
Analysis of an Impedance Model for 
Porous Semiconductor Electrodes

Johanna Etilde Marie Hansen

Materials Technology

Supervisor: Svein Sunde, IMTE
Co-supervisor: Lars-Erik Owe, IMTE

Morten Tjelta, IMTE

Department of Materials Science and Engineering

Submission date: June 2012

Norwegian University of Science and Technology





 

 

i 

Abstract	
  

The main aim of this work was to analyze an impedance model for porous semiconductor 

electrodes consisting of spherical particles. The model should make it possible to analyze the 

flatband potential for this type of electrodes. The analysis was conducted by simulating the 

model in MATLAB®. Cyclic voltammetry and electrochemical impedance spectroscopy was 

performed on titanium oxide, TiO2 P25, anodized titanium and some iridium tin oxides, Ir(1-

x)SnxO2. The aim was to use the experimental data as a reference and compare the simulated 

data with the experimental results. This could not be done because the recorded data for the 

oxides were too strongly influenced by the support material. The supports tested in this work 

were Au, Ti and ITO. The simulations show that the capacitance of the models spherical 

particle is only weakly dependent on the particles surface potential. This indicates that this 

one-dimensional version of the model might not be sufficient to analyze the spherical 

particles. However, another analysis method for investigation of Mott-Schottky behavior for 

porous electrodes was confirmed by the result for the anodized titanium. 

Sammendrag	
  

Hovedformålet med dette arbeidet var å analysere en impedans modell for porøse halvleder-

elektroder bestående av sfæriske partikler. Modellen skal gjøre det mulig å analysere 

flatbåndpotensialet for denne typen elektroder. Analysen ble gjennomført ved å simulere 

modellen i MATLAB®. Syklisk voltammetri og elektrokjemisk impedans spektroskopi ble 

utført på titanoksid (TiO2 P25), anodisert titan og utvalgte iridiumtinnoksider, Ir(1-x)SnxO2. 

Målet var å bruke eksperimentelle data som en referanse og sammenligne simulerte data med 

de eksperimentelle resultatene. Dette ble ikke mulig. De eksperimentelle målingene for 

oksidfilmene var i for stor grad påvirket av elektrode substratet. Substratene som ble testet i 

løpet av arbeidet var Au, Ti og ITO. Simuleringene av modellen viser at kapasitansen til de 

sfærisk partiklene kun er svakt avhengig av det påtrykte overflatepotensial. Dette indikerer at 

den en-dimensjonal versjon av modellen ikke er tilstrekkelig til å analysere sfæriske partikler. 

En annen analysemetode for undersøkelse av Mott-Schottky oppførsel for porøse elektroder 

ble imidlertid bekreftet av de eksperimentelle resultatene for anodisert titan. 
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1 Introduction	
  

Electrochemical impedance spectroscopy is an important tool in electrochemistry. During this 

method the electrochemical cell is exited by a sinusoidal potential signal, while the resulting 

current is measured. The recorded data can be used in a variety of analysis methods. In 

addition to data about electrode kinetics and adsorption properties, the method can give other 

useful information. This can be information about corrosion processes, battery properties, 

aging of sensors and the properties of porous electrodes [1]. 

 

Although electrochemical impedance spectroscopy is a widely used and developed technique, 

it is not jet fully capable as a tool to analyse semiconductor electrodes. Until recent decades 

semiconductor electrochemistry has been dominated by measurements on planar single-

crystals. In the last couple of decades however, the interest has shifted towards porous 

systems, e.g. electrodes comprised of, more or less, tightly packed particles [2].  

 

A significant aspect in characterization of semiconductor electrodes is the analysis of the 

flatband potential from Mott-Schottky plots. For systems with small particle size this theory 

is assumed to be invalid because of the lack of a sustained depletion layer. For larger particles 

however, it might be possible to utilize the Mott-Schottky theory. With this assumption and 

results from previous work on porous electrodes [3] as a basis, an impedance model for 

porous semiconductor electrodes has been derived by Sunde and Tjelta [2]. The model will, if 

successful, yield a means to analyse the Mott-Schottky behaviour of porous electrodes 

parallel to the current analysis possible for planar electrodes. 

 

The aim of this thesis is to analyse the derived model and determine if it is possible to extract 

information about the flatband potential from impedance measurements on porous 

semiconductor electrodes. This will be done by simulating the impedance model in 

MATLAB® and comparing the results with impedance data obtained through experiments 

performed on the widely examined semiconductor, TiO2 P25. In addition, experiments will 

be performed on anodically formed TiO2, and iridium tin oxides, Ir(1-x)SnxO2. 
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2 Theory	
  

This chapter gives a short introduction of the characterization methods used in the 

experimental work. In addition, the main theory behind the impedance model for porous 

semiconducting electrodes, derived by Sunde and Tjelta [2], is presented. Some of the 

mathematical tools used in the model are also described. 

2.1 Electrochemical	
  characterization	
  methods	
  

2.1.1 Cyclic	
  voltammetry	
  

During cyclic voltammetry the potential of the electrode to be studied is varied cyclically, 

while the current response is recorded. The voltage is changed with a constant sweep rate, ν, 

between two potential limits, Ea and Ec, representing the anodic and the cathodic turning 

point, respectively. Most commonly the potential is swept between the decomposition 

potentials of the solvent used in the experiment. For aqueous solutions the onset potentials of 

hydrogen and oxygen evolution are often chosen as turning points, but in special cases other 

limits may be used. The sweep rates can range from a few mVs-1 up to 103- 104 Vs-1 [4]. 

Figure 2.1[4] show a typical voltammogram for a Pt-electrode measured in 1M H2SO4-

solution. Since there are no redox-active species in the solution the peaks in the 

voltammogram represents the adsorption and desorption of oxygen and hydrogen on the 

electrode surface. In the anodic part of the sweep, the peaks between 0 and 450 mV are due 

to the oxidation of hydrogen gas near the electrode and desorption of chemisorbed hydrogen. 

Above 450 mV a constant current flows through the cell and this corresponds to the charging 

of the electrolytic double layer. The relationship between the current density and the surface 

capacitance in this area is ic = CD ⋅ ν and ν = dE/dt [1].  

 
Figure 2.1: Cyclic voltammogram for a Pt-electrode in 1.0 M H2SO4 [4].  
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At potentials above 800 mV peaks corresponding to the chemisorption of oxygen appears. 

First to take place is the chemisorption of hydroxide, then as the potential increases further 

oxidation resulting in chemisorbed oxygen. If the potential reaches values above 1600 mV 

oxygen evolution will occur.  

 

For metallic electrodes, the shape of the voltammogram is mainly dependent on the type of 

metal and not so much the electrolyte used in the cell [1]. This can be utilized to identify 

which material dominates the measurements in e.g. the case of powder electrodes deposited 

on metallic support materials.  

2.1.2 Electrochemical	
  Impedance	
  Spectroscopy	
  

During electrochemical impedance spectroscopy a sinusoidally varying potential is applied to 

the interface, often in addition to a constant direct potential. The alternating potential applied 

to the system is time dependent and can be written as in Eq. ( 2.1 ) [5]. 

𝐸 𝑡 = ∆𝐸 ∙ 𝑠𝑖𝑛(𝜔𝑡) ( 2.1 ) 

E(t) is the instantaneous value and ΔE is the maximum amplitude of the applied sinusoidal 

potential. The angular frequency is ω = 2πƒ, where ƒ is the frequency of the applied signal. 

The amplitude of the alternating potential should be kept small, i.e. below ±10 mV [6, 7] and 

is usually set between 5-10 mV[3]. This is because most electrochemical systems behaves 

linearly at signal amplitude of 10 mV or less [8].   

 

The resulting current is usually also a sinusoidal signal and of the same frequency as the 

applied potential. This can be written as in Eq. ( 2.2 ) [5]. 

𝑖 𝑡 = ∆𝑖 ∙ 𝑠𝑖𝑛(𝜔𝑡 + 𝜙) ( 2.2 ) 

Δi is the maximum amplitude and φ is the phase difference between the applied voltage and 

the resulting current. It is often convenient to think of the voltages and currents as rotating 

vectors and to represent them in a phasor plane. Figure 2.2 shows a phasor diagram for a 

voltage and current phasor separated by the phase angle φ [5]. 
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Figure 2.2: Phasor diagram showing the current and voltage phasors separated by the phase 
angle φ. Figure is copied from [5]. 
 

The impedance of an electrochemical system is defined as the ratio between the alternating 

potential and the resulting current according to Eq. ( 2.3 ) [8], where the impedance is 

expressed as a complex vectors. 

𝑍 =
𝐸 𝑡
𝚤 𝑡 = 𝑍 exp 𝑗𝜙 = 𝑅𝑒𝑍 + 𝑗 ∙ 𝐼𝑚𝑍 ( 2.3 ) 

Here ReZ is the real part of the complex impedance, j = −1 is the complex number and ImZ 

is the imaginary part. The impedance can be measured over a wide range of frequencies to 

make an impedance spectrum, Z(ω) [4], which can ranges from 1mHz up to 10MHz [8], and 

can be recorded at several different steady state potentials. 

 

An electrochemical cell can be modelled as an equivalent circuit consisting of a combination 

of circuit elements like resistances, capacitors or inductances, but also some mathematical 

components [8]. Each circuit element has a corresponding impedance, X, and the phase angle 

for each element can be found using Eq. ( 2.4 ), in which R is the resistance [5].  

tan𝜙 =
𝑋
𝑅 ( 2.4 ) 

For a regular resistance, R, the phase angle φ = 0 and the impedance is simply given by [5] 
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𝑋! = 𝑅 ( 2.5 ) 

In the case of a capacitor φ = π/2 and the impedance can be expressed as in Eq. ( 2.6 )[6]. 

The phase angle for an inductor is φ = -π/2 and the impedance is given in Eq. ( 2.7 ) [6]. 

𝑋! =
1
𝑗𝜔𝐶 ( 2.6 ) 

𝑋! = 𝑗𝜔𝐿 ( 2.7 ) 

Here C is the capacitance and L is the inductance.  

 

Most electrochemical systems consist of several circuit elements connected in parallel and 

series. The total impedance of a system can be calculated using the same rules as for common 

resistors connected in a circuit. The total impedance of two impedances in series can be 

calculated from Eq. ( 2.8 )[6], while the total impedance for two impedances in parallel is 

found using Eq. ( 2.9 ) [6]. 

𝑍!"! = 𝑍! + 𝑍! ( 2.8 ) 

1/𝑍!"! = 1/𝑍! + 1/𝑍! ( 2.9 ) 

The equivalent circuit for a simple electron transfer reactions can be seen in Figure 2.3(a) [1]. 

The circuit elements RE and RCT are the electrolytes resistance and the charge transfer 

resistance, respectively. CD is the double layer capacitance. The figure also shows, in (b), the 

Nyquist-diagram in which -ImZ is plotted as a function of ReZ. 
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(a) (b) 

Figure 2.3: Equivalent circuit for a simple electron transfer (a)[1] and the corresponding 
Nyquist diagram (b), which is copied from [1].  
 

In Figure 2.3, diffusion of species in the electrolyte is neglected. If this effect is included in 

addition to the charge transfer reaction, the circuit can be sketched as in Figure 2.4. The 

additional element in the parallel is the Walburg-impedance, which comprises a resistance 

and capacitor in series [1]. This result in the Nyquist-diagram shown in Figure 2.5, where the 

effect of the Walburg-impedance is clearly visible in the low frequency area of the curve, 

marked as the Walburg slope.  

 

 
Figure 2.4:The equivalent circuit where both the charge transfer and diffusion in the 
electrolyte is included [1]. 
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Figure 2.5: The Nyquist diagram[1] for the equivalent circuit in Figure 2.4. The diagram 
shows mixed control, the charge transfer controls the high frequency area and diffusion 
controls the low frequency area. 
 

There are a number of ways to present impedance data in addition to the Nyquist-diagram. 

When working with porous electrodes, it is convenient to plot a logarithmic plot the 

imaginary impedance, ImZ, as a function of the angular frequency, ω, as illustrated in Figure 

2.6. This yields information about the electrodes structure. Planar electrodes will result in 

plots where the linear part of the curve has a slope of -1, while the slope will be -1/2 for a 

porous electrode. In Bode-diagrams, the absolute value of the total impedance and the phase 

angle are plotted as a function of the angular frequency, in a logarithmic and semi-

logarithmic plot, respectively. 
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Figure 2.6: Logarithmic plot of the imaginary part of the impedance, ImZ, as a function of the 
angular frequency, ω. Straight lines with a slope of about -1 indicate that the electrode has a 
planar structure. Lines with a slope close to -1/2 indicate a porous structure. 
 

2.1.3 Impedance	
  for	
  porous	
  electrodes	
  

Electrochemical impedance spectroscopy is a method with high sensitivity to interfacial 

processes and surface geometry. While the equivalent circuit for planar electrodes may be 

fairly simple, they are far more complex for porous electrodes The impedance in a single 

cylindrical pore, with pore length, l, and radius, rpore, cannot be represented by a simple 

connection of capacitors, inductors and resistances. It must be represented by a transmission 

line [9]. This is a semi-infinite series like the one represented in Figure 2.7. In the figure, 

Rpore is the ohmic resistance of the pore, while CD is the double layer capacitance for a small 

element of the pore length. 

 

 
Figure 2.7: The transmission line representing the impedance inside a pore. Figure taken from 
[9] and modified. 
 

The alternating potential, E(t), which enters into the pore decreases from the value at the 

pores opening, E0, because of the pore resistance, according to Ohm’s law. Figure 2.8 shows 
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this effect where E(t) decreases with the distance in the pore, x. At high frequencies the 

alternating potential is not able to penetrate to the bottom of the pore, but for low frequencies 

the signal penetrates to the bottom[9]. In such cases the total impedance is a result of the 

contribution of the porous part of the electrode and the flat part in the bottom of the pore. 

 

 
Figure 2.8: Changes of the alternating potential signal and its amplitude due to the pore depth 
[9]. 
 

