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Abstract

A new residual-based variational multiscale (RBVMS) formulation for incompressible turbu-
lent flows is proposed that is suitable for discretization using divergence-conforming B-splines.
The proposed methodology results in a pointwise satisfaction of the zero-divergence constraint
on the discrete velocity field. The velocity fine scales are residual-driven and constructed in a
manner that is consistent with the divergence-free constraint on the discrete velocity solution.
The resulting formulation is tested on laminar- and turbulent-flow benchmark problems showing
excellent stability and accuracy characteristics in both regimes.
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1 Introduction

The basic theory of variational multiscale (VMS) methods was put forth in [36]. In the same
reference, well-known stabilized methods, such as the SUPG and PSPG techniques [15, 48], were
first identified as multiscale methods derivable on the basis of the VMS theory. The possibility of
using VMS for subgrid-scale modeling in large-eddy simulation (LES) of incompressible turbulent
flows was first discussed in [34]. More recently, in [5], based on the VMS framework, the authors
developed a residual-based variational multiscale (RBVMS) formulation for LES of incompressible
turbulent flows. This and later references [9, 10, 30] showed that RBVMS solutions converged
rapidly to the direct numerical simulation (DNS) results and yielded LES-like solutions on inter-
mediate meshes. These features are found to be particularly attractive for predictive simulation
of turbulent flows in engineering applications, because in many cases the flow regime at a given
location in space is often not known a priori, yet the flow solution needs to be computed with
sufficient accuracy. It should also be noted that the RBVMS concept was explored in an earlier
reference [18] in the context of finite volume methods.
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In an effort to improve the accuracy of RBVMS in the presence of unresolved (or marginally
resolved) boundary layers, weakly enforced no-slip conditions were introduced in [6]. The RBVMS
formulation, in combination with weakly-enforced no-slip conditions, produced significant solution
accuracy improvement as evidenced by the results obtained from a number of challenging turbulent-
flow test cases [9, 4] and engineering-scale simulations [1, 32, 31].

Isogeometric Analysis (IGA), proposed in [37] as a computational methodology to better inte-
grate Computer-Aided Design (CAD) and Finite Element Analysis (FEA) [20], rapidly became a
driving force behind much of the recent developments in VMS methods for turbulent flows. In [5]
the RBVMS formulation was discretized using IGA based on B-splines, yielding excellent per-
degree-of-freedom accuracy of the discrete solutions. This additional accuracy was verified in [2] to
be a consequence of the higher-order continuity of B-splines.

In [16], the structure and higher-order continuity of the B-spline basis were exploited to con-
struct approximation spaces that form the so-called discrete de Rham complex [17]. An important
consequence of this construction is that suitably chosen approximation spaces for incompressible-
flow equations lead to a pointwise satisfaction of the zero-divergence constraint for the discrete
velocity field, which is in contrast to other approaches that satisfy this condition only in a weak
sense. This so-called divergence-conforming B-spline discretization was successfully employed to
solve the Navier–Stokes equations of incompressible flows in the laminar regime using the Galerkin
technique in [29, 28]. Excellent solution accuracy and stability, especially using meshes with moder-
ate resolution relative to the flow Reynolds number employed, were reported in the aforementioned
references. These were attributed to the exact satisfaction of energy, helicity, and enstrophy bal-
ances in the semi-discrete setting, all stemming from a pointwise satisfaction of the zero-divergence
constraint. Finally, it was argued that turbulent-flow simulations may benefit from accuracy and
stability improvement of the divergence-conforming B-spline discretizations, which by and large
motivates the developments in the present article.

This paper lays the groundwork for a new generation of methods for computational fluid dy-
namics (CFD) and turbulence modeling that combine the finest attributes of VMS and divergence-
conforming B-spline discretizations. A new VMS formulation is derived that is residual-based
and produces pointwise divergence-free discrete velocity solution, as advocated by the divergence-
conforming B-spline paradigm. The use of higher-order continuous B-splines in the construction
of the divergence-conforming basis, in addition to resulting in a pointwise satisfaction of the zero-
divergence constraint, also gives rise to H1-conforming discretizations, as required for the present
setting.

In Section 2 we state the weak form of the Navier–Stokes equations of incompressible flows. In
Section 3 we recall the construction of the divergence-conforming B-spline basis for the velocity
and pressure unknowns. In Section 4 we derive a general form of the divergence-conforming VMS
formulation. In Section 5 we develop the fine-scale velocity approximations. In Section 6 we briefly
recall weak enforcement of no-slip boundary conditions and kinematic and traction compatibility
for multi-patch discretizations. In Section 7 we present numerical examples. In Section 8 we draw
conclusions.
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2 Navier–Stokes equations of incompressible flows

Let Ω ⊂ Rd, d = 2, 3 denote the problem spatial domain with boundary ∂Ω, and let I := (0, T ), T ∈
R>0 the time interval of interest. The Navier–Stokes equations of viscous, unsteady, incompressible
flows subject to homogeneous velocity boundary conditions may be stated as: Given ν ∈ R>0,
f : Ω× I → Rd, and u0 : Ω→ Rd, find u : Ω× I → Rd and p : Ω× I → R, such that,

∂tu+ u · ∇u+∇p−∇ · ν∇su = f in Ω× I,
∇ · u = 0 in Ω× I,
u = 0 on ∂Ω× I,
u = u0 on Ω× {0}.

(1)

Here u and p are the flow velocity and pressure, respectively, u0 is the velocity initial data, ν is the
kinematic viscosity, f is the body force per unit mass, and ∇s is the symmetric gradient. Note that
because of the boundary conditions chosen, pressure is only determined up to an additive constant.

We introduce the spaces V := H1
0 (Ω) and Q := L2

0(Ω), and state the weak formulation of the
Navier–Stokes equations: Find u ∈ V and p ∈ Q, such that

B((u, p); (v, q)) = F (v, q) ∀(v, q) ∈ V ×Q, (2)

where

B((u, p); (v, q)) = (∂tu, v)− (u⊗ u,∇v) + 2ν(∇su,∇sv)

− (p,∇ · v) + (∇ · u, q), (3)

F (v, q) = (f, v). (4)

In the above equations, (·, ·) denotes the usual L2-inner product over Ω. Note that, in the semilinear
form given by Eq. (3), convection has been brought into the conservative form. Also note that in
the definition of the pressure-solution and continuity-test-function spaces the subscript ‘0’ denotes
functions with zero mean over Ω.

3 Divergence-conforming B-splines

Divergence-conforming B-splines were first introduced in [16]. They were successfully applied to
simulate Stokes, Darcy, and low-Reynolds-number incompressible flows using the Galerkin tech-
nique in [27, 28, 29]. In this section we give a concise overview of the divergence-conforming
B-spline space construction. We note that the divergence-conforming construction was recently
extended to locally-refined B-splines in [39].

