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Abstract 

 

Hydrogen transport membranes have gained interest from industry as an alternative to 

pressure swing adsorption or cryogenic distillation, and are aimed to reduce cost, 

equipment size, energy consumption and waste generation. Doped strontium cerate 

stabilized with zirconium exhibit high proton conductivity and chemical stability and is 

therefore considered to be a promising material for hydrogen transport membranes. 

 

The purpose of the work was to investigate if phase pure strontium cerates, stabilized 

with zirconium and doped with thulium, ytterbium or yttrium, could be synthesized by 

the Pechini method, and if the membranes exhibited sufficient density. Determination of 

optimal calcination and sintering parameters was also important parts in the study. 

 

SrCe0.75Zr0.20M0.05O3-δ, (M=Tm,Y,Yb) were synthesized via the Pechini method, 

followed by calcination, pressing of green bodies and sintering of dense membranes. 

Phase purity of powders and sintered membranes was examined by X-ray diffraction. 

Surface investigation and microstructure was investigated in a scanning electron 

microscope. Sintering behavior and thermal expansion coefficients was determined by 

dilatometry.  

 

Phase pure and dense orthorhombic perovskite structured SrCe0.75Zr0.20M0.05O3-δ, 

(M=Tm,Y,Yb) membranes, were obtained by powder calcination at 1000 ˚C, followed 

by milling and conventional sintering at 1500˚C-1600 ˚C. SrCe0.75Zr0.20Tm0.05O3-δ 

demonstrated the highest density of 98,6%, when sintered at 1500 ˚C. Sintered 

membranes had an average grain size in the range from 3,2 μm-4,9 μm. Ball milling is 

concluded to be of vital importance to obtain sufficient density in the membranes. 

 

The membrane characterization is limited to the methods and techniques described 

above. Hydrogen flux across the membrane, total conductivity, stability in reducing 

atmosphere and thorough investigation of thermal properties are recommended for 

further work.  
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Sammendrag 

 

Hydrogen transport membraner har fått en økt interesse fra industrien som et alternativ 

til kryogenisk destillasjon eller trykk sving adsorpsjon, som et ledd i å minke kostnader, 

størrelse på utstyr, energi forbruk og avfall. Dopet strontium cerat stabilisert med 

zirkonium viser høy protonisk ledningsevne og kjemisk stabilitet og er derfor ansett som 

et lovende materiale for hydrogen transport membraner. 

 

Bakgrunnen for oppgaven var å undersøke om fase rent strontium cerat, stabilisert med 

zirkonium og dopet med enten thulium, ytterbium eller yttrium kunne bli syntetisert ved 

bruk av Pechini metoden, og om membranene viste tilstrekkelig tetthet. Kartlegging av 

optimale sintrings og kalsinerings parametere var også en viktig del av oppgaven. 

 

SrCe0.75Zr0.20M0.05O3-δ, (M=Tm,Y,Yb) ble syntetisert via Pechini metoden, med 

påfølgende kalsinering, pressing av grønnkropper og sintring av tette membraner. Fase 

renheten til membranene ble undersøkt med røntgen diffraksjon. Overflate og 

mikrostruktur ble karakterisert ved bruk av scanning elektron mikroskop. 

Sintringsforløpet og termisk utvidelseskoeffisient ble bestemt ved hjelp av dilatometri. 

 

Fase rene og tette SrCe0.75Zr0.20M0.05O3-δ, (M=Tm,Y,Yb) membraner med ortorombisk 

perovskitt struktur ble oppnådd ved kalsinering av pulveret ved 1000 ˚C, mølling og 

påfølgende sintring ved 1500˚C-1600 ˚C. Det ble oppnådd en tetthet på 98,6% av 

teoretisk tetthet ved sintring av SrCe0.75Zr0.20Tm0.05O3-δ ved 1500 ˚C. De sintrede 

membranene hadde en gjennomsnittlig kornstørrelse mellom 3,2 μm-4,9 μm. Mølling av 

pulveret viste seg å være kritisk for å oppnå tilstrekkelig tetthet i membranene. 

 

Karakterisering av membranene er begrenset til de metoder og teknikker som er nevnt 

ovenfor. Hydrogen gjennomstrømning, total ledningsevne, stabilitet i reduserende 

atmosfære og grundig undersøkelse av termiske egenskaper er anbefalt som videre 

arbeid
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1. Introduction 

 

There is a global push to develop a range of hydrogen technologies for timely adoption of 

the hydrogen economy. This is critical in view of the depleting oil reserves, transport fuel 

shortage, global warming, and increasing pollution. Hydrogen gas can be generated by a 

number of renewable and fossil-fuel-based resources. Effective technologies are required for 

the separation of hydrogen from a gas feed, and can be done by pressure swing adsorption, 

cryogenic distillation or membrane separation [1]. The membranes need to withstand 

aggressive chemical environments, high temperature and large pressure gradients. Polymer 

membranes exhibit large hydrogen flux, but have a tendency to swell or plasticize during 

operation in these conditions and their separation capabilities is reduced [2]. Palladium thin-

film membranes are stable at medium temperatures up to 500 ˚C, and exhibit an 

extraordinary hydrogen flux [3]. If the temperature in the membrane reactor is even higher, 

mixed conducting membranes, based on ceramic materials, is a promising candidate, due to 

high stability, mechanical strength and direct reforming on the membrane surface. 

 

In the early 1980s, Iwahara et al. [4] firstly reported proton conductivity in doped SrCeO3 

perovskite materials in hydrogen-containing atmosphere at high temperature (>600 ˚C). 

Later, protonic conductivity was also demonstrated in other doped perovskites [5], and 

researchers strive to increase both the hydrogen flux across the membrane and the stability in 

reducing atmospheres by incorporation of different dopants. SrCeO3 is still one of the best 

proton conducting materials and exhibit high hydrogen flux. When investigating new 

membrane material compositions, a considerable amount of work has to be done with regard 

to synthesis and characterization. 

 

The purpose of the work was to investigate if phase pure strontium cerates, stabilized with 

zirconium and doped with thulium, ytterbium or yttrium, could be synthesized by the Pechini 

method, and if the membranes exhibited sufficient density. Optimal calcination and sintering 

parameters were also studied. Phase purity of powders and sintered membranes was 

examined by X-ray diffraction. Surface investigation and microstructure was investigated in 

scanning electron microscope. Sintering behavior and thermal expansion coefficients was 

determined by dilatometry.  
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2. Theory 

 

2.1 Material properties 

2.1.1 Perovskite structure 

The general formula for perovskite structures is ABO3. A is a large cation and B is a medium 

sized cation. Oxygen is connected to both of them, giving the coordination formula of 

A
XII

B
VI

O3 with valences of A
+2

B
+4

O3 (A
+3

B
+3

O3 and A
+1

B
+5

O3 are also possible) [6]. The 

ideal cubic perovskite structure is shown in Figure 1. A is situated in the middle of the cube, 

and B at each corner. Oxygen has an octahedron configuration, and is represented by red 

spheres. 

 

Figure 1 Ideal cubic perovskite structure, modified from [6]. A, B and O sites is represented 

by black, blue and red spheres, respectively 

The perovskite structure is preserved if the tolerance factor t, given in equation 2.1 is 

between 0,8 and 1,0 as stated by Goldsmith [7]. The tolerance factor or degree of distortion 

for SrCeO3 is equal to 0.889, giving it an orthorhombic distorted perovskite structure shown 

in Figure 2 (b). The ideal cubic perovskite structure is represented by t=1. 
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√       

 (2.1)  

   

Where RA, RB and RO is the ionic radii of cation A, B and Oxygen, respectively. 

  

 

                (a)                                                                               (b) 

Figure 2 Perovskite distortion from (a) cubic to (b) orthorhombic [8] 

All perovskite distortions that maintain the A and B site oxygen coordination, involve the 

tilting of the BO6 octahedra and an associated displacement of the A cation. For the 

orthorhombic structure, these octahedral tilt about the b and c axes [8]. 

 

When doping is introduced in to the structure, the lattice parameters changes due to different 

ionic radii of the dopant, compared to the parent cation. Table 1 presents lattice parameters 

of some orthorhombic strontium based materials. 