As a general rule, the phase angle of the impedance for a porous electrode is half the phase 

angle for an equivalent plane electrode. In addition, the total impedance Z for a porous 

electrode is proportional to the square root of that for an equivalent plane electrode [10], as 

illustrated in Figure 2.9 (a) and (b). 

 

The impedance for a porous electrode with independent pores can be written as in Eq. ( 2.10 ) 

[11]. 

𝑍!"#ø! =
𝑅!
𝑗𝜔𝐶!

𝑐𝑜𝑡ℎ 𝑗𝜔𝑅!𝐶! ( 2.10 ) 

Here RD is the resistance and CD is the double layer capacitance. 

70 A. Lasia

with the following conditions:

x = 0 Ẽ = Ẽ0,

x = l dẼ/dx = 0.

The solution of (3) is

Ẽ = Ẽ0

cosh
[√

rs
ẑ (l − x)

]

cosh
[√

rs
ẑ l

] . (4)

This equation predicts that the amplitude of the ac signal, which
penetrates into the pore, decreases with the distance in pore x . An
example of such relation is shown in Fig. 2.

At the top surface of the pore

dẼ
dx

∣∣∣∣∣
x=0

= −Ẽ0

√
rs

ẑ
tanh

(√
rs

ẑ
l
)

= − Ĩ0rs (5)

and the impedance is defined as a ratio of the phasors (7) of the
potential and current

Ẑpore = Ẽ0

Ĩ0
=

√
rs ẑ coth
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l
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Figure 2. Changes of the ac signal E(t) and its amplitude in the
pore according to (4).
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(a) (b) 

Figure 2.9: Representation of the Nyquist diagram for a planar electrode (a) and a porous 
electrode (b) [10]. 
 

2.1.4 Mott-­‐Schottky	
  behavior	
  	
  

When a semiconductor electrode is immersed in an electrolyte, the Fermi level of the two 

phases is disparate. To gain equilibrium, an exchange of charge occurs across the interface 

until the two Fermi levels are aligned. The band edges at the surface of the semiconductor are 

pinned. The charge exchange results in a bending of the energy bands in the semiconductor. 

This leaves a region beneath the surface depleted of charge carriers, which is called the 

depletion region or the space charge region. This region forms a "built-in" voltage near the 

semiconductors surface. The situation before and after contact is illustrated in Figure 2.10 

[12]. The bands will bend differently according to the type of semiconductor. For n-type 

semiconductors the bands will bend upwards, as shown in (a). For p-type semiconductors the 

bands will bend downwards like in (b). The conductivity of most semiconductors is well 

below the conductivity of the solution, which means that most of the potential drop occurs in 

the semiconductor side of the junction [4]. Because of this, the interfacial capacitance is in 

most cases dominated by the capacitance due to the space charge region and the contribution 

from the Helmholtz layer can be neglected. 
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Figure 2.10: The energy bands in the semiconductor before (left) and after (right) contact 
with the electrolyte. For a n-type semiconductor the bands will bend upwards (a) and for a p-
type semiconductor the bands will bend downwards (b) [12]. 
 

Changing the potential of the semiconductor by applying an external voltage will separate the 

two Fermi levels and hence influence the band bending [13]. In the case of n-type 

semiconductors, positive polarization will increase the band bending, while negative 

polarization will decrease it. If the electrode is polarized to the point where no band bending 

occurs, then the semiconductor is polarized to its flatband potential. This is one of the 

fundamental properties of semiconductors and it can be determined by using the Mott-

Schottky equation, which is derived from Poisson's equation [13]: 

𝑑!𝜙
𝑑𝑥! =   −

𝜌
𝜀!𝜀!

 ( 2.11 ) 

where φ is the potential difference in a phase, ρ is the charge density at position x away from 

the semiconductor surface, εs is the dielectric constant of the semiconductor and ε0 is the 

permittivity of free space. By applying Boltzmann distribution for the electrons in the space 

charge region and Gauss' law relating to the electric field caused by the charge contained in 

the region, Poisson's equation can be solved to give the Mott-Schottky equation [13]. For a n-

type semiconductor the Mott-Schottky equation is expressed as in Eq. ( 2.12 )[4]. A complete 

derivation is shown in the Supplemental Material of Ref. [13]. 
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1
𝐶!"!

=   
2

𝑒𝑁!𝜀!𝜀!
[(𝐸  −   𝐸!")−

𝑘!𝑇
𝑒 ] ( 2.12 ) 

Here CSC is the interfacial capacitance, ND is the concentration of donors, T is the 

temperature, kB is the Boltzmann's constant and e is the electronic charge. E is the applied 

voltage and Efb is the flatband potential. As seen from Eq. ( 2.12 ), the Mott Schottky plot of 

1/𝐶!"!  as a function of the potential, E, should yield a straight line with a positive slope for n-

type semiconductor. For a p-type semiconductor the slope will be negative. The donor and 

acceptor densities can be calculated from the slope and the flatband potential can be 

determined by extrapolating the straight line to intersect with the abscissa, as shown in Figure 

2.11. 

 
Figure 2.11: Sketch of the Mott-Schottky diagram for n-type semiconductor. The flatband 
potental, Efb, can be found by extrapolating the straight line to intersect with the abscissa. 
 

2.1.5 Photo-­‐electrochemical	
  characterization	
  

When a semiconductor is radiated by light, electrons may be excited from the valence band to 

the conduction band, which leaves a hole in the former band. The generated electron-hole 

pairs, is separated by the electric field generated in the space charge region. Generation of 

electron-hole pairs requires photons energy higher than the semiconductors band gap, Eg. The 

relationship between the photon energy, Eph, and the wavelength, λ, is given by the Planck 

relationship [14], 
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𝐸!!(𝜆) =
ℎ𝑐
𝜆  ( 2.13 ) 

where h is Planck's constant and c is the speed of light. When a semiconductor in an 

electrochemical cell is illuminated, excess charge carriers are generated that increases the 

current flowing through the cell. This current can be detected during photo-electrochemical 

measurements. 

2.2 Mathematical	
  tools	
  

The impedance model presented in the next chapter is based on the use of the Green’s 

function. A short introduction of this and some other tools involved is given in this chapter.  

2.2.1 The	
  δ-­‐function	
  

The δ-function is not strictly speaking a function, but is often thought of as an extremely 

narrow distribution. As an example it can be used to describe pulses of "infinitely short" 

duration, like strongly peaked currents that often occur during switching processes in 

electrical circuits. Symbolically the δ-function can be given as[15] 

𝛿(𝑥) =   0        (𝑥   ≠   0)
∞      (𝑥   =   0) ( 2.14 ) 

and this is normalized so that[15] 

𝛿(𝑥)  𝑑𝑥
!!

!!
= 1 ( 2.15 ) 

The δ-function can be used in combination with a continuous function f(x) to give the integral 

[15]  

𝛿(𝑥)  𝑓(𝑥)  𝑑𝑥
!!

!!
 ( 2.16 ) 

and because δ(x) is zero for all x ≠ 0 the integration limits may be changed to   +𝜖 and −𝜖, 

where 𝜖 is a small positive number. Because f(x) is continuous at x =0, its value within the 

interval +𝜖 to −𝜖 will be close to the value of f(0) and one can claim that [15] 
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𝛿(𝑥)  𝑓(𝑥)  𝑑𝑥
!!

!!
= 𝛿(𝑥)  𝑓(𝑥)  𝑑𝑥 =   𝑓(0) 𝛿(𝑥)  𝑑𝑥

!!

!!

!!

!!
   ( 2.17 ) 

The approximation improves as 𝜖 approaches zero and it appears that by letting 𝜖 →   0 one 

has exactly [15] 

𝛿(𝑥)  𝑓(𝑥)  𝑑𝑥
!!

!!
= 𝑓(0) ( 2.18 ) 

and the integrals limits −∞ and +∞ may be replaced by any two numbers a and b, provided 

that a < 0 < b. The integral in Eq. ( 2.18 ) is one of the useful features of the δ-function 

called the sifting property, where δ(x) act as a sieve. It makes it possible to select from all 

possible values of f(x) its values at the point x =0. 

2.2.2 The	
  Heaviside	
  step	
  function	
  

The Heaviside function is a discontinuous function defined as [16] 

𝐻 𝑥 =   0                        𝑖𝑓      𝑥 < 0
1                        𝑖𝑓      𝑥 ≥   0 ( 2.19 ) 

The Heaviside function, H(x), approaches 0 when 𝑥 → 0! , and as 𝑥 → 0!  the function 

approaches 1. 

2.2.3 Green's	
  function	
  

This section will only give a brief introduction to Green's function, but a full description can 

be found in Ref. [15] and [17]. Green's function is generally used to solve inhomogeneous 

differential equations with specific boundary conditions. The easiest way to explain how the 

function works is to use an example considering a stretched string pinned at the points 𝑥 = 0 

and 𝑥 =   𝐿 [15]. The problem in the example is sketched in Figure 2.12. 

 

The displacement, u(x), of the string is a function of x alone and satisfies the differential 

equation[15] 

𝑑𝑢!

𝑑𝑥! =
𝐹(𝑥)
𝑇 = 𝑓(𝑥) ( 2.20 ) 

where F(x)/T is the force working on the string at position x. 
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Figure 2.12: Graphical presentation of the string-problem used to explain Green's function. 
 

By considering a concentrated load, F0, at the point 𝑥 = 𝜉 the function will be [15] 

𝑓 𝑥 =
𝐹!
𝑇 𝛿 𝑥 − 𝜉  ( 2.21 ) 

The differential equation to be solved then becomes [15] 

𝑑𝐺(𝑥|𝜉)!

𝑑𝑥! = 𝛿(𝑥 − 𝜉) ( 2.22 ) 

and this is now called the Green's function for the string problem. The requirements for the 

function is that [15] 

𝐺(0|𝜉) = 𝐺(𝐿|𝜉) = 0 ( 2.23 ) 

and 𝐺(𝑥|𝜉) satisfies the homogenous differential equation for all x except 𝑥 = 𝜉. Since 

𝐺(𝑥|𝜉) represents the idealized physical shape of the string, as shown in Figure 2.12, it must 

be continuous at 𝑥 = 𝜉 and the shape will be given by [15] 

𝐺(𝑥|𝜉) =
−
𝑥(𝐿 − 𝜉)

𝐿
, (0 ≤ 𝑥 ≤ 𝜉)

−
𝜉(𝐿 − 𝑥)

𝐿 , (𝜉 ≤ 𝑥 ≤ 𝐿)
 ( 2.24 ) 

The solution to the non-homogeneous problem in Eq. ( 2.20 ) with the boundary conditions in 

Eq. ( 2.23 ) will be given by [15] 
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𝑢(𝑥) = 𝐺(𝑥|𝜉)
𝐹(𝜉)
𝑇 𝑑𝜉

!

!
 ( 2.25 ) 

As a result of the shape of u(x) there should be a jump discontinuous in the point 𝑥 = 𝜉 for 

d𝐺(𝑥|𝜉)/dx.  

 

The Green's function is also called the influence function because is describes the response of 

each point in the system to a concentrated impact, e.g. a load pulling down on a string in one 

specific point.  

2.3 The	
  Impedance	
  Model	
  for	
  Porous	
  Semiconducting	
  electrodes	
  

The impedance model for porous semiconducting electrodes described in this section was 

derived by Sunde and Tjelta and is presented in Ref. [2]. The main focus of the model is the 

Mott Schottky behaviour of semiconductors.  

2.3.1 The	
  porous	
  electrode	
  

The system to be modelled consists of a porous film deposited on a planar substrate as 

depicted in Figure 2.13. The interface between the substrate and the film is denoted x = L and 

the film faces the electrolyte at x = 0. The porous film is presented as tightly packed spherical 

particles with radius Ra, in which the electrons and holes diffuse radially outside the space 

charge region facing the electrolyte. In this presentation of the model it is assumed that only 

electrons may reach the species in the electrolyte, because normally only one of the bands are 

active in faradaic processes. Still, it is important to note that this is a general model and it can 

easily be reworked to apply to holes instead of electrons [2]. 
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Figure 2.13: The structure of the electrode considered in the impedance model. The porous 
semiconductor electrode consists of small sperical particles with radius, Ra. The electrode 
film is in contact with the electrolyte at x = 0 and with the support at x = L. The figure is 
copied with modifications from [3]. 
 

The species assumed to be present in the solid phase are electrons and holes, with 

concentrations n and p respectively, and acceptor dopants with concentration NA and donor 

dopants with concentration ND. Assuming electroneutrality outside of the space charge region 

allows the use of Eq. ( 2.26 ) [2]. 

𝑝 − 𝑁! − (𝑛 − 𝑁!) = 0 ( 2.26 ) 

The charge density, ρ, at a position x away from the semiconductor surface is given by [13] 

𝜌 = 𝑒 𝑝 − 𝑁! − 𝑛 + 𝑁!  ( 2.27 ) 

where e is electronic charge. 

2.3.2 The	
  capacitance	
  of	
  the	
  space	
  charge	
  region	
  

To model the space charge region of the system, the Poisson-Boltzmann equation is used 

with assumption of spherical coordinates and spherical symmetry. This results in the 

following equation [2]. 
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1
𝑟!

𝑑
𝑑𝑟 𝑟!

𝑑𝜙
𝑑𝑟 −

𝑒
𝜀!𝜀!

𝑛! − 𝑝! − 𝑛! exp −
𝑒𝜙
𝑘!𝑇

+ 𝑝! exp
𝑒𝜙
𝑘𝑇 = 0 ( 2.28 ) 

Here r is the radius of the particles in the film, φ is the electrostatic potential in the space 

charge region, while n0 and p0 is the bulk concentration of electrons end holes respectively. A 

non-dimensional formulation of Eq. ( 2.28 ) [2] is 

1
𝑥!

𝑑
𝑑𝑥 𝑥!

𝑑𝑢
𝑑𝑥 −

𝑒
𝜀!𝜀!

