. Kim, H. T. Lee, S. Ling, and H. Wang. On the efficiency of
FHE-based private queries. IEEE Transactions on Dependable
and Secure Computing, PP(99), 2016.

[18] Oslo kommune. Valgresultater 2015 - statistikk, 2015. https:
//www.oslo.kommune.no/politikk-og-administrasjon/
politikk/valg-2017/statistikk/valgresultater-2015,
accessed 2017-10-11.

[19] Kristin Lauter. Practical applications of homomorphic encryp-
tion, 2015.

A roadmap to fully homomorphic elections 131

[20] Michael Naehrig, Kristin E. Lauter, and Vinod Vaikuntanathan.
Can homomorphic encryption be practical? In Christian Cachin
and Thomas Ristenpart, editors, Proceedings of the 3rd ACM
Cloud Computing Security Workshop, CCSW, pages 113–124.
ACM, 2011.

[21] OSCE Office for Democratic Institutions and Human Rights.
Norway, Parliamentary Elections 9 September 2013, Final Re-
port. Technical report, dec 2013.

[22] Oded Regev. On lattices, learning with errors, random linear
codes, and cryptography. In Harold N. Gabow and Ronald Fa-
gin, editors, Proceedings of the 37th Annual ACM Symposium on
Theory of Computing, pages 84–93. ACM, 2005.

[23] Ronald Rivest, Leonard Adleman, and Michael Dertouzos. On
data banks and privacy homomorphisms. Foundations of Secure
Computation, Academia Press, pages 169–179, 1978.

[24] Kristine Salamonsen. A security analysis of the helios voting
protocol and application to the norwegian county election, 2014.

[25] Nigel P. Smart and Frederik Vercauteren. Fully homomorphic
encryption with relatively small key and ciphertext sizes. In
Phong Q. Nguyen and David Pointcheval, editors, Public Key
Cryptography – PKC 2010, volume 6056 of Lecture Notes in Com-
puter Science, pages 420–443. Springer, 2010.

[26] Nigel P. Smart and Frederik Vercauteren. Fully homomorphic
SIMD operations. Des. Codes Cryptography, 71(1):57–81, 2014.

[27] Lov om valg til stortinget, fylkesting og kommunestyrer
(valgloven). http://lovdata.no, sep 2002. Translation at
https://www.regjeringen.no/globalassets/upload/KRD/
Kampanjer/valgportal/Regelverk/Representation_of_the_
People_Act170609.pdf.

132 K. Gjøsteen and M. Strand

Paper iv

A verifiable shuffle for the GSW cryptosystem
Martin Strand

ePrint 2018/027, To appear in the proceedings of Voting’18:
3rd Workshop on Advances in Secure Electronic Voting

A verifiable shuffle for the GSW cryptosystem

Martin Strand

Department of Mathematical Sciences, NTNU
martin.strand@ntnu.no

Abstract

We provide the first verifiable shuffle specifically for fully ho-
momorphic schemes. A verifiable shuffle is a way to ensure that
if a node receives and sends encrypted lists, the content will be
the same, even though no adversary can trace individual list
items through the node. Shuffles are useful in e-voting, traffic
routing and other applications.

We build our shuffle on the ideas and techniques of Groth’s
2010 shuffle, but make necessary modifications for a less ideal
setting where the randomness and ciphertexts admit no group
structure.

The protocol relies heavily on the properties of the so-called
gadget matrices, so we have included a detailed introduction to
these.

Keywords: verifiable shuffle, fully homomorphic encryp-
tion, post-quantum

1 Introduction
A verifiable shuffle is used to prove that two sets of ciphertexts will
decrypt to the same values, but without revealing how the sets relate.
Such shuffles are well-known for group homomorphic schemes, and are
still being developed and improved. Today, shuffles are particularly
useful in e-voting and mixnets, in order to make it hard to correlate
the input and the output of a node.

135

Fully homomorphic encryption has also been suggested as a use-
ful primitive for both e-voting and private network routing. Complex
voting systems in particular can take advantage of the features of fully
homomorphic encryption, but the FHE toolbox is still missing a num-
ber of useful protocols. Recent development have brought shuffling
for FHE within reach.

Our result starts from Groth’s 2010 shuffle [10], which uses an idea
from Neff [14]. A polynomial (X−x1)(X−x2) · · · (X−xn) is obviously
unchanged when the roots are permuted. One can then ask the prover
to evaluate the polynomial at random points. The probability of two
nonidentical polynomials evaluating to the same value at a random
point is negligible. While later development have resulted in even
more efficient protocols, Groth’s 2010 approach has the advantage of
simplicity and that there are few compromises: the protocol satisfies a
standard soundness condition and it is honest-verifier zero knowledge.
We return to the details in Section 2.

The polynomial mentioned above is hidden in a subprotocol which
is used to prove correctness of a shuffle of known content. The subpro-
tocol is completely independent of the encryption scheme, and uses
only a homomorphic commitment scheme. It is important to note that
the commitment scheme need only be homomorphic with respect to
a single operation. We return to the selection of such schemes. The
protocol is then completed by binding the secret data – which we
want to prove the claim for – to the known content for which one can
prove the relation.

Groth’s protocol depends crucially on the fact that some group
homomorphic schemes are homomorphic both with respect to the
message and the randomness. For instance, the product of two El-
Gamal ciphertexts with messages m1 and m2 and randomness r1 and
r2, will be a new ciphertext encrypting m1m2 using r1 + r2 as ran-
domness. Generally, a necessary requirement for the original shuffle
is that the equation

Enc(m0 ⊕M m1; r0 ⊕R r1) = Enc(m0; r0)⊕C Enc(m1; r1).
holds, where ⊕M, ⊕R and ⊕C are the algebraic operations used in the
message, randomness and ciphertext groups respectively. Note that
r1 ⊕ r2 is an equally likely randomness as either r1 or r2.

136 M. Strand

The noise-based homomorphic schemes do not satisfy the above
requirements, since the ciphertext spaces usually are far from being
groups at all. The reason is the noise management; even sufficiently
many additions will eventually make the ciphertext decrypt to the
wrong value, there need not be an identity element, and associativity
may not hold, especially for multiplication in combination with noise
management techniques. In fact, the Gentry-Sahai-Waters scheme
even exploits this property to minimise the noise growth [9].

Furthermore, the homomorphic property does in general not hold
concurrently for the messages and the randomisers. It can, however,
be possible to compute the noise after an operation for certain simple
cases. We show that the abelian group requirement is not necessary,
so that a variant of the original protocol is secure also for a noise-based
homomorphic scheme.

The final issue is to take advantage of the quantum security of the
lattice based encryption schemes, and then make the protocol future-
proof. The secrecy requirements for verifiable shuffles is long-term,
while soundness is only short-term. This allows us to achieve security
against a potential future quantum adversary using a perfectly hiding
commitment scheme, since the computational binding property is only
necessary until the proof has been verified.

However, using a lattice based commitment scheme by Baum et
al. [3], we can also clear the protocol completely of classic cryptog-
raphy.

1.1 A naive approach

Recall the polynomial (X−x1)(X−x2) · · · (X−xn), where the roots
x1, x2, . . . , xn are the secret data to be shuffled. Assume we have two
sets of ciphertexts, say {Ei} and {ei}, and some secret permutation
π such that Dec(Ei) = Dec(eπ(i)). The straightforward approach to
shuffling using fully homomorphic encryption is to compare the two
polynomials

P1(X) = (X − e1)(X − e2) · · · (X − en)
P2(X) = (X − E1)(X − E2) · · · (X − En)

A verifiable shuffle for the GSW cryptosystem 137

by requiring the prover to demonstrate that the ciphertext P2(ei)
for one or more i given by the verifier decrypts to 0. Such proofs
exist [3, 5], given that the prover has decryption capabilities. Also,
it would be straightforward to verify this protocol using multilinear
maps [7] with their zero-test abilities. However, at the time of writ-
ing, all multilinear map candidates are broken for this application [1].
Additionally, this computation would require a very deep circuit, i.e.
high degree polynomials, which with today’s FHE techniques is for-
biddingly expensive.

1.2 Related work

Independently, Costa, Martínez and Morillo [6] have published a shuf-
fle for lattice based schemes. Their shuffle is based on an idea of
Wikström using permutation matrices. Unfortunately, one cannot
guarantee the secrecy of the shuffle due to lack of circuit privacy for
their re-encryption procedure. They observe that the RLWE scheme
is additively homomorphic, and suggest to re-encrypt by adding an
encryption of 0. This idea is sound for group homomorphic schemes
since the randomness is near-uniformly distributed over the group.
With noise-based schemes, the randomness is typically a Gaussian,
so decryption and a following analysis of the noise term can reveal
extra information about the ciphertext. As a consequence, the per-
mutation can leak from the ciphertexts regardless of the properties of
the zero-knowledge protocol for which the authors provide a proof.

1.3 Our contribution

Our main contribution is the first adaptation of a verifiable shuffle
specifically for a FHE cryptosystem under the assumption of equal
noise levels in the input ciphertexts. The efficiency is mostly affected
by the inherent limitations of the cryptosystem. The assumption can
if necessary be met using bootstrapping.

A second contribution is a detailed exposition of the properties of
the gadget matrix, and it is our hope that it can be useful for others
who need to work with the details of the GSW ciphertexts.

138 M. Strand

1.4 Outline

We have introduced the main ideas here in Section 1. The upcom-
ing section will in turn describe the concepts we need to build our
protocol, such as gadget matrices, the GSW cryptosystem, commit-
ment schemes, zero-knowledge protocols, and Groth’s original shuffle.
Then, in Section 3, we describe our modifications and present the
shuffle in full, including a proof of it being a zero-knowledge argu-
ment.

2 Preliminaries
This section introduces the concepts and technical terms needed in
this paper to successfully use the Groth shuffle on GSW ciphertexts.
Before we discuss the cryptosystem, we look at gadget matrices in
detail.

Following the the description of GSW, we will discuss commit-
ment schemes, zero-knowledge proofs and Groth’s verifiable shuffle
protocol.

2.1 Gadget matrices

Much of the notation will follow Alperin-Sheriff and Peikert [2]. As-
sume we work in a field Zq = Z/qZ, and let ` = dlog2 qe. One can
then define the gadget vector ~g ∈ Z`q as

1
2
4
...

2`−1

For any a ∈ Zq, it is clear that there exist many vectors ~x ∈ Z`q
such that 〈~g, ~x〉 = a. In particular, the vector ~x can be the binary
decomposition of a, with all entries 0 or 1. The binary decomposition
is the output of the function or algorithm denoted ~g −1

det.

A verifiable shuffle for the GSW cryptosystem 139

Sometimes, we want a random preimage of ~g rather than the bi-
nary decomposition. LetX = {~x | 〈~x,~g〉 = 0}, the set of all preimages
of 0. Let ~g −1

rand denote an algorithm that computes ~g −1
det and samples

a value ~x from X, typically from a Gaussian distribution with a pre-
scribed radius, and outputs the sum ~g −1

det + ~x.
From now on, we will use subscripts when it is necessary to dis-

tinguish between the two variants of the algorithm. If no subscript is
given, then the discussion applies equally to both.

