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Many relevant processes in chemistry, physics, and biology are rare events from a computational
perspective as they take place beyond the accessible time scale of molecular dynamics (MD). Exam-
ples are chemical reactions, nucleation, and conformational changes of biomolecules. Path sampling
is an approach to break this time scale limit via a Monte Carlo (MC) sampling of MD trajecto-
ries. Still, many trajectories are needed for accurately predicting rate constants. To improve the
speed of convergence, we propose two new MC moves, stone skipping and web throwing. In these
moves, trajectories are constructed via a sequence of subpaths obeying super-detailed balance. By
a reweighting procedure, almost all paths can be accepted. Whereas the generation of a single
trajectory becomes more expensive, the reduced correlation results in a significant speedup. For a
study on DNA denaturation the increase was found to be a factor 12.



2

Infrequent transitions between stable states are often
not observable with straightforward molecular dynam-
ics (MD). Several methods have been designed to sam-
ple the transitions, but most of them focus on statis-
tics in configuration space (like the computation of free
energy barriers1) and approximate dynamical properties
based on either transition state theory or Markovian as-
sumptions.2,3 Path sampling4 is a completely different
approach as it is directly focused on the dynamics of the
process via an algorithm in which unbiased MD trajec-
tories are sampled via a Monte Carlo (MC) scheme. The
idea got very popular due to the transition path sampling
method (TPS)5 which showed how this can be exploited
for generating trajectories connecting the reactant and
product states for a wide range of processes such as pro-
tein folding, nucleation, and chemical reactions.6,7 TPS
also introduced a path sampling based algorithm for cal-
culating rates though this approach was relatively expen-
sive despite several improvements.8

In recent years, transition interface sampling (TIS)9

and its improvement replica exchange TIS (RETIS)10

have introduced an alternative rate calculation approach
based on path sampling that is still exact, but consid-
erably faster. The method fundamentally differs with
TPS regarding both its theoretical framework and the
algorithmic aspects. In TIS/RETIS, the rate of tran-
sition is calculated by combining the results of a series
of path sampling simulations, each exploring a different
path ensemble, defined by a set of non-intersecting inter-
faces {λ0, λ1, . . . , λN} positioned along the progress coor-
dinate. λ0 and λN define the boundaries of reactant state
A and product state B, respectively, while the remain-
ing interfaces are positioned to maximize the efficiency of
the sampling. The different TIS path ensembles [i+] for
i = 0, 1, . . . N−1 contain all paths, starting and λ0, cross-
ing λi at least once, and ending at λ0 or λN . A detailed
balance Monte Carlo (MC) approach for generating these
trajectories ensures that the same distribution of paths
are being generated as if the appropriate trajectories are
cut out from an infinitely long MD trajectory.

RETIS10 improves the efficiency of TIS even further by
employing replica exchange moves11 between the path en-
sembles, but the principle MC move in any path sampling
approach is still the so-called shooting5 move. In this MC
step, a backward and forward in time integration from a
slightly modified point of the previous path is performed.
Many variations of this move have been suggested12–14

which mainly differ in the selection of the shooting point
and its randomized modification. However, in all these
variations, consecutive accepted paths share almost iden-
tical time slice(s) which is a severe source of correlations
in the sampling.

In this Letter, we present highly efficient path-
generating moves Stone Skipping (SS) and Web Throwing
(WT), which decorrelate considerably faster by launch-
ing several subpaths in between full path generations (See
Fig. 1). The SS move creates subpaths that bounce on
the path ensemble’s specific interface like a flat stone

thrown at the water surface. The WT move creates sub-
paths between two interfaces, creating a web. In addi-
tion, we improve the efficiency even more by introducing
new path ensemble definitions in which the statistical
weight of a path in ensemble [i+] depends on the number
of λi interface crossings and on the end state of the path.
This alternative path weight ensures that all trajectories
are accepted except for trial trajectories hitting the re-
actant state in both time directions. The two moves are
explained below.