𝑁! − 𝑃! − 𝑁! exp −𝑢 + 𝑝! exp 𝑢 = 0 ( 2.29 ) 

where u = eφ/kBT and x =r/Ra, while N0 =(Ra
2e2n0)/(kBTεsε0) and P0 =(Ra

2e2p0)/(kBTεsε0). The 

suitable boundary conditions in this case are [2] 

𝑢′ = 0   when  𝑥 = 0 ( 2.30 ) 

𝑢 = 𝑢!   when  𝑥 = 1 ( 2.31 ) 

The general case of Eq. ( 2.29 ) is difficult to solve, and for that reason the limiting cases of 

heavily doped and intrinsic semiconductors are considered. In the latter case, N0 = P0, which 

means that Eq. ( 2.29 ) becomes [2] 

1
𝑥!

𝑑
𝑑𝑥 𝑥!

𝑑𝑢
𝑑𝑥 − 2𝑁!𝑠𝑖𝑛(𝑢) = 0 ( 2.32 ) 

This makes it possible to approximate the solution of Eq. ( 2.29 ) by expressing the fixed-

point solution as an integral and apply Picard iteration. By defining the charge density for a 

n-type semiconductor as [2]  

𝜌! 𝑥 = 𝑁! − 𝑃! − 𝑁! exp −𝑢 + 𝑝! exp 𝑢 − 𝑘!𝑢 
( 2.33 ) 

where k2u is the linearized charge, Eq. ( 2.29 ) can be written as [2] 

1
𝑥!

𝑑
𝑑𝑥 𝑥!

𝑑𝑢
𝑑𝑥 − 𝑘!𝑢 = 𝜌!(𝑥) ( 2.34 ) 

Hence, by applying the theory described in Chap. 2.2.3, the Green's function, Gu, for Eq. ( 

2.34 ) satisfies [2] 



 

 

19 

1
𝑥!

𝑑
𝑑𝑥

𝑥! 𝑑𝐺! 𝑥 𝜉
𝑑𝑥 − 𝑘!𝐺! 𝑥 𝜉 =

1
𝑥! 𝛿(𝑥 − 𝜉) ( 2.35 ) 

Here the δ-function is 1/r2 δ (r - r0) in radial coordinates. Further, by defining w = ux, Eq. ( 

2.34 ) can be written as [2] 

𝑤!! − 𝑘!𝑤 = 𝜚! ( 2.36 ) 

where  𝜚! = 𝑥𝜌! 𝑥 . Then the Green's function Gw = Gux for Eq. ( 2.35 ) correspondingly 

satisfies [2] 

𝐺! 𝑥 𝜉 ′′− 𝑘!𝐺! 𝑥 𝜉 =
1
𝑥! 𝛿(𝑥 − 𝜉) ( 2.37 ) 

For the homogeneous boundary conditions, 𝐺! 0 𝜉 = 𝐺! 1 𝜉 = 0, the solution of Eq. ( 

2.37 ) may be written [2] 

𝐺! 𝑥 𝜉 =
𝑐𝑜𝑠ℎ  𝑘  [𝑥 + (𝜉 − 1)]− 𝑐𝑜𝑠ℎ  𝑘  [𝑥 − (𝜉 + 1)]

2𝑘𝜉  𝑠𝑖𝑛ℎ  𝑘

−
𝐻(𝜉 − 𝑥)  𝑠𝑖𝑛ℎ  𝑘  (𝑥 − 𝜉)

𝑘𝜉  
( 2.38 ) 

𝐻(𝜉 − 𝑥) is the Heaviside step function defined so that H(x) =1 when x = 0. Eq. ( 2.38 ) 

satisfies the homogeneous differential equation in Eq. ( 2.36 ), except at the points 𝑥 = 𝜉 and 

the boundary conditions. The derivative of the Green's function in Eq. ( 2.38 ) is [2] 

𝑑𝐺!   (𝑥|𝜉)
𝑑𝑥 =

𝑠𝑖𝑛ℎ  𝑘  [𝑥 + (𝜉 − 1)]− 𝑠𝑖𝑛ℎ  𝑘  [𝑥 − (𝜉 + 1)]
2𝜉  𝑠𝑖𝑛ℎ  𝑘

+
𝛿(𝜉 − 𝑥)  𝑠𝑖𝑛ℎ  𝑘  (𝑥 − 𝜉)

𝑘𝜉 −
𝐻(𝜉 − 𝑥)  𝑐𝑜𝑠ℎ  𝑘  (𝑥 − 𝜉)

𝜉  
( 2.39 ) 

The solution to the non-linear Poisson-Boltzmann equation in Eq. ( 2.34 ) then becomes [2] 

𝑢 𝑥 = 𝑢!
𝑠𝑖𝑛ℎ  (𝑘𝑥)
𝑥  𝑠𝑖𝑛ℎ  (𝑘)+

1
𝑥 𝐺! 𝑥 𝜉 𝜌! 𝜉 𝜉!  𝑑𝜉

!

!
 ( 2.40 ) 
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This is an exact, closed-form solution for the potential, but since the integral cannot easily be 

expressed analytically, Picard iterations can be applied to obtain u(x). In practice is it also 

possible to employ successive under-relaxation to ensure convergence [2]. 

 

The capacitance, C = dQ/dφ, can be defined in dimensionless terms as [2]   

𝜒 =
𝑘!𝑇
𝑒
𝑑𝑄
𝑑𝜙 =   

𝑑𝑍
𝑑𝑢 =

𝑑𝑍
𝑑𝑥   

𝑑𝑥
𝑑𝑢 =

𝑑𝑍
𝑑𝑥   

𝑑𝑢
𝑑𝑥

!!

 ( 2.41 ) 

where Q is the total charge and 𝑍 = 𝑄/𝜙   = 4𝜋 𝜌 𝜉 𝜉!  𝑑𝜉!
!  is the total, dimensionless 

charge inside a spherical shell at radius x. The derivative of the charge Z becomes [2] 

𝑑𝑍
𝑑𝑥 = 4𝜋

𝑑
𝑑𝑥 𝜌 𝜉 𝜉!  𝑑𝜉

!

!
= 4𝜋𝜌 𝑥 𝑥! ( 2.42 ) 

and derivation of Eq. ( 2.40 ) gives [2] 

𝑑𝑢 𝑥
𝑑𝑥 = 𝑢!

𝑥𝑘  𝑐𝑜𝑠ℎ  (𝑘𝑥)− 𝑠𝑖𝑛ℎ(𝑘𝑥)
𝑥!  𝑠𝑖𝑛ℎ  (𝑘) −

1
𝑥! [𝐺! 𝑥 𝜉 𝜌! 𝜉 ]𝜉!  𝑑𝜉

!

!

+
1
𝑥

𝑑𝐺! 𝑥 𝜉
𝑑𝑥 𝜌! 𝜉 𝜉!  𝑑𝜉

!

!
 

( 2.43 ) 

Here ρ is a function of u. The solutions from Eq. ( 2.42 ) and Eq. ( 2.43 ) can be substituted 

into Eq. ( 2.41 ) to calculate the dimensionless capacitance, χ. 
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3 Experimental	
  

3.1 The	
  electrochemical	
  cell	
  

During the electrochemical experiments a three-electrode set up was used, consisting of a 

working electrode (WE), counter electrode (CE) and reference electrode (REF). Figure 3.1 

shows a sketch of the electrochemical cell. The sketch also shows the gas bubbler used for 

oxygen removal. 

 
Figure 3.1: The electrochemical cell. WE is the working electrode, REF is the standard 
hydrogen reference electrode and CE is the Pt-foil used as a counter electrode. The 
electrolyte was purged with Ar-gas. 
 

3.2 The	
  working	
  electrode	
  

Three different materials were used as support for the working electrode; gold, titanium and 

indium tin oxides (ITO). The gold electrodes consisted of a square gold foil with a gold wire 

attached as a contact. The titanium electrodes were made from a 2 mm thick titanium plate. 

For some of the Ti-electrodes, a titanium wire was spot welded onto a square plate. Others 

were designed as squares with a neck that could be used as a contact. The ITO-electrodes 

consisted of a Pyrex™ glass plate with a thin layer of ITO on one side. 
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3.2.1 Pretreatment	
  of	
  the	
  support	
  material	
  

The working electrodes were cleaned before the powder was applied. The cleaning 

procedures for the different materials are described in Table 3.1. 

 

Table 3.1: Cleaning procedures for the support material before application of the powder 
film. 
Substrate Cleaning procedures 

Au- foil The electrode was first placed in an ultrasonic bath for 10 minutes in acetone 

and then etched in aqua regis (1 part HNO3 and 3 parts HCl) for 10 seconds. 

After etching it was thoroughly rinsed in distilled water and dried in air.  

Ti- plate The electrode was first abraded by hand using 500 grit SiC-paper, then placed 

in an ultrasonic bath with acetone for 10 min. Afterwards the electrode was 

etched for 10 min in warm 10 wt% HCl, then rinsed in boiling distilled water 

for 10 min. For each step, the electrode was cooled to room temperature in the 

current bath before switching it to the next bath. The rinsing sequence was 

repeated five times. After cleaning, the Ti-supports were stored in distilled 

water in an attempt to limit oxidation. 

ITO The ITO glass electrode was cleaned with acetone and dried in air. 

 

3.2.2 The	
  oxide	
  catalysts	
  

Three different oxide powders were used in the experimental work. The titanium oxide 

powder, Aeroxide® TiO2 P25, was produced by Degussa AG. The iridium tin oxides, 

Ir0.25Sn0.75O2 and Ir0.4Sn0.6O2, were synthesized during a previous project [18] using the 

polyol method. 

3.2.3 Electrode	
  preparation	
  

The powder was applied to the support in the form of ink. The ink was made by dispersing 

powder in approximately 3 mL isopropanol. In some cases Nafion® was used as a binder to 

enhance adhesion. The mixing ratio in these cases were 95 wt% catalyst and 5wt% Nafion®. 

Isopropanol was then added to make a total volume of 3ml. In one case the Nafion® was 

dripped onto the powder film after spraying to help protect the film.  

 



 

 

23 

An airbrush was used to spray the catalyst ink into the support by hand. Before spraying, the 

ink was treated in an ultrasonic bath for 15 min to ensure dissolution of agglomerates. The 

support was placed on a hotplate and heated to 85° C. This heat treatment was continued 

through the entire spraying sequence. The spraying was started by slowly spraying the entire 

surface, before pausing a second to let the isopropanol evaporate. Then a new of batch ink 

was sprayed onto the surface, followed by a new pause. This procedure was repeated until all 

the ink was used. When the spraying was done, the electrode was left to dry for another 15 

min on the hot plate, before it was removes and cooled to room temperature. The electrode 

was stored in a sealed bag. 

 

Some of the electrodes that were made without Nafion® and these were heated to 450° C for 

30 min in an inert atmosphere. This was done in a Carbolite Tube Furnace - CTF 12/65/550. 

 

Before the electrodes were used in experiments, the backside, sides and any other areas with 

bare support were covered by clear nail polish. This was done to reduce the risk of 

interference from the support material during measurements. 

3.3 Anodized	
  titanium	
  

A Danice Supply TPS 28 potensiostat was used to grow TiO2 film by anodizing a titanium 

plate. This was done in a two-electrode setup, with the Ti-plate set up as the anode and a Pt-

foil set up as the cathode. 0.5M H2SO4 (pH = 0.38) was used as an electrolyte. A 20 V 

potential was applied to the cell and held until the current was stabilized, which took 

approximately 50-60 min. 

3.4 The	
  standard	
  hydrogen	
  electrode	
  (SHE)	
  

The standard hydrogen electrode was prepared before each experiment using a two-electrode 

set up in 0,5 M H2SO4. A Pt-foil was used as a counter electrode and the reference electrode 

was set up as the working electrode. A negative potential was then applied to produce 

hydrogen gas until the reference electrodes tube was half filled. 

3.5 The	
  counter	
  electrode	
  

A platinum foil was used as counter electrode in the electrochemical and 

photoelectrochemical measurements. The total area of the electrode was approximately 4.5 

cm2. 
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3.6 Chemicals	
  

The chemicals used during the experimental work are listed in Table 3.2. The water used 

during the experimental work and cleaning was produced by a Milli-Q Intergal3 system from 

Millipore. The resistivity of the water was 18.2 MΩcm.  

 

Table 3.2: The chemicals used in the experimental work. 
Chemical Formula Supplier Purity 

Acetone C3H6O VWR Technical 

Argon gas Ar AGA 5.0 

Hydrochloric acid HCl Merck p.a. 

Isopropanol C3H8O Arcus Free of water and fat 

Nitric acid HNO3 Merck p.a. 

Potassium sulfate K2SO4 Alfa Aesar ACS grade 

Sulfuric acid  H2SO4 VWR p.a. 

 

3.7 Equipment	
  and	
  methods	
  	
  

All glassware was thoroughly cleaned before use in the experiments. This was done by 

boiling them in 10 % H2O2-solution for 1-2 hours, then rinsing them in distilled water several 

times. After the cleaning they were dried in an oven for at least 2-3 hours. Spatulas, mortars 

and similar equipment was washed in distilled water, dried and then wiped with acetone.  

3.7.1 Electrochemical	
  measurements	
  

The cell was purged with Ar-gas for about 30 min before starting the electrochemical 

measurements. During measurements, the tube delivering Ar-gas was pulled out of the 

solution and placed above the surface, still supplying inert gas throughout the experiment. 

 

Before the actual measurements, the electrode was subjected to potential cycling until the 

system showed a stable response. The sweep rate during the cycling was 200 mV/s and the 

potential limits were 0.0 V and 1.4 V. A Gamry Instruments Reference 600 potentiostat was 

used in most of the experiments, but for some measurements a Zahner IM6ex was used. 

 

After the electrode was stabilized the electrochemical measurements were performed. Cyclic 

voltammetry was conducted between 0.0 V and 1.4 V, and the following sweep rates were 
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used: 5 mV/s, 10 mV/s, 20 mV/s, 50 mV/s, 100 mV/s and 200 mV/s. The step size was 0.1 

mV.  

 

The cyclic voltammetry was followed by electrochemical impedance spectroscopy. 