Next, we can expand the whole process to handle an n-dimensional
vector ~a rather than a single value. Define the sparse matrix

G =

1 . . . 2`−1

1 . . . 2`−1

. . .
1 . . . 2`−1

∈ Zn×n`q .

The matrix G is known as the gadget matrix, and the literature often
express it in shorthand as ~g T ⊗ In.

The map from Zn`q to Znq induced by the matrix G is not invertible,
but it is easy to find preimages. As with g, the binary decomposition
of each coordinate is a preimage. In line with the literature, let G−1

det
denote this function. It is not linear, since the sum of two binary
decompositions need not be all binary again. The output of G−1

is a right-inverse for the map G, and we can extend it to Zn×mq by
applying G−1 column-wise to some n×m matrix A. As with ~g −1, we
sometimes want random samples, and denote the resulting sampling
algorithm by G−1

rand. We use the notation X ← G−1
rand(A) when we

want to indicate that we sample from some distribution imposed on
the algorithm.

The following properties are straightforward to derive from the
above construction.

Lemma 1. Assume all operations are modulo some q, and let A ∈
Zn×mq and λ ∈ Zq be some scalar. Then,

1. G ·G−1(I) = I = In ∈ Zn×nq

2. G ·G−1(A) = A ∈ Zn×mq

140 M. Strand

3. In particular, G ·G−1(λG) = λG

We get a particularly nice structure when applying the G−1 algo-
rithm on multiples of G.

Lemma 2. Assume all operations are modulo some q, and let λ ∈ Zq
be some scalar with binary decomposition ∑`−1

i=0 λi2i. Then

G−1
det(λG) =

Λ
Λ

. . .
Λ

∈ Zn`×n`q

where

Λ =

λ0 λ`−1 · · · λ1
λ1 λ0 · · · λ2
...

...
λ`−1 λ`−2 · · · λ0

∈ Z`×`q

In particular, G−1
det(G) is the n`× n` identity matrix.

The pattern comes from the fact that multiplying by 2 corresponds
with one-step shifts in the binary expression of a number.

One can view G−1
det(λG) as a representation of λ, and consider

all representations as equivalent (modulo the kernel of G). Then
the G−1 algorithm is homomorphic on equivalence classes, which is
crucial for the GSW cryptosystem. Recall that linear mappings can be
represented by matrices. Consider the mapping G : Zn`q → Znq given
by ~x 7→ G~x. This mapping have several right-inverses H : Znq → Zn`q
such that

(G ◦H)(~x) = GH~x = ~x,

so G ◦ H = idZn
q
. Fix G−1 as one specific such right-inverse. Then,

for all H,
G−1(~x)−H(~x) ∈ kerG.

As explained above, we can expand the map G to Zn`×mq → Zn×mq ,
and we can expand the right-inverses as well. By the above relation,
for each H we then get

G−1(A) = HA+BA, G(BA) = 0,

A verifiable shuffle for the GSW cryptosystem 141

and so for scalars a, b ∈ Zq, we have

G−1(aG)G−1(bG) = (aHG+Ba)(bHG+Bb)
= ab(HGHG+ b−1HGBb + a−1BaHG+ (ab)−1BaBb)
= ab(HIG+ b−1H · 0 + a−1BaHG+ (ab)−1BaBb)
= abHG+B′ (with GB′ = 0)
= G−1(abG) +B′ −Bab.

As a consequence, G−1(aG)G−1(bG) and G−1(abG) can be said to
encode the same scalar ab, but with a difference which lies in the
kernel of G. A similar computation holds for the sum G−1(aG) +
G−1(bG).

We can illustrate this with a toy example. Let q = 7, ` = 3 and
n = 3. Then

G =

1 2 4 0 0 0 0 0 0
0 0 0 1 2 4 0 0 0
0 0 0 0 0 0 1 2 4

 .

Consider G−1
det(5G) and G−1

det(3G), which will have blocks
[1 1 0

0 1 1
1 0 1

]
and

[1 0 1
1 1 0
0 1 1

]
. Both their sum and product will be

[2 1 1
1 2 1
1 1 2

]
which contains

a 2, something we cannot avoid since we are computing modulo 7.
However, a new encoding of 5 · 3 ≡ 5 + 3 ≡ 1 (mod 7) is just the
identity matrix.

This is an effect one has to take into account when computing.
Still, it is certainly so that the different matrices represent the same
value. In particular,

2 1 1
1 2 1
1 1 2

 =

1 0 0
0 1 0
0 0 1

+

1 1 1
1 1 1
1 1 1

 ,

and note that

(
1 2 4

)
·

1 1 1
1 1 1
1 1 1

 ≡

(
0 0 0

)
(mod 7).

In other words, (1, 1, 1) is in the kernel of G.

142 M. Strand

2.2 The GSW cryptosystem and circuit privacy
The 2013 cryptosystem by Gentry, Sahai and Waters (GSW) [9] is
based on hiding the message as an eigenvalue of the ciphertext. The
private key is an approximate eigenvector. For simplicity, we will use
the symmetric formulation by Alperin-Sheriff and Peikert [2], and at
the end explain how to make the scheme public key. Let n be an
integer, let q be a modulus and ` = dlog2 qe. Finally, let χ be a
subgaussian distribution (Gaussian with very small tails) over Z.

Key generation Let ~̄s ← χn−1 coordinate-wise, and output ~s =
(~̄s, 1) as the private key.

Encryption To encrypt a message µ ∈ {0, 1}, choose a random ma-
trix C̄ from Z(n−1)×m

q , where m = n`, an error vector ~e ← χm

and set ~b T = ~e T − ~̄s T C̄ (mod q). Let

C =
(
C̄
~b T

)
+ µG.

Decryption Given ~s and C, let ~c be the penultimate column of C,
and output 0 if 〈~s,~c〉 (mod q) is closer to 0 than 2l−2. Other-
wise, output 1.1

Addition Add the matrices C1 and C2.

Multiplication Define C1 � C2 as C1 ·G−1(C2).

The cryptosystem is usually only defined for a binary plaintext space,
but the definition can be modified even up to the large space Zq by
modifying the decryption algorithm to extract bits from more columns
than the penultimate, and then building the message from the bits.
However, this has a strong negative impact on the noise behaviour.
When two ciphertexts encrypting binary messages are multiplied, the
noise grows far less than with previous FHE cryptosystems. The
growth is a function of the encrypted value of the first ciphertext, so
larger plaintext spaces can potentially also give worse noise problems.

1See Alperin-Sheriff and Peikert [2] for a justification of this algorithm.

A verifiable shuffle for the GSW cryptosystem 143

Nonetheless, we will have to assume a large message space for our
application, in the order of 160–180 bits, in order to facilitate the
scalar multiplications we will perform. This fact is the main drawback
of our work.

The original GSW scheme does not achieve circuit privacy. Infor-
mally, this property guarantees that nobody are able to deduce which
circuit output a given ciphertext. Gentry [8] defined the notion by
requiring that an encryption of an evaluation of a circuit should be
indistinguishable from an encryption of evaluation of the circuit on
encrypted data. In other words, evaluate-then-encrypt should be the
same as encrypt-then-evaluate. Bourse et al. [4] provide a simulation
based definition – capturing mostly the same intuition – and prove
that the GSW cryptosystem is circuit private if the multiplication al-
gorithm is slightly modified and all input ciphertexts have low noise
from the same distribution. The definitions only differ in that Bourse
et al. allow the length of the circuit to leak.

Alperin-Sheriff and Peikert [2] proposed to use theG−1
rand algorithm

instead of G−1
det for performance reasons. Bourse et al. go one step

further, and also add a matrix which is 0 everywhere except for the
bottom row, which constitutes gaussian shift on the ciphertext,

C1 � C2 = C1G
−1
rand(C2) +

(
0
~y T

)
,

where C1 and C2 are ciphertexts and ~y is a vector drawn from χm. In
particular, one can scale C1 by α by letting C2 = αG. Also note that(

0
~y T

)
is a valid encryption of 0. We will use this fact in the upcoming

protocol.
Finally, we note that the GSW scheme can be made public-key by

publishing the above
(
C̄
bT

)
as, say, Â and define encryption as

C ← ÂR+ µG,

where R is a random matrix with entries in {−1, 0, 1}.

2.3 Commitment schemes
A commitment scheme is an important tool in protocols. The concept
allows a player to make a binding promise to use certain values, but

144 M. Strand

without revealing them at the time of the promise. The commitment
can later be verified when the committer reveals the opening informa-
tion. Formally, a commitment scheme consists of three algorithms:

KeyGen On input 1`, output a public key pk

Commit On input (pk,m, r), return c.

Verify On input (pk,m, r, c), return accept if c is a valid commitment
to m, otherwise reject.

We say that (m, r) is an opening of c. The key material will normally
be omitted to simplify notation.

Any public key cryptosystem can be turned into a commitment
scheme which is unconditionally binding. Pedersen commitments [15]
is an example of a scheme that is unconditionally hiding and where
binding depends on the discrete logarithm problem being hard. A
particularly nice property about the Pedersen scheme is that it is
homomorphic; we have

Commit(m1, r1) · Commit(m2, r2) = Commit(m1 +m2, r1 + r2).

A commitment scheme must satisfy two security properties. The
scheme must be hiding, which means that a commitment to some
message m1 is indistinguishable from a commitment to some other
message m2. Next, it must be binding, which means that it is hard
to find two openings for distinct messages for a single commitment.
At most one of these properties may hold unconditionally, but both
may hold only computationally.

Lately, Baum et al. [3] proposed a new additively homomorphic
commitment scheme based on the Ring-SIS problem. This is conjec-
tured to be safe also against quantum computers. Recall from the
introduction that also classical commitment schemes that are uncon-
ditionally hiding and computationally binding will remain secure and
usable until the adversary has quantum computers readily available,
since the binding property is only needed during the protocol execu-
tion to provide soundness.

A verifiable shuffle for the GSW cryptosystem 145

2.4 Zero-knowledge protocols
Zero-knowledge protocols capture the intuition of being able to con-
vince someone else about the validity of some claim, but without
revealing any other information.

Definition 1. Let R be a relation, and let (x,w) ∈ R. An honest-
verifier zero-knowledge protocol (P,V) for R is a two-party game be-
tween a prover P on input (x,w) and a verifier V on input x, satisfying

Completeness Whenever (x,w) ∈ R, V accepts.

Soundness If (x,w) /∈ R, then for any P∗, V will only accept with
negligible probability.

Honest-verifier zero knowledge (HVZK) There exists a simula-
torM running in expected polynomial time on input x such that
the output is indistinguishable from the transcripts of (P,V) run
with (x,w) as input to P.

The w is called a witness for the relation.

If the prover is only given bounded computationally resources, the
protocol is usually called an argument, otherwise we call it a proof.
The zero-knowledge property can be varied by requiring the indistin-
guishability to hold computationally, statistically or unconditionally.

The simulator can choose all messages arbitrarily. A proof or argu-
ment is special honest-verifier zero knowledge (SHVZK) if the output
of the simulator is indistinguishable from a real transcript if it has to
use truly random messages as simulated challenges from the verifier
(as opposed to being able to choose such challenges arbitrarily).