3.1 B-spline basics

Univariate B-spline basis functions are constructed using a knot vector in 1D, a non-decreasing set
of coordinates in the parameter space written as Ξ = {ξ1, ξ2, . . . , ξn+p+1}, where ξi ∈ R is the ith
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knot, i is the knot index, i = 1, 2, . . . , n + p + 1, p is the polynomial order, and n is the number
of basis functions. Knots partition the parameter space into elements. For a given knot vector,
B-spline basis functions are defined recursively starting with piecewise constants (p = 0):

Ni,0(ξ) =

{
1 if ξi ≤ ξ < ξi+1,
0 otherwise.

(5)

For p = 1, 2, 3, . . . , they are defined by

Ni,p(ξ) =
ξ − ξi
ξi+p − ξi

Ni,p−1(ξ) +
ξi+p+1 − ξ
ξi+p+1 − ξi+1

Ni+1,p−1(ξ), (6)

which is the Cox-de Boor recursion formula (see [21, 23]). The support of B-spline functions of
order p is always p+ 1 knot spans.

In 2D and 3D, B-spline basis functions are given as follows:

Bp,q
i,j (ξ, η) = Ni,p(ξ)Mj,q(η), (7)

Bp,q,r
i,j,k (ξ, η, ζ) = Ni,p(ξ)Mj,q(η)Lk,r(ζ). (8)

Here Ξ = {ξ1, ξ2, . . . , ξn+p+1}, H = {η1, η2, . . . , ηm+q+1}, and Z = {ζ1, ζ2, . . . , ζl+r+1} are the knot
vectors. The B-spline basis is pointwise nonnegative, and forms a partition of unity. The number
of continuous derivatives in a given parametric direction may be determined from the associated
1D knot vector and polynomial order.

Given a mesh of control points, {Ci,j}, i = 1, 2, . . . , n, j = 1, 2, . . . ,m, polynomial orders p and
q, and knot vectors Ξ = {ξ1, ξ2, . . . , ξn+p+1} and H = {η1, η2, . . . , ηm+q+1}, a B-spline surface is
defined as

S(ξ, η) =
n∑
i=1

m∑
j=1

Bp,q
i,j (ξ, η)Ci,j . (9)

A B-spline volume is constructed in an analogous fashion. Given a control mesh {Ci,j,k}, i =
1, 2, . . . , n, j = 1, 2, . . . ,m, k = 1, 2, . . . , l, polynomial orders p, q, and r, and knot vectors Ξ =
{ξ1, ξ2, . . . , ξn+p+1}, H = {η1, η2, . . . , ηm+q+1}, and Z = {ζ1, ζ2, . . . , ζl+r+1}, a B-spline volume is
defined as

S(ξ, η, ζ) =
n∑
i=1

m∑
j=1

l∑
k=1

Bp,q,r
i,j,k (ξ, η, ζ)Ci,j,k. (10)

The problem physical domain is denoted by Ω, while the parametric domain is denoted by Ω̂. In
2D, the parametric domain is a rectangle given by Ω̂ = Ξ ⊗ H, while in 3D it is a cuboid given
by Ω̂ = Ξ ⊗ H ⊗ Z. Both Ω̂ and Ω are referred to as the patch. While most geometries utilized
for academic test cases can be modeled with a single patch, more complicated shapes are typically
comprised of multiple patches. The patches are typically merged with C0 continuity.
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3.2 Construction of the divergence-conforming B-spline spaces

We employ divergence-conforming B-splines to approximate the velocity and pressure solutions of
the weak form of the Navier–Stokes problem given by Eq. (2). In the divergence-conforming B-
spline construction, the velocity and pressure spaces are first defined on the parametric domain Ω̂.
Following [29], in 2D, the function spaces are given by

V̂ h = Sp,q−1
α1,α2−1 × S

p−1,q
α1−1,α2

, (11)

Q̂h = Sp−1,q−1
α1−1,α2−1, (12)

while in 3D their definitions become

V̂ h = Sp,q−1,r−1
α1,α2−1,α3−1 × S

p−1,q,r−1
α1−1,α2,α3−1 × S

p−1,q−1,r
α1−1,α2−1,α3

, (13)

Q̂h = Sp−1,p−1,r−1
α1−1,α2−1,α3−1. (14)

Here, for the 2D case,

Sp,qα1,α2
= span{Bp,q

i,j (ξ, η)}n,mi=1,j=1, (15)

while in 3D,

Sp,q,rα1,α2,α3
= span{Bp,q,r

i,j,k (ξ, η, ζ)}n,m,li=1,j=1,k=1, (16)

where α’s denote the integer-valued regularity vectors that contain the degree of B-spline basis-
function continuity at the knots.

It is also assumed that the following boundary conditions and constraints are imposed on
the spaces: v̂ · n̂ = 0 on ∂Ω̂ ∀v̂ ∈ V̂ h, where n̂ is the unit outward normal vector on ∂Ω̂, and∫

Ω̂ q̂
h dΩ̂ = 0 ∀q̂h ∈ Q̂h. With this construction, one can show that ∀q̂h ∈ Q̂h, if v̂h ∈ V̂ h, and

(∇̂ · v̂h, q̂h) = 0, (17)

then ∇̂ · v̂h = 0 pointwise in Ω̂, where ∇̂ is the gradient operator with respect to the parametric
coordinates in Ω̂.

In the physical domain, the discrete velocity and pressure spaces may be defined as

V h = {v ∈ H0(div,Ω) | lu(v) ∈ V̂ h}, (18)

Qh = {q ∈ L2
0(Ω) | lp(q) ∈ Q̂h}, (19)

where l’s denote the following pullback operations,

lu(v) = det(DF )DF−1(v ◦ F ), v ∈ H0(div,Ω), (20)

lp(q) = q ◦ F, q ∈ L2
0(Ω). (21)

In Eqs. (20)-(21), F : Ω̂→ Ω is the geometrical mapping expressed by Eqs. (9) and (10) for the 2D
and 3D cases, respectively, and DF is the jacobian of that mapping. We note that the expression
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given by Eq. (20) is the well-known Piola transformation in continuum mechanics, while Eq. (21)
is the standard mapping of a scalar field. With this construction, if the continuity equation in the
Navier–Stokes problem is discretized using the Galerkin technique, the resulting discrete velocity
is guaranteed to be pointwise divergence-free in the physical domain Ω.
It is convenient to introduce k, the polynomial degree of the divergence-conforming B-spline space
V h×Qh, defined as k := p−1, where we understand that p = q = r and αi = p−1 in Eq. (11)-(14).
Then, V h × Qh spans the intersection of V × Q and the space of polynomials of degree up to k,
that is, the polynomial space without the constant pressure.
Remark The spaces Sp,q and Sp,q,r must be comprised of at least C1-continuous quadratic splines in
order to produce a conforming discretization for the viscous terms in the Navier–Stokes momentum
equations. Such smooth discretizations, while straightforward for IGA, present a challenge for
standard FEM.