FIG. 1. Illustration of new MC moves for Ns = 4. a) Stone
Skipping scheme for the [i+] ensemble. In red: source path,
in blue: subpaths, in brown: path extensions for the last
subpath. The shooting point represented by the red circles.
From the source path a random point on the λi interface is
selected and from this point subpaths 1-4 are generated. The
last subpath 4 is finally completed and becomes the new full
path. b) Web Throwing scheme for the [j+] ensemble. A
random point at either λsour or λj is selected. Next, subpaths
1-4 connecting λsour or λj are generated and, finally, the last
connecting path is extended in both time directions.

Stone Skipping. Selection of the shooting point: In
the [i+] ensemble, for the creation of the first subpath
all the crossings with λi of the old path (source path,
see Fig. 1) has to be considered. For the next subpaths
the last crossing of the latest subpath with λi must be
considered. Each crossing is uniquely defined by a pair
of consecutive points in phase-space, where the progress
coordinate is either standing immediately before (a) or
after (b) the interface λi. The new shooting point is
randomly selected between the (a) and (b) points. Gen-
eration of subpaths: New random velocities are taken
from a Maxwell-Boltzmann distribution for the selected
shooting point. The velocities are accepted if a single in-
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tegration step (forward or backward in time) produces a
new crossing with λi. This velocity generation procedure
is re-iterated until this condition is met. Using the first
accepted velocities, a new subpath is generated starting
at the λi interface (Blue line segment 1 in Fig. 1a) and
ending at either state B, or interface λi. If the new sub-
path ends at λi, the last 2 frames of the paths eventually
constitutes the new (a) and (b) shooting points for the
next subpath. If the subpath reaches state B, its first
(a),(b) crossing points are to be considered. This pro-
cess is re-iterated for the number of desired subpaths for
each cycle. Generation of a new path: First the phys-
ical time-direction along the last subpath is chosen at
random. Then, the last subpath is propagated backward
and forward in time. If the backward integration ends
in A, the new full path will be accepted or rejected de-
pending on the number of crossings with λi (See below).
The new path is therefore composed by the last generated
subpath (blue subpath 4 in Fig. 1a) and its extension (in
brown).

Web Throwing. A new interface λSOUR (surface of
unlikely return) has to be defined along the progress coor-
dinate. It is chosen at the reactant side of the free energy
barrier such that if it is crossed towards the direction of
the reactant state, the path will most likely end up in
state A. Selection of the shooting point. The segments
of the previous path going from λSOUR to λj along the
forward time-direction have to be selected first (in the
red source path in Fig. 1b, only one of such segments is
present). Each segment has four points that define the
crossings of the source path with λSOUR and λj . Here,
we will focus on WT for stochastic dynamics without
momenta-change for which only the two interior points
are considered and the new shooting point is randomly
selected between these. In the SI, we briefly discuss some
variations of the WT move. Generation of subpaths: A
new subpath is generated keeping the same positions and
velocities of the selected shooting point. Depending on
the originating interface, the equations of motion are ei-
ther integrated backward or forward in time (in Fig. 1b,
subpath 1 and 3 are propagated backward in time, sub-
path 2 and 4 are propagated forward in time). If the
new subpath connects both interfaces λj and λSOUR, the
new subpath is considered for selecting the new shooting
points. Otherwise, a new shooting point is randomly se-
lected again from the previous segment. In either case,
each failed or successful subpath has to be accounted,
and the procedure is repeated for the number of desired
subpaths for each cycle. Generation of a new path: The
last generated subpath connecting λSOUR to λj is propa-
gated backward and forward in time until reaching λ0 or
λN generating a new full path. If the path starts at λ0
it can be accepted (or rejected) based on the number of
λSOUR to λj connecting segments.