To guarantee that a zero-knowledge protocol can be used as a
subprotocol in a larger context, Lindell [11] introduced the notion
of witness-extended emulation, which loosely speaking requires that
there exists a machine that on basis of sufficiently many rounds of the
protocol (reusing the prover’s commitments) is able to both output a
valid witness for the relation as well as a valid simulated transcript.
Our use of this property is limited to noting that the shuffle of known
content satisfies it in order for us to be able to use it for our protocol,
so we refer to the original source for details.

146 M. Strand

2.5 Groth’s shuffle

In 2010, following up on Neff’s idea [14] of proving the validity of
a shuffle by using the fact that a polynomial ∏(X − xi) is stable
under permutation of the roots xi, Groth presented an efficient, yet
conceptually simple shuffle [10]. The idea is two-fold. First, one
uses the polynomial idea to prove that some c is a commitment to a
permutation of messages m1, . . . ,mn. The values are known by the
verifier, but the permutation remains hidden. Next, one binds the
secret data to the known data, and proves that the same permutation
is still used.

It is important to note that the shuffle of known content is in-
dependent of the encryption scheme employed in the main protocol,
and only requires a group homomorphic commitment scheme. Later,
we can therefore reuse the shuffle of known content completely, and
rely on the following properties [10, Theorem 1].

• The shuffle satisfies special honest-verifier zero knowledge with
witness-extended emulation.

• If the commitment scheme is statistically hiding we get statis-
tical HVZK.

• If the commitment scheme is unconditionally binding we get
unconditional soundness.

Recall that the property of witness-extended emulation guarantees
that we can use the SKC protocol as a building block of the full
shuffle.

While the SKC protocol only uses the commitment scheme, the
outer protocol depends heavily on the encryption scheme, in particu-
lar rerandomisation and cancellation of original randomness. Both of
these features are less straightforward in FHE schemes than in clas-
sical group homomorphic schemes, and call for some modifications to
the original protocol.

Remark 1. Groth introduces two security parameters, `e and `s, sub-
ject to the conditions that

A verifiable shuffle for the GSW cryptosystem 147

• `e must be sufficiently large to make it hard to break soundness,
i.e. it must be hard to predict a challenge of length `e,

• For any a sampled from the uniform distribution on [0, 2`e]∩Z,
d and a+ d, must be statistically indistinguishable whenever d
is sampled from the uniform distribution on [0, 2`e+`s] ∩ Z, and

• If the commitment space has message space Znq , then 2`e+`s ≤ q.

The second bullet point is to avoid leakage of information whenever
a + d < 2`e or 2`e+`s ≤ a + d. Notice that we can achieve the same
result with smaller parameters if we employ rejection sampling [12,13].
The probability of 2`e ≤ a+d ≤ 2`e+`s is approximately 1− 1

2`s
− 1

2`s+`e
.

The third bullet point is to avoid overflow that would require mod-
ular reductions. However, Groth notes that “[w]hen the cryptosystem
has a message space where mq = 1 for all messages, this requirement
can be waived”.

Concretely, Groth suggests `e = `s = 80 for the interactive vari-
ant, and `e = 160 and `s = 20 if the protocol is made non-interactive
using the Fiat-Shamir heuristic and rejection sampling. We will keep
the same parameters for our protocol.

We reached the above probability by considering the uniform dis-
tributions on X = [0, 2`e]∩Z and Y = [0, 2`e+`s]∩Z, with probability
density functions (PDF) m1(X = k) = 1

2`e
and m2(Y = k) = 1

2`e+`s
.

The PDF of Z = X + Y is then the convolution m3(Z = j) =∑∞
k=−∞m1(k)m2(j − k). For each j up to 2`e − 1, there are j + 1

combinations, so we get m3(j) = j+1
22`e+`s

for the first part. For j be-
tween 2`e and 2`e+`s , there are constantly 2`e + 1 combinations, and it
decreases by 1 for each j in the tail that follows, down to j = 22`e+`s ,
which is the greatest value we can sample. From this, we can com-
pute the cumulative density function F3 at the two points j = 2`e and
j = 2`e+`s , which is approximately 1

2`s
and 1− 1

2`e+`s
, respectively.

3 Verifiable shuffle for GSW
Now we can combine the tools and ideas above to get a verifiable
shuffle for GSW ciphertexts. Let n denote the number of ciphertexts,

148 M. Strand

and recall that `e and `s denote security parameters for the zero-
knowledge protocol. We now briefly describe the changes that must
be made to Groth’s shuffle.

The first part of a shuffle is to permute and rerandomise the ci-
phertexts. Given an ElGamal ciphertext (a = gr, b = µhr), a new
ciphertext will typically look like (agr′ , bhr′), and one can easily prove
that it is hard to find the correct correspondence between the old and
new set as long as r′ is random. The fundamental reason is that the
randomness of ElGamal forms a group, and that any rerandomisation
is indistinguishable from a fresh encryption.

This is not the case for FHE in general and GSW in particular.
The randomness is not bounded, and the Eval algorithm will result
in a new ciphertext with randomness being a function of both the
messages and the randomness of the inputs. We need to employ
Bourse et al.’s technique for circuit privacy. Let the old and new
ciphertexts be denoted by {ei} and {Ei}, and the permutation by π.

Ideally, the shuffling circuit should have all old ciphertexts and
the permutation as input, such that all old ciphertexts contribute to
each new ciphertext,

Ei =
n∑

j=1
eπ(i)G

−1
rand(δπ(i),jG) +

(
0
~yTi

)

where δa,b is 1 if a = b and 0 otherwise, and ~y is some vector chosen
by the circuit privacy algorithm [4].

However, this is causing problems for achieving the completeness
property of the protocol, so we have opted for a simpler version. For
each i, sample Xi ← G−1

rand(G), and let

Ei = eπ(i)Xi +
(

0
~yTi

)

which is sufficient under the condition that all {ei} have the same
noise level and equal-length decryptions. The order is not coinciden-
tal. The shuffling circuit is essentially included in Xi, and this order
of multiplication hides it [4]. If necessary, enforce the noise-level con-
dition by bootstrapping the ciphertexts before shuffling them. Boot-
strapping is an deterministic operation which only requires the public

A verifiable shuffle for the GSW cryptosystem 149

key. Note that one can only measure the noise by using the decryption
key.2

The original protocol was expressed using multiplications. Since
we are using the additive structure of the GSW scheme, we switch
from multiplications and exponentiations to additions and scalar mul-
tiplications. This is in itself a favourable move, as the efficiency of
the original protocol was measured in exponentiations, while addi-
tions and scalar multiplications are almost for free in FHE schemes.

Finally, one of the verifications step in the original protocol in-
volved creating a ciphertext using randomness provided by the prover.
Since we lack the nice structure on the randomness in the GSW cryp-
tosystem, we need to provide complete ciphertexts instead of just
randomness. This requires us to convince the verifier that the ci-
phertext is “innocent”, in the sense that it doesn’t encrypt a value
that allows the prover to cheat. Fortunately, we can observe that the
ciphertext in question will be all zeros except for the bottom row,
which guarantees that it can only encrypt 0.

The complete protocol follows.

Precomputation Start with fresh ciphertexts {ei} with equal noise
levels. Bootstrap each ciphertext to achieve near-freshness if neces-
sary. Shuffle using a random permutation π and re-encrypt to get
new ciphertexts {Ei}.

Common input Fresh ciphertexts {ei} and shuffled ciphertexts
{Ei}.

Private input to P Permutation π, matrices Xi ← G−1
rand(G) and

vectors ~y such that for each i,

Ei = eπ(i)Xi +
(

0
~yTi

)

2An anonymous reviewer pointed out that it is important to ensure that a ma-
licious mix server cannot mark the ciphertexts, typically by using randomness of
different size, resulting in more noise. This may lead to a DoS attack unless one
employ bootstrapping, but should not compromise secrecy since only the decryp-
tion service can measure noise.

150 M. Strand

Protocol

P1 Select randomness r and rd for the commitment scheme, and
select n random values di of length `e + `s.
Let

c← Commit(π(1), . . . , π(n); r)
cd ← Commit(−d1, . . . ,−dn; rd).

Set Di ← G−1
rand(diG), ~yd ← χZm and Ed ←

∑n
i=1EiDi +

(0
~yT

d

)

Send c, cd and Ed to the verifier.

V1 Return a set of random numbers {ti} of length `e.

P2 Set fi ← tπ(i) + di, compute X ′i such that

X ′π(i) = G−1
det(tπ(i)G)−XiG

−1
det(fiG) +XiDi,

and set Z = ∑n
i=1

((0
~yT

i

)
G−1

det(fiG)−
(0
~yT

i

)
Di

)
+
(0
~yT

d

)
. Cancel

if not 2`e ≤ fi ≤ 2`e+`s for all i.
Send {fi}, {X ′i}, Z to the verifier.

P–V Run the shuffle of known content to prove that

cλcdCommit(f1, . . . , fn) =
Commit(λπ(1) + tπ(1), . . . , λπ(n) + tπ(n)),

where λ is a challenge from the verifier.

V2 Verify the following

• The elements c and cd are in the commitment space
• For all i, 2`e ≤ fi ≤ 2`e+`s

• GX ′i = 0 for all i
• The shuffle of known content
• The matrix Z is of the form

(
0
~y T

)

A verifiable shuffle for the GSW cryptosystem 151

• ∑n
i=1EiG

−1
det(fiG)−∑n

i=1 ei(G−1
det(ti) +X ′i)− Ed = Z

Theorem 1. Assume that {ei} is a set of fresh ciphertexts. Then the
above protocol is a special honest-verifier zero-knowledge argument
for correctness of a shuffle of fully homomorphic ciphertexts. If the
commitment scheme is statistically binding, then the scheme is an
SHVZK proof of a shuffle.

Proof. Completeness

As shown in Remark 1, the probability of P aborting is 1
2`s

+ 1
2`e+`s

,
which can be made arbitrarily small with a suitable choice of `s.

We need to check two of the verification equations, the rest is
straightforward. Note that Xi comes from the G−1 algorithm and
encodes a 1. By the discussion in Section 2.1, one can see that X ′π(i)
must encode −fi + tπ(i) + di = 0 for all i, hence GX ′i = 0, all i.

Next, we verify that ∑n
i=1EiG

−1
det(fiG)−∑n

i=1 ei(G−1
det(ti) +X ′i)−

Ed = Z. This is a tedious, but uncomplicated computation:

n∑

i=1
EiG

−1
det(fiG)−

n∑

i=1
ei(G−1

det(ti) +X ′i)− Ed

=
n∑

i=1
EiG

−1
det(fiG)−

n∑

i=1
eπ(i)(G−1

det(tπ(i)) +X ′π(i))−
n∑

i=1
EiDi +

(
0
yTd

)

=
n∑

i=1

(
eπ(i)Xi +

(
0
yTi

))
G−1

det(fiG)−
n∑

i=1
eπ(i)(G−1

det(tπ(i))

−XiG
−1
det(fiG) +G−1

det(tπ(i)) +XiDi)

−
n∑

i=1

(
eπ(i)Xi +

(
0
yTi

))
Di +

(
0
yTd

)

=
n∑

i=1
eπ(i)

(
Xi(G−1

det(fiG)−G−1
det(fiG) +Di −Di)−G−1

det(tπ(i))

+ G−1
det(tπ(i))

)
+

n∑

i=1

((
0
yTi

)
G−1

det(fiG)−
(

0
yTi

)
Di

)
+
(

0
yTd

)

= Z

152 M. Strand

Soundness
We need to prove that there exists a permutation π, such that

Dec(eπ(i)) = Dec(Ei) for all 1 ≤ i ≤ n. We can extract the permuta-
tion using rewinding, but we will not extract the matrices Xi used to
rerandomise the ciphertexts (although we can prove that they must
exist, and have been generated in an honest way).