4 Divergence-conforming VMS

As a first step in the development of a VMS formulation, orthogonal projectors are defined for
the velocity and pressure function spaces as Pu : V → V h ( V and Pp : Q → Qh ( Q. Here,
V h and Qh are the divergence-conforming B-spline spaces developed in the previous section. We
think of Pu as the H1

0 -projector and Pp as the L2-projector. These projectors induce an orthogonal
decomposition of the velocity and pressure spaces, as well as the corresponding test-function spaces,
as V = V h ⊕ V ′ and Q = Qh ⊕Q′, where the objects marked by ′ denote spaces of unresolved or
fine-scale components of the velocity and pressure fields.

With this decomposition, the weak form given by Eq. (2) splits into two subproblems:

B((uh + u′, ph + p′); (vh, qh)) = F (vh, qh) ∀(vh, qh) ∈ V h ×Qh, (22)

and
B((uh + u′, ph + p′); (v′, q′)) = F (v′, q′) ∀(v′, q′) ∈ V ′ ×Q′. (23)

Here Eqs. (22) and (23) are associate with the coarse- and fine-scale problems, respectively. The
main idea of the VMS technique is to express the fine scales in the coarse-scale problem as functions
of the resolved velocity and pressure fields. For that purpose, the fine-scale problem is employed
to develop such expressions for the fine scales. See [5] for the details of this process in the context
the Navier–Stokes equations of incompressible flows.

In this work we deviate from [5], in that we employ the divergence-conforming B-spline con-
struction to develop a VMS formulation that gives a pointwise satisfaction of the incompressibility
constraint on the discrete velocity field, that is,

∇ · uh = 0 in Ω× I. (24)

Examining the weak form of the continuity equation, and introducing the above constraint, gives

0 = (∇ · u, q) = (∇ · (uh + u′), q) = (∇ · u′, q) ∀q ∈ Q, (25)

which implies that the the fine scales are also divergence-free (in the sense of L2). These constraints
on the velocity coarse and fine scales were not a part the original VMS formulation in [5], but are
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explicitly accounted for in the present methodology.

Before stating the divergence-conforming VMS formulation, we make the following observations:

1. The definition of Pu implies (∇vh,∇u′) = 0 ∀vh ∈ V h and ∀u′ ∈ V ′. That is, the veloc-
ity coarse and fine scales are orthogonal with respect to the H1

0 inner product. The same
observation was made in [5].

2. Since Eq. (25) holds for all q ∈ Q, it also holds for all qh ∈ Qh, namely

(∇ · u′, qh) = 0 ∀qh ∈ Qh, (26)

which states that the resulting discrete continuity equation is not affected by the velocity fine
scales. As a result, in the divergence-conforming VMS formulation, the continuity equation
is discretized in the Galerkin form, leading to a pointwise satisfaction of the incompressibility
constraint by the discrete velocity field.

3. The definition of the projector Pp may be changed slightly from the usual L2 projector to
enforce the following orthogonality condition:

(lp(p
′), q̂h)Ω̂ = 0 ∀q̂h ∈ Q̂h, (27)

where (·, ·)Ω̂ denotes the L2 inner product over the parametric domain. The condition given
by Eq. (27) states that the pullback of the pressure fine scales is orthogonal to the pressure
coarse scales in the parametric domain. Using this definition of the projector, we compute

(p′,∇ · vh) =

∫
Ω̂
lp(p

′)det(DF )(∇̂(vh ◦ F ) : DF−1) dΩ̂

=

∫
Ω̂
lp(p

′)∇̂ · (det(DF )DF−1(vh ◦ F )) dΩ̂ = (lp(p
′), ∇̂ · lu(vh))Ω̂, (28)

where the Piola identity was used to go from the first to second line. Recognizing that
∇̂ · lu(vh) ∈ Q̂h, and using the orthogonality condition given by Eq. (27), we conclude that

(p′,∇ · vh) = 0 ∀vh ∈ V h, (29)

which implies that the coarse-scale momentum equations are not affected by p′ and obviates
the need to model the pressure fine scales.

The above observations, combined with the coarse-scale equations Eq. (22), lead to the following
divergence-conforming VMS formulation: Find uh ∈ V h and ph ∈ Qh, such that ∀vh ∈ V h and
qh ∈ Qh,

BDCVMS((uh, ph); (vh, qh)) = FDCVMS(vh, qh), (30)

BDCVMS((uh, ph); (vh, qh)) = B((uh, ph); (vh, qh))− (uh ⊗ u′,∇vh)

− (u′ ⊗ uh,∇vh)− (u′ ⊗ u′,∇vh), (31)

FDCVMS(vh, qh) = F (vh, qh), (32)

where the velocity fine scales u′ are understood as functions of the resolved velocity and pressure
fields. Expressions for u′ are provided in the following section.
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5 The fine-scale problem

The fine-scale problem given by Eq. (23) may be written as: Find u′ ∈ V ′ and p′ ∈ Q′, such that
∀v′ ∈ V ′ and q′ ∈ Q′,

< Luu′, v′ > −(p′,∇ · v′) = − < r(uh, ph), v′ >,

(∇ · u′, q′) = 0, (33)

where r(u, p) = ∂tu+u ·∇u+∇p−ν∆u−f is the strong residual of the Navier–Stokes momentum
equations, Lu(·) = ∂t(·) + u · ∇(·)− ν∆(·) is the convection-diffusion operator, and < ·, · > denotes
the appropriate duality pairing.

We note that the formulation given by Eq. (33) is posed over a space of fine scales, characterized
by a constraint Puu′ = 0. Following the developments of [35], the formulation given by Eq. (33)
may be posed over an unconstrained space by using the Lagrange multiplier approach, namely:
Find u′ ∈ V , p′ ∈ Q, and λ̄ ∈ V h∗, the dual of V h, such that ∀v ∈ V , q ∈ Q, and µ̄ ∈ V h∗

< Luu′, v > + < PTu λ̄, v > −(p′,∇ · v) = − < r(uh, ph), v >,

< Puu′, µ̄ > = 0,

(∇ · u′, q) = 0, (34)

where we also used the fact that (p′,∇ · v′) = (p′,∇ · v) due to the pressure projector.
We can formally state the solution to the fine-scale problem given by Eq. (34) in terms of the

coarse-scale residual and fine-scale pressure gradient as

u′ = G′(−r(uh, ph)−∇p′), (35)

where G′ is the fine-scale Green’s function for the convection-diffusion operator Lu. This object
was derived in [35] and given by

G′ = G − GPTu (PuGPTu )−1PuG, (36)

with G being the full Green’s function for the convection-diffusion operator.
In [35] the authors showed that while both G and G′ are global operators, G′ is much more

localized than G. This fact was used as a justification for stabilized methods, which approximate
the action of G′ by a multiplication with a scalar-valued function τ , also known as the stabilization
parameter. We follow the same reasoning here and replace G′ in Eq. (35) to arrive at

τ−1u′ +∇p′ = −r(uh, ph), (37)

∇ · u′ = 0,

which yields a Darcy problem with diffusivity τ−1 driven by the momentum residual of the coarse-
scale solution. The parameter τ employed in this work is given by

τ = (4/δt2 + u ·Gu+ CIν
2|G|2)−1/2, (38)

where δt is the time step, G = D̂F
−T
D̂F

−1
, D̂F the jacobian of the mapping from a bi-unit square

(in 2D) or cube (in 3D) to the physical element, and CI is a positive constant arising in the element
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inverse estimate. This definition is taken directly from [5]. For other definitions of stabilization
parameters the reader is referred to [46, 45, 47, 33].