Table 1 Lattice parameters in doped and not doped SrCeO3 or SrZrO3 [9-11] 

 a [nm] b [nm] c [nm] V [nm
3
] ρ [g/cm

3
] 

SrCeO3 0.6147   0.8585   0.6006   0.317   5.77 

SrZrO3   0.5817   0.8204   0.5799   0.277   5.44 

SrCe0.75Zr0.20Tm0.05O3-δ 0.5969 0.8519 0.6074 0.309 5.75 

SrCe0.70Zr0.25Yb0.05O3-δ 0.6061 0.8487   0.5951   0.306   5.77 
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The ionic radii of the dopants and the parenting cerium cation are presented in Table 2. 

Table 2 Shannon ionic radii of parent cation and dopands of interest 

Cation Shannon ionic radii [Å] 

Ce
4+

 0,87 

Zr
4+ 

0,72 

Tm
3+

 0,88 

Yb
3+

 0,868 

Y
3+

 0,9 

 

2.1.2 Transport mechanisms and doping 

A simplified overview of hydrogen transport through a dense mixed conducting membrane is 

shown in Figure 3. The transport of hydrogen is based on the solution-diffusion mechanism. 

The hydrogen transport is driven by a chemical potential gradient across the membrane, and 

can be controlled by the pressure gradient, concentration gradient, temperature gradient, or 

electric field gradient. Typically a hydrostatic gradient is used to promote the transport of H2 

through the membrane [1].   

 

 

Figure 3 Schematic representation of H2 transport steps trough mixed conducting 

membrane, modified from [1] 
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The simplest route from hydrogen gas to protons dissolved in the oxide is shown in equation 

2.2 and 2.3 [12]. 

 

                    (2.2)  

   

        
     

           (2.3)  

   

Where vads denotes a free active site, Hads is an adsorbed proton,   
  is oxygen at regular site,    

  is a 

hydroxide ion and e
-
is an electron. 

 

Protons do not migrate through the membrane as free interstitial ions, but is strongly 

associated with an O
2-

 ion, forming a hydroxide ion. The proton jumps from one O
2-

 to 

another through the membrane [12].  

 

Doped SrCeO3
 
exhibit a great potential as hydrogen separation membrane due to its high 

ionic conductivity, but the chemical stability and electric conductivity is low. As seen in 

Figure 3, the hydrogen flux across the membrane is dependent on both the transport of 

electrons and protons. To increase the hydrogen flux, electron conductivity must be 

enhanced. 

 

The electronic hopping mechanism in semiconductors occurs between two neighboring ions 

with different valences [13]. In perovskites the BO6 octahedra is connected to each other, 

and is responsible for electronic conduction.  It is known that substituting the B site cation 

with dopants with different valence, often rare earth metals, can increase the electronic 

conductivity. The electronic hopping mechanism between cerium and e.g. thulium can be 

represented by equation 2.4 and 2.5. 

 

               (2.4)  

   

              (2.5)  
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If Ce
4+

 ions are replaced by a tree valiant ion e.g. Tm
3+

 an oxygen vacancy is created to 

maintain electrical neutrality. The oxygen vacancy tends to react with oxygen gas and create 

electron holes. This will enhance the electric conductivity. In dry air the following 

equilibrium is established [14]: 

 

            
       (2.6)  

   

Where VO
••
,  

   and h
•
, denotes oxygen vacancy, oxygen at regular site and electron hole, respectively. 

 

Zr
4+

 is stable without charge transfer and has the same valence as Ce
4+

 and will therefore not 

enhance the electrical conductivity [10]. Strontium zirconates exhibit lower proton 

conductivity, but has higher mechanical strength and chemical resistance than strontium 

cerate based ceramics. Strontium cerate show a tendency to react with CO2, according to 

equation 2.7 [15, 16]. 

 

                                   (2.7)  

   

It is a trade off with respect to the stability and conductivity when introducing zirconium to 

the B-site. An increase of zirconium content in the structure will increase the chemical and 

mechanical stability, but lower the protonic conductivity resulting in lower hydrogen flux 

[17]. Liang, J et.al [10] found a significant drop in the total conductivity in SCZT, when 

increasing the zirconium doping level from 20 to 30 mol%. 

 

Generally, the H2 permeation flux across a mixed-ionic conducting membrane is described 

by the Wagner equation given in equation 2.8, which assumes the bulk diffusion as the rate-

limiting step: 

 

    
  

    
∫

            
 

  

     

    

      
 (2.8)  

   

Were JH2 is the hydrogen flux, L is the thickness of the membrane, F is Faradays constant, R is the gas constant 

and T is temperature. P´´ and p´ denotes the partial pressure of hydrogen at the feed and permeate side. σ is 

the conductivity and subscripts OH˙, h˙, t and eʹ denote proton at oxygen site, electron hole, total conductivity 

and electron, respectively [18]. 
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Studies by Hamakawa et.al [19] confirms that the  hydrogen permeation flux is proportional 

to the inverse membrane thickness. This indicates that surface kinetics does not affect the 

rate-limiting step of hydrogen permeation. 

 

Since the hydrogen flux is proportional to the inverse membrane thickness, thinner 

membranes is advantageous. Thin-film membranes do not have sufficient mechanical 

strength to withstand high pressure, so it must be supported. The support has a continuous 

pore structure to promote gas permeation [20]. 

2.2 Synthesis 

Strontium cerates have been synthesized by a range of different processes routes such as, the 

common solid-state-reaction [9], spray pyrolysis [21], combustion synthesis [22] and liquid 

mix processes [10]. It is widely recognized that the densification behavior is highly 

dependent on powder characteristics such as particle size, particle size distribution, surface 

area and morphology [14]. 

 

The solid-state-reaction process has been the most common synthesis route when producing 

ceramic powder. It is well established, but a time consuming and costly process. The powder 

is often coarse and agglomerated due to high calcination temperatures. The process can also 

result in a heterogeneous powder if the powder is not evenly distributed when calcined [14]. 

2.2.1 The Pechini method 

Liquid mix process is a process that starts with a homogeneous solution containing the 

desired cations, which use additives and evaporation to convert the homogeneous liquid to a 

rigid cross-linked polymer. Heat is applied to convert the polymer into a homogeneous oxide 

powder. This process was pioneered by Maggio Pechini [23] in 1967 and is referred to as the 

Pechini method or the amorphous citrate process. The process was originally developed to 

prepare metal oxide powders such as titanates and niobates for capacitors.  
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The process includes the following steps: 

1. An aqueous solution of nitrates, oxides (soluble), carbonates, metal alcoxides or hydrated 

oxides is prepared. Citric acid is added to create metal citrate complexes. 

2. A polyhydoxy alcohol such as ethylene glycol is added and heat is applied to allow 

chelates to undergo polyesterfication. 

3. Heating is continued to remove excess water, resulting in a solid polymeric resin. Further 

heating results in decomposition of the resin as it ignites and most of the hydrocarbons are 

burned off. 

4. Calcination to burn off remaining hydrocarbons and form crystallites of the mixed oxide 

composition. 

 

Step 1 and 2 is visualized in Figure 4. 

 

 

Figure 4 Schematic representation of a) metal-citric acid complex and b) polymeric 

precursor formation[24] 

The main advantage of the Pechini method is that you can achieve a homogeneous powder 

and relative small particle sizes. The crystallites is typically 20 to 50 nm and clustered into 

agglomerates [25].  
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2.3 Characterization 

2.3.1 X-Ray diffraction 

X-ray diffraction (XRD) is non-destructive characterization technique that can determine 

crystal phases, orientation and structural properties. It is an important step in the quality 

assurance of ceramic materials. It utilizes X-ray beams that irradiate the surface of a 

specimen and various intensities are registered at different incident angles. 

