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ABSTRACT
This paper presents a filter for underwater positioning in

an aquaculture environment with demanding weather condi-
tions. The positioning system is based on acoustic transpon-
ders mounted at a net pen on the sea surface. The transpon-
ders are exposed to oscillations due to wave disturbance. This
will have an impact on the accuracy of the positioning system.
An extended Kalman filter (EKF) solution has been proposed in-
cluding a wave motion model integrated with the pseudo-range
measurements from the transponders. Simulations show that the
proposed filter compensates well for the disturbances.

1 Introduction
1.1 Background and Motivation

Recently, there has been an increased interest in exposed
aquaculture due to environmental and spatial limitations in more
sheltered areas [1]. Remoteness and harsh environments moti-
vate the use of Underwater Vehicles (UV) in inspection, main-
tenance, and repair (IMR) operations. Positioning and localiza-
tion are key technologies for enabling such operations. Global
Navigation Satellite Systems (GNSSs) cannot be used under wa-
ter. However, other technologies like long baseline (LBL), short
baseline (SBL) and ultra short baseline (USBL) systems are
available [2]. LBL systems use the same principle as GNSS,
namely multiple transponders measuring the distance to a re-
ceiver, also known as a pseudo-range measurement. Current LBL

systems are expensive and mounted on the sea-bed, which is not
optimal in an aquaculture environment. In the aquaculture in-
dustry, the overall goal is to reduce on-site manual operations for
increased safety and reduced risk for workers [3]. Moreover, to
keep the cost of installation, operation and maintenance low. One
way of doing this is increased use of remote operations and UVs.
For efficient UV operations, there is a need for an underwater
positioning system. The configuration of an acoustic transponder
system for range measurements is a key challenge and is further
assessed. The main idea behind this work is to analyze and re-
duce negative effects that motion in near surface transponders has
on a positioning system. The motion is caused by environmen-
tal disturbances like current or waves and can create large errors
in the position estimate if not contracted. It is essential that this
error is as small as possible to ensure an accurate positioning of
the UVs.

1.2 Literature review
There has been a considerable amount of work in navi-

gation, which is meant as finding a position relative to some
reference [4]. Especially for GNSS/Inertial Navigation System
(INS) [21]. However, the environmental disturbance like ocean
current and waves on transponders has not been discussed, and is
highly relevant in an aquaculture setting near the ocean surface.
Surveys on underwater navigation [5, 6] discuss the sensors
available, their accuracy and how state estimation can be applied
to fuse sensor information together using both dead reckoning
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sensors like accelerometers and gyros to find orientation. A
celebrated nonlinear filter for the latter is the complementary
filter from [7] and later enhanced in [8] to an attitude observer. A
widely used extended Kalman filter (EKF) approach is presented
in [9]. Other, various translation observers using Kalman filter
(KF) approaches are discussed in literature like [10]. Examples
are Unscented KF, Ensemble KF and particle filter. However,
in general, the nonlinear KF’s are not proven globally stable in
estimating position by pseudo ranges. Recently there has been
a suggestion to transform the problem into a quasi-linear. The
transformation was first suggested in [11]. Use for KF was
first developed in [12], which made the implemented observer
Global Exponential Stable (GES), but the transformation is
optimal with noisy measurements. This can be resolved by
using the Exogenous KF (XKF) presented in [13]. The KF using
the quasi-linear model are here used as a linearization point
for the next KF inheriting the stability properties and the noise
reduction. A complete implementation for navigation using
pseudo-range measurements is presented in [14]. Later, it has
been implemented in combination with attitude filter in [15]
using the attitude filter from [8]. However, this implementation
dose not account for the biases in LBL systems. This is imple-
mented using the three stage filter in [16, 17]. Study of wave
motions and sea states has been a wide research field. Examples
can be found in [18–20].