In the discrete setting, we approximate the solution of Eq. (37) using the Galerkin method
and divergence-conforming B-spline discretization for the velocity and pressure restricted to each
individual element. We consider the following alternatives for the fine-scale problem:

1. The Darcy–Dirichlet problem: Find u′ ∈ V h
0 (Ωe) and p′ ∈ Qh0(Ωe), such that ∀v′ ∈ V h

0 (Ωe)
and q′ ∈ Qh0(Ωe),

(τ−1u′, v′)e − (p′,∇ · v′)e = −(r(uh, ph), v′)e, (39)

(∇ · u′, q′)e = 0,

where Ωe is the element domain, (·, ·)e is the L2 inner product over Ωe, V
h

0 (Ωe) is the
divergence-conforming spline space for the velocity restricted to Ωe with boundary conditions
lu(u′) · n̂ = 0 on ∂Ω̂e, and Qh0(Ωe) the divergence-conforming spline space for the pressure
restricted to Ωe and satisfying the zero-mean condition (p′, 1)e = 0.

2. The Darcy–Neumann problem. Here we relax the constraints on the velocity fine scales at the
element boundary, and formulate the discrete fine-scale problem as follows: Find u′ ∈ V h(Ωe)
and p′ ∈ Qh(Ωe), such that ∀v′ ∈ V h(Ωe) and q′ ∈ Qh(Ωe),

(τ−1u′, v′)e − (p′,∇ · v′)e = −(r(uh, ph), v′)e, (40)

(∇ · u′, q′)e = 0.

The above variational form implies that, in a weak sense, p′ = 0 on ∂Ωe.

3. The Darcy–Periodic problem. In this final approach, we enforce periodic boundary conditions
on both the velocity and pressure fine scales at the element boundary. This approach is
inspired by Kolmogorov’s hypothesis of local isotropy which states that at sufficiently high
Reynolds numbers, the small-scale turbulent motions associated with the inertial subrange
and dissipation range are statistically isotropic. While we do not explore this approach further
within the current work, we will examine it in detail in the future.

The complete divergence-conforming VMS formulation is obtained by inserting the resulting u′

satisfying the discrete Darcy–Dirichlet, Darcy–Neumann, or Darcy–Periodic problems into the for-
mulation given by Eq. (30). It is important to note that since a divergence-conforming discretization
of the Darcy problem is employed at the element level, the resulting velocity fine scales are, as de-
sired, pointwise divergence-free.

Remark The Darcy formulation may be thought of as the element-wise constrained minimiza-
tion problem:

min u′∈V h(Ωe) max p′∈Qh(Ωe)

1

2
‖u′ + τr(uh, ph)‖2L2(Ωe),τ−1 − (p′,∇ · u′)e, (41)

where ‖f‖L2(Ωe),τ−1 = (f, τ−1f)
1/2
e is the weighted L2(Ωe) norm. In this spirit, other norms may

be considered for the minimization problem.
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Remark The velocity field is completely decoupled from the pressure field in the Darcy–Dirichlet
problem. This fact may be observed by strongly enforcing the divergence-free constraint within the
fine-scale velocity trial space, resulting in the following simplified problem: Find u′ ∈ V h

0 (Ωe) such
that ∀v′ ∈ V̊ h

0 (Ωe),

(τ−1u′, v′)e = −(∂tu
h + uh · ∇uh − ν∆uh − f, v′)e, (42)

where
V̊h0 (Ωe) :=

{
vh ∈ Vh0 (Ωe) : ∇ · vh = 0

}
. (43)

The decoupling of the velocity and pressure fields in the Darcy–Dirichlet problem allows for the use
of efficient linear solvers which act purely on the divergence-free velocity space. It should be noted
that the velocity field is not completely decoupled from the pressure field in the Darcy–Neumann
and Darcy–Periodic problems.

Remark Instead of making a simple estimate G′ ≈ τ , one could attempt to compute an ap-
proximate solution of the linearized fine-scale problem as: Find u′ ∈ V̄0(Ωe) and p′ ∈ Q̄0(Ωe), such
that ∀v′ ∈ V̄0(Ωe) and q′ ∈ Q̄0(Ωe),

< Luu′, v′ > −(p′,∇ · v′) = − < r(uh, ph), v′ >,

(∇ · u′, q′) = 0. (44)

This approach is essentially a divergence-conforming extension of the residual-free bubble tech-
nique (see [14, 13]), which requires well-designed discrete approximation spaces for the velocity and
pressure (denoted here by V̄0(Ωe) and Q̄0(Ωe), respectively) in order to guarantee accuracy and
stability for a large range of Reynolds numbers. For example, element-level polynomial spaces are
inefficient in capturing the fine-scale behavior in the advection-dominated regime (see, e.g., [35]).
As a result, a more sophisticated approach is required to construct the fine-scale spaces, which now
has the additional challenge of satisfying the fine-scale-velocity zero-divergence constraint.

Remark In the case the divergence-free constraint on the fine scales is relaxed, and the approx-
imations u′ = −τr(uh, ph) and p′ = −τC∇ · uh are adopted for the fine scales, one obtains the
residual-based variational multiscale (RBVMS) formulation from [5]: Find uh ∈ V̄ and ph ∈ Q̄,
such that ∀vh ∈ V̄ and qh ∈ Q̄,

BVMS((uh, ph), (vh, qh)) = FVMS(vh, qh), (45)

BVMS((uh, ph), (vh, qh)) = B((uh, ph), (vh, qh)) + (uh ⊗ τr(uh, ph),∇vh) (46)

+ (τr(uh, ph)⊗ uh,∇vh)− (τr(uh, ph)⊗ τr(uh, ph),∇vh),

+ (τC∇ · uh,∇ · vh) + (τr(uh, ph),∇qh),

FVMS(vh, qh) = F (vh, qh). (47)

The RBVMS is typically employed in the context of equal-order velocity-pressure discretizations,
hence a slightly different notation for the discrete spaces, V̄ and Q̄, is employed for this case.