 

A heated tungsten filament generates an electron beam, which is accelerated towards an 

anode by a potential difference (30 kV), and hit a piece of copper attached to the anode. The 

incoming electrons have sufficient energy to ionize a 1s electron, which leads to an empty 

spot in the 1s orbital. An electron in the 2p or 3p drops down to the lower energy level in 1s, 

and the energy difference is emitted as an X-ray. Depending on which outer orbital the 

electron drops from, the wavelength of the X-ray varies. A drop from 2p is known as Kα 

radiation, and a drop from 3p is Kβ radiation. To absorb the unwanted wavelengths, a filter is 

applied, so that only Kα radiation is emitted [26].        

 

When the X-ray hits a sample, scattering is produced in all directions. Diffraction 

redistributes intensity from the scattering sphere into distinct directions and the intensity 

increases in certain directions [27]. Constructive interference only occurs when Bragg’s law 

is satisfied, and is given in equation 2.9. 

 

           (2.9)  

   

Were n is an integer, 𝜆 is the wavelength, d is the atomic spacing and   is the angle 

between lattice planes and the X-ray beam 

 

A geometric derivation of Bragg’s law is presented in Figure 5. Constructive interference 

occurs when the delay between waves scattered from adjacent lattice planes given by a1 + a2 

is an integer multiple of the wavelength λ. 
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Figure 5 Geometric derivation of Bragg’s law [27]. 

By changing the angle of incident X-ray beam e.g. from 10 to 80 degrees, intensity peaks 

arise at certain angles depending on the unit cell geometry. Each crystalline powder has its 

own characteristic X-ray powder pattern which can be used for identification. By searching 

and comparing patterns from a data base, the phase and composition of an unknown powder 

can be determined fast and accurately. The significance of each phase can be determined by 

the peak intensity, width and position in the XRD pattern.  

2.3.2 Scanning electron microscope 

The scanning electron microscope (SEM) permits observation and characterization of 

organic or inorganic materials on nano or micrometer scale. It is a popular technique due to 

the high resolution and the depth of field obtained in the images. The area to be analyzed is 

swept by a finely focused electron beam, and the interaction between the electron beam and 

the sample give rise to different signals picked up by the respective detectors [28].  

 

The electron gun, normally a tungsten filament, emits electrons that are accelerated towards 

an anode. The potential difference between anode and cathode is in the interval 1-40 kV.  

The electrons travel through a column subjected to a vacuum. The column consists of tree 

magnetic lenses that focus the electron beam, an aperture to limit the beam divergence and a 

scanning coil. When the electron beam hits the sample secondary electrons, backscatter 

electrons, X-rays, Auger electrons or photons may be detected. Normal SEM images consist 

of signals from backscatter or secondary electrons [29]. Schematic of a typical SEM is 

presented in Figure 6. 
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When a signal is detected, it is amplified and sent to a display unit. Since the scanning of the 

display unit is synchronized with the electron probe scan, brightness variations depending on 

the number of electrons detected in that area appears on the monitor screen. These variations 

in intensity make up the SEM image. 

 

 

Figure 6 Schematic of a typical SEM [30] 

 

2.3.3 Dilatometry 

Dilatometry is a thermo-analytic technique that measures the volume change of powders, 

solids, liquids or paste during heating or cooling. Accurate understanding of the data 

obtained, can provide insight about sintering properties, phase transitions, reaction kinetics, 

the influence of additives and thermal expansion. 
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A horizontal dilatometer is shown in Figure 7. 

 

 

Figure 7 Schematic drawing of a Netzsch DIL 402 C[31] 

By pressing an alumina rod on to the sample while carefully controlling and recording the 

temperature at the end of the push rod, thermal elongation characteristics can be determined. 

The Linear Variable Displacement Transducer (LVDT) converts the pushrod displacement in 

to a voltage, and is recorded by software. Since also the sample holder and the pushrod are 

affected by temperature, it is important to run a background or a correction run if thermal 

expansion coefficient is to be measured. This is done by inserting a standard pre-sintered 

sample with known thermal expansion characteristics. After completing the correction run, 

the sample of interest is inserted and is subjected to the same conditions as the standard. The 

expansion in the dilatometer is subtracted from the measurement [32].  

 

The data is plotted as shrinkage divided by the initial length against temperature. Shrinkage 

of the sample is associated by rearrangement of the powder and densification. The 

dilatometer measurements are divided in two segments, heating and cooling. The heating 

curve is also referred to as the sintering curve. By evaluating the first derivative of the 

sintering curve, the optimal sintering temperature and on-set temperature for sintering can be 

determined. The on-set temperature is the temperature where the slope starts to drop, and 

shrinkage is observed. These results play an important role in constructing the best sintering 

program for the material of interest.  
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Materials expand or contract as a function of temperature. If different materials are in 

contact during a high temperature processes, possible risk of thermal stress and cracking can 

occur due to the difference in thermal expansion. Thermal expansion coefficient can be 

calculated from the slope of the cooling curve obtained in the dilatometer measurements. 

2.3.4 BET 

The principle behind surface area measurements is based on physisorption of an inert gas 

such as nitrogen, argon or krypton. The amount of gas covering the surface of a specimen in 

a monolayer is easily transferred in to a total surface area, if the temperature and diameter of 

the gas molecule is known. For nitrogen, the gas molecule occupies 0,162 nm
2
 at 77 K.    

The BET method (Brunauer, Emmett and Teller) [33] determinates the surface area of a 

specimen by measuring the adsorption-desorption isotherm, and is an extension of the 

Langmuir isotherm. A type II adsorption isotherm presented in Figure 8, and shows how the 

amount of adsorbed gas depends on the equilibrium pressure of the gas at constant 

temperature.  

 

 

Figure 8 Multilayer adsorption isotherm, modified from [34] 
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The surface area can be calculated with the equation given in 2.10, also known as the BET 

equation. Further reading and derivation of the BET equation can be found in [33]. 

  

  

        
 

 

   
 

     

   

 

  
 (2.10)  

   

Where χ= k1/k ratio between adsorption heats of first and next molecular layer, P is the 

adsorption pressure, P0 is equilibrium pressure of the condensed gas (saturation pressure), 

Va is the total volume of adsorbed gas and V0 is the volume of gas adsorbed in the first 

monolayer. 

 

Note that the BET method is valid under the following assumptions: 

1. The rate of adsorption and desorption in any layer are equal (equilibrium) 

2. In the first layer molecules adsorb on equivalent adsorption sites 

3. ∆Hads for the second and consecutive layers are the same.  This adsorption 

heat is approximately equal to the condensation heat of the gas. 

(Ed,2=Ed,3=…=Ed,i) 

4. ∆Hads for the first layer is independent of layer 2 and the consecutive layers. 

k1≠k2 

5. The surface is constant during the adsorption 

2.4 Sintering 

The densification of a particulate ceramic component is typically referred to as sintering. The 

following criteria must the met before sintering can occur: 

 

1. A mechanism for material transport must be present. 

2. A source of energy to activate and sustain material transport must be present. 

 

Sintering is often divided in stages according to physical changes that occur during the 

process. The different stages and primary physical changes in each step are listed in Table 3. 
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Table 3 Stages in sintering and physical changes[25] 

1
st
 Stage (Initial) 

Rearrangement 

Neck formation 

2
nd

 Stage (Intermediate) 

Neck growth 

Grain growth 

High Shrinkage 

Pore phase continuous 

3
rd

 Stage (Final) 

Much grain growth 

Discontinuous pore phase 

Grain boundary pores eliminated 

 

There are different types of sintering, but solid-state sintering will be the focus in this report. 

Solid state sintering involves material transport by volume diffusion. Diffusion can consist 

of movement of atoms or vacancies along a surface, grain boundary or through the volume 

of the material. Volume diffusion along grain boundaries or through lattice dislocations 

results in shrinkage [25].  

 

The primary driving force for densification of a compacted powder at high temperature is the 

change in surface free energy. Very small particles have high surface free energy and thus 

have a strong thermodynamically drive to decrease their surface area and bond together. 

Typically, the finer the powder, the greater the surface area and lower sintering temperature 

and time at this temperature is needed for densification [25]. 