As shown in the Supplementary Information (SI),the
generation of completed paths in SS and WT fulfills
super-detailed balance, which is commonly used for de-
signing efficient MC moves for the study of polymer

adsorption in porous media (configurational bias MC
(CBMC)15). Here, we use the same type of procedure
where trajectories grow from subpaths, instead of poly-
mers from atoms, based on the following final generic
acceptance probability

Pacc = min

[
1,
P (p(n))Pgen(p(n) → p(o)via χ)

P (p(o))Pgen(p(o) → p(n)via χ)

]
(1)

where P (p(o)) and P (p(n)) are the probabilities of the old
and new path, respectively, and Pgen(p → p′via χ) and
Pgen(p → p′via χ) are the probabilities to generate path
p′ from path p using a specific construction path χ and
its unique inverse construction path χ. As shown in the
SI, this leads to rather simple acceptance rules for both
SS and WT
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where n
(o)
c , n

(n)
c are the number of crossings with λi and

n
(o)
s , n

(n)
s are the number of selectable λSOUR-λj seg-

ments of the old and new path, respectively. In addition,
the new path needs to fulfill the path ensemble’s specific
condition (starting at λ0 and crossing λi at least once).

There are essential differences between the application
of super-detailed balance in CBMC and the application
of this concept in this Letter. CBMC is based on grow-
ing tree-like structures in which branches are selected for
further growth based on Rosenbluth factors.16 Using this
idea in path sampling has been suggested by one of us,17

but the range of systems for which this approach is use-
ful is limited (e.g. it cannot be applied to deterministic
dynamics). The interpretation of super-detailed balance
that we give via construction paths and inverse construc-
tion paths is more general and opens up very different
ways to exploit the concept like we do in this Letter.
Also, so-far the use of super-detailed balance has only
been invoked for cases where the acceptance of the nor-
mal Monte Carlo move is extremely low. That is not the
case here where the standard shooting move gives de-
cent acceptance (∼ 30− 50%). The use of super-detailed
balance to speed-up the decorrelation of the sampling is
new. Therefore, we think that our approach might lead
to other algorithmic applications outside the path sam-
pling methodology.

The generation of several subpaths for each new path
generation makes the MC moves more expensive than
simple shooting. However, it takes several shooting
moves, determined by the statistical inefficiency N of the
sampling, before a really new uncorrelated path is gener-
ated. Paths in between can be viewed as near-duplicates
and do not lower the statistical accuracy. By the gen-
eration of Ns < N subpaths with average length ls one
reduces the statistical inefficiency between the full paths
with average length lp by approximately a factor 1/Ns.
Since the computational cost for obtaining a predefined
error is proportional to the cost of an MC step and the
statistical inefficiency, one can expect a relative increase
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in efficiency by lp/N
−1
s (lp + (Ns − 1)ls). For large Ns

this simplifies to lp/ls. Hence, the method of this Letter
will especially be efficient for largely correlated sampling
(large N ) and when lp � ls. The cost of the RETIS
simulation using the new MC moves can then be compa-
rable to that of approximate path sampling methods like
partial path TIS2 and milestoning.3

Rejections, however, would imply that all Ns gener-
ated subpaths are wasted as one has to start from the
previous full lp path. It is therefore important to max-
imize the acceptance, which we achieved by modifying
the path ensemble definition. First, if the last subpath
completed backward in time ends up in state B, it is not
directly rejected. Instead, the forward in time integra-
tion is performed and if that time direction ends in A,
the path is accepted after a time-reversal operation on
the path. Second, the weight of the path p in ensemble
[i+] is adjusted by a factor wi

P̃ (p) = wi(p)P (p) ≡ nc,i(p)q(p)P (p) for p ∈ [i+] (3)

where P (p) is the original TPS weight for the path,
nc,i(p) is the number of crossings with interface i, and
q(p) equals 2 for A → B and 1 for A → A paths. Us-
ing these new path weights, the acceptance probability
of Eq. 2 becomes 1 (see SI), i.e. rejections only occurs
if the path ends up in state B along both time direc-
tions. By reweighting each path by wi(p)

−1, one reob-
tains all the correct statistics as with the original path
weight P (p) instead of P̃ (p). Since the new weight de-
pends on the number of crossings with interface λi, the
replica exchange moves have to be adjusted, as show in
the SI.