10



Remark The classical SUPG/PSPG formulation [48] is obtained by neglecting the pressure fine
scales, as well as terms identified with the Reynolds and cross stresses in the terminology of classical
LES and RANS turbulence modeling [49, 43]: Find uh ∈ V̄ and ph ∈ Q̄, such that ∀vh ∈ V̄ and
qh ∈ Q̄,

BSUPS((uh, ph), (vh, qh)) = FSUPS(vh, qh), (48)

BSUPS((uh, ph), (vh, qh)) = B((uh, ph), (vh, qh)) (49)

+ (r(uh, ph), τuh · ∇vh) + (r(uh, ph), τ∇qh),

FSUPS(vh, qh) = F (vh, qh). (50)

The SUPG/PSPG formulation is also typically employed for equal-order velocity-pressure dis-
cretizations.

Remark The classical SUPG formulation, as presented in its original form in [15], may be obtained
by neglecting the residual-based terms in the continuity equation: Find uh ∈ V h and ph ∈ Qh, such
that ∀vh ∈ V h and qh ∈ Qh,

BSUPG((uh, ph), (vh, qh)) = FSUPG(vh, qh), (51)

BSUPG((uh, ph), (vh, qh)) = B((uh, ph), (vh, qh)) + (r(uh, ph), τuh · ∇vh), (52)

FSUPG(vh, qh) = F (vh, qh). (53)

In the case of SUPG, while the residual-based terms provide the necessary convective stabilization,
one still needs to employ velocity-pressure discretizations that satisfy the Babuška–Brezzi (BB)
condition [3, 12] in order to have a stable and optimally convergent method. The framework of
divergence-conforming B-splines is well suited for this purpose since, by construction, it produces
BB-stable velocity-pressure pairs.

6 Boundary and patch-interface conditions

In the context of divergence-conforming B-splines, imposition of essential boundary conditions,
as well as enforcement of kinematics and traction continuity across patches in the case of multi-
patch B-spline discretizations, deserves some attention. As advocated in [29], the most natural
framework for boundary- and patch-interface-condition imposition involves strong enforcement of
no-penetration and weak enforcement of no-slip conditions. Nitsche’s approach [42], later extended
to weak-essential-boundary-condition [6] and sliding-interface [7, 32] formulations, is employed here
for that purpose in the form described in [29]. The following weak-boundary-condition and patch-
interface terms are added to any of the discrete formulations discussed previously:

+
∑
∂e∈Fh

(
−(t(uh), vhτ )∂e − (uhτ , t(v

h))∂e +
CB ν

h∂e
(uhτ , v

h
τ )∂e

)

+
∑
∂e∈Ih

(
−({{t(uh)}}, [[vhτ ]])∂e − ([[uhτ ]], {{t(vh)}})∂e +

CB ν

h∂e
([[uhτ ]], [[vhτ ]])∂e

)
.
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Here, (·)τ = (·)− [(·) ·n]n is the vector tangential component, t(·) = 2ν∇s(·)n is the viscous traction
operator, [[·]] and {{·}} denote the usual jump and average operators, ∂e is the element boundary, h∂e
is the local mesh size, CB > 0 is the nondimensional boundary stabilization (or penalty) parame-
ter, and Ih and Fh denote the sets of patch-interface elements and boundary elements, respectively.

Remark We note that near solid surfaces, weak enforcement of no-slip boundary conditions may
be interpreted as near-wall modeling in boundary-layer turbulent flows (see [8, 30] for details). In
addition, because residual-based VMS was developed and validated as a turbulence model appli-
cable in the LES regime, the present formulation, in the terminology of turbulence modeling, may
be though of as divergence-conforming LES with near-wall modeling.

7 Numerical examples

The divergence-conforming VMS technique is tested using two 2D laminar-flow benchmark prob-
lems, a test case involving Taylor-Green vortex flow at Reynolds number Re= 1600, and a test case
involving turbulent channel flow at friction-velocity-based Reynolds number Reτ = 395. In the case
of 2D benchmarks, the divergence-conforming VMS technique is compared to Galerkin and SUPG
formulations, also discretized using divergence-conforming B-splines. In the case of the Taylor-
Green vortex flow, the divergence-conforming VMS technique is compared to the Galerkin formula-
tion, also discretized using divergence-conforming B-splines. The version of divergence-conforming
VMS tested in this context corresponds to the Darcy–Dirichlet problem given by Eq. (39). In
the case of turbulent channel flow, the standard and divergence-conforming VMS formulations are
compared, where the divergence-conforming version makes use of the Darcy–Neumann formulation
given by Eq. (40).

7.1 Regularized lid-driven cavity

We consider a steady, regularized lid-driven cavity flow in a unit square with a body force. The
analytical solution for this case is known [44], and is given by

u = 8{f1f
′
2,−f ′1f2},

p = 8ν(F1f
′′′
2 + f ′1f

′
2) + 32f2

1 (f2f
′′
2 − f ′22 ),

where ′ denotes the derivative and F ′1 = f1 = x4 − 2x3 + x2 and f2 = y4 − y2. Note that
‖u‖∞ = u(1/2, 1) = 1, so the Reynolds number is Re = 1/ν. We compute the solution on a family
of uniform meshes 1/h ∈ {8, 16, 32, 64} for Re = 1000, using the Reynolds-number continuation
technique with levels Re ∈ {100, 400, 1000}. The value of the boundary-stabilization parameter is
set to CB = 5(k + 1).

A mesh convergence study is performed for different polynomial orders to compare the Galerkin
and SUPG methods with the newly proposed VMS method, where the fine-scales are approximated
with element-wise Darcy–Dirichlet and Darcy–Neumann problems (where we choose k = 1 for the
fine-scale problems), see Figure 2. The convergences rates are also summarized in Table 1. It is
observed that optimal convergence rates are attained in all cases. The consistency of the technique
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|u|0 1 p-0.45 0.03

Figure 1: Velocity and pressure for the regularized cavity problem at Re = 1000.

k
‖u− uh‖H1

0 (Ω) ‖p− ph‖L2(Ω)

Gal. SUPG DD DN Gal. SUPG DD DN

1 1.0 1.0 1.0 1.3 2.0 2.1 2.0 2.4
2 2.0 2.0 2.0 2.3 3.2 3.2 3.2 2.9
8 - - - - - - - -

Table 1: Error convergence rates for the regularized lid-driven cavity problem at Re=1000. A dash
indicates that the numerical approximation agrees with the exact solution up to machine precision.
Here k denotes the polynomial order of the approximation space, cf. §3.2.

is verified by performing the computation with splines of order eight, which captures the velocity
and pressure fields exactly, producing only machine-precision error (see Table 1.) This example also
shows that in the case of SUPG and VMS the stabilizing residual-based terms vanish sufficiently
quickly with mesh refinement to guarantee optimal convergence of these techniques.