 

The pore structures in the different sintering stages are visualized in Figure 9. As the process 

continues from point contact to final stage, the pores shrinks and become smoother and more 

spherical. The intermediate step is the most important for densification and the driving force 

is elimination of surface energy. 
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Point contact Initial stage    Intermediate Stage Final stage 

 

Figure 9 Schematic diagrams of pore structure during sintering[35] 

In order to separate hydrogen from other gaseous species, elimination of open porosity is 

essential in dense ceramic membranes. If open porosity is present, unwanted gas can flow 

freely from the feed side to the permeate side and hydrogen separation is impossible. It is 

therefore vital to enter the 3
rd

 and final stage in the sintering to eliminate the continuous pore 

phase. It is not a dramatic shift where the pores become closed as an indication of the final 

sintering stage, but a continuous process. The theoretical expectation is that cylindrical pores 

on the edge of a tetrakaidecahedron, will be instable when the residual porosity falls below 

8%, and start to close. Since there is a distribution in grain sizes and pore sizes, normally 

pores start to close at about 15% porosity and are all closed by 5% porosity [35]. 

2.4.1 Hot pressing 

Hot pressing is a sintering technique that uses both pressure and temperature to activate and 

sustain material transport. The applied pressure increases the contact stress between the 

particles, and the available energy for densification is increased by a factor of 20 or more 

compared to conventional sintering [25]. With the simultaneous application of both pressure 

and temperature, dense ceramics can be obtained at lower temperatures. The relative low 

temperature limits the grain growth, and yields a fine microstructure. Due to the applied 

pressure, voids and pores in the material collapse and higher densities can be achieved 

compared to conventional sintering [36].  
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2.4.2 Archimedes principple 

The density of refractory materials can be measured using ISO 5017 [37], which is based on 

Archimedes principle. The principle is built upon the buoyancy of an object with known 

theoretical density, submerged in a liquid with known density. By measuring the weight of 

the sample in wet, dry and submerged condition the bulk density, apparent porosity and true 

porosity can be determined, according to equation 2.12-2.15. Theoretical density is 

calculated by equation 2.16. 

 

    
  

     
      (2.12)  

   

    
     

     
     (2.13)  

   

    
     

  
     (2.14)  

   

          (2.15)  

   

Where ρb is the bulk density, ρliq is the density of the liquid, ρt is the true density, πa is the 

apparent porosity, πt is the true porosity and πf is the open porosity. m1, m2 and m3 is the 

weight of the sample dry, immersed and soaked respectively. 

 

 

  
 

 
 

   
 

     
 (2.16)  

   

Where m is the mass in g, V is the volume in cm
3
, Z is the number of atoms pr. Unit cell, M is 

the molar mass, A is Avogadro’s number and a,b,c is lattice parameters. 
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3. Experimentally 

 

3.1 Powder Synthesis 

3.1.1 Pechini method 

SCZT, SCZYb, SCZY, SCZ, SZ and SC powder were synthesized by the Pechini method, as 

described in chapter 2.2.1. Aqueous solutions of Cerium Nitrate and Zirconium Nitrate were 

thermo gravimetrically standardized (1000 ˚C, 3 h) and mixed with dried (110 ˚C, 24 h) 

Strontium Nitrate. Thulium Nitrate, Ytterbium Nitrate or Yttrium Nitrate was added to 

substitute cerium at B-site in the doped powders. The nitrate solution was mixed and citric 

acid was added with a mol ratio of 2:1 of total cations. The mixture was heated to 120 ˚C and 

mixed with a stirrer at 300 rpm for 30 minutes. Ethylene glycol was added to the mixture 

with the same 2:1 cation ratio and the mixture was stirred another 30 minutes at 120 ˚C. The 

mixture was left at room temperature over night and heated stepwise to polyesterification 

occurred. The gel self-ignited at 300 ˚C and the powder was crushed down in a mortar before 

calcination. Chemical details are presented in Table 4. 

Table 4 Chemical composition, fabricant and purity 

Chemical Composition Manufacture Purity 

Cerium Nitrate CeN3O9·6H2O Fluka 99,0% 

Zirconium Nitrate N2O7Zr·xH2O Aldrich 99% 

Strontium Nitrate Sr(NO3)2 Sigma-Aldrich 99,9% 

Thulium Nitrate N3O9Tm·5H2O Aldrich 99,9% 

Ytterbium Nitrate N3O9Yb·5H2O Aldrich 99,9% 

Yttrium Nitrate N3O9Y·5H2O Aldrich 99,9% 

Citric acid C6H8O7 VWR 99,5% 

Ethylene glycol  C2H6O2 VWR 98,0% 

 

 



 

19 

 

3.1.2 Calcination 

SC and SZ were calcinated at 1000 ˚C, 1100 ˚C and 1200 ˚C (Naberterm P330 and Labstar 

1200/4) for 6 hours in alumina crucibles in ambient air. The heating program for 1000 ˚C is 

shown in Figure 10. The other programs had the same heating rate and dwell time, but a 

higher dwell temperature. SCZT, SCZY, SCZYb and SCZ were calcined at 1000 ˚C 

(Naberterm P330).  
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Figure 10 Heat program for calcination at 1000 ˚C 

Due to formation of SrCO3 a batch of SCZT was calcined in a tube furnace (Entech ETF30-

50/17S) under argon (5.0) flow to reduce the partial pressure of CO2 (pCO2) to <0,2
 
Pa [38]. 

The Same ramp rates and dwell time as in previous calcinations programs was applied, with 

a dwell temperature of 1200 ˚C. 

3.1.3 Ball milling 

The powders were milled using a wet ball milling technique. The milling media was alumina 

balls and isopropanol was used as solvent. The powder was milled for 6 hours or 24 hours. 

The solvent was evaporated using a rotovapor (Buchi, R-210) at 48 ˚C with a pressure of 69 

mbar. The powder was also dried at 400 ˚C for 12 hours (Entech SF-4) to ensure removal of 

all organics.  
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3.2 Powder characterization 

3.2.1 X-ray Diffraction 

X-ray Diffraction (XRD) was carried out on a Siemens D5005 or AXS D8Focus, to 

determine phase purity of all powders and sintered specimens. The X-ray source is Cu Kα in 

both XRDs. The program parameters were taken from previous experiments with SrCeO3 

[21], with 2 from 20 to 70 degrees, step size of 0,0200 and 2500 steps. The total time for 

one continuous scan was 41 min and 41 seconds. All peaks were identified in Eva 2.0 

software and lattice parameters were determined by the Reitveld method, in the specimens 

sintered at 1600 ˚C using TOPAS R software.  

3.2.2 Dilatometry 

The dilatometer measurements were performed at a Netzsch DIL 402 C. Samples of SCZ, 

SCZY, SCZYb and SCZT, milled and not milled powders, were prepared by uniaxial 

pressing using a 5 mm
Ø
 die and an applied pressure of 60 Mpa. Alumina sample holders and 

spacers were used as support in the dilatometer. A correction run with a pre-sintered alumina 

standard rod (25 mm) was carried out to eliminate thermal expansion of the system. The 

correction run was subtracted from the sample data. The experiment was carried out in 

synthetic air (YaraPraxair, 5.0) [39] at a flow rate of 30 ml/min and a heat and cooling rate 

of 2 K/min from room temperature to 1500 ˚C. The push-rod applied a constant force of 0,2 

N on the samples during the experiment.   

3.2.3 Scanning Electron Microscope (SEM) 

The powder (milled and not milled) morphology and surface of sintered specimens were 

investigated in a low-vacuum SEM (Hitachi S-3400N). The samples were coated with gold, 

using an Edwards sputter coater S150B, due to insufficient electric conductivity of the 

material at room temperature. Different conditions and parameters were used during 

imaging, and are presented on the respective photos in Figure 23, 24 and 25.    
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3.2.4 BET 

The surface area of the milled and not milled SCZT was determined by the BET method 

using a Tristar 3000 from Micromeritics. First a 24 hour degassing step at 250 ˚C was 

executed to ensure a completely dry powder. The sample was then mounted in the analyzer 

and the measurement was conducted at 77 K. Nitrogen was used as inert gas.   