1.3 Main Contribution and Structure
The main contribution of this paper is the integration of a

wave filter model with pseudo-range measurements. This is an
important contribution since it enables mounting of transponders
near the ocean surface on aquaculture structures, without hav-
ing the need to calculated the position in real time with GNSS.
The solution is simulated with measurements from a LBL system
setup near the ocean surface, assuming that the mean transpon-
der position is known and there are only oscillating perturbations.
Each measurement correlates and can, therefore, be estimated as
a single oscillating term.

This paper will first present the problem statement in Sec-
tion 2. Further in 3, will necessary mathematical models for the
problem at hand be designed. From this will Section 4, develop
an extended Kalman filter for each case. Results and discussion
are presented in sections 5 and 6, followed by conclusion in Sec-
tion 7.

1.4 Notation
(·)T is the transposed of a vector or matrix, and || · || is used

as the euclidean norm. As the set of real numbers are noted as
Rn×m with the dimension n×m, where no indication R, implies
m = 1 and n = 1. 0p×q and Ip×q are the zero and identity ma-
trix respectively, with dimension p× q. Position will always

FIGURE 1: TRANSPONDER CONFIGURATIONS

be denoted as a vector p =
[
x y z

]T ∈ R3×1 where x is surge,
y is sway and z is heave. Wave motion vector will be desig-
nated pw =

[
xw yw zw

]T ∈ R3×1. N(0,σ2) is a Normal Gaus-
sian distribution with variance σ2 and mean zero. ˆ(·) is the no-
tation for an estimated variable. For a matrix A and value xi,
A = diag(x1, . . . ,xn) ∈Rn×n means a matrix with diagonal terms
x1 to xn and zeros everywhere else. For a function h(x) and vector
x, ∂h(x)

∂x is notation for the partial derivative.

2 Problem Statement
The problem of oscillating transponders will be studied in

an aquaculture environment around a net pen as seen in Figure
1. Two cases will be discussed. In the former case denoted as A,
transponders are rigidly mounted, which is the standard case for
a LBL system. In the latter case denoted as B, are transponders
mounted near the ocean surface. The case is illustrated in Figure
1. The main difference in these configurations is the near ocean
surface disturbance’s from wave motion. Here will two different
measurement equations describe this deviation. The following
section presents these and their assumptions. It should also be
mentioned that the reference frame has an origin in the fish cage
center at the mean sea surface. Positive z-axis points towards
the sea floor and x-axis north. The y-axis complete the right
hand, meaning eastward. This is known as the North-East-Down
(NED) reference frame [20].

3 Mathematical Modeling
This section presents the mathematical models applied in the

EKF. Both measurement and process model equations, are given
in this section.
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3.1 Measurement Model
Case A: Rigidly Mounted Transponders

Equation (1) assumes that the position for each transponder
is known, as stated in Assumption 1. The measurement model is
the same formulation as in [16].

yi =
1√
β
(||p− p̆i||+ εm) = hi(x) (1)

Each pseudo-range measurement from transponder i is noted
as yi ∈ R. The ROV and transponder position are p and p̆i, re-
spectively. β ∈ R is a multiplicative bias which account for bias
in the speed of sound in water as discussed in [16]. Measure-
ment noise for each transponder is written as εm ∈R in N(0,σ2

m).

Assumption 1. The transponder position p̆i is known.

Case B: Surface Mounted Transponders
The measurement model applied for each pseudo-range

from transponder ”i” with position p̆i is modeled in the following
equation:

yi =
1√
β
(||p− p̆i− p̆wi||+ εm) = hi(x) (2)

Equation (2) is similar to (1) with the exception of wave motion
term, denoted as p̆wi ∈ R3×1. It assumes that the mean transpon-
der position is known as p̆i and it is subjected to time varying
oscillations, denoted as p̆wi. However, each motion ˙̆pwi can cor-
relate when placed in a pattern around a fish cage. So estimating
all of them will be a waste of computational power. Also, the
assumption of uncorrelated process noise in the KF would be vi-
olated leading to suboptimal estimates. Therefore, it is simplified
to only one wave motion vector pw, as following:

yi =
1√
β
(||p+ pw− p̆i||+ εm) = hi (3)

This rough simplification can be justified not only by corre-
lating motion and computational power. If we assume another
wave motion spectra different from the transponders, can pw
estimate the oscillations that would be induced in the position
estimate without it. Effectively, this can lead to an increased
performance without adding too many additional computations
or sensors. Finding this spectrum will not be performed here,
but a simulation example will be presented in Section 5.