7.2 Backward-facing step

We compute the steady backward-facing step problem, which has been the subject of many in-
vestigations and presents a good benchmark for methods verification and comparison due to the
availability of well-documented numerical solutions. This is also an example where a multiple-patch
discretization is tested. The flow setup is shown in Figure 3, whereO denotes the origin. The bound-
ary conditions are specified as u = {6y(1− y), 0} on Γin, u = 0 on Γwall, and −pn+ 2ν∇su · n = 0
on Γout.

Investigations have been performed on the influence of the lengths L0 and L1 (see Figure 3)
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Figure 2: Regularized lid-driven cavity at Re=1000. Velocity (left panels) and pressure (right
panels) error convergence under mesh refinement for k = 1 (top panels) and k = 2 (bottom
panels). Galerkin (+), PSPG (×), Darcy–Dirichlet (©), and Darcy–Neumann (�) formulations
are compared.

X1

X2 X3

Γin

Γout

Γwall

O
1

1

L0 L1

Figure 3: Schematic of the backward-facing step problem.
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X1 X2 X3

[25] 8.237 7.731 10.037

Gal 8.305 7.244 10.398
(0.8%) (6.3%) (3.6%)

SUPG 8.263 7.295 9.808
(0.3%) (5.6%) (2.3%)

Darcy–Dirichlet 8.305 7.242 10.401
(0.8%) (6.3%) (3.6%)

Table 2: Recirculation-bubble locations for Re=400. Comparison with data from [25] is provided
in the table.

and the choice of outflow conditions. It was shown in [22] that the choice L0 = 0 affects the
flow solution at moderate Reynolds number. (The Reynolds number in this problem is based on
the step height and average inflow velocity (both unity), and the viscosity.) At the same moderate
Reynolds number, the flow eventually develops into a Poiseuille profile downstream of the step, and
the adequacy of L1 is judged by the deviation of the velocity profile from the Poiseuille solution,
as proposed in [40]. We note that the flow is not expected to follow the Poiseuille solution at the
outflow boundary due to the use of the symmetric-stress boundary conditions, so we examine the
velocity profile approximately eight step heights upstream of the outflow. We use grid stretching for
higher wall-normal resolution at the downstream horizontal walls, and lower streamwise resolution
towards the outflow. We use L0 = 5, L1 = 60, and 5% grid stretching. The element size in the
vicinity of the step was chosen as 1/16, resulting in a mesh with 21,200 elements. Furthermore,
the divergence conforming approximation space with polynomial degree k = 1 (according to the
definition of §3.2) was used.

To compute the flow separation and reattachment points, we reconstruct the stream function
from the velocity solution. Level sets of the stream function correspond to the flow streamlines.
In particular, recirculation bubbles are bounded by level sets which include a wall boundary (i.e.,
a contiguous segment of ∂Ω where g · n vanishes). Because the discrete velocity solution is point-
wise divergence-free, the stream-function reconstruction is exact, which presents an added benefit of
the proposed approach. Details of the stream-function reconstruction are provided in the Appendix.

Remark When the boundary-layer mesh is relatively coarse, weak enforcement of boundary condi-
tions leads to nonzero slip velocity at the boundary, which results in some inaccuracy of the stream-
function reconstruction in one layer of elements adjacent to the wall. Therefore, a quadratic fit
is employed to recover the separation-bubble locations. This quadratic fit uses level set locations
at the first two mesh points away from the boundary, and the fact that the normal gradient of
the stream function should vanishes at the boundary due to no-slip and no-penetration boundary
conditions.

We compute two cases corresponding to Re=400 and Re=800, comparing as before the Galerkin,
SUPG and VMS formulations, the latter with a Darcy–Dirichlet fine scale problem. Figure 4 shows
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|u|0 1.5

Figure 4: Velocity contours and streamlines for the backward-facing step problem for Re = 800.
Zoom on the region [−1, 14]× [−1, 1] is shown.

X1 X2 X3

[25] 11.834 9.476 20.553

Gal 11.910 9.210 20.973
(0.6%) (2.8%) (2.0%)

SUPG 11.618 8.929 21.037
(1.8%) (5.8%) (2.4%)

Darcy–Dirichlet 11.907 9.207 20.973
(0.6%) (2.8%) (2.0%)

Table 3: Recirculation-bubble locations for Re=800. Comparison with data from [25] is provided
in the table.
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the velocity contours and streamlines for the Re=800 case. The flow solution is smooth even at
patch boundaries. The separation-bubble locations, denoted by X1, X2, and X3 in Figure 3, are
compared with those reported in [25] in Tables 2 and 3. Good agreement is achieved in all cases,
despite the coarse resolution of the approximation space.

7.3 Taylor-Green vortex flow at Re= 1600

Three-dimensional Taylor-Green vortex flow is one of the simplest systems in which to study the
generation of small scales through vortex stretching and the energy dissipation from the resulting
turbulence. The initial condition of Taylor-Green vortex flow is laminar and consists of purely
two-dimensional streamlines, but for all time t > 0, the flow is three-dimensional. As the solution
is evolved in time, vortex stretching causes the generation of small-scale motion and eventual
transition into turbulence. The initial conditions for this flow are

u0 (x, y, z) =

 sin (x) cos (y) cos (z)
− sin (x) sin (y) cos (z)

0

 . (54)

We simulate Taylor-Green vortex flow at a Reynolds number baesd on the integral length scale
of Re= 1600. For this type of flow, this Reynolds number can be defined as Re= 1

ν . The flow is

periodic in all three spatial directions in the domain Ω = (0, 2π)3 and, due to inherent symmetries
in the flow, we model the flow using a restricted computational domain of Ωh = (0, π)3 with
impermeable stress-free boundaries. The solution is evolved in time using a semi-implicit method
wherein the Crank-Nicolson method is employed to discretize viscous terms while the Adams-
Bashforth multi-step method is employed to discretize the nonlinear convective terms as well as
couple the coarse-scale and fine-scale solutions. A time-step size of ∆t = 0.0125h is employed in
all simulations.

Two simulations of this flow are performed, using: 1) Galerkin’s method discretized using
divergence-conforming B-splines, and 2) The newly proposed divergence-conforming VMS formula-
tion with the fine scales approximated by the element-level discrete Darcy–Dirichlet problem given
by Eq. (39). Divergence-conforming splines of degree k = 1 are used. For both simulations, a highly
unresolved uniform mesh of 323 elements is employed. The eddies associated with the length scale
set by the mesh size belong to the inertial subrange as required by classical LES techniques.