3.3 Sintering 

3.3.1 Conventional sintering 

Pellets of 10 mm or 15 mm in diameter were uniaxially pressed and sintered at 1500 ˚C, 

1600 ˚C or 1700 ˚C (Entech-01 and Entech HT-2) in ambient air, using a conventional 

sintering technique. The sintering program for 1600 ˚C is presented in Figure 11. An 

isothermal step at 1000 ˚C with a dwell time of 6 hours was implemented for degassing of 

SrCO3.   
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Figure 11 Sintering program at 1600 ˚C   
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The samples were placed on an alumina disc with a powder bed of SC to reduce reaction 

with the alumina and minimize friction. An alumina crucible covered the samples. The 

specimens sintered at 1500 ˚C also had a uniaxial pressed thin disc of the same material as 

support, to eliminate cation diffusion. 

3.3.2 Hot pressing 

Hot pressing was conducted at a thermal technology HP50-7010G. The powder was weighed 

and inserted in a 15 mm carbon die. Carbon spacers between the die and powder were 

inserted and sprayed with pyrolytic boron nitride to prevent the powder from sticking and 

possible interactions between the carbon die and powder. The powder was uniaxially pressed 

with a pressure of 50 Mpa before sintering. Due to inconsistency in temperature between the 

furnace and the controller, a graph was used to set the right sintering temperature. Argon gas 

(5.0) at atmospheric pressure was used to limit the reducing conditions, caused by the carbon 

die. The sintering program for 1600 ˚C is presented in Figure 12.    
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Figure 12 Sintering program for hot pressing 
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3.3.3 Archimedes principle 

The density of the sintered specimens was measured by Archimedes principle and was 

conducted according to ISO 5017 [37]. Vacuum (15 mBar) was applied to remove air from 

pores prior to immersion. The samples were submerged in isopropanol, and vacuum was 

applied for 30 minutes. Submerged samples were weighed when the temperature was 

stabilized. Density calculations were done according to equation 2.12-2.15 given in chapter 

2.4.2. 

3.3.4 Grain size 

The average grain size in sintered specimens was determined by the liner intercept method as 

proposed by Mendelson, 1969 [40].  The average grain size was calculated over a minimum 

of 50 grain boundaries.  



 

24 

 

4. Results 

 

4.1 Powder characterization by XRD 

To investigate the calcination temperature needed to achieve phase pure powder, SC and SZ 

powders were calicined at 1000 ˚C, 1100 ˚C and 1200 ˚C. XRD results are presented in 

Figure 13 and Figure 14. Secondary phases such as CeO2 and Sr2CeO4 represent a significant 

amount in the SC powder calcined at 1000 ˚C. SZ is almost phase pure at 1000 ˚C, but the 

XRD plot show traces of ZrO2 and SrO. It is evident that an increase in calcination 

temperature reduces the amount of secondary phases in both SC and SZ powders. A 

narrowing in the peaks and an increase in count is also observed for higher calcination 

temperatures indicating increased crystallization. SC and SZ are phase pure at 1200 ˚C and 

1100 ˚C respectively.  
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Figure 13 SrCeO3 powder XRD results at 1000 ˚C, 1100 ˚C and 1200 ˚C 
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Figure 14 SrZrO3 powder XRD results at 1000 ˚C, 1100 ˚C and 1200 ˚C 
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When synthesis and calcination of SC and SZ were successful, a test batch of SCZT was 

prepared. After calcination at 1000 ˚C in air, strontium carbonate was identified at 25 

degrees in the XRD plot, in addition to Sr2CeO4 and CeO2. SrCO3 is represented by a  in 

Figure 15. To eliminate the reaction between SrCeO3 and CO2, calcination in argon 

atmosphere at 1200 ˚C was carried out. The significance of the carbonate phase was reduced, 

but not removed. Secondary phases of Sr2CeO4 and CeO2 are also present at 1200 ˚C. Phase 

pure SCZT was obtained when a membrane was sintered at 1500 ˚C.    
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Figure 15 XRD of SCZT at 1000 ˚C in air, 1200 ˚C in argon and sintered at 1500 ˚C in air 
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Due to initial tests with SC, SZ and SCZT, and the stability of the secondary phases at high 

calcinations temperatures, the other powders were calcined at 1000 ˚C. The powder XRD of 

SCZT, SCZY, SCZYb and SCZ is presented in Figure 16. None of the powders are phase 

pure, but all powders have the same secondary phases as described for SCZT powder, and 

exhibit similar XRD pattern. 
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Figure 16 XRD results from powders calcined at 1000 ˚C 
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The XRD results from samples sintered at 1600 ˚C are showed in Figure 17. All peaks were 

identified in Eva 2.0 software, showing phase pure orthorombic perovskite structure.   
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Figure 17 XRD results from samples sintered at 1600 ˚C 
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Lattice parameters from specimens sintered at 1600 ˚C is presented in Table 5.  

 

Table 5 Lattice parameters of samples sintered at 1600 ˚C, extracted by Topas software 

 a [Å] b [Å] c [Å] V [Å
3
] Theoretical 

density [g/cm
3
] 

SCZ 6,065 8,486 5,955 306,512 5,710 

SCZT 6,077 8,509 5,963 308,349 5,760 

SCZYb 6,077 8,511 5,965 308,549 5,761 

SCZY 6,083 8,511 5,968 308,992 5,662 

 

The above results confirm that Zr
4+

 is dissolved in the SC structure. Theoretical density is 

calculated according to equation 2.16, given in chapter 2.4.2.   

4.2 Dilatometry 

Thermal expansion coefficient in the temperature range 40 ˚C-1000 ˚C for SCZT, SCZYb, 

SCZY and SCZ is presented in Table 6. TEC is calculated from the slope of the dilatometer 

cooling curves given in appendix A. TEC in other temperature regions are presented in 

appendix B. 

 

Table 6 Thermal expansion coefficient from 40 ˚C -1000 ˚C 

 ˚C 

TEC 

10
-6

/ ˚C 

40-1000 

SCZT 12,1 

SCZYb 12,1 

SCZY 12,4 

SCZ 13,0 
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The dilatometer curve for a pre-sintered (1500 ˚C) SCZT sample with 98,6% density is 

presented in Figure 18. The difference in length between start and stop is 0,6%, according to 

data obtained in the dilatometer measurement. TEC during heating and cooling is presented 

in Table 7. Due to the change in length, density measurements were conducted but minimal 

change in porosity was demonstrated. 
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Figure 18 Change in length with respect to initial length of pellet, plotted against 

temperature, for 1500 ˚C pre-sintered SCZT 
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Table 7 Thermal expansion coefficient from 40 ˚C-1000 ˚C for pre-sintered SCZT. Separate 

calculations for heating and cooling curve 

 ˚C 

TEC  

10
-6

/ ˚C 

40-1000 

Heating 15,2  

Cooling 11,6  

 

 

Sintering curves of SCZT, SCZYb, SCZY and SCZ is presented in Figure 19. The samples 

exhibit close to identical sintering curves. SCZ, represented by the green slope, indicate a 

lower degree of shrinkage than the other specimens, hence lower densification. Due to the 

similarity of the sintering curves, SCZT was chosen for further dilatometer analysis 

regarding milled and not milled powders.   
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Figure 19 Change in length with respect to initial length of pellet, plotted against 

temperature. Samples heated to 1500 ˚C from room temperature with 2K/min heat rate 
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Figure 20 a) Change in length with respect to initial length of pellet, plotted against 

temperature for milled and not milled SCZT samples. b) First derivative of SCZT sintering 

curves. Samples heated to 1500 ˚C with 2 K/min heat rate  
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A comparison of the sintering graphs for milled and not milled SCZT powder is shown in 

Figure 20 a). After milling for 6 hours the shrinkage of the green body increased from about 

13% to 26,75%, compared to the not milled sample. SCZT powder milled for 24 hours 

resulted in 23% shrinkage with respect to the initial length of the sample. 

 

The first derivative of the sintering curves for milled and not milled SCZT powder is 

presented in Figure 20 b). The maximum rate of sintering occurs at 1477 ˚C for both of the 

milled samples. On-set sintering temperature varies from 1250 ˚C to 1277 ˚C for the powder 

milled 24 and 6 hours, respectively. The 24 hour milled powder show a lower sintering rate 

than the powder milled for 6 hours at 0,22% and 0,28% per minute respectively. Powder 

milled for 6 hours are from here on only denoted “milled powder”, unless otherwise 

specified.   