Assumption 2. The mean transponder position p̆i is known
and the wave frequency spectrum from each transponder can be
modeled as a single wave spectrum denoted pw.

Mark that for both Case A and B the full measurement vector is
denoted as y = h(x) =

[
h1 . . . hm

]T ∈ Rm×1.

3.2 Process Model
Case A and B: Kinematic Model

The EKF process model requires kinematic equations of mo-
tion of the vehicle. This model will be the same for Case A and
B. The velocity will be modeled as a random walk as following:

ṗ = Ap p+ εp (4)

Where εp ∈ R3×1 is N(0,σ2
p) and Ap = 03×3. Random walk

is used because this case study only takes into account pseudo-
range measurements. The velocity is not estimated in this case.
It should be remarked that it is simple to also include a velocity
state by including accelerometer measurements directly in the
process model [14]. This would also improve the position esti-
mates, of course depending on the quality of the accelerometer.
However, since this is not the purpose of this paper, it is not taken
into account. Only having position estimates also make it possi-
ble to further include this in a loosely coupled observer [21].

Case A and B: Bias Model
The sound speed bias in water, β , which are both in Case

A and B will be modeled in the same manner as [16], ie. as the
following:

β̇ = Aβ β + εβ (5)

Where Aβ = 0 and εβ ∈ R is N(0,σ2
β
). Note that this is a

random walk process.

Case B: Second Order Wave Motion Model
The goal of the wave motion model presented in this section

is to separate the low and wave frequency motions. This is illus-
trated in Figure 2. The blue dashed line is the combined low and
wave frequencies, while the red solid and yellow dash-dot line
are the separated low and wave frequency motions, respectively.
Here is the second-order wave model used for the separation of p
and pw given in Equation (3). This model originated in [19] and
can also be found in newer literature [20]. The model is given as
following: [

ζ̇

ṗw

]
= Aw

[
ζ

pw

]
+Ewεw ∈ R6×1 (6)
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FIGURE 3: GENERAL STRUCTURE OF EKF [4].

where εw ∈ R3×1 and each noise term is N(0,1). Further,
the matrices are defined as the following:

Aw =

[
03×3 I3×3
−ω2

0 I3×3 −2λω0I3×3

]
,Ew =

[
03×3
Kw

]

where Kw = diag(σw1,σw2,σw3) ∈ R3×3.

4 Extended Kalman Filter’s Design
The general structure of the EKF for pseudo-range measure-

ments is described in Figure 3 [10]. The filter estimate feedback
x̄k, generates a linearized measurement matrix called Ck. Initially
in the first iteration k = 0, a guess x̄0 is used. The process and
measurement equations will in this section be put together to fit

the cases. Discrete process model will be defined as following:

ẋk = Axk−1 +Dεk (7)

where xk is the state vector, A is the transition matrix, D is the
noise driver matrix and εk is the noise vector with uncorrelated
white noise terms which is N(0,σ2). The process model of Case
A will be on state space form from both Equation (4) and (5).
These leads to the following state and noise vectors:

x =
[

p
β

]
,ε =

[
εp
εβ

]

From this it is easy to find the A and D matrix, remark that
it needs to be discretized before use in the EKF. Process model
of Case B is only an extension of the previous system. The state
and noise vectors are defined as following:

x =


ζ

pw
p
β

 ,ε =

εw
εp
εβ



Also here are the corresponding A and E matrices easy to derive
and is therefore not stated.