Run the protocol (P∗,V) until the prover outputs a transcript.
Due to the rejection sampling, the prover may try several times. If
the verifier would reject the transcript, we output ⊥. Following the
exact same argument as in Groth’s original proof, we can extract π
and {−di} using two valid transcripts [10, p. 562].

Because of the commitment we now know that fi = tπ(i) + di,
and since GX ′i = 0, we know that Dec(X ′i) = 0. Also, we know
that Dec(Z) = 0. Recall that we scale a ciphertext C by computing
CG−1(λG), hence if we apply the decryption function to

n∑

i=1
EiG

−1
det(fiG)−

n∑

i=1
ei(G−1

det(ti) +X ′i)− Ed = Z,

we get
n∑

i=1
fiDec(Ei)−

n∑

i=1
(ti + 0)Dec(ei)− Dec(Ed)

=
n∑

i=1
tiDec(Eπ−1(i)) +

n∑

i=1
diDec(Ei)−

n∑

i=1
tiDec(ei)− Dec(Ed)

=
n∑

i=1
ti(Dec(Eπ−1(i))− Dec(ei)) +

n∑

i=1
diDec(Ei)− Dec(Ed)

= Dec(Z) = 0.
Since only one sum depends on {ti}, both sums must be 0 individually.
Furthermore, since each ti is unpredictable, each summand must be
0. Hence, Dec(Eπ−1(i)) = Dec(ei), which we wanted to prove.

Note that we can apply the decryption function without actually
being able to compute it for unknown ciphertexts.
Special honest-verifier zero knowledge

Let π0 and π1 be two permutations, and let C0 and C1 be the cor-
responding shuffle circuits. By circuit privacy, the adversary cannot

A verifiable shuffle for the GSW cryptosystem 153

decide whether C0 or C1 was used to generate {Ei} from {ei}. Hence,
the precomputation step does not leak any information.

To prove that the shuffle itself is HVZK given the challenges, we
construct a simulator whose output will be indistinguishable from a
real protocol transcript. We provide the simulator through a hybrid
argument.

Sim I Simulate the shuffle of known content, and select c and cd as
random commitments.

It follows from the properties of the shuffle of known content that
Sim I is indistinguishable from a real transcript.

Sim II Construct a random Z from the same distribution as the
original. The distribution is hard to give explicitly, but does
not depend on secret data, so it can be simulated by choosing
the fundamental terms of the sum independently, and adding.
Likewise, choose {X ′i} by choosing {(X̄i, d̄i)} under the same
distributions as the prover would, and some permutation π̄.
Compute {X ′i} by the equation in P2, such that GX ′i = 0 for
all i. Choose {fi} from the sum of the uniform distributions
over [0, 2`e] ∩ Z and [0, 2`e+`s] ∩ Z under the constraint that
2`e ≤ fi ≤ 2`e+`s . Then choose Ed to fit.

The simulated values for Z, {X ′i} and {fi} have the same distribu-
tion since they are computed from the same formulas as the original,
but using new (but identically distributed) random values instead of
Xi and π. Then Ed becomes a valid ciphertext by the homomorphic
property of GSW. Circuit privacy makes a simulated Ed indistinguish-
able from a real Ed, and the IND-CPA property of the cryptosystem
will finally provide computational SHVZK.

4 Further work
We have presented a verifiable shuffle for fully homomorphic schemes.
Shuffling techniques have evolved further since the protocol we have
chosen to forge from, and we believe it would be interesting to see
adaptions of newer shuffles.

154 M. Strand

Furthermore, Groth’s original shuffle can be used with a large
family of group homomorphic encryption schemes. The result in this
paper can only use the GSW scheme, due to the existence of the effi-
cient and computationally simple circuit privacy technique. However,
one should pick one’s scheme based on what the application needs,
so the shuffling primitive should be available for more schemes. This
requires more research on techniques for circuit privacy.

Finally, it would be interesting to see an implementation of veri-
fiable shuffling for FHE schemes, coupled with a real-life application.
Only then will one be able to see if the parameters and the runtime of
the proof will be acceptable. For instance, we predict that the scheme
will be unsuitable for applications with many shuffles, such as onion
routing. However, for elections, where one can spend minutes or even
hours on the process, this protocol may already be mature.

Acknowledgements The author wishes to thank Jens Groth for
his useful comments to an early version of this manuscript, as well as
to the anonymous reviewers of Voting’18.

References
[1] Martin Albrecht and Alex Davidson. Are graded encoding

scheme broken yet? http://malb.io/are-graded-encoding-
schemes-broken-yet.html, 2017. Accessed 2017-08-30.

[2] Jacob Alperin-Sheriff and Chris Peikert. Faster bootstrapping
with polynomial error. In Juan A. Garay and Rosario Gennaro,
editors, Advances in Cryptology - CRYPTO 2014, volume 8616
of Lecture Notes in Computer Science, pages 297–314. Springer,
2014.

[3] Carsten Baum, Ivan Damgård, Sabine Oechsner, and Chris
Peikert. Efficient commitments and zero-knowledge protocols
from ring-sis with applications to lattice-based threshold cryp-
tosystems. Cryptology ePrint Archive, Report 2016/997, 2016.
http://eprint.iacr.org/2016/997.

A verifiable shuffle for the GSW cryptosystem 155

[4] Florian Bourse, Rafaël Del Pino, Michele Minelli, and Hoeteck
Wee. FHE circuit privacy almost for free. In Matthew Robshaw
and Jonathan Katz, editors, Advances in Cryptology - CRYPTO
2016, volume 9815 of Lecture Notes in Computer Science, pages
62–89. Springer, 2016.

[5] Christopher Carr, Anamaria Costache, Gareth T. Davies, Kris-
tian Gjøsteen, and Martin Strand. Zero-knowledge proof of de-
cryption for FHE ciphertexts. Cryptology ePrint Archive, Report
2018/026, 2018. https://eprint.iacr.org/2018/026.

[6] Núria Costa, Ramiro Martínez, and Paz Morillo. Proof of a
shuffle for lattice-based cryptography (full version). Cryptology
ePrint Archive, Report 2017/900, 2017. http://eprint.iacr.
org/2017/900.

[7] Sanjam Garg, Craig Gentry, and Shai Halevi. Candidate mul-
tilinear maps from ideal lattices. In Thomas Johansson and
Phong Q. Nguyen, editors, Advances in Cryptology - EURO-
CRYPT 2013, volume 7881 of Lecture Notes in Computer Sci-
ence, pages 1–17. Springer, 2013.

[8] Craig Gentry. A fully homomorphic encryption scheme. PhD
thesis, Stanford University, 2009. crypto.stanford.edu/craig.

[9] Craig Gentry, Amit Sahai, and Brent Waters. Homomorphic
encryption from learning with errors: Conceptually-simpler,
asymptotically-faster, attribute-based. In Ran Canetti and
Juan A. Garay, editors, Advances in Cryptology - CRYPTO
2013. Proceedings, Part I, volume 8042 of Lecture Notes in Com-
puter Science, pages 75–92. Springer, 2013.

[10] Jens Groth. A verifiable secret shuffle of homomorphic encryp-
tions. J. Cryptology, 23(4):546–579, 2010.

[11] Yehuda Lindell. Parallel coin-tossing and constant-round secure
two-party computation. J. Cryptology, 16(3):143–184, 2003.

[12] Vadim Lyubashevsky. Lattice-based identification schemes se-
cure under active attacks. In Ronald Cramer, editor, Public Key

156 M. Strand

Cryptography - PKC 2008, volume 4939 of Lecture Notes in Com-
puter Science, pages 162–179. Springer, 2008.

[13] Vadim Lyubashevsky. Fiat-Shamir with aborts: Applications to
lattice and factoring-based signatures. In Mitsuru Matsui, editor,
Advances in Cryptology - ASIACRYPT 2009, volume 5912 of
Lecture Notes in Computer Science, pages 598–616. Springer,
2009.

[14] C. Andrew Neff. A verifiable secret shuffle and its application to
e-voting. In Michael K. Reiter and Pierangela Samarati, editors,
CCS 2001, Proceedings of the 8th ACM Conference on Computer
and Communications Security, pages 116–125. ACM, 2001.

[15] Torben P. Pedersen. Non-interactive and information-theoretic
secure verifiable secret sharing. In Joan Feigenbaum, editor,
Advances in Cryptology - CRYPTO ’91, volume 576 of Lecture
Notes in Computer Science, pages 129–140. Springer, 1991.

A verifiable shuffle for the GSW cryptosystem 157

Paper v

Zero-Knowledge Proof of Decryption for FHE
Ciphertexts

Christopher Carr, Anamaria Costache, Gareth T. Davies,
Kristian Gjøsteen and Martin Strand

ePrint 2018/026

Zero-Knowledge Proof of Decryption for FHE
Ciphertexts

Christopher Carr1, Anamaria Costache∗2, Gareth T. Davies1,
Kristian Gjøsteen1 and Martin Strand1

1Norwegian University of Science and Technology, NTNU
{ccarr, gareth.davies, kristian.gjosteen, martin.strand}@ntnu.no

2Department of Computer Science, University of Bristol
anamaria.costache@bristol.ac.uk

Abstract

Zero-knowledge proofs of knowledge and fully-homomorphic en-
cryption are two areas that have seen considerable advances in
recent years, and these two techniques are used in conjunction
in the context of verifiable decryption. Existing solutions for
verifiable decryption are aimed at the batch setting, however
there are many applications in which there will only be one ci-
phertext that requires a proof of decryption. The purpose of
this paper is to provide a zero-knowledge proof of correct de-
cryption on an FHE ciphertext, which for instance could hold
the result of a cryptographic election.

We give two main contributions. Firstly, we present a boot-
strapping-like protocol to switch from one FHE scheme to an-
other. The first scheme has efficient homomorphic capabilities;
the second admits a simple zero-knowledge protocol. To illus-
trate this, we use the Brakerski et al. (ITCS, 2012) scheme for
the former, and Gentry’s original scheme (STOC, 2009) for the
latter. Secondly, we present a simple one-shot zero-knowledge
protocol for verifiable decryption using Gentry’s original FHE
scheme.

∗Work partially conducted while visiting NTNU.

161

1 Introduction

Consider a number of users with secret inputs who wish to compute
some function on those combined inputs. If they are a small group
and are online regularly then they can use multi-party computation
(MPC), however in the asynchronous or large group setting this will
not work. A cryptographic election is an obvious realisation of this
scenario but it also covers any computation on highly sensitive data.
One solution is for each user to encrypt her input using FHE, and have
some semi-trusted entity perform the computation and distribute the
resulting value to the users. But how can the users verify that the
decryption has been done correctly? What if the FHE scheme used
for the computation does not support a proof of decryption?