4.3 BET surface area 

Surface area of milled and not milled SCZT is presented in Table 8. It is evident that surface 

area increases with increasing milling time. This is due to the breakdown of larger 

agglomerates. This is also visualized in SEM micrographs presented in  

Figure 21. 

Table 8 BET surface area 

Sample Surface area 

SCZT Not milled 2.0815 m²/g ± 0.0027 m²/g 

SCZT Milled 6 hours 4.3120 m²/g ± 0.0098 m²/g 

SCZT Milled 24 hours 6.0135 m²/g ± 0.0108 m²/g 
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Figure 21 SEM micrograph of a) not milled and b) powder milled for 6 hours 

4.4 Density measurements 

Density, open porosity and closed porosity of samples sintered at 1500 ˚C or 1600 ˚C with 

milled and not milled powder, is presented in Table 9. Samples with milled powder sintered 

at 1500 ˚C show the highest density. SCZT clearly have the highest density, followed by 

SCZYb, SCZY and SCZ in descending order. SCZ demonstrate a significant decrease in 

open porosity from 1500 ˚C to 1600 ˚C. Negligible open porosity in SCZT, SCZY and 

SCZYb sintered with milled powder at 1500 ˚C and 1600 ˚C. Little change in closed 

porosity for SCZY, but a significant increase in SCZT and SCZYb is observed from 1500 ˚C 

to 1600 ˚C.  

 

Samples sintered for 1600 ˚C made of not milled powder exhibit lower density and higher 

open porosity compared to samples made with milled powder. SCZ demonstrate a density of 

68,1% and an open porosity of 31,0%, which is significantly lower than the samples with 

additional doping. Spreadsheet of the density calculations is given in Appendix F. 
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Table 9 Density, open porosity and closed porosity of samples sintered at 1500 ˚C or 

1600˚C.   

1500 ˚C Milled Density % Open porosity % Closed porosity % 

SCZT 98,6 -0,5 1,9 

SCZY 90,8 0,6 8,6 

SCZYb 92,3 0,3 7,4 

SCZ 74,6 25,0 0,4 

1600 ˚C Milled    

SCZT 94,8 0,5 4,7 

SCZY 91,5 0,6 7,9 

SCZYb 84,1 0,3 15,5 

SCZ 88,8 0,3 10,9 

1600 ˚C Not Milled    

SCZT 82,3 9,0 8,7 

SCZY 76,4 22,3 1,3 

SCZYb 79,8 17,3 2,9 

SCZ 68,1 31,0 0,8 

 

4.4.1 Hot pressing 

Due to the initial densification issues with as calcined powder during conventional sintering, 

hot pressing was carried out on SCZT powder. When the pellet was extracted from the die it 

adhered to the carbon spacer, even though it was sprayed with pyrolytic boron nitride. After 

storage inside a desiccator it disintegrated after approximately 10 days. Lowering the 

sintering temperature from 1500 ˚C to 1400 ˚C resulted in a cracked pellet, which was 

extremely brittle, but it did not disintegrate. It was difficult to conduct density measurements 

on the hot pressed samples, due to the brittle nature of the samples. SEM micrograph of 

SCZT hot pressed at 1400 ˚C with an applied pressure of 50 Mpa is presented in Appendix 

E. 

 

 

 

 



 

38 

 

4.5 Surface characterization  

4.5.1 Macro photo 

Figure 22 is a macroscopic picture of a SCZT pellet sintered at 1600 ˚C on a SC powder bed. 

The color is graded from yellow at the bottom to black on the top, possibly due to difference 

in cation concentration.  

 

Figure 22 Macro photo of SCZT sintered at 1600 ˚C on SC powder bed 

 

4.5.2 SEM 

SEM micrographs of the samples sintered at 1500 ˚C can be viewed in Figure 23, and can 

give a visual impression of the density measurements and results, presented in Table 9. No 

porosity is observed in the SCZT surface, represented in Figure 23 c).  
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Figure 23 SEM surface micrographs of specimens sintered at 1500 ˚C, milled powder. a) 

SCZ, b) SCZYb, c) SCZT, d) SCZY 
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Figure 24 SEM surface images from samples sintered at 1600 ˚C, milled powder. a) SCZ, b) 

SCZYb, c) SCZT, d) SCZY 

Samples sintered at 1600 ˚C, presented in Figure 24, exhibit large grain growth compared to 

samples sintered at 1500 ˚C. Little or no porosity is visual at the sample surfaces. Note that 

the length scale is 200 μm, compared to 50 μm in previous micrograph. The average grain 

size of samples sintered at 1500 ˚C and 1600 ˚C is presented in Table 10.  
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Table 10 Average grain size for samples sintered at 1600 ˚C 

1600 ˚C, milled powder Average grain size μm 

SCZ 20,1 

SCZYb 20,9 

SCZT  19,7 

SCZY 22,8 

1500 ˚C, milled powder  

SCZ 3,3 

SCZYb 3,2 

SCZT  4,9 

SCZY 3,2 

 

 

 

Figure 25 SEM surface micrographs of samples sintered at 1600 ˚C, not milled powder. a) 

SCZ, b) SCZYb, c) SCZT, d) SCZY 
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SEM micrographs of samples sintered at 1600 ˚C with not milled powders are presented in 

Figure 25. It is clear from the pictures that all samples, more or less, exhibit open porosity. 

The microstructure of the samples varies a lot, compared to each other and compared to the 

samples made of milled powder and sintered at the same temperature. It was difficult to 

estimate grain size from the presented SEM micrographs.  

 



 

43 

 

5. Discussion 

5.1 Powder synthesis and phase purity 

The first synthesis of SC and SZ was test batches, intended for learning the synthesis route 

and determine the calcination temperature. From the powder XRDs it appears that SZ is 

easier to synthesis, with less secondary phases and required a lower calcination temperature 

to become phase pure. Since the first batches were small and yielded little powder, it was 

harder to achieve the exact stoichiometric ratio between the metal nitrates, and hence obtain 

single phase oxide of desired stoichiometry. This may also explain some problems regarding 

the phase purity of SC. The same powder was used to investigate different calcination 

temperatures.  

 

After successful synthesis of SC and SZ, SCZT was synthesized after the same procedure. 

Calcination in argon atmosphere was carried out, as SrCO3 are expected to form upon 

cooling in the presence of CO2 (from air), according to equation 2.7. The XRD results after 

calcination at 1200 ˚C in argon indicated that although the amount of SrCO3 was reduced, a 

significant amount was still present. This is in agreement with the equilibrium curves, for 

equation 2.7, as a function of pCO2, as defined by Kreuer [16]. The equilibrium curve is 

presented in Appendix B. 

 

Powder XRD from SCZT, SCZY, SCZYb and SCZ show a variety of phases. The most 

critical phase present is SrCO3, which resulted in changing the calcination atmosphere to 

argon. Due to the positive XRD results from the samples sintered at 1500 ˚C and 1600 ˚C, 

discussed later, nothing further was done to remove these phases from the prepared powders.  

 

A comparison between XRD plot from Liang, J. et al [10] and a XRD plot obtaind from this 

study is presented in Figure 26. The stoichimetry in the two graphs is identical at x=0.2, and 

the peak intensities and location of the peaks are comparable. This concludes uniform 

distribution of Zr and Tm in the lattice.  
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Figure 26 a) XRD plot from Liang, J. et al [10] b)  XRD plot from this study 

XRD plots presented in Figure 17 clearly exhibit close to identical patterns. The variation in 

count or intensity at the y-axis in Figure 17 compared to Figure 26 b) is related to different 

apparatus and the size of the specimens. The area of the incident X-ray beam could exceed 

the sample area, and the results in Figure 17 are qualitative and only comparable to each 

other. 

 

Lattice parameters taken from XRD results from specimens sintered at 1600 ˚C, are in 

agreement with the lattice parameters of SCZT and SCZYb, reported in chapter 2.1.1. Minor 

differences can be explained by the relative fast XRD scan used in this study. A fast scan is 

less accurate due to larger   steps size. The lattice parameters decrease in SCZ compared to 

the other specimens, and is explained by the difference in ionic radii between Zr
4+

 and Ce
4+

. 

