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Summary
This report describes the development of a simulation-based optimisation algorithm for

solving a maritime fleet size and mix problem. The problem in question is a platform sup-

ply problem, identifying minimum cost fleets for reliably serving a number of offshore plat-

forms from an onshore base. The simulation model for evaluating the different fleet com-

positions was provided by SINTEF Ocean through the ArcticLog-project, and it was treated

as a black box.

A literature review was performed, covering solution methods for optimisation problems

utilising simulation evaluation; (i) Mathematical Programming based methods, (ii) Direct

Search methods and (iii) Simheuristics. The suitability of the different concepts was exam-

ined, with emphasis on flexibility and intuitiveness. Concept (iii) was selected; establish-

ing an approximate analytic model for quick solution evaluations, and a combination of a

Nested Partitions algorithm and a Genetic Algorithm directing the search process. Optimal

Computing Budget Allocation, Intensification, and Variance Reduction Techniques were

added to improve solution method efficiency.

The solution method was tested for several different cases, with varying mission sizes, the

lists of possible vessel concepts, the number of platforms, and the characteristics of both

the base and platforms. The results were promising; good solutions were found quickly,

and the computation time increased linearly with respect to all relevant parameters. Also,

the method was found to be flexible and intuitive. Thus, it can easily be applied to a range

of problem variations, serving as a practical decision support tool.

Global convergence for the solution method was not proven, and no optimistic bound was

established. Therefore, addressing these issues is recommended for further work. In addi-

tion, a more comprehensive assessment should be conducted on the effect of the different

choices made in the implementation, and the usefulness of the solution method compared

to other methods.
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Sammendrag
Denne rapporten beskriver utviklingen av en simuleringsbasert optimeringsalgoritme som

skal løse problemet med å finne sammensetningen til marine flåter. Det aktuelle prob-

lemet gjelder forsyning av oljeplattformer, hvor målet er å finne den flåten som, til lavest

mulig kost, kan forsynet et antall plattformer fra en base på land. Simuleringsmodellen

som brukes for å evaluere de ulike flåtesammensetningene er utviklet av SINTEF Ocean,

og den ble behandlet som en "svart boks".

En litteraturstudie ble gjennomført. Den dekket løsningsmetoder for optimeringsprob-

lemer som bruker simulering som evalueringsmetode; (i) Metoder basert på Matematisk

Programmering, (ii) Metoder basert på direkte søk, og (iii) Simheuristikker. De ulike kon-

septene ble vurdert etter hvor godt de egnet seg til problemet, med fokus på hvor fleksible

og intuitive de var. Konsept (iii) ble valgt. En tilnærmet analytisk modell ble laget for raske

evalueringer av løsninger, og en kombinasjon av en Nestede Partisjoner-algoritme og en

Genetisk Algoritme ble brukt til å dirigere søket. Optimal Computing Budget Allocation,

intensivering og teknikker for varinse-reduksjon ble lagt til for å forbedre effektiviteten til

løsningsmetoden.

Løsningsmetoden ble testet for flere ulike problem-variasjoner, med varierende opp-

dragsstørrelser, lister med mulige fartøyskonsepter, antall plattformer, og karakteristikker

hos både basen og plattformene. Resultatene var lovende: Gode løsninger ble raskt funnet,

og regnetiden økte lineært i forhold til alle relevante parametre. I tillegg viste metoden seg

å være både fleksibel og intuitiv. Metoden kan derfor enkelt benyttes i en rekke variasjoner

av problemet, og fungere som et praktisk beslutningsstøtteverktøy.

Global konvergens ble ikke bevist for løsningsmetoden. Noen optimistisk grense ble heller

ikke etablert. Det anbefales å se nærmere på disse utfordringene, som videre arbeid. I

tillegg bør det gjennomføres en mer omfattende vurdering av effekten av de ulike valgene

som ble tatt under implementeringen, og nytten ved metoden i forhold til andre metoder.
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Chapter 1
Introduction

In this chapter an explanation is given as to what the purpose of this report is, and why it

is worth pursuing. First, the background and motivation is given. Then a presentation of

the state of the art methodologies follows, before the thesis objective is presented. Finally,

there is a short description of the report structure.