The time histories of the kinetic energy dissipation rate up to a non-dimensional time of t = 10
for both simulations are compared to the Fourier-based DNS results of Brachet et al. [11] in Fig-
ure 5. The Galerkin method over-predicts the energy dissipation rate at all times. In contrast,
the VMS formulation provides a much closer agreement to the DNS data, despite the fact that
the turbulent flow is highly unresolved. The magntitude of peak dissipation associated with the
VMS formulation is much closer to the DNS data than the peak dissipation associated with the
Galerkin method, though the time of peak dissipation is under-predicted in both simulations. We
hypothesize that both the magnitude and time of peak dissipation are under-predicted in the VMS
simulation as it is not sufficiently resolved as to include the Kolmogorov microscales. The energy
spectra as a function of wavenumber at t = 10 are presented in Figure 6. A reference line with slope
−5

3 is also plotted. The spectra for both the Galerkin and VMS formulations show the expected
behavior, and here the VMS model does not show any appreciable effect on the energy spectrum.
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Figure 5: Taylor-Green vortex flow at Re= 1600. Dissipation rate.

Figure 6: Taylor-Green vortex flow at Re= 1600. Energy spectra.

Remark As a semi-implicit method is used to treat nonlinear terms explicitly while evolving
the system in time, a linear system governing a generalized Stokes problem must be solved at each
time-step. Instead of addressing the full velocity-pressure system, we instead solve a reduced system
involving only the divergence-free velocity field. This is made possible by relating the divergence-
free velocity field to a curl-conforming vector potential field. This yields a symmetric positive
semi-definite system which may be efficiently solved using multigrid-preconditioned conjugate gra-
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Figure 7: Turbulent channel flow at Reτ = 395. Problem setup.

dient methods. The discrete pressure field at a particular time instance may then be obtained by
solving a discrete Laplace problem, though we note that the pressure field is not required for system
solution as the velocity and pressure fields are completely decoupled in the Darcy–Dirichlet model.

7.4 Turbulent channel flow at Reτ = 395

We simulate turbulent channel flow at Reτ = 395, where the Reynolds number Reτ is based on
the friction velocity and channel half-width. The computational setup is shown in Figure 7. The
domain is a rectangular box with dimensions 2π× 2× 2

3π discretized using an unstretched mesh of
323 elements. The flow is driven by a constant pressure gradient fx = 1.472×10−4 acting along the
streamwise direction, prescribed as a known body force. At the boundaries we employ: strongly-
enforced no-penetration and weakly-enforced no-slip boundary conditions at the walls; periodic
boundary conditions in the streamwise direction; and no-penetration boundary conditions in the
spanwise direction. The flow equations are advanced in time using the generalized-α method [19, 38]
with ∆t = 0.025.

Two simulations of this flow are performed, using: 1. The newly proposed divergence-conforming
VMS formulation with the fine scales approximated by the element-level discrete Darcy–Neumann
problem given by Eq. (40); 2. The original RBVMS formulation given by Eq. (45). In conjuction
with the divergence-conforming VMS formulation, divergence-conforming B-splines with polyno-
mial order k = 1 are used. The RBVMS formulation makes use of the C1-continuous quadratic
B-spline discretization for all velocity and pressure unknowns. Note that the formal order of accu-
racy of the divergence-conforming B-spline discretization one order lower than RBVMS in this case.
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Remark The Galerkin formulation with divergence-conforming B-splines failed to converge for
this problem. This is likely caused by the well-known instability of the Galerkin technique in the
regime of local convection dominance [15], which is not addressed by the divergence-conforming
B-spline discretization. Galerkin may be rendered stable if the mesh is sufficiently refined, however,
this direction was not pursued here.

Remark In the case of divergence-conforming VMS, the linear equation systems arising in the
fine-scale problem on each element are solved directly, while the recently-proposed bi-partitioned
iterative solution strategy [26] is used solve the linear equation systems arising in the global prob-
lem. The bi-partitioned approach is able to robustly handle the challenges associated with the lack
of the “pressure-pressure block” in the linear-equation system arising in the divergence-conforming
VMS discretization. The present simulations, as well as those reported in [26], illustrate the supe-
rior performance of the bi-partitioned linear-equation solver for incompressible-flow problems.

Flow statistics for both simulations are shown in Figure 8, where the data from the Direct Numeri-
cal Simulation (DNS) of this flow [41] is plotted for comparison. Excellent agreement with the DNS
data is achieved for the mean streamwise velocity, both for the divergence-conforming VMS and
RBVMS simulations. If fact, one may even argue that in the channel core the divergence-conforming
VMS is performing slightly better than RBVMS. Comparison of the velocity fluctuations reveals
that both give very good prediction of this second-order statistic considering that the mesh is quite
coarse for this Reynolds-number case. Overall, the divergence-conforming VMS is slightly less ac-
curate, and tends to overpredict the fluctuation levels relative to RBVMS. This is not a surprising
outcome, since discretizations of lower order and continuity tend to give less accurate predictions of
fluctuating quantities in turbulent flows than their higher-order and higher-continuity counterparts
(see, e.g., [5, 2]). Perhaps the most striking result of this study is the high accuracy levels the
divergence-conforming VMS formulation is able to achieve despite the fact that the formal order
of accuracy employed in the present computation is one less than in the RBVMS simulation.

Figure 9 shows instantaneous streamwise-velocity contours from the divergence-conforming
VMS simulation. Weak enforcement of the no-slip conditions at the walls and a relatively coarse
boundary-layer mesh give rise to non-negligible velocity fluctuations at no-slip walls (see top surface
of the domain). However, this does not compromise the overall accuracy of the simulations.

8 Conclusions

In this paper we propose a new VMS formulation for incompressible turbulent flows, which employs
the divergence-conforming B-spline discretization, and which, while H1-compatible, also delivers
a pointwise divergence-free discrete velocity solution. To ensure consistency of the velocity fine
scales with the zero-divergence constraint, the discrete fine-scale problem is cast as an element-
level Darcy problem posed over a restriction of the divergence-conforming B-spline basis to each
individual element. The fine-scale Darcy problem is driven by the residual of the coarse scales,
which retains consistency of the original RBVMS technique. Furthermore, the inverse of the sta-
bilization parameter τ is interpreted as the diffusivity parameter of the aforementioned Darcy
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Figure 8: Statistics for Reτ = 395 channel flow. Top: mean streamwise velocity. Bottom: root
mean square of the velocity fluctuations.

problem. In this sense, the stabilization parameter τ may be interpreted as an intrinsic time-scale
associated with motion of subgrid vortices. This physical interpretation provides a connection be-
tween the mathematical framework of VMS modeling and standard physics-based LES approaches
which we anticipate may be exploited to develop physics-based VMS models in the future. Strong
enforcement of the normal-velocity component and weak enforcement of the tangential-velocity
components are employed as part of the proposed formulation. Weak enforcement of tangential
boundary and interface conditions presents a natural framework for divergence-conforming B-spline
formulations, with the added benefit of improved solution accuracy in the cases of unresolved or
marginally-resolved turbulent boundary layers. The numerical results indicate optimal convergence
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Figure 9: Turbulent channel flow at Reτ = 395. Streamwise velocity contours.