Since SCZ have 5 mol% higher zirconium content this was expected and similar trends have 

been reported in literature [10, 11, 41]. 

a) 

b) 

a) 
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Based on the densification and BET results, as-calcined powders have the tendency to 

agglomerate and do not demonstrate sufficient density when sintered at 1500 ˚C. Additional 

milling is needed to obtain dense membranes, but this is normal procedure for powder 

processing [25].  

5.2 Dilatometry 

Not milled SCZT, SCZY and SCZYb exhibit almost identical sintering curves. This could be 

explained by the stoichiometric content of only 5 mol% dopant. The differences between the 

dopants is however significant with regard to density of sintered specimens. This is 

discussed in Chapter 5.3. Due to the similarity of the samples, SCZT was the only 

composition that was investigated by further dilatometer analysis. 

 

The milled SCZT powders showed a clear improvement with regard to densification. Powder 

ball milled for 6 hours demonstrated a total shrinkage of 27%, compared to 13% for the not 

milled powder. Powder milled for 24 hours had a total shrinkage of 23%. This result was 

unexpected as the powder milled for 24 hours had a surface area of 6,01 m²/g, compared to 

4.31 m²/g for the powder milled for 6 hours. Increased surface area was initially expected to 

result in higher densification, hence more shrinkage, as seen in the difference between milled 

and not milled powder in Figure 20 a). However, it should be mentioned that in addition to 

the breakup of agglomerates the particle size distribution is a key factor for densification 

[25]. Although the mean particle size was lower for the powder milled for 24 hours, the size 

distribution of the powder mill for 6 hours could be wider, hence, resulting in improved 

sintering properties. Another possible reason for the reduced sintering of powder milled for 

24 hours could be contamination from the ball milling. Alumina balls were used as milling 

media, and previous in house research have encountered the same problem. YSZ balls would 

be the preferred milling media, but it was unavailable at the time.  
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As mentioned in the theory part, powder with larger surface area usually has a higher 

sintering rate due to high surface energy. Figure 20 b) deviates from literature, as the 

sintering rate of powder milled for 24 hours is less than powder milled for 6 hours. The 

highest sintering rate was measured to 0,28% per minute, at 1470 ˚C for powder milled 6 

hours. From practice, oven temperature is set above optimal to sintering temperature, found 

from dilatometry, to ensure maximum sintering rate. 1500 ˚C was concluded to be sufficient. 

The on-set sintering temperature was lowered from 1277 ˚C to 1250 ˚C for SCZT powder 

milled for 24 hours compared to SCZT powder milled for 6 hours. This was expected and is 

explained by the increase in surface area [25, 35]. 

 

The first derivative of the sintering curve also indicate a sintering rate of 0,22% per minute 

at 1325 ˚C. This is below the maximum sintering rate of 0,28 % per minute, but probably 

sufficient to obtain dense membranes provided sufficient sintering time is used. A smaller 

grain size would be expected from a lower sintering temperature. 

  

In the dilatometer test, cylindrical samples with 5 mm
Ø
 had to be used. Due to the insensitive 

pressure gauge on the uniaxial press, the green body density varies in all specimens, caused 

by different applied pressure. This might influence the total density and might explain some 

differences in early stage in the dilatometer measurements, due to rearrangement of the 

powder. The whole graph from 40 ˚C to 1500 ˚C is presented in Appendix C. 

5.2.1 Thermal expansion coefficient 

Cooling curves from 1500 ˚C to 40 ˚C, presented Appendix A are the basis for TEC values. 

The graph was edited due to vertical jumps in the cooling curve. This may be caused by high 

friction between the sample and sample holder or micro cracks introduced during pressing.  

 

TEC reported in Table 6 is higher than what is reported for SC and SZ, at 11,1 and 9,69 x 10
-

6
/K between 300 K and 1000 K [9, 42]. The trivalent dopants seem to lower the thermal 

expansion, which is contradicting according to Hassan D. et al. [43]. They report TEC in the 

range 11,5 – 12 x 10
-6

/K for ytterbium doped SC and 10,4 x 10
-6

/K for ytterbium doped SZ, 

measured at 1000 ˚C. TEC values with 200 ˚C intervals from 40 ˚C to 1200 ˚C are presented 

in Appendix B. All though the TEC values are uncertain, the general area of 12-15 x 10
-6

/˚C 

is established. 
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Table 7 shows a deviation in TEC between the heating and cooling for pre-sintered SCZT, 

which is also visualized in Figure 18. Ideally the curve should be identical, and the ending 

point should be the same as the starting point. From the graph data, an expansion of 0,6% 

(calculated to 0,03 mm) between start and stop is demonstrated. Density measurements 

reviled a 0,7% decrease in density, but can be related to uncertainties in the measurement 

caused by removal of excess isopropanol when weighing wet sample. The difference in 

expansion between heating and cooling can be detrimental with regard to industrial 

implementation. Thermal cycling would be expected in an industrial application, due to start 

and stops in the production. If the expansion in the membrane differs with each cycle, 

thermal stress and cracking could be induced and result in membrane failure. A more 

thorough study of thermal cycling would be necessary before too much effort and time is 

invested in doped SCZ.   

5.3 Sintering 

The uniaxial pressed green bodies were sintered on an alumina disc, with various supports. 

Due to temperature gradients in the furnace and the location of the thermo element, the 

alumina disc was placed at the same location in the furnace to ensure reproducibility. When 

the pellets were laid on a SC powder bed, color grading was observed as showed in the 

macro photo in Figure 22. The color grading is most likely caused by cation gradients or 

difference crystal structure in the sample, and is unwanted. Cerium oxide is known to have a 

pale yellow color, and is possibly present in the lower part of the membrane [44]. By 

pressing a disc made of the same powder as the pellet and laying the pellet on top resulted in 

uniform color. The disc adhered to the pellet, but was easily removed.  

 

Three different sintering temperatures were investigated for not milled SCZT powder; 1500 

˚C, 1600 ˚C and 1700 ˚C. Sintering at 1500 ˚C resulted in a membrane with 68% density, 

measured by Archimedes method. The membrane sintered at 1600 ˚C also exhibited open 

porosity by visual investigation. At 1700 ˚C the membrane reacted with the alumina and the 

SC powder bed, and the temperature was concluded to be too high.  
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Hot pressing of as calcined SCZT powder resulted in a disintegrated membrane probably due 

to the formation of carbonates. The reducing conditions inside the carbon die and too high 

sintering temperature is possible explanations for failure. Lowering the sintering temperature 

from 1500 ˚C to 1400 ˚C resulted in a cracked pellet, which was extremely brittle, but it did 

not disintegrate. Further decrease in sintering temperature and or pressure, changing the die 

material and conduct pressing with milled powder may have improved the results, but hot 

pressing was disregarded after multiple failures. 

 

After milling the density of the conventional sintered membranes increased from 68% to 

98,6% for SCZT sintered at 1500 ˚C. SCZY and SCZYb demonstrated a density of 90,8% 

and 92,3% respectively. According to theory presented in chapter 2.4, no open porosity 

should be present which is in accordance with the density results presented in Table 9. The 

membrane density is therefore regarded as sufficient. The optimal sintering temperature was 

set according to SCZT, on the fact that SCZY and SCZYb had almost similar sintering 

curves. This have played a role in the supreme density of SCZT compared to the other 

samples.  

 

Liang, J et.al [10] reported a sintering temperature of 1525 ˚C and 20 hour dwell time, to 

achieved dense SCZT synthesized by the Pechini method. This study demonstrates a 25 ˚C 

lower sintering temperature and a 14 hour decrease in sintering time, for obtaining close to 

theoretical density with reduced grain growth. Solid state synthesis of strontium cerates 

normally reports highest sintering rate at higher temperatures such as 1600 ˚C [43]. 

Yamakana, S et.al [9] reports higher density in SrZrO3 (93%) than in SrCeO3 (84%), 

synthesized by the solid state reaction, sintered at 1500 ˚C. 