Background and Motivation

Ever since the computer’s entry into scientific research, engineers and scientists have been

able to analyse the behaviour of systems using simulation models. The computers make it

possible to generate great quantities of pseudorandom numbers, which is necessary to pre-

cisely imitate the randomness of real systems. Three features make simulation very useful

both in business and science: (i) The real-world response of concepts and solutions may be

closely estimated at a fraction of the cost of an actual experiment. (ii) Adequately precise

simulation models may be constructed in a relatively short time. (iii) Experiments covering

several years in the real world may be performed in a matter of seconds on a computer.

Before the era of simulation-based optimisation, simulation was not considered an opti-

misation technique, despite its ability to quickly and precisely evaluate possible problem

solutions. At the time, a common approach was to simulate a number of predetermined

1



Chapter 1. Introduction

system configurations and optimise in the way of choosing the configuration that appeared

to provide the best performance (Koenigsberg and Lam, 1976). This approach is still used,

especially on small, simple systems. For large, complex systems, this could be a tedious

and inconvenient method.

The explosive increase in computational power has led to computers being able to simulate

ever more complex systems (Lucas et al., 2015). The last decades have seen the computa-

tional power of computers reaching a level where most practical problems may be simu-

lated to an adequate level of detail and precision, in a reasonable amount of time (Sanchez

and Wan, 2011). Following this trend, over the past decades there has been a comprehen-

sive development in the field of solution methods for optimisation problems utilising sim-

ulation for solution evaluation. There are both "old" methods, initially intended for mathe-

matical programming, which have been modified to function with simulation models, and

new methods, developed especially to work in combination with simulation models Gosavi

(2015).

Optimisation may provide great benefits in terms of increased performance and savings

of resources, but in order for this to happen the results have to be accepted and applied

by the decision makers. Two aspects are important in this regard; the results must be

sufficiently certain, and the decision maker must feel confident in the validity of the re-

sults (Larson et al., 1991). For complex, stochastic problems traditional methods fall short

in both respects (Fagerholt et al., 2010). Stochastic aspects are not treated properly, and

the Mathematical Programs (MP) quickly become so intricate that even the developer may

have a hard time explaining the outputs. Decision makers are not willing to implement

big changes based on the results of a black box. Simulation-Optimisation(S-O) has the

potential to "solve" both these problems. In addition to accurately imitating the system

of interest, simulation provides the possibility to verify the reasonableness of each solu-

tion; this process may even be supported by visualisations and graphs. If the associated

optimisation algorithm is constructed so that the search process is intuitive, and easy to

understand for the decision maker, the solution method may be widely applied even by

companies with no expertise on the field.

An example of problems which are extremely complex to solve using analytic modelling is

the maritime transportation problem of the Arctic Offshore Logistics(ArcticLog) project, of

2



SINTEF Ocean (Eskandari and Mahmoodi, 2016). The primary objective was to find safe,

cost-effective and environmental friendly solutions for Arctic logistics which make it pos-

sible to realise field development in the high north. The project was started in 2015 as a

collaboration between SINTEF Ocean, Statoil ASA, NTNU, Vard Design AS and Troms Off-

shore Management AS. A result of the project was the development of a simulation model,

which allows for the evaluation of different logistics systems with respect to uncertain and

changing conditions, such as weather and carriage needs. Building a search method on top

of this simulation model, will meet the objective of the project, and if made intuitive it will

also fulfil the potential of S-O (Chica and A. Juan PPrez, 2017).

The oil & gas industry is renowned for large investments and a high cost level. The problem

of providing transportation of cargo and people to and from the offshore installations, is no

exception. The difference between an acceptable and a good logistics solution could be in

the order of millions of dollars a year. One concern is the operational costs, another is the

costs entailing an unplanned production shut-down as a result of inadequate reliability.

State of the art

Today, there are three prominent strategies for solving optimisation problems which must,

or should, incorporate simulation evaluation for adequate solution verification. The first

is based on the combination of simulation and MP. The search process is conducted by

a MP, and the simulation model is employed only to retrieve the true performance of the

selected solutions. This methodology presupposes that a sufficiently precise MP may be

constructed for the current problem. Examples of this solution method in the maritime

sector is given by Fagerholt et al. (2010), and Halvorsen-Weare and Fagerholt (2011). A

drawback of this approach is that for complex problems, the MP may only solve a simplified

version of the problem, yielding uncertainty of the actual goodness of the solution with

regards to the real problem. Also, this method does not coincide with the intuitive nature

of the simulation model.