of the proposed formulation. Furthermore, lowest-order divergence-conforming discretizations yield
correct spectral behavior in numerical simulation of decaying homogeneous isotropic turbulence,
and they also lead to excellent accuracy of the turbulent flow statistics for turbulent channel flow,
both for mean velocity as well as for velocity fluctuations.
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A Appendix: Exact representation of the discrete stream function

In this appendix we exactly reconstruct the stream function corresponding to our discrete solution,
exploiting the facts that 1) our approximation is pointwise divergence free; and 2) derivatives of
B-splines are again splines. This construction works for affine transformations from parameter
space and is performed patchwise. For simplicity, we consider the 2D case and denote the velocity
approximation by {uh, vh} and the gradient by {∂/∂x, ∂/∂y}. The fact that the approximation is
pointwise div-conforming implies that there exists a stream function ψh (unique up to a constant)
which exactly describes it:

uh =
∂ψh

∂y
, vh = −∂ψ

h

∂x
. (55)

To find ψh, we find the lower left corner of the patch, (X,Y ), and integrate the first of (55) w.r.t.
the second argument

ψh(x, y) = ψh(x, Y ) +

∫ y

Y
uh(x, τ)dτ (56)
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and take the derivative w.r.t. the first argument (noting that, by definition, ∂uh/∂x = −∂vh/∂y)

∂ψh

∂x
(x, y) =

∂ψh

∂x
(x, Y ) +

∫ y

Y
−∂v

h

∂y
(x, τ)dτ

=
∂ψh

∂x
(x, Y ) + vh(x, Y )− vh(x, y)

= −vh(x, y),

where the last equality follows from (55). Thus,

∂ψh

∂x
(x, Y ) = −vh(x, Y ),

which integrates to

ψh(x, Y ) = ψh(X,Y )−
∫ x

X
vh(τ, Y )dτ.

This can be substituted into (56) to find

ψh(x, y) = ψh(X,Y ) +

∫ y

Y
uh(x, τ)dτ −

∫ x

X
vh(τ, Y )dτ, (57)

where the constant ψh(X,Y ) is arbitrary and can be used for inter-patch continuity. In the sequel,
it is set to zero.

The second step is to express the integrals in (57) in terms of splines for exact evaluation at
arbitray points (x, y) inside the patch. Because the map from parameter space is affine, we can for
simplicity assert that the map from parameter space to (x, y) is identity. We adopt the notation
from §3 except that it is more convenient to work exclusively with knot vectors Ξ+ ∈ Rm+2p+3 and
H+ ∈ Rn+2p+3, so we omit the superscript. Note that these knot vectors are open w.r.t. the order
p+ 1 splines which compose ψh. We have

uh(x, y) = sΞ
i,p+1(x) sHj,p(y) ûhij , i < m+ p+ 1, j < n+ p+ 2,

vh(x, y) = sΞ
i,p(x) sHj,p+1(y) v̂hij , i < m+ p+ 2, j < n+ p+ 1.

We have in this case
sΞ

0,p = 0 = sΞ
m+p−1,p and sH0,p = 0 = sHn+p−1,p (58)

because of (p+ 2)-fold repeated first and last knots. We can find an explicit expression for ψh due
to the following lemma.

Lemma 1. The integrals of (57) can be written as∫ y

Y
uh(x, τ)dτ = sΞ

i,p+1(x)

∫ y

Y
sHj,p(τ)dτ︸ ︷︷ ︸

=:AH
jks

H
k,p+1(y)

ûhij

∫ x

X
vh(τ, Y )dτ =

∫ x

X
sΞ
j,p(τ)dτ︸ ︷︷ ︸

=:AΞ
jks

Ξ
k,p+1(x)

sHi,p+1(Y )v̂hij
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where, for (Z, n, p) ∈ {(Ξ, nΞ, p), (H,nH , p)}, AZ ∈ R(n+p+2)×(n+p+1) is given by

AZ :=
1

p+ 1



0 0 0 · · · 0
d1 d1 · · · d1

d2 · · · d2

. . .
...

dn+p

0 0 0 · · · 0


(59)

with dj = Zj+p+1 − Zj.

Proof. The differentiation formula for spline functions is

d

dξ
sZj,p+1(ξ) =

(p+ 1) sZj,p(ξ)

Zj+p+1 − Zj
−

(p+ 1) sZj+1,p(ξ)

Zj+p+2 − Zj+1
, j < n+ p+ 1,

which; with the notation SZp := {sZj,p}j<n+p+2 (the first and last entries of which vanish acc. to

eq. 58) and SZp+1 := {sZj,p+1}j<n+p+1; can be written as

d

dξ
SZp+1(ξ) = MZSZp (ξ) (60)

with MZ ∈ R(n+p+1)×(n+p+2) given by

MZ := (p+ 1)


d−1

0 −d−1
1

d−1
1 −d−1

2
. . .

. . .

d−1
n+p −d−1

n+p+1

 .
It is easily verified that

AZikM
Z
kj =

{
0, j ∈ {0, n+ p+ 1},
δij , 0 < j < n+ p+ 1;

where the first case corresponds to the zero functions of (58). Therefore, by integrating (60),∫ ξ

Z0

SZp (τ)dτ = AZSZp+1(ξ),

(cf. [24]) which can be used to eliminate the integrals as asserted by the lemma.

Using lemma 1, the stream function can be written as

ψh(x, y) = sΞ
i,p+1(x)

(
AHkjs

H
j,p+1(y)ûhik −AΞ

kis
H
j,p+1(Y )v̂hkj

)
.

Because the basis SNp+1 possesses the partition-of-unity property and is interpolatory at y = Y , the

second term can be simplified using sHj,p+1(Y )v̂hkj = sHj,p+1(y)v̂hk01j , where the factor 1j = 1 simply
serves to preserve summation over j, such that

ψh(x, y) = sΞ
i,p+1(x)sHj,p+1(y)

(
AHkj û

h
ik −AΞ

kiv̂
h
k01j

)
.

28



It is interesting to see that the number of degrees of freedom determining ψh, namely (m + p +
1) × (n + p) from û and m + p from v̂, is precisely one less than the dimension of the space
Sp+1,p+1(Ξ, H) 3 ψh. This “missing” degree of freedom of course coincides with the arbitrary
constant. Of course, one could interchange the roles of uh and vh in the above derivation and
arrive at the equivalent representation

ψh(x, y) = sΞ
i,p+1(x)sHj,p+1(y)

(
AHkj û

h
0k1i −AΞ

kiv̂
h
kj

)
.
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