 

All pores visible in the surface of SCZYb and SCZY are located at the grain boundaries, 

which may indicate that the sintering is not complete and hence, a longer dwell time at 1500 

˚C would remove residual closed porosity. Pores located on grain boundaries are visualized 

in Appendix D. The grain size in SCZY and SCZYb is also smaller than those exhibited by 

SCZT, which justifies the argument of longer dwell time. This is also in agreement with 

reported densities of 99% for SCZYb, with 40 mol% zirconium at B-site, sintered at 1500 ˚C 

for 10 hours [14]. 
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SCZ sintered at 1500 ˚C, demonstrates 25% open porosity and have not entered the final 

stage in the sintering process. The incorporation of trivalent cations at B-site, clearly have a 

positive effect on the densification of the membranes. This could be explained by the oxygen 

vacancies created by incorporation of thulium, ytterbium or yttrium. Sintering rate is limited 

by diffusion of the slowest-moving-ion, and the oxygen vacancies should lower the 

activation barrier for diffusion [21].  

 

At 1600 ˚C all samples demonstrate an increase in the closed porosity. This is probably due 

to exaggerated grain growth, resulting in trapped pores within grains with little driving force 

for elimination. As seen from Table 9, no or little open porosity is present in milled SCZT, 

SCZY or SCZYb sintered at 1500 ˚C or 1600 ˚C. This is in agreement with literature, which 

states that the pores start to close around 85% density and is completely closed at 95% 

density [35]. 

 

Surface micrographs reveal large differences in grain size of the membranes sintered at 1500 

˚C and 1600 ˚C, made of milled powder. Average grain size of the sintered membranes was 

3,2 – 4,9 μm at 1500 ˚C and 19,7 – 22,8 μm at 1600 ˚C. The high temperature causes the 

large grains to grow on the expense of small grains, increasing the average grain size in the 

membrane. According to Dahl, P.I et.al [21] critical grain size for strontium cerate based 

materials is ~6-7 μm, to avoid micro cracking and poor mechanical properties. The 

membranes sintered at 1600 ˚C exceed this limit, and the temperature is therefore regarded 

as too high.    
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6. Conclusion 

The Pechini method proved itself to be a successful process route for synthesis of dense and 

homogeneous strontium cerates stabilized with zirconium and doped with thulium, ytterbium 

or yttrium. The synthesis method required additional milling to achieve sufficient surface 

area and small particle size, to promote densification. 

 

Milling the powder for 6 hours increased the surface area from 2,08 m²/g to 4,31 m²/g.  

Doped powder calcined at 1000 ˚C in ambient air, milled for 6 hours and sintered at 1500 ˚C 

demonstrated the sufficient density required for elimination of open porosity. Thulium doped 

SCZ showed the highest density of 98,6% followed by ytterbium, and yttrium doped SCZ at 

92,3% and 90,8% respectively. The addition of thulium, ytterbium and yttrium increased the 

densification of SCZ significantly, which showed a density of 74,6% and an open porosity of 

25% sintered at 1500 ˚C. 

 

The synthesized powders were not phase pure, and the elimination of SrCO3 and CeO2 was 

problematic, even in argon atmosphere. After sintering at 1600 ˚C, no secondary phases were 

detected by X-ray Diffraction and the material exhibited a phase pure orthorhombic 

perovskite structure.   

 

Grain size in the dense membranes sintered at 1500 ˚C was in the range 3,2 μm – 4,9 μm. 

Sintering at 1600 ˚C resulted in extensive grain growth, and the temperature is concluded to 

be too high, with respect to powders synthesized by the Pechini method and milled for 6 

hours. 

 

Thermal expansion coefficient from 40 ˚C-1000 ˚C for SCZT, SCZYb, SCZY and SCZ was 

determined to (12,1, 12,1, 12,4 and 13,0) × 10
-6

/ ˚C respectively. Variation in TEC between 

heating and cooling in pre-sintered SCZT cause for a more thorough investigation before 

determining the exact thermal properties of the membrane. 
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Further work 

It would be interesting to investigate the total conductivity of the different membranes at 

elevated temperature and different atmospheres. The conductivity is related to the hydrogen 

flux and is a normal way of ranking hydrogen separation. A comparison of the hydrogen flux 

for the different membranes is crucial for determining the best hydrogen separation 

membrane. 

 

It would also be interesting to investigate sintering at 1325 ˚C, and compare it to 1500 ˚C. 

On the basis of the density results in this report, dilatometer measurements for milled SCZY 

and SCZYb powder would be valuable. Dilatometer measurements on pre-sintered 

specimens and cycling effects is also recommended for further investigation before investing 

more time in producing these membranes. 
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Figure 27 Original cooling curves from dilatometer analysis 

Unexpected steps in the curves are likely due to friction between sample and sample holder 

and have been adjusted for in the calculation of TEC. 
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Appendix B 

 

Thermal expansion coefficients 

 ˚C 

TEC 
40-200 40-400 40-600 40-800 40-1000 40-1200 

SCZT 11,5E-06 11,3E-06 11,0E-06 11,4E-06 12,1E-06 12,8E-06 

SCZT 6h 10,8E-06 10,4E-06 10,2E-06 10,1E-06 10,5E-06 11,8E-06 

SCZT 24h 10,4E-06 10,5E-06 09,7E-06 09,3E-06 09,7E-06 10,9E-06 

SCZYb 11,6E-06 11,7E-06 11,6E-06 11,7E-06 12,1E-06 12,9E-06 

SCZY 12,9E-06 12,9E-06 12,4E-06 12,4E-06 12,4E-06 13,4E-06 

SCZ 13,6E-06 13,2E-06 12,8E-06 12,3E-06 13,0E-06 13,6E-06 

 

 

The difference between milled and not milled powder is worth commenting. Alumina 

contamination from the milling can be reason for a drop in TEC, since polycrystalline Al2O3 

have a average TEC between 8,6 - 8,8 x 10
-6

/ ˚C [25], compared to 11,1 x 10
-6

/ ˚C for SC 

[9]. The amount of alumina in the powder is probably too small to give such large 

deviations, but can contribute to the effect. 

 

SrCeO3 do not undergo any phase transitions in the region 77 K - 1000 K, according to 

Scherban et.al [45], so the secondary phases need to be investigated. Sr2CeO4 do have a 

phase transition in this particular region, and the TEC drops [42]. The amount of residue 

Sr2CeO4 is probably negligible, at least from the XRD results presented in Figure 17. The 

TEC for Sr2CeO4 is also higher than for SrCeO3, so if a significantly part of the membrane 

consisted of Sr2CeO4, higher TEC would be measured.  
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Synthetic air (YaraPraxair, 5.0) was used as atmosphere during dilatometry. This gas had a 

CO2 content of less than 5 vol ppm [39], so reaction between SrCeO3 and CO2 forming 

SrCO3 and CeO2 is possible. Given that 5ppm yields a pCO2 of 0,55 Pa, the reaction occurs 

at 5-600 ˚C according to the graph below taken from Kreuer [16]. This matches the 

temperature region with a decrease in TEC, and could be a possible explanation for the 

unexpected TEC values. 
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Appendix C 

 

Sintering curve comparison

Temperature 
o
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Change in length with respect to initial length plotted against temperature from 40 ˚C - 1500 

˚C. SCZ, represented by the green line in the graph deviate from the other samples. This 

could be explained by difference in green body density. At 500 ˚C SCZ exhibit the same 

curve as the other samples, but demonstrates a lower degree of densification than the others. 

Green body density is known to influence the final density.  
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Appendix D 

 

 

 

 

SEM micrographs at 4000X magnification for a) SCZ, b) SCZYb, c) SCZT, d) SCZY. 

Micrograph of SCZY and SCZYb exhibit pores located on grain boundaries. SCZ have a 

continuous pore structure and SCZT is completely dense.   
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Appendix E 

 

 

 

SEM micrograph of not milled SCZT hot pressed at 1400 ˚C with 50 Mpa pressure. The 

micrograph shows crack formation in the membrane. Due to the extraordinary brittle 

behavior, handling the sample resulted in further cracking. Grain size measurement proved 

difficult from the captured micrographs.  
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