Another methodology is that of employing discrete heuristics with solution evaluation

through simulation models. For small problems this may mean using ranking and selec-

tion, of which there are several examples of marine application; Larson (1988), and Larson
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et al. (1991). However, for problems with larger solution spaces where an exhaustive is im-

practical, more sophisticated metaheuristics may be used (Gosavi, 2015), (Fu, 2015). The

search of these methods is directed and verified by simulation evaluations. That is, sam-

pling and comparison of the performance of the different solutions is the basis for the de-

velopment of the search process. Although the solution process may be intuitive and easy

to follow, this is not certain, and the methods give no guarantee for finding the optimal so-

lution, or establishing an optimistic bound, within reasonable time. In addition, because

all knowledge of the solution space originates from simulation samples, many samples are

needed which in turn takes a lot of time. However, this methodology is well suited for prob-

lems where the user knows little about the solution space in advance.

The third approach is to develop an analytic model which is used as an alternative to the

simulation model for a portion of the evaluations. A metaheuristic is employed to perform

the search, and the evaluations alter between the analytic model and the simulation model.

This methodology presupposes that the user has some knowledge of the solution space in

advance, making the analytic model able to return evaluations which direct the search in

a way congruent with that of the simulation model. Examples of theory on this approach

is provided by Juan et al. (2015), and Figueira and Almada-Lobo (2014). While this method

also does not guarantee optimality within reasonable time, it may save significant compu-

tation time compared to the pure simulation evaluation method.

Thesis objective

The thesis objective is to construct a solution method for solving the main objective of

the Arctic Offshore Logistics project; to find safe, cost-effective and environmental friendly

solutions for Arctic logistics which make it possible to realise field development in the high

north. The solution method is to be based on S-O and will utilise the ArcticLog simulation

model. The solution method shall find good solutions within reasonable time. Also, the

solution method must be intuitive and flexible, in order to be practical to use as a decision

support tool. The hope is that the introduction of S-O methods greatly will benefit the

industry, and that the findings of this report is a small contribution in that direction.
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Report structure

In chapter 2, the problem at hand is thoroughly described, and classified. In chapter 3,

relevant literature is studied to review and evaluate different solution methods to the pre-

viously described problem. Through Chapter 4 the big decisions on the structure and com-

ponents of the algorithm are made, then in Chapter 5 the details are set and the algorithm

is implemented. The preparation of the experiments are described in Chapter 6, followed

by a presentation of the results. Outputs and results are discussed in Chapter 7, before

the conclusion is presented in Chapter 8. Chapter 9 is dedicated to recommendations for

further work.
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Chapter 2
Problem Definition

In this chapter a detailed description is given of the Arctic Logistics problem. In Section

2.1 the system will be defined, and all relevant system components will be presented. In

Section 2.2 the ArcticLog simulation model is presented; the interface, and how it is to be

treated in this report. Finally, in Section 2.3 the problem is classified, facilitating for the

construction of an effective solution method.

2.1 System Description

In this section, the specific transportation system in question will be described in detail.

That is, the problem of Arctic logistics, covering transportation of cargo and people to and

from the offshore installations. The system is divided into three parts; (i) perpetual entities,

(ii) temporary entities and (iii) the environment. The perpetual entities stay within the

system throughout the period of the analysis. The temporary entities are generated and

terminated within the course of the analysis. Finally, the environment is the backdrop for

the events in the system, ultimately having an effect on every aspect of the operations and

behaviour of the entities.
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2.1.1 Perpetual Entities

The base is an onshore location at which cargo enters the system, and vessels may load

this cargo for transportation to the platforms. The characteristics of the base may be de-

tailed to any level but restricting it to what is necessary for the evaluation of the system,

the included parameters are as shown in Table 2.1. In the simulation model the base is

set to Hammerfest in Norway, yielding the presented coordinates. The port capacity deter-

mines how many ships which can load at the same time, affecting the build-up of a queue.

Opening hours for the helicopters indicates when they are allowed to take off, while, for

the ships, it indicates legal hours for starting the loading. The location is used to calculate

the distance to the platforms, and the loading rates determines how long the ships must

stay in port. The loading time of pax is assumed to be negligible. The base is open only at

certain hours for the different operations, as described in Table 2.1. The layout of the input

file may be seen in Appendix A.1.

Table 2.1: Parameters defining the base in the simulation model, with the actual values used.