Verifiable Decryption

Verifiable decryption is well-known for schemes such as ElGamal. To
prove that m is the decryption of (u, v) = (mhr, gr) in some group
with h = ga, one has to prove the relation

loghm
−1u = logg v,

which can be done with a variant of the standard Schnorr protocol.
For soundness, one must prove that there exists an integer value a
such that the formula holds. For LWE-based cryptosystems it is no
longer sufficient to prove that a certain value exists (working over the
integers): it has to be smaller than some threshold. In addition, to
hide the a in the Schnorr proof, the randomness used to mask a is
uniformly distributed and used in such a way as to make all values of
a equally likely.

The naïve approach can leak the secret key directly. Recall the
DGHV scheme [49] which does FHE over the integers. The ciphertext
is a number pq + 2r + m, where q is the key, r noise and m is the
message. If one were to apply a simple Schnorr-like protocol to the
scheme, the verifier has to check that something is a lattice point, but
that is equivalent to seeing if it is divisible by the secret key q.

More concretely, consider a general LWE cryptosystem [8] (RLWE
cryptosystems are built using the same blueprint). Let q be some

162 C. Carr et al.

modulus. The public key is a matrix A which contains LWE samples
and the private key is some vector ~s such that A~s = 2~e, where ~e is some
small noise. To encrypt a message m, set ~m = (m, 0, . . . , 0), choose
a random vector ~r with small entries (for LWE, from {−1, 0, 1}), and
output ~c = ~m+AT~r. To decrypt, compute

m = [[〈~c,~s〉]q]2.

If we follow the pattern from above, a naïve proof of correct decryption
would be to prove that there exists a vector ~s such that 〈~c− ~m,~s〉 is
small.

The complication is the condition “is small”, and typically much
smaller than the modulus in the space. One can try to produce a tight
proof (with respect to soundness), but that will leak information about
the secret (which did not happen in the Schnorr case, as discussed
above). To safeguard the secret which is smaller than some β, one
can instead prove that it is smaller than τ ×β, where τ is large. Then
we can achieve honest-verifier zero-knowledge, but at the expense of
a large gap between the statement we want to prove, and that the
verifier is convinced of. One can mitigate the problem using rejection
sampling, but only to a certain extent. To sum up, the naïve approach
is inadequate.

This problem is further explained in detail by Baum et al. [4].
Their goal is to provide a protocol for proving knowledge of plaintext,
which is a problem related to verifiable decryption. They proceed to
amortise the cost of the proof across several instances, by letting the
verifier assign the ciphertexts into several buckets, and prove the claim
for the sum of each bucket. Their technique has been subsequently
refined [16,18].

Baum, Damgård, Oeschsner and Peikert [5] have demonstrated
a multiparty computation protocol for distributed threshold decryp-
tion. This can be transformed to an zero-knowledge protocol by doing
“MPC in the head”. However, it is still only efficient when amortised
over multiple ciphertexts. Our goal is to start a line of research that
will lead to efficient one-shot zero-knowledge protocols.

The analog problem – an encryptor wishes to prove that they did
in fact encrypt a certain plaintext to a ciphertext – is relatively well

ZK Proof of Decryption for FHE Ciphertexts 163

studied. Lyubashevsky and Neven [40] show how one can avoid amor-
tisation for proving knowledge of plaintext in a single round. Their
technique is dependent on the linearity of encryption, but decryption
algorithms are typically not linear.

Cryptographic Elections

In a cryptographically-verifiable election a central authority collects
encrypted ballots from voters, homomorphically evaluates the election
counting circuit and arrives at an encrypted result. The votes are
published on some bulletin board so that voters can also perform the
election counting circuit evaluation themselves. The authority then
decrypts the ciphertext encrypting the result and appends a proof
that the decryption was indeed done correctly. This process of homo-
morphic tallying [12] is applicable when the counting function used in
an election can be efficiently evaluated on encrypted ballots. This ap-
proach greatly simplifies public verifiability of a voting system [30], as
correctness follows from the homomorphic properties of the cryptosys-
tem. Note that Gjøsteen-Strand [30] uses leveled fully homomorphic
encryption with a larger plaintext space, but the approach also works
for binary plaintexts. Traditionally, the cryptosystems used in voting
have been additively or multiplicatively homomorphic [36, 44] which
places significant restrictions on the kind of counting functions that
can be computed. Fully- (or somewhat-) homomorphic encryption
(F/SHE) greatly expands the applicability of homomorphic tallying,
such as in Gjøsteen-Strand [30]. Unfortunately, this greater function-
ality comes at a cost: verifiable decryption of the result now becomes
an obstacle.

Our Contribution

Gentry’s breakthrough [21] came from achieving fully homomorphic
capabilities through bootstrapping. Bootstrapping is the homomor-
phic evaluation of the decryption circuit in order to produce a cipher-
text with lower noise. One can formalise this by saying that boot-
strapping is an algorithm that takes a ciphertext encrypted under one
instance of a scheme, into a new instance. These instances can be

164 C. Carr et al.

BGV Gentry Plaintext
Feasibility: Thm. 1

Integrity: Lemma 1

Feasibility: Decryption

Integrity: Thm. 2

Feasibility: Composition

Integrity: Lemma 1 + Thm. 2

Figure 1: How to obtain a proof of decryption on a BGV ciphertext.

identical (using the same key, and requiring a property known as cir-
cular security), or they can use different keys. The only requirement
for bootstrapping is that the source instance has a decryption algo-
rithm (consider the decryption key as hard-coded into the algorithm,
such that each instance has a unique algorithm) that is easy enough
for the target instance to evaluate, and still have space left for further
computations.

The common state situation – that the source and target instances
are using the same underlying scheme – is not intrinsic to the boot-
strapping idea. One can therefore generalise it to instances from dif-
ferent cryptosystems. This observation has yielded a number of recent
works focused on providing extremely fast bootstrapping [10,19]. We
are less interested in how long this bootstrapping procedure takes since
we only ever need to do it once: in this instance to produce the proof
of a single decrypted value. In fact, we wish to bootstrap ciphertexts
from comparatively efficient modern FHE schemes to (slower) schemes
with a particular lattice structure that allows for the zero-knowledge
protocol to work.

Assume we are given two homomorphic schemes, one with efficient
homomorphic capabilities, and the second suitable for zero-knowledge
proofs. If the latter can evaluate the former’s decryption circuit ho-
momorphically, it follows that we can apply the zero-knowledge proof
to the initial scheme. The challenge is to work out the algorithm that
binds the two schemes together: one must take an efficient circuit for
the source scheme, and formulate in such a way that the target scheme
can evaluate it.

As an example of the utility of our main contribution, we provide

ZK Proof of Decryption for FHE Ciphertexts 165

a one-shot zero-knowledge protocol for verifiable decryption of FHE
ciphertexts. In particular, we show how to transform a ciphertext of
the BGV [8] encryption scheme to one from the Gentry [21] scheme.
We then give a zero-knowledge proof of decryption for the Gentry
scheme, and combining the two results yield a proof of decryption for
BGV. Our main technical results are illustrated in Fig. 1.

Further Work

Our hope is that this idea can be applied to transformations between
other FHE schemes as well. Each such combination requires some
precise tailoring, and can have other applications than the one we
present here. For example, switching between from FHE scheme B to
FHE schemeA, where schemeA is suitable for some specific algorithm,
while scheme B is better for general computations.

Additionally, much like the results of decrypting AES homomor-
phically led to the development of FHE-friendly symmetric schemes [2,
31, 41], we believe there is a potential to develop specialised and ef-
ficient FHE schemes for specific applications, such as simple zero-
knowledge proofs. If that scheme is capable of performing the cipher-
text transformation from a different scheme, then such a primitive will
exist for all other such schemes.

2 Preliminaries

Denote reduction of a modulo b in two ways, either by [a]b for a, b ∈ Z
to mean mapping integers to [− b

2 ,
b
2) or by 〈a〉b to mean mapping

to [0, b). Use dac to denote rounding a ∈ R to the nearest integer.
We use · for scalar multiplication and × for any other multiplication
operation. Denote column vectors as lower case bold a and matrices as
upper case bold A. The inner product of two vectors a,b is written
〈a,b〉. We write a $←− S to mean that a was chosen uniformly at
random from the set S and a ← D to mean that a was selected
according to the distribution D. An NP relation R is a set (x,w) of
pairs of inputs x and witnesses w, for which deciding if (x,w) ∈ R
can be checked in time polynomial in the length of x.

166 C. Carr et al.

2.1 Zero-Knowledge Protocols

In a zero-knowledge protocol a prover attempts to prove to a verifier
that she knows a proof that a statement is true – usually a witness for
an instance of an NP relation. An accepting conversation is one for
which the verifier outputs accept. Later on we will need the following
two definitions relating to zero-knowledge protocols, and we use the
notation of Damgård [17].

Definition 1 (Special Soundness). There exists an efficient algorithm
A s.t. if (a, c, z) and (a, c′, z′), with c 6= c′, are accepting conversations
for x, then A(∆, x, a, c, z, c′, z′) = w such that (x,w) ∈ R, for some
binary relation R.

Definition 2 (Special Honest-Verifier Zero Knowledge (S-HVZK)).
There exists a polynomial-time simulator S, which on input x and a
challenge c, outputs an accepting conversation of the form (a, c, z),
with the same probability distribution as conversations between the
honest prover and verifier on input x.

2.2 Lattices and Ideal lattices

An n-dimensional lattice is a discrete subgroup of Rn. Lattices that
form a discrete subgroup of Zn are called integral lattices, and we
mainly focus on these. For a set of linearly independent vectors
{b1, . . . ,bn} ∈ Zn, the set

L = Λ({bi : 1 ≤ i ≤ n}) =

{ n∑

i=1

xi · bi : xi ∈ Z
}

is a lattice with basis {b1, . . . ,bn}. Lattices are often given by pro-
viding the basis in the form of a matrix B, with basis vectors bi as
columns. The rank d of a lattice L is the dimension of the subspace
span(L) ⊆ Zn, and we only consider full-rank (i.e. d = n) lattices.

A Hermite normal form (HNF) basis for a lattice is a basis such
that bi,j = 0 for all i < j, bj,j for all j and if i > j, then bi,j ∈
[−bj,j/2,+bj,j/2). For any basis B of L one can compute the HNF(L)
efficiently using Gaussian elimination. In some older lattice-based

ZK Proof of Decryption for FHE Ciphertexts 167

cryptosystems, the secret key is set as a ‘good’ basis for a lattice
where the vectors are short, and the public key is set to be the HNF
of the same lattice.

Let Φ(X) be a monic irreducible polynomial of degree n. We
will often use the 2nth cyclotomic polynomial Φ(X) = Xn + 1 with
n = 2k for some k ∈ Z. Define R as the ring of integer polynomials
modulo Φ(X), R = Z[X]/(Φ(X)). Elements of R can be considered as
polynomials or as vectors; since elements of the ring R are polynomials
of degree at most n−1, they can be associated with coefficient vectors
in Zn.