Impedance spectrums with frequency range from 100 kHz to 0.1 Hz, were recorded for 

100mV intervals between 0.1 V to 1.2 V. After the impedance measurements a final cyclic 

voltammetry was conducted between 0.0 V and 1.6 V, with a sweep rate of 200mV/s and a 

step size of 2 mV. This was done to investigate the substrates interference of the 

measurements. 

3.7.2 Photoelectrochemistry	
  

Before and during the photoelectrochemical measurements, the cell was treated with Ar-gas 

as described in Chapter 3.7.1. Photo induced current was measured by irradiating the 

electrode using a 300W Newport xenon lamp. A 74125 Oriel Cornerstone 260 1/4m 

monochromator was used to generate the desired wavelength. A Zahner IM6ex potensiostat 

was used to control the cell voltage and record the current response.  

 

The photocurrent was measured during constant polarization of the electrode. The current 

response to the applied potential was allowed to stabilize before the photoelectrochemical 

measurements were performed. During the actual measurements, the wavelength of the 

irradiating light was change from 200 nm and 700 nm, with a step size of 5 nm. The 

measuring time for each step was 5 seconds. Photoresponse was also measured during 

constant polarization of the electrode. The photoresponse was measured by irradiating the 

electrode for a 60 seconds interval, separated by 60 seconds "dark" interval. 

3.7.3 Particle	
  size	
  

Particle size was measured using a Delsa™ Nano C Particle Analyzer form Beckman Coulter. 

The measuring cell was cleaned with distilled water before and after measurements. The last 

rinsing before the analysis was done by running some of the catalyst sample through the cell. 

The oxide catalyst was dispersed in distilled water (5mg/50ml) and treated in an ultrasonic 

bath for 15 min before starting the analysis. A series of three measurements was done for 

each sample.  
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4 Results	
  

The two main focuses in this project are the experimental analysis of TiO2 P25 and the 

analysis of the impedance model for porous semiconductor electrodes, described in Chapter 

2.3.2. The experimental results concerning TiO2 P25 are presented in this chapter. In 

addition, the results concerning iridium tin oxide electrodes are also presented here. The 

results form cyclic voltammetry and electrochemical impedance spectroscopy are presented 

in Chapter 4.2 and Chapter 4.3, respectively. Results from photoelectrochemical 

measurements are presented in Chapter 4.4 and Chapter 4.5 presents the particle size analysis 

of the oxide catalysts. During a previous project [18], the work to derive an alternative Mott-

Schottky analysis for porous electrodes was started. However, the previous derivation was 

not correct. A corrected derivation of the relationship between the capacitance, C, and the 

imaginary part of the impedance, ImZ, is presented in Chapter 4.6. The results of the 

computer simulation of the impedance model for porous semiconductor electrodes are 

presented in a separate section. 

4.1 Electrodes	
  

Three different support materials were used during the experimental work. An overview of 

the electrodes prepared for the experimental work is given in this section. The bare support 

electrodes listed in Table 4.1 were subjected to the same electrochemical measurements as 

the catalyst electrodes. This was done to generate reference measurements to be used in the 

analysis of the data collected for the catalysts. Table 4.2 lists the oxide catalyst electrodes 

prepared and used in the experimental work. The electrode names given in column 1 are in 

some cases used to refer to the electrodes. The electrode area and the catalyst loading are also 

given in the table. For the P25 Au N-electrode a high catalyst load was used. As a result of 

this the film cracked as shown in Figure 4.1 (a). A lower catalyst loading was used for P25 

Au Ntop and this produced a denser film without cracks, as shown in Figure 4.1 (b). 

 

Table 4.1: Support electrodes for which electrochemical measurements were done as a 
reference. 
Electrode support Area 

(cm2) 
Description 

Au 1.071 Bare gold foil with a gold wire attached as a contact. 
Ti 450 0.97 Titanium plate heated in tube furnace at 450°C for 30 

min. 
ITO 1.91 ITO-film on glass plate.  
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Table 4.2: Description of the oxide catalyst electrodes used in the experimental work. 
Electrode name Area 

(cm2) 
Catalyst 
loading 

(mg/cm2) 

Description 

P25 Au N 
1.05 8.43 

P25 sprayed onto Au-support as ink with 
Nafion®. 

P25 Au Ntop 
0.93 1.53 

P25 sprayed onto Au-support. Nafion® was 
dripped onto the film after drying. 

P25 Ti N 
1.03 0.59 

P25 sprayed onto Ti-support as ink with 
Nafion®. 

P25 Ti 450 
0.82 2.15 

P25 sprayed onto Ti-support as ink, then 
sintered at 450°C for 30 min. 

P25 ITO 
2.58 0.57 

P25 sprayed onto ITO-support as ink, then 
sintered at 450°C for 30 min. 

Anodized Ti 
2.07 - 

Ti-plate anodized for about 50 min at a 
potential of 20 V. 

Ir0.4Sn0.6O2 Au 
1.05 0.57 

Ir0.4Sn0.6O2 sprayed onto Au-support as ink 
with Nafion®. 

Ir0.75Sn0.75O2 Au 
1.05 1.09 

Ir0.25Sn0.75O2 sprayed onto Au-support as 
ink with Nafion®. 

Ir0.4Sn0.6O2 ITO 
2.63 0.55 

Ir0.4Sn0.6O2 sprayed onto ITO-support as ink 
with Nafion®. 

Ir0.25Sn0.74O2 ITO 
4.26 0.72 

Ir0.25Sn0.75O2 sprayed onto ITO-support as 
ink with Nafion®. 

 

  
(a) (b) 

Figure 4.1: The cracked film on the P25 Au N-electrode (a) and the dense film on the P25 Au 
Ntop-electrode (b). 
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4.2 Cyclic	
  voltammetry	
  

4.2.1 Titanium	
  oxide	
  

The first substrate to be used was Au-foil. Figure 4.2 shows the voltammograms for bare Au-

support (black), P25 Au N-electrode (blue) and the P25 Au Ntop-electrode (green). The 

sweep rate is 20 mV/s. The shape of the curves in Figure 4.2 is quite similar and only small 

differences can be seen. For potentials below 0.5 V the bare substrate and P25 Au N are 

almost identical, but for potentials above 0.5 V the P25 Au N-electrode shows somewhat 

larger current responses than the bare support. Above 0.5 V the measurements for bare 

support and P25 Au Ntop is as good as identical. This indicates that the support is dominating 

the measurements. 

 

 
Figure 4.2: Cyclic voltammogram for the bare Au-support (black), P25 on Au-support with 
Nafion® mixed in the ink (blue) and P25 on Au-support, where Nafion® was dripped onto 
the film after drying (green). The CV was recorded on the Gamry Reference 600 potentiostat 
and the sweep rate is 20 mV/s. 
 

Titanium was also tested as a support for TiO2 P25. Figure 4.3 compares the voltammograms 

with sweep rates of 20 mV/s for four electrodes. For two of the electrodes, Ti was used as a 

support for P25, the P25 Ti N-electrode (red) and the P25 Ti 450 (green). In addition, the 

figure shows the voltammogram for a bare Ti-electrode also heated at 450°C for 30 min 

(blue) and an anodized Ti-electrode (black). For the sintered P25 and the anodized Ti-

electrode peaks for oxidation and reduction are clearly visible at potentials close to zero. The 
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shape of the voltammogram for P25 Ti N-electrode bears resemblance to the Ti 450-

electrode, with no oxidation peak at low voltages.  

 

The third electrode material used in this work was ITO. The voltammogram for P25 ITO, and 

the bare ITO-electrode is presented in Figure 4.4. As for the other to support materials, the 

two bare support and P25 on ITO show great resemblance. 

 

 
Figure 4.3: Cyclic voltammetry for Ti-supported electrodes. The P25-electrode where the ink 
was mixed with Nafion® (red), P25 sprayed onto the Ti-plate, then sintered at 450°C for 30 
min (green) and a reference Ti-plate heated at 450°C for 30 min (blue). An anodized Ti-
electrode is also represented (black). The sweep rate is 20 mV/s. (Gamry Reference 600.) 
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Figure 4.4: Cyclic voltammogram for P25 sprayed onto ITO, then sintered at 450°C for 30 
min (blue) and bare ITO (black). The sweep rate is 200 mV/s and the Gamry Reference 600 
potensiotat was used. 

 

4.2.2 Iridium	
  tin	
  oxide	
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Figure 4.5 shows the voltammogram for the two support materials, recorded at a 200 mV/s 

sweep rate between 0.0 V and 1.6 V. The shape of the cyclic voltammogram for the ITO 

electrode cannot be discerned in this figure because of the scale, but the general shape can be 

seen in Figure 4.4.  The anodic turning potential was set at 1.6 V in order to polarize the Au-

electrode enough to produce the characteristic Au-peak at about 1.2 V.  Figure 4.6 compares 

the Au-support and Ir0.4Sn0.6O2 Au. The characteristic Au-peak can be seen in both cases.  
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Figure 4.5: Cyclic voltammetry for the Au-support (black) and the ITO-support (blue). The 
sweep rate is 200 mV/s and the electrodes are cycled between 0.0 V and 1.6 V. (Gamry 
Reference 600) 

 
Figure 4.6: Cyclic voltammetry for bare the Au-support (black) and Ir0.4Sn0.6O2 on Au with 
Nafion® (blue). The sweep rate is 200 mV/s. (Gamry Reference 600) 
 

The cyclic voltammogram for bare ITO, the Ir0.4Sn0.6O2 ITO-electrode and the Ir0.25Sn0.75O2 

ITO-electrode is shown in Figure 4.7. The sweep rate is 5 mV/s. The shape of the 

voltammogram is quite different than the shape seen for ITO in Figure 4.4. 

 

0 0.5 1 1.5

−0.5

0

0.5

Potential / V

Cu
rre

nt
 d

en
sit

y 
/ m

A
cm

−2

 

 

Au
ITO

0 0.5 1 1.5
−10

−5

0

5

10

15

Potential / V

Cu
rre

nt
 d

en
sit

y 
/ m

A
cm

−2

 

 

Au
Ir0.4Sn0.6O2 on Au

Characteristic Au−peak



 

 

32 

 
Figure 4.7: Cyclic voltammetry for bare ITO (black), Ir0.4Sn0.6O2 ITO (blue) and Ir0.25Sn0.75O2 
ITO (green) at a sweep rate of 200 mV/s. (Gamry Reference 600) 
 

4.3 Electrochemical	
  impedance	
  spectroscopy	
  

4.3.1 Titanium	
  oxide	
  

The impedance measurements for P25 Au N and P25 Au Ntop also indicate that the Au-

support is dominating. The difference in the logarithmic plot of the imaginary part of the 

impedance, ImZ, and the angular frequency, ω, is shown in Figure 4.8. The bare Au-support 

shows a straight line with a slope of -1. The P25 Au Ntop-electrode shows a slight curvature 

for low frequencies, but the slope is close to -1. The P25 Au N-electrode deviate the most 

from the Au-supports behavior, but it is still clearly dominated by the plane support. 
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Figure 4.8: The ImZ vs. ω for bare Au-support (black), P25 on Au-support with Nafion® 
mixed in the ink (blue) and P25 on Au-support where Nafion® was dripped onto the film 
after drying (green).  Measured at 400 mV using a Gamry Reference 600 potentiostat. 
 

Also when titanium is used as a support, the impedance diagrams indicate that the 

measurements are dominated by the Ti-substrate. The logarithmic diagram, where ImZ is 

plotted as a function of ω, for the two P25-electrodes and bare Ti-support is shown in Figure 

4.9. The direct potential for the graphs is 600mV. The similarities are striking and all the 

curves have a slope close to -1.  
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Figure 4.9: The imaginary part of the impedance vs. the angular frequency for P25 with 
Nafion® mixed into the ink (red), P25 sprayed without Nafion®, then sintered at 450°C 
(green) and bare Ti-support heat-treated at 450°C. Measured at 600 mV on a Gamry 
Reference 600. 
 

However, the case is different for the anodized Ti-electrode. Figure 4.10 shows the same type 

of logarithmic diagram for anodized Ti, but here all the recorded spectrums are included, viz. 

the spectrums for all the direct potentials from 100 -1200 mV. In the low frequency part of 

the diagram, the slopes of the curves are slightly less than -1 and the electrode shows plane 

behavior. For frequencies above about 3500 Hz, the slopes for most of the curves are 

increased to values closer to -1/2. This indicates that the electrode shows porous behavior at 

high frequencies. The slopes in the low and high frequency areas were calculated as 

illustrated in Figure 4.11 and the results are shown in Table 4.3. As the table shows, none of 

the slopes in the high frequency area is exactly -1/2, but somewhat higher in negative value 

and increasing with increasing direct potential.  
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Figure 4.10: The imaginary part of the impedance vs. the angular frequency for anodized Ti. 
Recorded at direct potentials between 100 -1200 mV. For the high frequency part of the 
diagram the electrode shows porous behavior and the slopes are about -1/2. For lower 
frequencies the slope increases in negative value to -1. (Gamry Reference 600) 
 

 
Figure 4.11: The slopes calculated for the logarithmic plot of ImZ vs. ω for anodized Ti, 
measured at 200 mV on a Gamry Reference 600. 
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Table 4.3: The slopes of the low and high frequency part of the curves in Figure 4.10. The 
slopes were calculated using the least squares method in MATLAB®. 

Direct potential (mV) 
Slope of the linear part in the 

low frequency area 
Slope of the linear part in the 

high frequency area 
100 -0.965 -0.598 
200 -0.963 -0.603 
300 -0.955 -0.629 
400 -0.953 -0.677 
500 -0.955 -0.698 
600 -0.961 -0.735 
700 -0.966 -0.749 
800 -0.969 -0.760 
900 -0.970 -0.776 
1000 -0.971 -0.770 
1100 -0.972 -0.776 
1200 -0.973 -0.776 

 

The porous behavior of anodized Ti can also be seen in the high frequency part of the 

Nyquist diagrams shown in Figure 4.12. The diagram for Ti 450 (a) shows near vertical lines, 

while the diagram for anodized Ti shows deceased phase angels. This indicates that the TiO2-

film produced by anodizing Ti is porous. 