Parameters Value Notation
Port capacity 1 Ship
Open heli (take off) 0700 - 1900 Hours
Open ships(load start) 0900 - 1400 Hours
Location 70.7, 23.7 deg N,E
Bulk load rate 120 tons/hour
Decl load rate 100 m2/hour

The platforms are the consumers of the cargo transported by the vessels. Every platform

has a unique set of characteristics, with the principal differences being the location and

the cargo demands. Other defining sizes are the loading rates, the type of platform, the

age of the platform, the function of the platform, and so on. The relevant characteristics

included in the simulation model are presented in Table 2.2. "Add turn time" is additional

time spent at a platform, beyond the time needed to unload cargo.
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Table 2.2: Parameters defining an offshore installation in the simulation model, with example values.
The layout of the input file defining all platforms may be seen in Appendix A.2.

Parameters Value Notation
Location 72, 23 deg N,E
Bulk load rate 100 tons/hour
Deck load rate 50 m2/hour
Add turn time 1 Hour

The vessels transport cargo and people to and from the platforms. When running the sim-

ulation, the fleet size and mix is predefined by a list of vessel concepts and a vector which

indicates the number of vessels of each type in the fleet, see Appendix A.2. The characteris-

tics of a vessel, which is of interest in the simulation model, is restricted to those displayed

in Table 2.3. Three different sized lists of vessel concepts, including all of these parame-

ters, may be seen in Appendix A.1. When constructing a candidate fleet, the current list, of

either 10, 21 or 42 vessel concepts, restricts the options. The vessels are divided into two

categories, P and H. Type P must follow a predefined round tour route visiting every plat-

form. Type H travels directly from the base to the platform of choice and then back to the

base. The routes are illustrated in Figure 2.1, where P types must follow the blue line, and H

types follow the green lines. Dayrate and fuel consumptions, are used to compute the costs

of each vessel. Speed and capacities are used to determine the behaviour of the vessel, and

thus how much it can transport in a given time period. The significant wave heights decide

whether the vessel may operate or not.

Table 2.3: Parameters defining a vessel concept in the simulation model, with example values.

Parameters Value Notation
Vessel category P -
Dayrate 25 000 $
Fuel cons norm 10 tons/day
Fuel cons stdby 5 tons/day
Fuel capacity 2000 tons
Speed 15 knots
Bulk capacity 1200 m3

Deck capacity 600 m2

Pax capacity 30 people
Max Hs (cargo/pax) 4/2 m
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2.1.2 Temporary Entities

For this transportation system, the temporary entities naturally include what is being trans-

ported. For simplicity the cargo is divided into three groups; bulk, deck and pax. It is as-

sumed that cargo spaces may not be used for more than one type of cargo, and that all

cargo of the same type may utilise all that cargo space. Another temporary entity of special

interest is fuel for the vessels, because of its limiting effect on the operations of a vessel.

While the user may determine the average weekly demand for the different types of cargo,

there is substantial stochasticity and variation in the demands for each week, see Appendix

D. The layout of the input file may be seen in Appendix A.1.

Bulk cargo is cargo which is filled into tanks, usually under the deck of a platform supply

vessel(PSV). This may be oils for greasing equipment, solutions needed for extraction, or

other fluids or dry cargo consumed on the platform. The weekly demands may be in the

range of 100-10 000m3, depending on the number, sizes and types of platforms.

Deck cargo is cargo which is placed on the deck of the PSV. Usually equipment, materials,

big objects, containers, or pallets. All kinds of things, from spare parts to food. The weekly

demands may be in the range of 100-10 000m2. Deck cargo cannot be stacked.

People are transported when there is a change of crew, or visitors, inspectors, or specialists

are needed. A person has to be carried both ways, one person one way is a pax. The weekly

demands may be in the range of 10-500pax.

2.1.3 Environment

Everything not already mentioned, which affects the behaviour of the system, is part of the

environment, presented in Table 2.4. The weather greatly affects the operations, likewise

the waves and phenomena such as fog. These are also among the most important stochas-

tic elements of the system, in addition to the cargoes. In the simulation, historical data

are used to provide realistic conditions, and the number of fog days per year may be set

independently by the user, if desired. Geography also plays a significant role, determining

where ships may sail. Finally, external market factors have an effect on the system, the oil

price being one that is included in the model. The layout of the input file may be seen in
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Appendix A.1. The duration of the simulation may be set, as "Number of days". For the rest

of the report, "Number of days" is set to 100. The number of realisations per solution is also

set by the user and will vary in this report.

Table 2.4: Parameters defining the environment in the simulation model, with example values.