A non-empty subset I ⊂ R is called an ideal of R if I is an additive
subgroup of R, and for all r ∈ R and all x ∈ I, x · r ∈ I. One can
define the ideal generated by the set E ⊂ R as the intersection of
all ideals containing E (i.e. the smallest ideal containing E), which
we denote by IE if E contains more than one element. If E = {x}
contains a single element, we denote the ideal generated by it by (x).
An ideal I is called principal if it is generated by a single element x,
and then consists of all multiples of x in R. A lattice is an ideal lattice
if it corresponds to an ideal of R. If the ideal lattice corresponds
to a principal element (x) we can represent it using a single element
x ∈ R or its coefficient vector x ∈ Zn. This allows very compact
representation of each component of schemes based on ideal lattices.

2.3 Homomorphic Encryption

A homomorphic encryption scheme E is a (public-key) encryption
scheme with an additional Eval algorithm that operates on cipher-
texts. For the purposes of this paper, we focus on schemes that are
both additively and multiplicatively homomorphic. We have a secu-
rity parameter λ, and the algorithms are as follows.

(pk, sk)← KeyGen(1λ)

c← Enc(pk,m)

c← Eval(pk,F , c1, · · · , cn)

m← Dec(sk, c).

168 C. Carr et al.

The Eval algorithm takes as input the public key pk, ciphertexts and a
(circuit representing some) function F and must respect a correctness
requirement, namely that applying F to the ciphertexts is equivalent
to applying it to the underlying plaintext messages,

Dec(sk,Eval(pk,F , c1, · · · , cn)) = F(m1, · · · ,mn).

We say E is fully homomorphic if it can support arbitrary functions
F , and somewhat homomorphic otherwise.

Since many of the schemes we refer to are very complex but have
been detailed extensively elsewhere, we emphasise only the key points
that we are interested in, and refer the reader to the original papers
and the references therein for further details. Halevi [32] points out
that there have been three distinct generations of FHE schemes: i)
Gentry’s scheme and its variants, which require special assumptions in
order to bootstrap successfully, ii) Brakerski et al.’s work that creates
levelled schemes capable of evaluating any fixed (polynomial) depth,
based on standard assumptions and iii) Work beginning with Gentry,
Sahai and Waters [28] that has asymmetric multiplication, allowing
small noise growth, at the cost of not being able to use some of the
optimisations available to second-generation schemes.

2.3.1 Gentry-like Schemes

The three components that we can consider separately are the underly-
ing SHE scheme, the procedure that ‘squashes’ the decryption circuit
and the bootstrapping procedure. The main trick involved in Gentry’s
original method to reduce the degree of the decryption polynomial is
to add to the public key a hint of the secret key: a large set of vectors,
of which a very sparse subset adds up to the secret key (SSSP). An
improvement to this step was given by Stehlé and Steinfeld [48] who
showed how to reduce the number of vectors required. Gentry and
Halevi [22] showed a way to do bootstrapping without squashing the
decryption circuit by expressing the decryption function of the SHE
scheme as a special depth-3 arithmetic circuit.

We give a high-level overview of what we refer to as a Gentry en-
cryption. Gentry and Halevi gave an implementation [23] which has

ZK Proof of Decryption for FHE Ciphertexts 169

a simpler presentation compared to the original scheme, however it
was shown to be insecure [11]. There are other ‘Gentry-like schemes’
that have ciphertexts which are suitable for our purposes and have
a simpler presentation. By this we mean not only Gentry’s original
scheme [21] but also the variants/implementations by Smart and Ver-
cauteren [47] van Dijk et al. [49] and others [13, 27]. However, all of
these implementations are currently broken and therefore we will use
the original Gentry construction.

The algebraic set-up of the ring R is the same as mentioned above.
We have a cyclotomic polynomial ring R = Z[X]/(Φ(X)). We also
have two ideals I and J that are coprime in R, i.e. I + J = R. We
also have two bases of the ideal J ; one “good" basis, which plays the
role of the secret key, and one “bad" basis, which plays the role of the
public key. Messages are binary, and we view the plaintext space as
embedded into R/I. We sample some error r and output c = 2r + m
(mod Bpk), so that the ciphertext is

c = 2r + b + m,

where b ∈ Bpk, which is the “bad" basis – i.e. public key – of J . Here
m is encoded as the constant polynomial 0 or 1.

2.3.2 Brakerski-Gentry-Vaikuntanathan-like Schemes

We can separately consider another class of FHE schemes that do
not use assumptions for bootstrapping, but instead employ modulus
switching [7–9,37]. This class of schemes can be optimised in a number
of ways [3, 24–26, 33, 35, 46]. In this work, we choose to focus on the
original BGV scheme [8]. This is because it is currently the most
efficient scheme [15], as well as one of the two FHE schemes widely
implemented [34].

Decryption of a BGV ciphertext c carrying m is performed with
secret key s by evaluating

m← [〈c, s〉]q (mod 2),

where s = (1,−s). For a more detailed description and analysis of this
scheme, we refer to the original presentation [8]. The construction is

170 C. Carr et al.

a levelled scheme and applies modulus switching at each level. A
fresh ciphertext is encrypted at the ‘top’ level, modulo qL. With
each multiplication, we appropriately scale the resulting ciphertext
by qi−1/qi to go from a ciphertext at level qi to one at level qi−1.
This reduces the noise growth and allows for L multiplications. In
an implementation, the number of multiplications L we allow for is
specified in the set-up phase.

3 Ciphertext Switching

This section represents our main technical contribution on FHE: an
algorithm which transforms a BGV ciphertext into a Gentry one. In
section 4 we will detail how to give a zero-knowledge proof of decryp-
tion for Gentry-style schemes, and in combination with our ciphertext
switching technique this resolves our motivating scenario: use a BGV-
type scheme to efficiently perform computations, then a Gentry-type
one for verifiable decryption. Our approach takes inspiration from
Gentry’s original work [21]: bootstrapping is simply a homomorphic
evaluation of the decryption circuit. This is done by adding one layer
of encryption on a ciphertext, then evaluating the decryption circuit,
resulting in a ciphertext with one layer of encryption. The added
layer of encryption can be under the same scheme, or a different one.
In the first case, the result of the homomorphic decryption is a ci-
phertext in the initial scheme. In the latter case, a ciphertext in the
second scheme. We are interested in the latter case. We will use the
bootstrapping procedure in order to perform a ciphertext-switch be-
tween a BGV ciphertext and a Gentry one. We pick the Gentry and
BGV schemes because of their efficient capabilities to perform verifi-
able decryption and homomorphic operations, respectively. The idea
of ciphertext-switching is relatively straightforward, and it is easy to
imagine a context in which two different schemes would be used. The
results presented in this section could not be implemented in practice
since the original Gentry construction [21] is not (securely) imple-
mentable. Therefore, in this section we provide a proof of concept
that the ciphertext switching procedure can be instantiated.

We use the notation {m}E to mean that the plaintext messagem is

ZK Proof of Decryption for FHE Ciphertexts 171

encrypted under the scheme E. In particular, we will write {m}G and
{m}BGV to mean that the message m is encrypted under the Gentry
and the BGV scheme, respectively.

Assume we are working in the ring R = Z[X]/(Φ(X)), where Φ(X)
is monic irreducible, taken to be a power of two cyclotomic polynomial.
Let deg(Φ) = n and fix this ring for the remaining of this section. For
simplicity, we will assume that s is a binary polynomial in the ring
R. This has an impact on security, and one would need to carefully
select s as described by Albrecht [1].

Before looking at the ciphertext-switching procedure, we need to
ensure that it can be set up. This means that we need to match up
the plaintext and ciphertext spaces. Both spaces have a very simple
presentation for the BGV scheme. These are, respectively, Rp and
Rq, where Rp = R/pR, and similarly for Rq. The integers p and q
are referred to as the plaintext and ciphertext moduli, respectively.
We can set the plaintext modulus p to be 2, without loss of general-
ity. The ciphertext modulus q is chosen in accordance with security
requirements [1].

For the Gentry scheme, the plaintext space can also be taken to
be binary, so matching the two schemes is not complicated. Matching
the ciphertext spaces is more intricate. Simplifying greatly, a Gentry
ciphertext is an element of the form

(c mod J) mod I,

where both I and J are ideals of the ring R. The exact setup and
definition of these ideals is very complex, and we refer the reader to the
original presentation. This simplified presentation of a ciphertext is of
course not enough to give a deep understanding of the scheme; however
it is enough to see that a Gentry ciphertext lies in the intersection of
ideals I ∩ J , which we will call K. Therefore, to ensure that the
ciphertext spaces match, we will require that Rq ⊆ K.

In order to perform the ciphertext-switching procedure, we encrypt
each of the coefficients si of s under the Gentry scheme. This is
performed by sampling errors ri and bi and outputting

ai = 2 · ri + bi + si.

172 C. Carr et al.

As mentioned previously, many bootstrapping procedures make use
of another homomorphic scheme. Typically, this is a GSW or LWE
encryption scheme [10, 19]. The method is then: bootstrap a cipher-
text with a GSW or LWE-encrypted secret key, which gives a GSW
or LWE-encrypted message, according to which scheme was used in
the procedure. The bootstrapping operation is then achieved by ex-
tracting the encryption of the message in the desired form. Since we
will not want to recover a ciphertext in BGV form, this allows us to
dispense of the last operation. Thus, our method becomes: encrypt
the BGV secret key under the Gentry scheme, and decrypt homomor-
phically.

The procedure is as follows: we start with a BGV ciphertext c =
(c0, c1) ∈ R2 under a secret key s. We ignore the issues of modulus
or key switching, and also note that there is an implicit mod Φ(X)
performed with each homomorphic operation. The BGV secret key
will have the form

s(X) =

n−1∑

i=0

si ·Xi,

where each si ∈ {0, 1}. The first step is to encrypt each si in the
Gentry scheme. Each {si}G is an n-vector. We form a GSW-type
matrix of all the encryptions {si}G:

S = ({si}G)i∈{0···n−1}.

For a more detailed analysis of this technique, see for example Alperin-
Sheriff and Peikert [3]. Recall that the ciphertext c = (c0, c1) consists
of two polynomials of degree (at most) n − 1. Write them in their
coefficient vector representation and evaluate

c0 − c1 · S.
Recall that bootstrapping is the process of homomorphically evaluat-
ing the decryption circuit. Thus, evaluating the BGV decryption cir-
cuit on a BGV ciphertext with a Gentry-encrypted secret key results
in a Gentry-encrypted ciphertext. We have the following theorem.

Theorem 1. Let c be a BGV ciphertext. Ciphertext-switching c under
its Gentry-encrypted secret key {s}G results in a Gentry-encrypted
ciphertext.

ZK Proof of Decryption for FHE Ciphertexts 173

Proof. We will assume that we have set up our schemes in a correct
manner, i.e. that the plaintext/ ciphertext spaces match up, as ex-
plained earlier in this section. Suppose we have an encryption scheme
E which is linearly homomorphic, i.e. the following is true

b− a · E(s) = E(b− a · s).

This is trivially true of most homomorphic schemes in the literature,
including the Gentry scheme, and the proof relies on this fact. This
is true of any encryption scheme E which supports affine transforma-
tions.