 

  

(a) (b) 

Figure 4.12: Nyquist diagram from the high frequency part for bare Ti heated at 450°C for 30 
min (a) and anodized Ti (b). (Gamry Reference 600) 
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high frequency area for P25 ITO with a slope close to -1/2. This occurs at frequencies 

between about 8 kHz and 70 kHz. The Mott-Schottky diagrams for the two electrodes, also 

shows quite similar behavior, as seen in Figure 4.14. 

 

 
Figure 4.13: ImZ as a function of ω for P25 sprayed onto ITO, then sintered at 450°C for 30 
min (blue) and bare ITO (black). Measured at a direct potential of 200 mV using a Zahner 
IMe6 potensiostat. 
 

  
(a) (b) 

Figure 4.14: Mott-Schottky diagram for ITO-support (a) and P25 ITO (b). 
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4.3.2 Iridium	
  tin	
  oxides	
  

Some of the impedance measurements for Ir0.4Sn0.6O2 on Au-support give the impression that 

the electrode has a porous structure. The Nyquist diagram for Ir0.4Sn0.6O2 on Au-support with 

Nafion® is shown in Figure 4.15. The diagram shows the curves for direct potentials between 

100 - 1200 mV and the phase angle in the high frequency area is 45°. The logarithmic plot of 

ImZ as a function of ω is shown in Figure 4.16. The direct potential is 500 mV and the slope 

is close to -1/2 for large areas of the high frequency part.  

 

 
Figure 4.15: Nyquist diagram for Ir0.4Sn0.6O2 Au. (Gamry Reference 600) 
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Figure 4.16: Logarithmic plot of ImZ and ω for Ir0.4Sn0.6O2 on ITO-support with Nafion®. 
Measured at a direct potential of 500 mV. (Gamry Reference 600) 
 

However, the Mott Schottky diagrams for the bare Au-substrate and the Au-supported 

Ir0.4Sn0.6O2-electrode shows that the difference between the two electrodes are small. The 

Mott-Schottky diagrams for 100 kHz, 10 kHz and 1000 Hz for the two electrodes are shown 

in Figure 4.2. The figures to the left are the diagrams for the Ir0.4Sn0.6O2-electrode and the 

diagrams for bare Au-support are shown to the right. 
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Figure 4.17: Mott-Schottky diagrams for Au (left) and Ir0.4Sn0.6O2 Au (right), at 100 kHz, 10 
kHz and 1000 Hz. Calculated from data recorded with the Gamry Reference 600. 
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Figure 4.18: Mott Schottky diagrams for ITO-support (left) and Ir0.4Sn0.6O2 ITO-support 
(right). Calculated from data recorded with the Gamry Reference 600. 
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4.4 Photoelectrochemisty	
  

Photoelectrochemical measurements were performed on the sintered P25 and Ir0.4Sn0.6O2 

with Nafion®, both on ITO-support. The same measurements were also performed on bare 

ITO-support. Figure 4.19 shows the recorded photocurrent as a function of the lights 

wavelength after the background noise is removed. For bare ITO, the current peaks at a 

wavelength of about 310 nm, which corresponds to an optical bandgap of Eg = 4.0 eV. For 

P25 on ITO the main peak is located at approximately 365 nm, equivalent to Eg = 3.4 eV, and 

the peak has a shoulder at about 330 nm. The peak for Ir0.4Sn0.6O2 is more difficult to discern, 

but the largest currents are recorded between 360 and 460 nm. 

 

  
(a) (b) 

 
(c) 

Figure 4.19: The measured current after subtraction of the background noise. The wavelength 
scan was performed between 200 - 700 nm, for bare ITO (a), sintered P25 on ITO (b) and 
Ir0.4Sn0.6O2 (c). (Zahner IMe6) 
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The intensity of the light the monochromator delivers during the wavelength scan varies with 

the wavelength. The intensity variations are plotted in Figure 4.20, and the recorded currents 

in Figure 4.21 is normalized with respect to the intensity. 

 
Figure 4.20: The intensity of the monochromator, here presented as photon flux as a function 
of wavelength. 
 

Figure 4.21 (a) shows the normalized photocurrent for the ITO-support. The voltage 

generated by the potentiostat during the measurements was 1.0 V. The graph shows a peak at 

a wavelength of 260 nm, and the number of electrons per mol photons is about 210. For the 

P25-electrode, shown in Figure 4.21 (b), the main peak is shifted slightly to the right and 

occurs at 275 nm. This graph shows a smaller peak to the right of the main peak, at about 310 

nm. It also has a shoulder starting at 360 nm. The current recorded in this case is about 28 

times larger than that of the bare substrate, with 5900 electrons per mol photons. In Figure 

4.21(c) the normalized current for the Ir0.4Sn0.6O2-electrode is shown, but in this case the 

exact location of the main peak is harder to discern. Still, the largest current is measured at 

280 nm, and it is about 2.5 times larger than the current peak measured for bare ITO.  

 

The photoresponse for bare ITO-support and P25 on ITO was also recorded, and the results 

can be seen in Figure 4.22 (a) and (b), respectively. Both electrodes show a rapid response 

when the light is switched on and off. Photoresponse was not measured for iridium tin oxides.  
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(a) (b) 

 
(c) 

Figure 4.21: Photocurrent recorded for bare ITO-support (a), P 25 on ITO-support (b) and 
Ir0.4Sn0.6O2 (c). The current is normalized with respect to the intensity of the monochromator 
and counts the number of electrons per mol photons. (Zahner IMe6 potentiostat) 
 

  
(a) (b) 

Figure 4.22:  Photoresponse for bare ITO (a) and for P25 on ITO (b). Measured using a 
Zahner IMe6. 
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4.5 Particle	
  size	
  

The particle size was measured for TiO2 P25, Ir0.4Sn0.6O2 and Ir0.25Sn0.75O2. A series of three 

measurements were recorded for each catalyst, with only a couple seconds time delay 

between each measurement. The recorded size decreased for each measurement for all the 

tree catalysts. The results are presented in Table 4.4, with an average size calculated from the 

three measurements. 

 

Table 4.4: Particle size measurements for the catalyst oxides. 
 Measurements 

no.1 (nm) 

Measurements 

no.2 (nm) 

Measurements 

no.3 (nm) 

Average particle 

size (nm) 

TiO2 P25 768.9 666.1 660.0 698.3 

Ir0.4Sn0.6O2 584.7 524.0 488.0 532.2 

Ir0.25Sn0.75O2 558.6 455.0 425.2 479.6 

 

4.6 An	
  alternative	
  Mott-­‐Schottky	
  analysis	
  

An alternative way to analyze Mott-Schottky behavior for porous electrodes has been derived 

and the starting point is ( 2.10 ) for porous electrodes, repeated here. 

𝑍!"#"$% =
𝑅!
𝑗𝜔𝐶!

coth 𝑗𝜔𝑅!𝐶! ( 2.10 ) 

The hyperbolic function coth x = cosh x/sinh x [16], hence [19] 

coth 𝑥 =
𝑒𝑥𝑝(𝑥)+ 𝑒𝑥𝑝(−𝑥)
𝑒𝑥𝑝(𝑥)− 𝑒𝑥𝑝(−𝑥) 

( 4.1 ) 

In this case 𝑥 = 𝑗𝜔𝑅!𝐶!, which means that coth 𝑗𝜔𝑅!𝐶! → 1  at high angular frequencies 

and allows the simplification of Zporous to 

lim
!→!

𝑍!"#"$% →
𝑅!
𝑗𝜔𝐶!

 ( 4.2 ) 

By combining the theory for complex numbers [16] 
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1
𝑗 = 𝑒𝑥𝑝(−𝑗

𝜋
2) = 𝑒𝑥𝑝(−𝑗

𝜋
4) 

( 4.3 ) 

with Eulers formula [19] 

𝑒𝑥𝑝(−𝑗
𝜋
4) = cos −

𝜋
4 + 𝑗  𝑠𝑖𝑛 −

𝜋
4  ( 4.4 ) 

the simplified impedance can be written as 

𝑍!"#ø! =
𝑅!
𝑗𝜔𝐶!

=
𝑅!
𝜔𝐶!

𝑒𝑥𝑝(−𝑗
𝜋
4) =

𝑅!
𝜔𝐶!

cos −
𝜋
4 +

𝑅!
𝜔𝐶!

𝑗𝑠𝑖𝑛 −
𝜋
4  ( 4.5 ) 

As can be seen from Eq. ( 4.5 ), the imaginary part, ImZ, is 

𝐼𝑚𝑍 = sin −
𝜋
4

𝑅!
𝜔𝐶!

= −
1
2 2

𝑅!
𝜔

1
𝐶!

 ( 4.6 ) 

The capacitance, CD, can then be expressed as  

𝐶! =
1
2
𝑅!
𝜔

1
𝐼𝑚𝑍!                  ,𝑤ℎ𝑒𝑟𝑒  

1
2
𝑅!
𝜔 = 𝑐𝑜𝑛𝑠𝑡𝑎𝑛𝑡 ( 4.7 ) 

If this holds true, it should be possible to plot an alternative Mott Schottky diagram by 

plotting ImZ4 as a function of potential for porous electrodes and obtain Mott Schottky 

behaviour. 

 

Mott Schottky diagrams for anodized Ti are shown on the left side in Figure 4.23. The 

diagrams are plotted for frequencies 100 kHz, 10 kHz, 1000 Hz and 100 Hz. The alternative 

Mott Schottky diagram is shown on the right side for the same frequencies. The regular Mott-

Schottky diagrams show slightly curved lines without linear areas. The alternative Mott-

Schottky diagram, on the other hand, shows linear areas for both the high and the low 

frequencies. For an angular frequency of 10 kHz the flatband potential for anodized Ti can be 

determined to 0.4 V. 
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Figure 4.23: Mott Schottky (left) and alternative Mott Schottky plot (right) for anodized Ti. 
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5 Simulation	
  of	
  the	
  impedance	
  model	
  

5.1 The	
  computer	
  codes	
  

In order to compare the theoretical model and the real response of a porous electrode, a 

computer code was written. The code is designed to calculate the potential response of a 

porous semiconductor electrode, according to the equations presented in Chapter 2.3.2.  

 

The original code, calculating the Green's function for the Poisson-Boltzmann problem, was 

written by Svein Sunde [2]. During this work, the computer code has been extended to 

include calculation and plotting the dimensionless capacitance, χ.  

 

The computer code consists of several scripts performing different calculations and Table 5.1 

 lists the computer codes that are used to calculate the non-dimensional capacitance, χ, given 

in Eq. ( 2.41 ). The entire code, viz. the main scripts and the function scripts, can be seen in 

Appendix A. 

5.2 Simulations	
  parameters	
  

The impedance model was simulated using MATLAB® from MathWorks Inc[20]. The 

parameters chosen for the simulation are given in this section. 

 

The radius of the TiO2 P25 particles is declared by the producer to be about 21 nm [21]. 

During the experimental work, the particle size for TiO2 was measured to 698.3 nm. The 

model is based on the assumption that the particles or agglomerates are large enough to 

ensure that the Mott-Schottky theory is valid. The width of the depletion region in 

semiconductors can range from 5 - 500 nm[22] and the higher the doping level, the narrower 

the region is. From this it is reasonable to set the radius to 350 nm. The charge carrier density 

for TiO2 is found to range between 1.0 × 1016 - 1.0 × 1020 cm-3 in the literature [23],  and 1.5 

× 1019 cm-3 is reported in[24]. The value of 1.0 × 1016 cm-3 corresponds to a lightly doped 

semiconductor, while 1.0 × 1018 cm-3 is considered heavily doped according to [12]. For the 

simulation of the intrinsic case, n0 and p0 is set to 1.0 × 1016 cm-3.  The value of n0 is set to 

1.0 × 1017 cm-3 in the simulation of the extrinsic case.  For highly doped n-type 

semiconductors, it is reasonable to assume that n0 >> p0 and this means that p0 can be 

neglected [25]. 
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Table 5.1: Overview of the computer codes used to calculate the non-linear solution to the 
Poisson-Boltzmanns problem and calculate the non-dimensional capacitence, χ. 
PBInt_US.m Main script for calculating the non-linear solution, un, as a function of 

the dimensionless, x. Calculates the non-dimensional capacitance, χ as 

a function of the surface potential, us. 

GreenPB.m Multiplies the Green's function, Gw, with the charge density, ρn.  

dGreenPB.m Multiplies the derivative of the Green's function, dGw/dx, with the 

charge density, ρn. 

GPB.m Calculates the Green's function for the Poisson Boltzmann equation, 

Gw.  

dGdxPB.m Calculates the derivative of the Green's function, dGw/dx. 

rhonPB.m Calculates the charge density, ρn. 

rhonPB_u.m Calculates the charge density, ρn(us), as a function of surface potential. 

dGreenPB_u.m Multiplies the derivative of the Green's function, dGw/dx, with the 

charge density, ρn(us). 

rhou.m Calculates the charge density, ρ(us), dependent on surface potential and 

without the correction term.  

dGwrhonPB_u.m Multiplies the derivative of Green's function, dGw/dx and ρn(us). 

Heaviside.m Defines the Heaviside step function. 

 

The dielectric permittivity of TiO2 is found from the literature to around 55 [24] and 60 [26]. 