For the EKF it is also necessary to have a measurement ma-
trix Ck. This is found by taking the Jacobian of Equation (1) for
Case A and (3) for B. This is defined as following:

Ck =
∂h(x)

∂x
=

Ck,1
...

Ck,m

 ∈ Rm×10

where m is the number of pseudo-range measurements. For Case
A will the Ck matrix be:

Ck,i =
∂hi(x)

∂x

∣∣
x̄

=

[
p−p̆i√

β ||p−p̆i||
− ||p−p̆i||

2β
3
2

]∣∣
x̄ ∈ R1×4

And for each row in Case B it is as following:

Ck,i =
∂hi(x)

∂x

∣∣
x̄

=
[

∂hi
∂ζ

∂hi
∂ pw

∂hi
∂ p

∂hi
∂β

]∣∣
x̄
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Where

∂hi

∂ζ

∣∣
x̄ = 01×3

∂hi

∂ pw

∣∣
x̄ =

∂hi

∂ p

∣∣
x̄ =

p+ pw− p̆i√
β ||p+ pw− p̆i||

∣∣
x̄

∂hi

∂β

∣∣
x̄ =−

||p+ pw− p̆i||
2β

3
2

∣∣
x̄

Now, that both process and measurement model are derived, can
the EKF be stated. The equations are as following [22]:

Kk = P̄kCT
k (CkP̄CT

k +Rk)
−1

x̂k = x̄k +Kk(yk−h(x̄k)))

Pk = (In×n−KkCk)P̄k

x̄k = Ax̂k−1

P̄k = APk−1AT +DT QD

where Q ∈ Rn×n and R ∈ Rm×m are the process and sensor
noise covariance matrices, respectively. Further, corresponds n
and m to the number of states and measurements. Pk is the co-
variance matrix. Note that ¯(·) mark posterior estimates. Also, it
should be noted that the first iteration, k = 0, are the initial values
x̄0 and P̄0 used.

4.1 Observability Analysis
Observability means that we can recreate uniquely all states

from the measurement vector y. If this is the case, then the ob-
servability matrix of the pair (A,C) have full rank, which means
rank(O) = n, where n is the number of states. The matrix is
defined as following [10]:

O =


Ck

CkA
...

CkAn−1

 (8)

Assumption 3. m ≥ 4 pseudo-range measurement and all
transponder positions is not co-planar.

Lemma 1. The pair (A,C) is observable for both Case A and B.

Proof: It is trivial to calculate the observability matrix in
Equation (8). For case A and B, investigating the rank shows that
rank(O) = 4 and O = 10, respectively. That is if Assumption 3
is satisfied. From the full rank of Equation (8) in both Case A
and B, can observability be concluded. q.e.d.

5 Case Study
This section will present a simulation study of Case A and B.

The study includes the two EKF developed in Section 4 and they
are implemented in Matlab. The two filters are compared and
discussed. The number of transponders are m = 4 and are placed
such that they are not co-planar with the following positioning:

p̆1 =
[
15 0 1

]T
, p̆2 =

[
0 15 20

]T
p̆3 =

[
−15 0 5

]T
, p̆4 =

[
0 −15 16

]T
The position of the receiver at the ROV is kept constant at
p =

[
1 2 3

]T . The measurements for Case A are generated from
Equation (1) and correspondingly (3) for B. To simulate the wave
motion pw in Equation (3), a second order wave model was used.
Parameters in the wave model are set to ω0 = 0.8, λ = 0.1017
and σwi = 0.8367 for i = 1,2,3. This means that the wave fre-
quency estimated, is defined for a spectrum in each direction.
The speed of sound bias in water is set to β = 0.95 for both
cases. The measurement noise is σ2

m = 1e− 2. The time step
used for discretization and simulation is ∆t = 0.2.