To test the efficiency of the proposed method, we first
consider a particle in a two-dimensional potential

V (x, y) = (x2 + y2)2 − 10e−30(x−0.2)
2−3(y−0.4)2

− 10e−30(x+0.2)2−3(y+0.4)2 (4)

The potential has two minima and a saddle point (see
Fig. 2). Reduced units are used such that the parti-
cle’s mass and Boltzmann constant are equal to one:
(kB = m = 1). Visually, it is apparent that a good
progress coordinate would be a function of both x and
y and a linear combination would be sufficient for an
efficient sampling using standard rare event free energy
methods. However, since the selection of a good progress
coordinate is most often not accessible nor intuitive in
complex systems, we examined two non-ideal progress
coordinates: x and y. The x coordinate requires a signif-
icant diffusion along the orthogonal direction, while the
y coordinate has two minima separated by a barrier in
the orthogonal direction at its maximum y = 0, a char-
acteristic that causes troublesome hysteresis in free en-
ergy methods. Hysteresis is less affecting the efficiency of
TIS/RETIS,18 but still represents a significant challenge.

Considering x and y as progress coordinate, we defined
7 and 8 interfaces, respectively (see Fig. 2). Furthermore,
to ensure the stability of the states A and B, we applied

an additional condition that the potential energy must
be lower than −9.0 to be considered in the stable states.

FIG. 2. Contour plot of the 2D potential. Thin isopotential
lines differ by 3kBT . Thick black isopotential lines show the
V = −9 stable state definitions. Interfaces for both x and y
(including λSOUR) are shown at the edges.

A Langevin thermostat with friction coefficient γ =
0.3 controlled the temperature at T = 0.4. The time
step was dt = 0.003. Furthermore, a 12.5% probabil-
ity has been selected for the standard shooting move or
for the new MC moves, 12.5% for a time-reversal, and
a 75% for a replica exchange move. In the simulations
performed considering the order parameter x, only SS
has been applied, while the ones along y, SS has been
applied in all ensembles except the last where the hys-
teresis is strongest. Here WT has been selected with
λSOUR = −0.13. In total, we performed 200 · 106 and
120 · 106 MC cycles for RETIS using standard shooting
and SS, respectively, for the x order parameter case. One
MC cycle implied an update of all path ensembles a by
a single MC step. For the y as order parameter case,
200 · 106 and 160 · 106 MC cycles were performed us-
ing standard shooting and SS/WT, respectively. These
are considerably more cycles than one would normally
perform, but it is necessary to obtain an accurate and
reliable quantification of the statistical errors.

In the SI, a plot of the correlation and the computa-
tional cost per cycle as a function of Ns is reported for
the last ensembles [(N − 1)+]. It shows that the opti-
mum efficiency is reached for Ns ≈ 4 or 8 subpaths. For
more complex systems, which tend to show more corre-
lations in the sampling, a larger Ns is expected to be
optimal. Therefore, we used Ns = 4 for the 2D system
and Ns = 8 for a more complex system that is discussed
later on. Further optimization is likely obtained by vary-
ing the Ns values for different path ensembles.

Fig. 3a shows rate constant as a function of the num-
ber of force evaluations for the 2D system using the x-
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FIG. 3. Rate constant as function of the force evaluations cal-
culated from RETIS simulations with standard shooting (red)
and with new MC moves (green). a) results for the 2D po-
tential with the progress coordinate along the x-axis (dashed)
and y-axis (solid). The horizontal line is the average of the
new MC results along x and y. b) Results for the mesoscopic
DNA denaturation model. The horizontal line is the nearly
exact result using the iterative integration method.10

and y-coordinate. Clearly, for both x and y the new MC
scheme converges faster to a nearly similar value. The
results of Fig. 3 can also be converted into blocks which,
if large enough, can be viewed as independent full rate
evaluations. Based on a division into eight blocks, we
evaluated the improvement of efficiency to be a factor
4.7 along the x- and a factor 2.2 along the y-direction.
In order to sample the hysteresis region (last ensemble
along y), the WT move was essential. SS poorly sam-
ples in the last region since a lot of paths and subpaths
connect to state B implying that the next shooting point
is almost identical to the previous one. Hence, the SS
moves seem to be the most efficient whenever the path
ensemble explores the purely increasing part of the free
energy barrier, but once a large fraction of the trajecto-
ries ends up in the product state, WT moves need to be
invoked.