Indeed, the decryption circuit of BGV is

m← [〈c, s〉]q (mod 2),

where by abuse of notation 〈c, s〉 = c1 − c0 · s, for a ciphertext
c = (c0, c1). Now if the scheme E does indeed support affine transfor-
mations, we have that

c1 − c0 · {s}G = {c1 − c0 · s}G.

More precisely, writing each row i in S as 2·ri+bi+si, in evaluating the
above we get the following. Notice we now switch to vector coefficient
notation, writing ci for the polynomial ci.

c1 − c0 · {s}G =
∑

i

c1,i − c0,1 · (2 · ri + bi + si)

=
∑

i

(c1,i − c0,1 · si) + (2 · ri + bi)

= c1 − c0 · s + 2 · r + b

= m+ k · q + 2 · r + b

= {m}G (mod q).

Providing a complete noise analysis here would require the introduc-
tion of all the formalism from Gentry’s scheme, which is beyond our
scope. Instead, we notice that our resulting Gentry ciphertext is the
sum of n such ciphertexts, and we refer to the original construction
for a thorough analysis.

174 C. Carr et al.

3.1 Switching Integrity

Returning to the election example, assume that the election authority
has prepared for some likely, but unfavourable, outcomes. Resource-
fully, they alter the transformation key {s}G during key generation to
encrypt a different key, which will transform the correct result into
one they prefer, which they can then prove the correct decryption of.

Multiparty computation can be used for key generation in answer
to this problem. However, there is a simpler method to check the
validity of the transformation key. We give the result in its full gen-
erality, only assuming linearity of decryption and that cancellation
holds in the plaintext space.

In the following lemma, the reader might find it helpful to think
of sk as the “real” decryption key, and sk′ as a key the dishonest
decryptor has found to change the output favourably.

Lemma 1. Let C and P denote the ciphertext and plaintext spaces,
and let Decsk,Decsk′ : C → P be functions indexed by two different
keys. Assume that the adversary wants to target messages in a set A ⊂
C, such that for all c ∈ A we have Decsk(c) 6= Decsk′(c). Assuming the
decryption algorithm is additively homomorphic and that cancellation
works in the plaintext space, then for ciphertexts outside of A, Decsk
and Decsk′ will also differ.

Proof. We use a contrapositive argument. Assume that c1 ∈ A and
c2 /∈ A. Then there are two cases for c1 + c2, either in or not in A.
We assume the latter, the former is analogous. There are some corner
cases for FHE ciphertext spaces where the linearity does not hold, but
then, for the sake of the argument one can just select different values.

Assume that decryption under sk′ agrees with sk for all values
outside A. It follows that

Decsk(c1 + c2) = Decsk′(c1 + c2) = Decsk′(c1) + Decsk′(c2)

= Decsk′(c1) + Decsk(c2).

By linearity and cancellation, we must have Decsk′(c1) = Decsk(c1).
Hence, Dec′sk cannot modify any value in A without also modifying
all values outside A.

ZK Proof of Decryption for FHE Ciphertexts 175

Verification Protocol: To verify that the secret key is correct, one
only needs to verify the decryption of a single non-zero plaintext. Let
ES be the source scheme and ET be the target scheme.

1. The challenger sends a tuple (m, {m}ES
) to the decryptor.

2. Both parties agree on a representation of {m}ET
using the public

transformation algorithm.

3. The decryptor proves the correctness of the decryption {m}ET
−

m = 0.

4. The challenger verifies the proof.

Note that this protocol can be carried out independently (and possibly
long before) the zero-knowledge protocol that we describe in the next
section.

4 One-Shot Verifiable Decryption

As we discussed in the introduction, there are no generic and efficient
zero-knowledge proofs for correct decryption of an FHE ciphertext.
Currently, the most promising approach is based on MPC, and is only
efficient when the computational cost is amortised over a large number
of instances [6]. In this section we detail a zero-knowledge proof for
decryption of Gentry ciphertexts, and thus when combined with the
ciphertext switching procedure discussed in the previous chapter we
can transform a ciphertext from any scheme with a sufficiently simple
decryption circuit to a “proof-friendly” scheme.

4.1 The Zero-Knowledge Proof

Let ĉ be a ciphertext encrypted under a scheme whose decryption
circuit is sufficiently simple for Gentry, and let c be the corresponding
ciphertext under Gentry. Recall that c can be written as c = 2r+b+
m, where b represents a lattice point and r is some noise vector. As
long as r is inside some set D, the ciphertext is decryptable. Letting

176 C. Carr et al.

the prover have access to the decryption key, we get a simple Schnorr-
like Σ-protocol to prove that m = 0. Notice that the decryption
algorithm can be modified to output both the message and the noise
vector.

The generic protocol, between a prover P and a verifier V, is as
follows.

P1 Choose an encryption c′ = b′ + r′ of zero such that the noise r′

can hide r, and send c′ to the verifier.

V1 Select e $←− {0, 1} and send e to the prover.

P2 If e = 0, set d = b′, or if e = 1, set d = b + b′. Transmit d.

V2 Verify that d is a lattice point, and check that the noise ec+c′−d
is well-formed and sufficiently small.

We use rejection sampling [38,39] to improve the parameters of our
proposal. Rejection sampling is useful in a scenario where one has a
distribution D, but lacks a good way of sampling from it. Instead, one
can sample from a larger distribution E ⊃ D, and simply reject any
value not in D. The usefulness becomes apparent when the sampling
takes part over several rounds in a protocol. Typically, a value outside
D will leak information, but only after combining everything in the
final step can one decide whether it will be out of bounds, so we avoid
this problem.

We can generalise the protocol to a larger e, which will result in an
arbitrarily good soundness bound (but may require increased parame-
ters for the Gentry scheme). To instantiate the above idea specifically
for the Gentry scheme, all that remains is to add the following lines
to the respective steps:

P2 If er + r′ is outside the set D, reject.

V2 Verify that d is a lattice point: check that (Bpk
J)−1d is an integer

vector. Verify that ec + c′ − d is the correct randomness to
generate d.

The modification of step P2 is an application of rejection sampling.
The probability of the prover rejecting depends on the parameters: a

ZK Proof of Decryption for FHE Ciphertexts 177

large set D (possibly exponentially large) requires larger parameters,
whereas a small set will result in more rejections. We leave the choice
of concrete parameters for specific applications.

Remark 1. When creating a Schnorr-like zero-knowledge proof for
modern LWE-based schemes, one usually has to prove that they can
extract a value through rewinding and this value will be small, like
we have discussed earlier. However, the extraction equation normally
requires that one divides by the difference of the challenges. If that
is different from ±1 then there is no longer a guarantee that the ex-
tracted value is small, so one is prevented from using a large challenge
space. Alternatively, one can use some values outside ±1, with the
consequence that one can only make a guarantee for a bound larger
than that one is interested in. The difference may be acceptable, and
is called the “soundness slack” [4]. Here, we do not need to recon-
struct short vectors. We are not limited by the size of the challenge
space, and so the main advantage of the above protocol is the lack of
soundness slack.

Theorem 2. The above protocol is complete and achieves special
soundness and special honest-verifier zero knowledge.

Proof. To verify completeness, notice that (Bpk
J)−1(b′) + eb will be

an integer vector since b′ and b are lattice points. Next, we have
ec + c′ − d = 2er + r′, which is exactly the values used to generate
the lattice points.

For special soundness, assume we have gathered challenges e0 and
e1 such that e0 − e1 is invertible in R, and that the prover has re-
sponded successfully with d0 and d1. Then compute (e0− e1)−1(d0−
d1) to get b and extract the message as c− b (mod 2).

Depending on the ring R, e0 − e1 may not always be invertible.
If so, let φ denote the probability that an arbitrary element is a unit.
After rewinding, e0−e1 is invertible with probability φ. After rewind-
ing k − 1 times, the probability that no ei − ej is invertible is just
(1− φ)(

k
2), which quickly becomes negligible.

Next we prove special honest-verifier zero knowledge. Note that
the transcript of a correct protocol run is {c′, e,d}, where the cipher-
text is a fresh random encryption of 0, e is a uniformly random value

178 C. Carr et al.

from some finite set and d is distributed based on the distribution on
r in the encryption algorithm. The simulator is initiated with an e,
then proceeds to select a random noise vector and computes the corre-
sponding lattice point d. Then c′ is given by ec+c′−d = r c′, which
guarantees that the verification step is satisfied. The distribution of
the simulated transcript essentially only depends on the distribution
of the randomness r as a function of e, so the simulator can choose it
accordingly.

In the protocol we took advantage of the lattice structure of Gen-
try’s cryptosystem to create an elegant proof – structure that is not
available in more efficient schemes such as BGV. The challenge in pro-
viding a compact ZK proof of decryption for other schemes (not just
BGV) remains but we believe this will be a fruitful direction given
that one can design a proof-friendly FHE scheme that is only geared
towards a single circuit: the decryption of ciphertexts under a differ-
ent scheme. Looking at the greater picture, verifiable decryption need
not be the only application of the generalised bootstrapping idea.

Acknowledgements. We would like to thank Nigel Smart for valu-
able discussions and feedback.

References

[1] Martin R. Albrecht. On dual lattice attacks against small-
secret LWE and parameter choices in HElib and SEAL. In
Jean-Sébastien Coron and Jesper Buus Nielsen, editors, EURO-
CRYPT 2017, Part II, volume 10211 of LNCS, pages 103–129,
Paris, France, May 8–12, 2017. Springer, Heidelberg, Germany.

[2] Martin R. Albrecht, Christian Rechberger, Thomas Schneider,
Tyge Tiessen, and Michael Zohner. Ciphers for MPC and FHE.
In Oswald and Fischlin [43], pages 430–454.

[3] Jacob Alperin-Sheriff and Chris Peikert. Faster bootstrapping
with polynomial error. In Garay and Gennaro [20], pages 297–
314.

ZK Proof of Decryption for FHE Ciphertexts 179

[4] Carsten Baum, Ivan Damgård, Kasper Green Larsen, and
Michael Nielsen. How to prove knowledge of small secrets. In
Matthew Robshaw and Jonathan Katz, editors, CRYPTO 2016,
Part III, volume 9816 of LNCS, pages 478–498, Santa Barbara,
CA, USA, August 14–18, 2016. Springer, Heidelberg, Germany.

[5] Carsten Baum, Ivan Damgård, Sabine Oechsner, and Chris Peik-
ert. Efficient commitments and zero-knowledge protocols from
ring-SIS with applications to lattice-based threshold cryptosys-
tems. Cryptology ePrint Archive, Report 2016/997, 2016. http:
//eprint.iacr.org/2016/997.

[6] Carsten Baum, Ivan Damgård, Tomas Toft, and Rasmus Winther
Zakarias. Better preprocessing for secure multiparty computa-
tion. In Mark Manulis, Ahmad-Reza Sadeghi, and Steve Schnei-
der, editors, ACNS 16, volume 9696 of LNCS, pages 327–345,
Guildford, UK, June 19–22, 2016. Springer, Heidelberg, Ger-
many.

[7] Zvika Brakerski. Fully homomorphic encryption without modulus
switching from classical GapSVP. In Safavi-Naini and Canetti
[45], pages 868–886.