Here it is set to 60. The temperature is set to room temperature, 298 K. A more orderly 

representation of the parameters is given in Table 5.2 and Table 5.3 for the intrinsic and 

extrinsic case, respectively. The constants needed for the simulation are listed in Table 5.4 

 

Table 5.2 Parameters used in simulation for intrinsic TiO2. 
Parameter Value Unit Reference 

Ra 350 nm See text 

n0 1.0 × 1016 cm-3 See text 

p0 1.0 × 1016 cm-3 See text 

εs 60 - [26], see text 

T 298 K - 
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Table 5.3 Parameters used in simulation for extrinsic TiO2. 
Parameter Value Unit Reference 

Ra 350 nm See text 

n0 1.0 × 1018 cm-3 See text 

p0 0 cm-3 See text 

εs 60 - [26], see text 

T 298 K - 

 

Table 5.4: The constants used in the simulations. 
Constant Value Unit Reference 

e 1.602 × 10-19 C [27] 

ε0 8.85 × 10-12 F/m [27] 

kB 1.38 × 10-23 J/K [27] 

 

5.3 Simulation	
  results	
  

5.3.1 Intrinsic	
  case	
  

The intrinsic case was simulated using the parameters in Table 5.2. The potential distribution 

in the particle, as a function of distance from the center, is shown in Figure 5.1. In this figure, 

surface potentials ranging from -1.2 V to 1.2 are included. The figure contains three types of 

markings. The red markings represent the initial, linear solution to the Poisson-Boltzmann 

problem and the black markings represent the final non-linear solution. The blue lines show 

the iteration steps. The markings are difficult to discern in this presentation and the potential 

change for each iteration step is better illustrated in Figure 5.2. This shows the same kind of 

diagram for a particle size of 100 nm, but here only one surface potential, 1.2 V relative to 

the flatband potential, is presented. The flatband potential corresponds to a surface potential 

of zero. 
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Figure 5.1: The potential distribution as a function of the distance from the center of the 
particle. The particle radius in this case is 350 nm. 
 

 
Figure 5.2: The potential distribution in the particle as a function of distance from the center 
of the particle. The particle radius in this case is 100 nm. 
 

All the following simulations are done using the parameters in Table 5.2. Figure 5.3(a) shows 
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Figure 5.3 (c) shows the linear solution to the Poisson-Boltzmann problem as a function of 

surface potential, while (d) shows the non-linear part of the solution. For surface potentials of 

small absolute value, the non-linear solution changes minimally. As the absolute value of the 

potential increases, the change increases. The sum of the linear and nonlinear part, viz. the 

total solution to the Poisson-Boltzmann problem is shown in Figure 5.3 (e).  

 

The non-dimensional capacitance as a function of surface potential is presented in Figure 5.4. 

This figure shows that the capacitance is near constant, regardless of the surface potential, 

except at the flatband potential. As us → 0 the capacitance approaches zero. Figure 5.5 show 

the Mott-Schottky diagram calculated using the non-dimensional capacitance. The diagram 

shows near constant values for most of the surface potentials. At surface potentials close to 

zero 1/χ2 → ∞.  
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(a) (b) 

  
(c) (d) 

 
(e) 

Figure 5.3: The simulated data for the intrinsic case with the parameters given in Table 5.2. 
(a) The charge density at the surface as a function of surface potential, us. (b) The derivative 
of the charge at the surface as a function of surface potential, us. (c) The linear part of the 
solution of the Poisson-Boltzmann equation, as a function of surface potential, us. (d) The 
non-linear part of the solution to the Poisson-Boltzmann problem. (e) The total solution of the 
Poisson-Boltzmann equation. 
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Figure 5.4: The non-dimensional capacitance, χ, as a function of surface potential, us, for the 
intrinsic case. 
 

 

 
Figure 5.5: The Mott-Schottky diagram plotted using the non-dimensional capacitance for the 
intrinsic case. 
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5.3.2 Extrinsic	
  case	
  

The extrinsic case was simulated using the parameters in Table 5.3 and the resulting data is 

presented here. Figure 5.6 shows the potential distribution as a function of the distance from 

the particle center. The markings in this figure are the same as described for Figure 5.1.  

 

 
Figure 5.6: The potential distribution as a function of the distance from the center of the 
particle for the extrinsic case. The particle radius is 350nm. 
 

Figure 5.7 (a) and (b) shows the charge density and dZ/dx as a function of the surface 

potential, respectively. The linear solution to the Poisson-Boltzmann problem is shown in 

Figure 5.7 (c) and the nonlinear solution is shown in (d). The total solution, du/dx for the 

extrinsic case, is presented in Figure 5.7 (e). 

 

The calculated non-dimensional capacitance is presented in Figure 5.8 and the corresponding 

Mott-Schottky diagram is shown in Figure 5.9. Also in this case, the capacitance is as good as 

constant for all the surface potentials, except us → 0 where the value goes towards zero. Even 

though the values in the Mott Schottky diagram looks like they vary the number on the 

ordinate axis are all the same, which means that the variations are very small.  
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(a) (b) 

  

(c) (d) 

 
(e) 

Figure 5.7: The simulated data for the extrinsic case with the parameters given in Table 5.3. 
(a) The charge density at the surface as a function of surface potential, us. (b) The derivative 
of the charge at the surface as a function of surface potential, us. (c) The linear part of the 
solution of the Poisson-Boltzmann equation, as a function of surface potential, us. (d) The 
non-linear part of the solution to the Poisson-Boltzmann problem. (e) The total solution of the 
Poisson-Boltzmann equation. 
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Figure 5.8: The non-dimensional capacitance, χ, as a function of surface potential, us, for the 
extrinsic case. 
 

 
Figure 5.9: The Mott-Schottky diagram for simulation of the extrinsic case, plotted using the 
non dimensional capacitance. 
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6 Discussion	
  

6.1 Cyclic	
  voltammetry	
  

The recurring challenge when working with powder catalysts it that the substrate is 

interfering or often dominating the measured results completely. This makes it difficult to 

study these types of systems and several support materials were tested in during this work. 

 

The Au-support completely dominates the CV for TiO2 P25, both when Nafion® was mixed 

in the ink before spraying and when it was dripped onto the film after spraying. The catalyst 

loading for the P25 Au N-electrode was 8.43 mg/cm2, which is quite high. The high loading 

was chosen to ensure good coverage and help adhesion to the support. Unfortunately, the 

thickness caused the film to crack and a large area of the support was visible to the 

electrolyte. This was at first suspected to cause the supports dominance. Another concern was 

that the Nafion®, mixed into the ink, might cause direct contact between the electrolyte and 

the support and thereby bypassing the oxide particles in the film. The P25 Au Ntop-electrode 

was made to test this suspicion. The Nafion® was dripped on top of the film to act as a 

binder and protective layer. The catalyst loading for the P25 Au Ntop-electrode was 1.53 

mg/cm2. Studies of the P25 Au Ntop-electrode in the microscope show an apparently dense 

film, without cracks and major holes. Nail polish was used to cover the few holes that were 

found to prevent direct contact between the support and the electrolyte. Despite the new 

manufacture process, the electrochemical measurements performed on the P25 Au Ntop-

electrode reveals about the same degree of interference from the Au-support as the P25 Au 

N-electrode. From this it seems reasonable to assume that the current does not bypass the 

catalyst through the Nafion® in the film. However, it might be possible that the sprayed film 

was dissolved during application of the Nafion® solution in form of droplets. If this is the 

case, Nafion® might have penetrated into the film to generate contact between the electrolyte 

and the support also in this case. This has not been confirmed. 

 

The interference of the Au-support seems to be less for iridium tin oxides. The reason for this 

might be that the iridium tin oxide is more electrocatalytic than both P25 and gold. It is 

therefore hard to distinguish the interference when cycling the electrodes between 0.0 V and 

1.4 V. Au has a very distinctly shaped voltammogram if the anodic turning point is high 

enough to ensure formation of an oxide layer on the surface, and an anodic turning potential 
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of 1.6 V proved to be sufficient. Cycling between 0.0 V and 1.6 V was done after all the 

actual experiments were performed because this kind of treatment can damage the oxide 

films.  The shape of the voltammogram for the bare Au-support corresponds to the 

voltammogram for gold presented by Hamann et al [1]. When comparing the voltammogram 

for Au-support and the Ir0.4Sn0.6O2 Au-electrode, the characteristic peak for Au can be seen in 

both curves. Because of this it is not safe to treat the measured data as a response form the 

oxide catalyst alone. 

 

In an effort to avoid the interference of the support, Ti-plates were tested as a support for 

P25. To eliminate the questions related to the use of Nafion®, electrode films both with and 

without Nafion® were tested. Compared to the heat treated Ti 450-electrode, which is the 

most representative for the electrode supporting the sintered film, the P25 Ti 450-electrode 

behaves somewhat different. The current measured for potentials between 0.0 V and about 

0.2 V is much larger for the sintered film. This indicates that the measured voltammogram is 

primarily a result of the response of the P25. The general shape of the voltammogram for the 

sintered film is similar to the voltammogram for the anodized Ti-electrode. This indicates 

that the sintered film has a structure similar to the anodized Ti. The shape corresponds to 

results reported in the literature [28, 29] for TiO2, with a cathodic peak at about 0.05 V. The 

current measured for the sintered film is larger than the current measured for the anodized 

film, which is only natural since the resistivity of TiO2, formed by anodization, increases with 

the thickness of the film.  

 

ITO was the last support material that was used in the experimental work. For Ir0.25Sn0.75O2 

ITO and especially Ir0.4Sn0.6O2 ITO, the shape of the voltammograms are quite different than 

the voltammogram recorded for bare ITO-substrate. The currents recorded for the oxide 

electrodes are far larger than that recorded for bare ITO. This indicates that the ITO works 

well as a support for the iridium tin oxides with the composition used in this work. It is 

possible that the support influences the measurements to some small degree, in the same way 

Au does, but upon comparison of the voltammogram for Au-support and ITO-support it can 

be seen that ITO is far less electrochemically active. From this it is reasonable to assume that 

the contribution from the support is small enough to be neglected.  
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This is not the case for the titanium oxide films. The voltammograms for bare ITO and P25 

ITO are almost identical in shape and size. This indicates that ITO dominates the 

measurements of the P25 ITO 450-electrode.  

6.2 Electrochemical	
  impedance	
  spectroscopy	
  

The electrochemical impedance measurements performed on P25 with Au-support showed 

behavior indicating that the support interferes with the measurement. The same results were 

seen whether Nafion® was used or not. When a powder catalyst is sprayed onto a planar 

support it is expected, in most cases, that the catalyst film is porous and acts accordingly. 

Hence, the slope for the logarithmic plot of imaginary part of the impedance, ImZ, and the 

angular frequency, ω, is expected to be about -1/2. This is at least expected for the high 

frequency part of the curve, as a porous structure often prevents the signal from penetrating 

to the bottom of the pores. This was not the case for the P25-electrodes where Au was used as 

support. The recorded impedance data is almost identical with the corresponding data for the 

bare Au. All the results point toward the fact that the gold support dominates the 

measurements performed on the P25 films. 

 

For the iridium tin oxides the Au-support seems to be less dominating. Some of the analysis 

shows porous behavior, like the Nyquist diagram for Ir0.4Sn0.6O2. However, other analysis 

proves to be ambiguous, like the Mott-Schottky diagrams for bare Au-support and the 

Ir0.4Sn0.6O2 Au-electrode. The difference is too small to conclude that the data measured for 

Ir0.4Sn0.6O2 represents mainly the oxide. Taking into consideration the cyclic voltammograms 

and the fact that the Au-peak is present in both curves in Figure 1.12, the conclusion is that 

Au cannot be used as a support when examining these oxides. 

 

The logarithmic plot of ImZ as a function of ω for the P25 Ti N-electrode, P25 Ti 450-

electrode and the heat treated Ti-electrode shows that the three electrodes behave in the same 

way. However, the logarithmic plot of ImZ as a function of ω for the anodized Ti-electrode 

shows that the electrode behaves as a planar electrode at low frequencies, where the slope of 

the lines is close to -1. For frequencies higher that 1000 Hz the slope changes to values closer 

to -1/2. The slope varies from -0.598 to -0.776 depending on the direct potential applied 

during the recording of the impedance spectrum. The fact that this electrode shows porous 
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behavior is of great interest with regard to the alternative Mott-Schottky analysis, proposed in 

Chapter 4.6, but this is discussed in Chapter 6.5. 

6.3 Photoelectrochemistry	
  

Photocurrent measurements confirm the semiconductor behavior of all the catalysts used. For 

ITO, which is a high bandgap semiconductor with Eg = 3.5-4.3 eV[30], the unnormalized 

data shows a photocurrent that peaks at 310 nm. This corresponds to a bandgap of 4.0 eV, 

which is well inside the interval given in [30]. The unnormalized data for P25 ITO shows that 

the current peaks at 365 nm, corresponding to Eg = 3.4 eV. This value is slightly higher that 

the expected value of 3.2 eV [31, 32]. The normalized data shows that the current recorded 

during the scan for P25 ITO is about 28 times larger than for bare ITO. Both the ITO-

electrode and the P25 ITO-electrode shows rapid photoresponse. 

 

For Ir0.4Sn0.6O2 on ITO the current peak is not as evident as for ITO and P25 ITO. The reason 

might be that the photoresponse for Ir0.4Sn0.6O2 is found in a previous work[18] to be much 

slower than for the other two electrodes. However, using the wavelengths where the largest 

current was recorded yields a bandgap between 2.7-3.4 eV.   

6.4 Particle	
  size	
  

Particle size measurements were performed for all the three catalytic oxide powders. The 

pretreatment of the powder was the same as before spraying the support. This was done to 

generate measurements that would be representative for the electrodes used in the 

electrochemical experiments.  

 

The particle size declared by the producer of the TiO2 P25, as a typical value, is about 21 nm 

[21]. However, the particle size measured in this project was close to 700 nm. This indicates 

that the sample used in the particle size measurements contains fairly large agglomerates of 

smaller TiO2 particles. The size of the agglomerates could have been reduced by using a 

mortar to grind them down or by increasing the time the sample spent in the ultrasonic bath. 

This was not done because the large agglomerate size is seen as an advantage with regard to 

the analysis of the impedance model. The model assumes particles large enough to sustain the 

space charge region. The measured average agglomerate size of 698.3 nm should be able to 

sustain the space charge region in P25 and with regard to this the system is suited as a 

reference for the simulation of the theoretical model. During the series of measurements the 
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particle size decreased. The reason could be that the large particles settled as the samples 

time in the cuvette increased. 