For the initialization of the EKF in Case A is x̄0 =
[
01×3 1

]T .
Further, sensor noise matrix is R = diag(σ2

m,σ
2
m,σ

2
m,σ

2
m) and the

process noise is Q = diag(σ2
p ,σ

2
p ,σ

2
p ,σ

2
p ,σ

2
β
) ∈ R4×4. Here are

σ2
p = 1e−4 and σ2

β
= 1e−6. The covariance matrix is initial set

to P0 = diag(0.1,0.1,0.1,1e−4) ∈ R4×4.
For Case B the model is the initial states set to x̄0 =[

01×9 1
]T . The sensor noise covariance matrix R is the same

as in Case A, but the process noise covariance matrix is Q =
diag(11×3,σ

2
p ,σ

2
p ,σ

2
p ,σ

2
p ,σ

2
β
)∈R7×7. The inital covariance ma-

trix is set to P0 = diag((1e− 3)1×6,(0.1)1×3,1e− 4) ∈ R10×10

where the subscripts denote dimensions.

RMS x[m] y[m] z[m] beta[]

EKF Case A 0.009 0.009 0.0336 0.0013

EKF Case B 0.013 0.013 0.049 0.0014

TABLE 1: RMS ERROR FOR CASE A and B

6 Simulation Results and Discussion
The simulation results from the case study in the previous

section are presented in Table 1 and Figure 5-4. Both case A and
B are run for 300 seconds.

Table 1 presents the Root Mean Square (RMS) for the posi-
tion and bias estimation. It is apparent that the RMS performance
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FIGURE 4: ESTIMATED STATES WITH EKF INCLUDING WAVE FILTER.

is similar for the cases, with naturally slightly worse performance
in Case B. Both A and B have a small RMS in surge, sway and
heave. However, heave has a larger RMS, which is due to the
short transponder placement in z-direction. The estimated biases
have very similar RMS performance.

Figure 4 presents how the wave filtering implementation in
Case B separates the wave and low-frequency motion in sway
and heave as exemplified in Figure 2. Figure 4a has one plot
showing the combination of real low and wave frequency mo-
tions, y+ yw, shown by a solid blue line. The other plot in the
figure is estimated low-frequency motion, ŷ in a red dashed line.
From this, we can see that the estimate converges smoothly to
the real position at y = 2, as defined in the simulation study. Fur-
ther, the wave frequency motion is filtered away. It is impor-
tant to note that the assumed noise variance is relatively low at
σ2

p = 1e− 4. Meaning that the model is trusted more than the
measurements. This is good in this case since ṗ = 0. Figure 4b

shows the simulated wave frequency yw against estimated ŷw in
the blue solid line. Since the ŷw is very similar to the simulated
yw means that we have a good estimate. The resulting estimates
in heave motion are shown in Figure 4c and 4d. Here does also
the heave position estimate, ẑ converge towards z = 3. The con-
vergence time seems to be a bit longer, but it can be explained
by the transponder positions and that it is the state furthest away
from the initial condition at z̄ = 0. The surge results are left out
here since the result is very similar to the results in sway. Figure 5
shows how the covariance matrix converges towards steady state
values. This effectively means that the filter converges. However,
since the EKF is not proven globally stable, this can’t be guaran-
teed. But this simulation shows how well the wave motion can
be estimated.
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7 Conclusion and Further Work
In this paper, a filter for underwater positioning in an aqua-

culture environment is presented. Demanding weather condi-
tions will impose oscillations on the transponders near the sur-
face area. An EKF solution has been proposed including a wave
motion model integrated with pseudo-range measurements. This
was simulated in Matlab with a predefined case study. The results
show that the filter compensates for the wave motion and gives
almost the same performance as a system without environmental
disturbances. Further work will include experimental analyzes
of real wave motion spectra. Fusion of more sensors integrated
into the same filter will increase performance.
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