In high-dimensional complex systems, where the explo-
rations in the orthogonal directions are critical, we expect
that the relative efficiency will be even larger. To test
this hypothesis, we repeated the calculations of Ref. 10
on DNA denaturation of a 20 AT basepair chain using
the mesoscopic Peyrard-Bishop-Dauxois (PBD) model.19

All parameters are the same as the ones of Ref. 10, but
simulations were performed considerably longer (27 · 106

cycles for standard shooting and 15 · 106 for SS) and the
number of interfaces was reduced from 8 to 7 by removing
the λN−1 interface. This reduces the number of B → B
paths in the last ensemble which is advantageous for the
new MC scheme, while it produces nearly the same effi-
ciency for the standard shooting. In the new MC method
only SS was applied with Ns = 8.

An excellent feature of the PBD model is that it has
sufficient complexity to be used as a challenging test
for MD based methods, but still has only first-neighbor
interactions which allows us to integrate out the parti-
tion function using the iterative integration method with
several digits precision.10 In addition, the dedicated ap-
proach of Ref. 10 allows the efficient computation of
the transmission coefficient for the PBD model even at
very low values. Using the combination of these two ap-
proaches as in Ref. 10, but with ten times more transmis-
sion cycles (40 million), we re-obtained a very similar rate
constant (5.25 ·10−2 vs 5.24 ·10−2 ns−1 previously). This
value can thus be viewed as a nearly exact independent
reference.

Fig. 3b reports the computed rate constant versus the
number of force evaluations for both standard shooting
and SS. The latter converged very closely to the refer-
ence value (5.27 ·10−2 ns−1) while the standard shooting
is further off despite significantly more force iterations
(5.07 · 10−2 ns−1). Based on the block averages, we ob-
tained relative errors of 1.1 and 3.5% respectively. The
relative efficiency is obtained by the ratio between the
squared error times the total number of force evaluations
of the two simulation, resulting in a factor 12.3 faster for
the SS approach. This value is, however, very sensitive to
the number of blocks used in the analysis. Yet, since the
absolute deviation from the reference value is 3.4% and
0.4% for shooting and SS, respectively, an order of magni-
tude improvement seems a rather conservative estimate.
Furthermore, the new sampling method is considerably
more memory effective since it requires fewer operations
such as copying memory intensive double precision vec-
tors. This effect is not considered in our efficiency anal-
ysis based on the number of force evaluations. Using
the alternative path definition, the acceptance of the SS
moves was 95% in the last ensemble and more than 99%
in all others.

The statistical inefficiency N and the path ratio’s lp/ls
determine how much faster the new MC moves are rela-
tively to standard shooting. The SI shows these two val-
ues as function of the number of base pairs in the PBD
model. N increases, but lp/ls has not a clear trend and
fluctuates between 15 and 20. However, if lp/ls ratio is
large, the relative speed-up will increase with increasing
complexity (until reaching a limiting value ≈ lp/ls).

To conclude, we developed effective MC moves for
path sampling based on super-detailed balance. Since
the sampling utilizes short subpaths the cost becomes
comparable to methods relying on Markovian approxima-
tions. Especially in the field of rare event Ab Initio MD
simulations,20 this is an important step forward. Since
transition durations are typically only a few picoseconds,
Markov State models (MSM)21 are generally not appli-
cable. In addition, in biological systems where MSM has
been very successful, strengths of different approaches
can be combined. The multiple state TIS22 has already
created a bridge between RETIS and the MSM methods
and the new MC path moves can straightforwardly be
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implemented in such an approach.
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