 

For Ir0.4Sn0.6O2 and Ir0.25Sn0.75O2 the average particle/agglomerate size was measured to 

532.2 nm and 479.6 nm, respectively. These samples comprises of smaller particles or 

agglomerates than the P25. 

6.5 Alternative	
  Mott-­‐Schottky	
  analysis	
  

The alternative method for analyzing the Mott-Schottky behavior of porous electrodes is 

confirmed by the impedance measurements performed on anodized Ti. By plotting the 

original Mott-Schottky plot along side the alternative analysis method the results are striking. 

While the regular Mott-Schottky diagrams show curved lines with no linear parts, the 

alternative diagram derived from the impedance for porous electrodes show straight lines. 

This makes it possible to determine a value for the flatband potential to about 0.4 V, for 

anodized Ti, in the diagram for ω =10 kHz. This angular frequency is well within the area 

that shows porous behavior in the logarithmic plot of ImZ as a function of ω. The diagrams 

representing the other frequencies in Figure 1.22 also show a straight line in the alternative 

Mott-Schottky analysis. 

 

For the electrode films produced by spraying, rather than anodization, the analysis of the 

Mott-Shottky behavior is not possible to perform in a satisfactory way because of the 

interferences from the support material. The material that seems to interfere the least is ITO, 

but the data is still too ambiguous to use as an argument in the discussion about the 

alternative Mott-Schottky analysis. 

6.6 Simulation	
  of	
  the	
  impedance	
  model	
  

The results of the simulations displayed in Chapter 5.3 shows that the potential at the surface 

changes minimally for each iteration step in the calculation. This seems to be the case both 

for intrinsic and extrinsic semiconductors and Figure 5.1 and Figure 5.6 shows this. The 

example for the 100 nm particles in Figure 5.2, shows that the potential in the center of the 

particles (at x = 0) changes considerately more during an iteration step than the surface 

potential. For the larger particles in the extrinsic case, as shown in Figure 5.6, the potential in 

the center is approximately constant and the surface potential seems to be close to constant 
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too. This might indicate that only the potential in the depletion layer is changed during the 

iterations and that the linear solution dominates outside this layer.  

 

The capacitance in the spherical case seems to be relatively constant regardless of the surface 

potential. This results in a Mott-Schottky diagram with similar tendencies, although the 

diagrams in Figure 5.5 and Figure 5.9 gives the impression of relative large differences at 

first glance. It is important to note that all the numbers on the ordinate axis are the same. The 

reason for the near constant capacitance is that dZ/dx and du/dx changes at approximately the 

same rate as the surface potential changes. At this level of analysis, it seems that the spherical 

system is difficult to analyze using a one-dimensional model. 

 

The results from the alternative Mott-Schottky analysis performed on the anodized Ti shows 

that the capacitance is strongly dependent on the surface potential. This indicates that the 

inside of the pores are fairly planar and not spherical as assumed in the impedance model. 

Because of this it cannot be used to confirm the impedance model.  
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7 Conclusion	
  

Cyclic voltammetry and electrochemical impedance measurements performed on the oxide 

electrodes shows that all the support material used in this work, Au, Ti and ITO, interferes 

with the measurements. In some cases the support clearly dominated the results, as for Au, 

and in other the results were inconclusive. The measured data for P25, Ir0.4Sn0.6O2 and 

Ir0.25Sn0.75O2, is therefor not safe to be used as a basis to analyze the impedance model for 

porous semiconductor electrode.  

 

Photocurrent measurements confirm the semiconducting properties of TiO2 P25 and 

Ir0.4Sn0.6O2. 

 

The particle size of TiO2 P25 was measured to 698.3 nm, which means that the titanium 

oxide films made in this work comprised of particles or agglomerates of this size. With 

regard to this, the system should be representative for the impedance model to be analyzed. 

 

The impedance data measured for anodized titanium shows that the oxide film is porous. The 

results also confirm that the alternative Mott-Schottky theory proposed in this work can be 

used to analyze the Mott-Schottky behavior for this electrode film. 

 

Simulation of the impedance model for porous semiconductor electrodes shows that the 

capacitance in electrode films made of spherical particles varies weakly with the surface 

potential. The reason is that the charge density and the potential in the model vary with 

approximately the same rate as the surface potential changes. From this it seems that the 

Mott-Schottky analysis for spherical particles cannot be done using a one-dimensional model. 
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Appendix	
  A:	
  	
  

The	
  computer	
  codes	
  
The computer codes used to simulate the impedance model for porous semiconductor 

electrodes. 

 

PBInt_US.m	
  
%************************************************************************** 
%                                                                         * 
%               SOLUTION OF THE SPHERICAL POISSON-                        * 
%               BOLTZMANN EQUATION BASED ON GREEN'S FUNCTION              * 
%                                                                         * 
%                               Svein Sunde                               * 
%               NTNU, Sem Saelands veg 12, NO-7491 Trondheim              * 
%                           Ver. Dec 9, 2011                              * 
%                                                                         * 
%       Record of revisions:                                              * 
%                                                                         * 
%       Date        Programmer          Description of change             * 
%       ====        ==========          =====================             * 
%      16/2/12    Johanna Hansen        Adding menu to choose type of     * 
%                                       semiconductor and entering start  * 
%                                       conditions                        * 
%      07/3/12    Johanna Hansen        Adding calculation of dZ/dx,      * 
%                                       dU/dx and capacitance, chi        * 
%                                                                         * 
%       References:                                                       * 
%       [1] James P. Keener, Principles of Applied Mathematics.           * 
%           Transformation and approximation,Addison Wesley,              * 
%           Redwood City (CA) (1988)                                      * 
%                                                                         * 
%       Uses:                                                             * 
%       GreenPB.m, dGreenPB.m, GPB.m, dGdxPB.m, rhonPB.m, rhonPB_u.m,     * 
%       rhou.m, dGwrhonPB.m                                               * 
%                                                                         * 
%************************************************************************** 
  
% ---- Defining variables ------------------------------------------------- 
%   alpha       --  For successive under-relaxation 
%   chi         --  Non dimensional capacitance 
%   dGdx        --  Derivative of Green's function 
%   dUdx        --  Derivative of the potential, non-linear 
%   dZdx        --  Derivative of the charge density 
%   e           --  Electron charge, (1.602*10^-19 C) 
%   E0          --  Permittivity of free space, (8.85e-12 F/m) 
%   Es          --  Dielectric constant of the electrode material  
%   fsize       --  Fontsize in figures 
%   ftype       --  Fonttype in figures 
%   Gw          --  Green's function 
%   Gwrhon      --  Product of Greens function and rho_n 
%   itmax       --  Number of iterations 
%   k           --  Non-dimensional k-value  
%   kb          --  Boltzmann's constant, (1,38*10^23 J/K) 
%   KNONDIM     --  Non-dimensional k, square root(N0 +P0) 



 

 

II 

%   n0          --  Concentration of electrons, (1/cm2) 
%   N0          --  N0 = (Ra^2*e^2*n0)/(kb*T*Es*E0) 
%   name        --  File name data 
%   NMESH/nmesh --  Number of data points 
%   p0          --  Concentration of holes, (1/cm2) 
%   P0          --  P0 = (Ra^2*e^2*p0)/(kb*T*Es*E0) 
%   Ra          --  Particle radius, (m) 
%   rhon        --  Charge density, (C/cm2) 
%   rra         --  Particle radius, (nm) 
%   T           --  Temperature (K) 
%   u_1         --  Potential, (V) Linear solution to PB.eq. 
%   UN          --  Potential, (V) Non-linear solution to PB.eq. 
%   UNM1        --  Potential, (V) Linear solution to PB.eq. 
%   Unorm       --  Normalized potential 
%   US          --  Potential at the particle surface, (V) 
%   wn          --  Value of Green's function 
%   wnm1        --  Initial value for next iteration of Green's function 
%   X           --  Non dimensional radius 
%   XNM1        --  Non-dimensional radius 
%   dop         --  Doping concentration for naming figures 
% ------------------------------------------------------------------------- 
  
clear 
clear all 
close all 
close all hidden 
  
global US KNONDIM X UNM1 XNM1 N0 P0 
  
% ---- Simulation for n-type TiO2 ----------------------------------------- 
  
% ---- Set parameters ----------------------------------------------------- 
Ra = 350e-9;                    % Radius of the particles (m) 
n0 = 1e23;                      % Charge carrier density, electrons (1/m3) 
p0 = 0;                         % Density of holes (1/m3) 
Es = 60;                        % Dielectric constant for TiO2 
T = 298;                        % Temperature (K) 
  
% ---- Constants ---------------------------------------------------------- 
E0 = 8.85e-12;                  % Permittivity of free space (F/m) 
e = 1.602e-19;                  % Charge of electron (C) 
kb = 1.38e-23;                  % Boltzmann's constant (J/K) 
  
% ---- Calculating the N0-value -------------------------------------------  
N0 = (Ra^2 * e^2 * n0)/(kb * T * E0 * Es); 
P0 = (Ra^2 * e^2 * p0)/(kb * T * E0 * Es); 
  
% ---- Variables and parameters-------------------------------------------- 
us = -1.2:0.1:1.2; 
US = 0; 
alpha = 0.1; 
NMESH = 100; 
itmax = 20; 
  
% ---- Preallocating arrays------------------------------------------------ 
nmesh = NMESH; 
X = 0; 
XNM1 = zeros(nmesh+1,1); 
UNM1 = zeros(length(XNM1),1); 
UN = UNM1; 
Gwrhon = UNM1; 



 

 

III 

wnm1 = UNM1; 
rhon = UNM1; 
wn = UNM1; 
dGdx = zeros(1,length(XNM1)); 
Gw = dGdx; 
dZdx = zeros(length(us),1); 
dUdx = zeros(length(us),1); 
dUdx_lin = zeros(length(us),1); 
dUdx_nonlin = zeros(length(us),1); 
chi = zeros(length(us),1); 
chi_ms = zeros(length(us),1); 
rhon_u = zeros(length(us),1); 
rho_u = zeros(length(us),1); 
  
% ---- Setting figure properties ------------------------------------------ 
rra = Ra * 1e9; 
psize = num2str(rra); 
if n0 == 1e22 
dop = '1e22m3'; 
elseif n0 == 1e23 
    dop = '1e23m3'; 
elseif n0 == 1e24 
    dop = '1e24m3'; 
elseif n0 == 1e25 
    dop = '1e25m3'; 
elseif n0 == 1e26 
    dop = '1e26m3'; 
end 
  
name = strcat('TEST_10to10_extrinsic_size_',psize,'nm_','n0_p0_',dop); 
  
fsize = 32; 
ftype = 'Times'; 
point = 8; 
lsize = 2; 
  
% ---- Generate figure and calculate non-linear solution ------------------ 
  
hf1 = figure(1); 
axes('FontSize',fsize,'FontName',ftype); 
hold all; 
  
for ius = 1:length(us); % Loop over ius number of surface potentials ------ 
     
    % ---- Calculate non-dimensional k:------------------------------------ 
    KNONDIM = sqrt(P0+N0); 
    k = KNONDIM; 
     
    % Array of US: -------------------------------------------------------- 
    US = us(ius); 
     
    %Initial approximation for unm1:--------------------------------------- 
    for i=1:nmesh+1 
        XNM1(i) = (i-1)/nmesh; 
        if i > 1 
            UNM1(i) = US*sinh(k*XNM1(i))/(XNM1(i)*sinh(k)); 
        else 
            UNM1(i) = US*k*cosh(k*XNM1(i))/sinh(k); %L'H?pital limit  
                                                    %for x -> 0.; 
        end 



 

 

IV 

    end 
     
    u_l = UNM1;                    % Linear solution = homogeneous solution 
     
    norm = 1e30; 
  
    grid off; 
    box on; 
  
    xlabel('Non-dimensional x','FontSize',fsize,'FontName',ftype); 
    ylabel('Potential, U','FontSize',fsize,'FontName',ftype); 
    hold all; 
    plot(XNM1,UNM1,'color','r','marker','*'); 
  
    for i=1:itmax 
         
        for j=1:nmesh+1 
            X = XNM1(j);  % x in the integral over the Green's function 
            if abs(XNM1(j)) > 1.e-6 
                wn(j) = alpha*quad(@GreenPB,0,1)+(1-alpha)*wnm1(j); 
                %Integrate over xi  
                UN(j) = u_l(j) + wn(j)/X;% [1] p. 159 
            else 
                wn(j) = quad(@dGreenPB,0,1);%Integrate over xi. 
                wn(j) = alpha * wn(j) + (1-alpha) * wnm1(j); 
                UN(j) = u_l(j) + wn(j);%See [1] p. 159 and L'Hopital 
            end 
        end 
        plot(XNM1,UN,'color','b'); 
        if min(UN) < max(UN) 
        end 
        if abs(UN'*UN) > 1.e-6 
            norm = sqrt((UN-UNM1)'*(UN-UNM1))/(UN'* UN);  
            %Relative change in this iteration 
        else 
            norm = sqrt((UN-UNM1)'*(UN-UNM1)); 
        end 
        %     pause(1) 
        if norm < 1.e-6 
            %Converged! 
            break 
        end 
%         Unorm(ius,i) = (UN-UNM1)' * (UN-UNM1); 
        UNM1 = UN; 
        wnm1 = wn;%Previous w_{n-1} 
         
    end 
    plot(XNM1,UN,'color','k','marker','o'); 
  
     
    % ---- Calculate the non-dimensional capacitance ---------------------- 
    rhon_u(ius) = rhonPB_u(US); 
    rho_u(ius) = rhou(US); 
    dZdx(ius) = 4 * pi * (rhou(US)); % Here x = 1 (surface) 
    
    dUdx(ius) = (us(ius)*((k*cosh(k)-sinh(k))/(sinh(k))))... 
        - (alpha*quad(@GreenPB_u,0,1)+(1-alpha)*wnm1(j))... 
        + quad(@dGwrhonPB,0,1); 
    dUdx_lin(ius) = (us(ius)*((k*cosh(k)-sinh(k))/(sinh(k)))); 
    dUdx_nonlin(ius) = -(alpha*quad(@GreenPB_u,0,1)+(1-alpha)*wnm1(j))... 
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        + quad(@dGwrhonPB,0,1); 
    
    chi(ius) = dZdx(ius)/dUdx(ius); 
    chi_ms(ius) = 1/(chi(ius))^2; 
     
end 
  
% ---- Saves figure 1 as PDF ---------------------------------------------- 
set(hf1,'PaperPositionMode','auto'); 
saveas(hf1,['Pot_vs_xnm_' name],'pdf'); 
  