[8] Zvika Brakerski, Craig Gentry, and Vinod Vaikuntanathan. (Lev-
eled) fully homomorphic encryption without bootstrapping. In
Shafi Goldwasser, editor, ITCS 2012, pages 309–325, Cambridge,
MA, USA, January 8–10, 2012. ACM.

[9] Zvika Brakerski and Vinod Vaikuntanathan. Efficient fully ho-
momorphic encryption from (standard) LWE. In Ostrovsky [42],
pages 97–106.

[10] Ilaria Chillotti, Nicolas Gama, Mariya Georgieva, and Malika
Izabachène. Faster fully homomorphic encryption: Bootstrapping
in less than 0.1 seconds. In Jung Hee Cheon and Tsuyoshi Takagi,
editors, ASIACRYPT 2016, Part I, volume 10031 of LNCS, pages
3–33, Hanoi, Vietnam, December 4–8, 2016. Springer, Heidelberg,
Germany.

180 C. Carr et al.

[11] Gu Chunsheng. Cryptanalysis of the smart-vercauteren and
gentry-halevi’s fully homomorphic encryption. Cryptology ePrint
Archive, Report 2011/328, 2011. http://eprint.iacr.org/
2011/328.

[12] Josh D. Cohen and Michael J. Fischer. A robust and verifiable
cryptographically secure election scheme (extended abstract). In
26th FOCS, pages 372–382, Portland, Oregon, October 21–23,
1985. IEEE Computer Society Press.

[13] Jean-Sébastien Coron, Avradip Mandal, David Naccache, and
Mehdi Tibouchi. Fully homomorphic encryption over the in-
tegers with shorter public keys. In Phillip Rogaway, editor,
CRYPTO 2011, volume 6841 of LNCS, pages 487–504, Santa
Barbara, CA, USA, August 14–18, 2011. Springer, Heidelberg,
Germany.

[14] Jean-Sébastien Coron and Jesper Buus Nielsen, editors. EU-
ROCRYPT 2017, Part I, volume 10210 of LNCS, Paris, France,
May 8–12, 2017. Springer, Heidelberg, Germany.

[15] Ana Costache and Nigel P. Smart. Which ring based somewhat
homomorphic encryption scheme is best? In Kazue Sako, edi-
tor, CT-RSA 2016, volume 9610 of LNCS, pages 325–340, San
Francisco, CA, USA, February 29 – March 4, 2016. Springer,
Heidelberg, Germany.

[16] Ronald Cramer, Ivan Damgård, Chaoping Xing, and Chen
Yuan. Amortized complexity of zero-knowledge proofs revisited:
Achieving linear soundness slack. In Coron and Nielsen [14], pages
479–500.

[17] Ivan Damgård. On σ-protocols, v2. Lecture Notes, University of
Aarhus, Department for Computer Science, 2010.

[18] Rafaël del Pino and Vadim Lyubashevsky. Amortization with
fewer equations for proving knowledge of small secrets. In
Jonathan Katz and Hovav Shacham, editors, CRYPTO 2017,
Part III, volume 10403 of LNCS, pages 365–394, Santa Barbara,
CA, USA, August 20–24, 2017. Springer, Heidelberg, Germany.

ZK Proof of Decryption for FHE Ciphertexts 181

[19] Léo Ducas and Daniele Micciancio. FHEW: Bootstrapping ho-
momorphic encryption in less than a second. In Oswald and
Fischlin [43], pages 617–640.

[20] Juan A. Garay and Rosario Gennaro, editors. CRYPTO 2014,
Part I, volume 8616 of LNCS, Santa Barbara, CA, USA, Au-
gust 17–21, 2014. Springer, Heidelberg, Germany.

[21] Craig Gentry. Fully homomorphic encryption using ideal lattices.
In Michael Mitzenmacher, editor, 41st ACM STOC, pages 169–
178, Bethesda, MD, USA, May 31 – June 2, 2009. ACM Press.

[22] Craig Gentry and Shai Halevi. Fully homomorphic encryption
without squashing using depth-3 arithmetic circuits. In Ostro-
vsky [42], pages 107–109.

[23] Craig Gentry and Shai Halevi. Implementing Gentry’s fully-
homomorphic encryption scheme. In Kenneth G. Paterson, edi-
tor, EUROCRYPT 2011, volume 6632 of LNCS, pages 129–148,
Tallinn, Estonia, May 15–19, 2011. Springer, Heidelberg, Ger-
many.

[24] Craig Gentry, Shai Halevi, and Nigel P. Smart. Better boot-
strapping in fully homomorphic encryption. In Marc Fischlin,
Johannes Buchmann, and Mark Manulis, editors, PKC 2012, vol-
ume 7293 of LNCS, pages 1–16, Darmstadt, Germany, May 21–
23, 2012. Springer, Heidelberg, Germany.

[25] Craig Gentry, Shai Halevi, and Nigel P. Smart. Fully homomor-
phic encryption with polylog overhead. In David Pointcheval and
Thomas Johansson, editors, EUROCRYPT 2012, volume 7237
of LNCS, pages 465–482, Cambridge, UK, April 15–19, 2012.
Springer, Heidelberg, Germany.

[26] Craig Gentry, Shai Halevi, and Nigel P. Smart. Homomorphic
evaluation of the AES circuit. In Safavi-Naini and Canetti [45],
pages 850–867.

182 C. Carr et al.

[27] Craig Gentry, Shai Halevi, and Vinod Vaikuntanathan. A simple
BGN-type cryptosystem from LWE. In Gilbert [29], pages 506–
522.

[28] Craig Gentry, Amit Sahai, and Brent Waters. Homomorphic
encryption from learning with errors: Conceptually-simpler,
asymptotically-faster, attribute-based. In Ran Canetti and
Juan A. Garay, editors, CRYPTO 2013, Part I, volume 8042
of LNCS, pages 75–92, Santa Barbara, CA, USA, August 18–22,
2013. Springer, Heidelberg, Germany.

[29] Henri Gilbert, editor. EUROCRYPT 2010, volume 6110 of LNCS,
French Riviera, May 30 – June 3, 2010. Springer, Heidelberg,
Germany.

[30] Kristian Gjøsteen and Martin Strand. A roadmap to fully homo-
morphic elections: Stronger security, better verifiability. Cryp-
tology ePrint Archive, Report 2017/166, 2017. http://eprint.
iacr.org/2017/166.

[31] Lorenzo Grassi, Christian Rechberger, Dragos Rotaru, Peter
Scholl, and Nigel P. Smart. MPC-friendly symmetric key prim-
itives. In Edgar R. Weippl, Stefan Katzenbeisser, Christopher
Kruegel, Andrew C. Myers, and Shai Halevi, editors, ACM CCS
16, pages 430–443, Vienna, Austria, October 24–28, 2016. ACM
Press.

[32] Shai Halevi. Homomorphic encryption. In Tutorials on the Foun-
dations of Cryptography: Dedicated to Oded Goldreich, pages
219–276, Cham, 2017. Springer International Publishing.

[33] Shai Halevi and Victor Shoup. Algorithms in HElib. In Garay
and Gennaro [20], pages 554–571.

[34] Shai Halevi and Victor Shoup. Helib – an implementation of
homomorphic encryption., 2014.

[35] Shai Halevi and Victor Shoup. Bootstrapping for HElib. In Os-
wald and Fischlin [43], pages 641–670.

ZK Proof of Decryption for FHE Ciphertexts 183

[36] Martin Hirt and Kazue Sako. Efficient receipt-free voting based
on homomorphic encryption. In Bart Preneel, editor, EURO-
CRYPT 2000, volume 1807 of LNCS, pages 539–556, Bruges,
Belgium, May 14–18, 2000. Springer, Heidelberg, Germany.

[37] Adriana López-Alt, Eran Tromer, and Vinod Vaikuntanathan.
On-the-fly multiparty computation on the cloud via multikey
fully homomorphic encryption. In Howard J. Karloff and To-
niann Pitassi, editors, 44th ACM STOC, pages 1219–1234, New
York, NY, USA, May 19–22, 2012. ACM Press.

[38] Vadim Lyubashevsky. Lattice-based identification schemes secure
under active attacks. In Ronald Cramer, editor, PKC 2008, vol-
ume 4939 of LNCS, pages 162–179, Barcelona, Spain, March 9–
12, 2008. Springer, Heidelberg, Germany.

[39] Vadim Lyubashevsky. Fiat-Shamir with aborts: Applications to
lattice and factoring-based signatures. In Mitsuru Matsui, editor,
ASIACRYPT 2009, volume 5912 of LNCS, pages 598–616, Tokyo,
Japan, December 6–10, 2009. Springer, Heidelberg, Germany.

[40] Vadim Lyubashevsky and Gregory Neven. One-shot verifiable
encryption from lattices. In Coron and Nielsen [14], pages 293–
323.

[41] Pierrick Méaux, Anthony Journault, François-Xavier Standaert,
and Claude Carlet. Towards stream ciphers for efficient FHE
with low-noise ciphertexts. In Marc Fischlin and Jean-Sébastien
Coron, editors, EUROCRYPT 2016, Part I, volume 9665
of LNCS, pages 311–343, Vienna, Austria, May 8–12, 2016.
Springer, Heidelberg, Germany.

[42] Rafail Ostrovsky, editor. 52nd FOCS, Palm Springs, CA, USA,
October 22–25, 2011. IEEE Computer Society Press.

[43] Elisabeth Oswald and Marc Fischlin, editors. EURO-
CRYPT 2015, Part I, volume 9056 of LNCS, Sofia, Bulgaria,
April 26–30, 2015. Springer, Heidelberg, Germany.

184 C. Carr et al.

[44] Kun Peng, Riza Aditya, Colin Boyd, Ed Dawson, and
Byoungcheon Lee. Multiplicative homomorphic e-voting.
In Anne Canteaut and Kapalee Viswanathan, editors, IN-
DOCRYPT 2004, volume 3348 of LNCS, pages 61–72, Chennai,
India, December 20–22, 2004. Springer, Heidelberg, Germany.

[45] Reihaneh Safavi-Naini and Ran Canetti, editors. CRYPTO 2012,
volume 7417 of LNCS, Santa Barbara, CA, USA, August 19–23,
2012. Springer, Heidelberg, Germany.

[46] N. P. Smart and F. Vercauteren. Fully homomorphic simd oper-
ations. Designs, Codes and Cryptography, 71(1):57–81, 2014.

[47] Nigel P. Smart and Frederik Vercauteren. Fully homomorphic
encryption with relatively small key and ciphertext sizes. In
Phong Q. Nguyen and David Pointcheval, editors, PKC 2010,
volume 6056 of LNCS, pages 420–443, Paris, France, May 26–28,
2010. Springer, Heidelberg, Germany.

[48] Damien Stehlé and Ron Steinfeld. Faster fully homomorphic en-
cryption. In Masayuki Abe, editor, ASIACRYPT 2010, volume
6477 of LNCS, pages 377–394, Singapore, December 5–9, 2010.
Springer, Heidelberg, Germany.

[49] Marten van Dijk, Craig Gentry, Shai Halevi, and Vinod Vaikun-
tanathan. Fully homomorphic encryption over the integers. In
Gilbert [29], pages 24–43.

ZK Proof of Decryption for FHE Ciphertexts 185