% ---- Plots du/dx -------------------------------------------------------- 
hf2 = figure(2); 
axes('FontSize',fsize,'FontName','Times'); 
grid on; 
box on; 
xlabel('Surface potential, u_s','FontSize',fsize,'FontName',ftype); 
ylabel('Total du/dx','FontSize',fsize,'FontName',ftype); 
hold all; 
plot(us,dUdx,'-o','color','k','MarkerSize',point,'LineWidth',lsize); 
  
set(hf2,'PaperPositionMode','auto'); 
saveas(hf2,['dudx_usurf_' name],'pdf'); 
  
% ---- Plots linear part of du/dx ----------------------------------------- 
hf3 = figure(3); 
axes('FontSize',fsize','FontName','Times'); 
grid on; 
box on; 
xlabel('Surface potential, u_s','FontSize',fsize,'FontName',ftype); 
ylabel('Linear part of du/dx','FontSize',fsize,'FontName',ftype); 
hold all; 
plot(us,dUdx_lin,'-o','color','k','MarkerSize',point,'LineWidth',lsize); 
  
set(hf3,'PaperPositionMode','auto'); 
saveas(hf3,['Lindudx_usurf_' name],'pdf'); 
  
% ---- Plots non-linear part of du/dx ------------------------------------- 
hf4 = figure(4); 
axes('FontSize',fsize','FontName','Times'); 
grid on; 
box on; 
xlabel('Surface potential, u_s','FontSize',fsize,'FontName',ftype); 
ylabel('Non-linear part of du/dx','FontSize',fsize,... 
    'FontName',ftype); 
hold all; 
plot(us,dUdx_nonlin,'-o','color','k','MarkerSize',point,'LineWidth',lsize); 
  
set(hf4,'PaperPositionMode','auto'); 
saveas(hf4,['Nonlindudx_usurf' name],'pdf'); 
  
% ---- Plots rho_n as a function of Us ------------------------------------ 
hf5 = figure(5); 
axes('FontSize',fsize','FontName','Times'); 
grid on; 
box on; 
xlabel('Surface potential, u_s','FontSize',fsize,'FontName',ftype); 
ylabel('Charge density, \rho','FontSize',fsize,'FontName',ftype); 
hold all; 
plot(us,rho_u,'-o','color','k','MarkerSize',point,'LineWidth',lsize); 
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set(hf5,'PaperPositionMode','auto'); 
saveas(hf5,['Chardens_usurf_' name],'pdf'); 
  
% ---- Plots capacitance -------------------------------------------------- 
hf6 = figure(6); 
axes('FontSize',fsize','FontName','Times'); 
grid on; 
box on; 
xlabel('Surface potential, u_s','FontSize',fsize,'FontName',ftype); 
ylabel('Non-dimensional capacitance, \chi','FontSize',fsize,... 
    'FontName',ftype); 
hold all; 
plot(us,chi,'-o','color','k','MarkerSize',point,'LineWidth',lsize); 
  
set(hf6,'PaperPositionMode','auto'); 
saveas(hf6,['Cap_usurf_' name],'pdf'); 
  
% ---- Plots MS ----------------------------------------------------------- 
hf7 = figure(7); 
axes('FontSize',fsize','FontName','Times'); 
grid on; 
box on; 
xlabel('Surface potential, u_s','FontSize',fsize,'FontName',ftype); 
ylabel('1/ \chi^2','FontSize',fsize,'FontName',ftype); 
hold all; 
plot(us,chi_ms,'-o','color','k','MarkerSize',point,'LineWidth',lsize); 
  
set(hf7,'PaperPositionMode','auto'); 
saveas(hf7,['MS_usurf_' name],'pdf'); 
  
% ---- Plots dz/dx -------------------------------------------------------- 
hf8 = figure(8); 
axes('FontSize',fsize','FontName','Times'); 
grid on; 
box on; 
xlabel('Surface potential, u_s','FontSize',fsize,'FontName',ftype); 
ylabel('dZ/du','FontSize',fsize,'FontName',ftype); 
hold all; 
plot(us,dZdx,'-o','color','k','MarkerSize',point,'LineWidth',lsize); 
  
set(hf8,'PaperPositionMode','auto'); 
saveas(hf8,['dZdx_usurf_' name],'pdf'); 

	
   	
  



 

 

VII 

GPB.m	
  
%************************************************************************** 
%                                                                         * 
%               GREEN'S FUNCTION FOR THE SPHERICAL POISSON-               * 
%               BOLTZMANN EQUATION                                        * 
%                                                                         * 
%                               Svein Sunde                               * 
%               NTNU, Sem Saelands veg 12, NO-7491 Trondheim              * 
%                           Ver. Dec 9, 2011                              * 
%                                                                         * 
%       Uses: Heaviside.m                                                 * 
%                                                                         * 
%************************************************************************** 
function [Gw] = GPB(x,xi) 
  
    global US KNONDIM X UNM1 XNM1 N0 P0 
  
    k = KNONDIM; 
     
    if abs(xi) > 1.e-6 
        Gw =(cosh(k * (x + xi - 1)) ... 
            - cosh(k * (x - xi - 1))) / (2 * k * xi * sinh(k)) ... 
            - Heaviside(xi - x) * sinh(k * (x - xi)) / (k * xi); 
    else 
        Gw = sinh(k * (x - 1)) / sinh(k) + (1 - Heaviside(x)); 
    end 
return 
end 

rhonPB.m	
  
%************************************************************************** 
%                                                                         * 
%               GREEN'S FUNCTION FOR THE SPHERICAL POISSON-               * 
%               BOLTZMANN EQUATION                                        * 
%                                                                         * 
%                               Svein Sunde                               * 
%               NTNU, Sem Saelands veg 12, NO-7491 Trondheim              * 
%                           Ver. Dec 9, 2011                              * 
%                                                                         * 
%       Uses: interpl.m                                                   * 
%                                                                         * 
%************************************************************************** 
function [rhon] = rhonPB(x) 
  
    global US KNONDIM X UNM1 XNM1 N0 P0 
  
    k = KNONDIM; 
    u = interp1(XNM1,UNM1,x,'spline'); 
     
    rhon = N0 - P0 - N0 * exp(-u) + P0 * exp(u) - k^2*u; 
    rhon = rhon * x^2;%Spherical integration: Multiply with r^2 dr 
return 
end 
 

	
   	
  



 

 

VIII 

GreenPB.m	
  
%************************************************************************** 
%                                                                         * 
%               GREEN'S FUNCTION FOR THE SPHERICAL POISSON-               * 
%               BOLTZMANN EQUATION                                        * 
%                                                                         * 
%                               Svein Sunde                               * 
%               NTNU, Sem Saelands veg 12, NO-7491 Trondheim              * 
%                           Ver. Dec 9, 2011                              * 
%                                                                         * 
%       Uses: GPB.m  rhonPB.m  interpl.m                                  * 
%                                                                         * 
%************************************************************************** 
function [Gwrhon] = GreenPB(xi) 
  
    global US KNONDIM X UNM1 XNM1 N0 P0 
  
    k = KNONDIM; 
    x = X; 
    u = interp1(XNM1,UNM1,xi,'spline'); 
     
    for i=1:length(xi) 
        Gw = GPB(x,xi(i)); 
        rhon = rhonPB(xi(i)); 
        Gwrhon(i) = Gw*rhon; 
    end 
return 
end 

dGdxPB.m	
  
%************************************************************************** 
%                                                                         * 
%               GREEN'S FUNCTION FOR THE SPHERICAL POISSON-               * 
%               BOLTZMANN EQUATION                                        * 
%                                                                         * 
%                               Svein Sunde                               * 
%               NTNU, Sem Saelands veg 12, NO-7491 Trondheim              * 
%                           Ver. Dec 9, 2011                              * 
%                                                                         * 
%       Uses: Heaviside.m                                                 * 
%                                                                         * 
%************************************************************************** 
function [dGdx] = dGdxPB(x,xi) 
  
    global US KNONDIM X UNM1 XNM1 N0 P0 
  
    k = KNONDIM; 
     
    if abs(xi) > 1.e-6 
        dGdx = (sinh(k * (x + xi - 1)) ... 
               - sinh(k * (x - xi - 1))) / (2 * xi * sinh(k)) ... 
               - Heaviside(xi - x) * cosh(k * (x - xi)) / xi; 
    else 
        dGdx = k * cosh(k * (x - 1)) / sinh(k); 
        % Note that the integral of a delta-function x charge density must  
        % be added explicitely outside this routine 
    end 
return 
end  



 

 

IX 

dGreenPB.m	
  
%************************************************************************** 
%                                                                         * 
%               GREEN'S FUNCTION FOR THE SPHERICAL POISSON-               * 
%               BOLTZMANN EQUATION                                        * 
%                                                                         * 
%                               Svein Sunde                               * 
%               NTNU, Sem Saelands veg 12, NO-7491 Trondheim              * 
%                           Ver. Dec 9, 2011                              * 
%                                                                         * 
%       Uses: dGdxPB.m, rhonPB.m, interpl.m                               * 
%                                                                         * 
%************************************************************************** 
function [dGdxrhon] = dGreenPB(xi) 
  
    global US KNONDIM X UNM1 XNM1 N0 P0 
  
    k = KNONDIM; 
    x = X; 
    u = interp1(XNM1,UNM1,xi,'spline'); 
     
    for i=1:length(xi) 
        dGdx = dGdxPB(x,xi(i)); 
        rhon = rhonPB(xi(i)); 
        dGdxrhon(i) = dGdx*rhon; 
    end 
return 
end 

rhonPB_u.m	
  
%************************************************************************** 
%                                                                         * 
%               GREEN'S FUNCTION FOR THE SPHERICAL POISSON-               * 
%               BOLTZMANN EQUATION                                        * 
%                                                                         * 
%                               Svein Sunde                               * 
%               NTNU, Sem Saelands veg 12, NO-7491 Trondheim              * 
%                           Ver. Dec 9, 2011                              * 
%                                                                         * 
%         Date      Programmer          Description of change             * 
%         ----      ----------          ---------------------             * 
%       26/05/12  Johanna Hansen        Calculate as a function of        * 
%                                       surface potential instead of      * 
%                                       potential u(x)                    * 
%                                                                         * 
%************************************************************************** 
function [rhon_u] = rhonPB_u(us) 
  
    global US KNONDIM X UNM1 XNM1 N0 P0 
     
    k = KNONDIM; 
     
    rhon_u = N0 - P0 - N0 * exp(-us) + P0 * exp(us) - k^2*us; 
return 
end 
  



 

 

X 

dGreenPB_u.m	
  
%************************************************************************** 
%                                                                         * 
%               GREEN'S FUNCTION FOR THE SPHERICAL POISSON-               * 
%               BOLTZMANN EQUATION                                        * 
%                                                                         * 
%                               Svein Sunde                               * 
%               NTNU, Sem Saelands veg 12, NO-7491 Trondheim              * 
%                           Ver. Dec 9, 2011                              * 
%                                                                         * 
%       Record of revisions:                                              * 
%                                                                         * 
%       Date        Programmer          Description of change             * 
%       ====        ==========          =====================             * 
%      07/3/12    Johanna Hansen        Changing scrifp to use rhonPB_u.m * 
%                                       instead of rhonPB.m               * 
%                                                                         * 
%       Uses: GPB.m, rhonPB_u.m                                           * 
%                                                                         * 
%************************************************************************** 
function [dGdxrhon] = dGreenPB_u(xi) 
  
    global US KNONDIM X UNM1 XNM1 N0 P0 
  
    k = KNONDIM; 
    us = US; 
    x = X; 
    rhon = rhonPB_u(us); 
     
    for i=1:length(xi) 
        dGdx = dGdxPB(x,xi(i)); 
        dGdxrhon(i) = dGdx*rhon; 
    end 
return 
end 

rhou.m	
  
%************************************************************************** 
%                                                                         * 
%               GREEN'S FUNCTION FOR THE SPHERICAL POISSON-               * 
%               BOLTZMANN EQUATION                                        * 
%                                                                         * 
%         Date      Programmer          Description of change             * 
%         ----      ----------          ---------------------             * 
%       26/05/12  Johanna Hansen         Original code                    * 
%                                                                         * 
%************************************************************************** 
function [rho_u] = rhonPB_u(us) 
  
    global US KNONDIM X UNM1 XNM1 N0 P0 
     
    k = KNONDIM; 
     
    rho_u = N0 - P0 - N0 * exp(-us) + P0 * exp(us); 
return 
end 
  



 

 

XI 

dGwrhonPB_u.m	
  
%************************************************************************** 
%                                                                         * 
%               GREEN'S FUNCTION FOR THE SPHERICAL POISSON-               * 
%               BOLTZMANN EQUATION                                        * 
%                                                                         * 
%         Date      Programmer          Description of change             * 
%         ----      ----------          ---------------------             * 
%       26/05/12  Johanna Hansen         Original code                    * 
%                                                                         * 
%************************************************************************** 
function [dGwrhon] = dGwrhonPB_u(xi) 
  
    global US KNONDIM X UNM1 XNM1 N0 P0 
    
    us = US; 
    rhon = rhonPB_u(us); 
          
    for i=1:length(xi) 
        dGwdx = dGdxPB(1,xi(i)); 
        dGwrhon(i) = (dGwdx * rhon) * (xi(i))^2; 
    end 
return 
end 
 

Heaviside.m 
function [Heaviside] = Heaviside(x) 
%Heaviside's step function 
    if x <= 0 
        Heaviside = 0; 
    else 
        Heaviside = 1; 
    end 
end 
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