Parameters Value Notation
Start day 1 days
Start month 5 month
Number of days 100 days
Fog days 0 days
Number of simulations 100 simulations
Sea margin 10 %
Weather data "filename" historical

Figure 2.1: Conceptual illustration of the transportation system. The perpetual entities are contained
inside the system, while the operations are affected by external factors and temporary entities.
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2.2 Simulation Interface

The ArcticLog simulation model being treated as a black box means that it is fed with infor-

mation, and then a result is returned. How the simulation model works, and any attempts

at changing it, is beyond the scope of this thesis. The inputs are; (i) DataSet1.xlsx, previ-

ously referred to as "the input file", containing all information about the system, and (ii)

ConceptsFile.xlsx, containing fleet concepts. The simulation model also has a third input

file, determining the weather, but it is irrelevant as an input since it will stay unchanged

during this report.

Figure 2.2: The inputs and output of the simulation model. DataSet1.xlsx may be seen in Appendix
A.1. ConceptsFile.xlsx may be seen in Appendix A.2. ConceptsFile_solution.csv may be seen in Ap-
pendix B.4.

The simulation model may evaluate any number of fleets at the same time, exposing them

to the same set of realisations. Loading the input files, running the simulation, and saving

the outputs must be done manually. The performance measures covered in the evaluation,

that is the values returned by the simulation model, are as follows:

• Total cost = Ship cost + Helicopter cost.

• Ship cost = Charter and voyage costs for all ships.

• Helicopter cost = Charter and flight costs for all helicopters.

• Deck cargo lifted = M2 of deck cargo lifted per week, on average.

• Deck cargo waiting = M2 of deck cargo that had to wait 48 hours or more.

• Bulk cargo lifted = M3 of bulk cargo lifted per week, on average.
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• Bulk cargo waiting = M3 of bulk cargo that had to wait 48 hours or more.

• Pax lifted = Number of persons lifted per week, on average.

• Pax waiting = Number of persons that had to wait 48 hours or more.

2.3 Classification

The system presented in this chapter facilitates for the evaluation of a great variety of sys-

tem configurations and changes. The change of any set of parameters presented in Section

2.1 may be evaluated with respect to the outputs presented in Section 2.2. Based on this

functionality, the main objective of the ArcticLog project will be defined as follows, in this

thesis: To find the cheapest transport solution which performs above some threshold with

regard to each of the three cargo types. This means that for any given system configuration

and possible vessel concepts, the fleet composition is to be found which accumulates the

least costs during the period of interest, and transports a satisfactory amount of cargo, a

traditional Maritime Fleet Size and Mix Problem (MFSMP). Since this is a stochastic prob-

lem, the threshold performance is given by a probabilistic measure, as presented in Equa-

tion 2.2. This also applies to the cost, as presented in Equation 2.1.

The problem may be expressed as follows, freely adopted from Juan et al. (2015):

Mi n f (s) = E [C (s)] (2.1)

Subject to:

P (qi (s) ≥ li ) ≥ ki ∀i ∈ I (2.2)

s ∈S (2.3)
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Where:

• S represents a discrete, non-negative space of possible solutions s to the optimisa-

tion problem, which may contain upper boundaries.

• C(s) represents a stochastic cost function of indefinable structure.

• E[C(s)] represents a probabilistic measure of interest associated with the cost func-

tion - f.ex. the 95th percentile value.

• Equation 2.2 states that the probability that the service quality qi(s) reaches a given

threshold li must be above a user-defined value ki

• I is the set of cargo types; bulk, deck and pax.

Optimisation problems may be classified into different groups based on various character-

istics. The group to which the problem belongs decides what types of algorithms that are

best suited to solve it. Some useful ways to sort the problems are: Continuous vs. discrete,

stochastic vs. deterministic, parametric vs. control and linear vs. non-linear.

The problem to be solved by the solution method developed in this thesis is that of deter-

mining the number of vessels of each possible concept that is to be included in the opti-

mal fleet. This means that all aspects of the system components, as given in the previous

section is given for the problem. Consequently, the decision variables are constrained to

positive integers, because the number of vessels may not be negative, nor fractional. Fur-

thermore, the problem is parametric as opposed to being one of control, because the sys-

tem is static while certain parameters are adjusted for optimising for an objective (Gosavi,

2015). Stochastic elements, most notably regarding weather conditions and cargo, makes

the problem stochastic. The final classification of importance is that of linearity. Elements

such as congestion of vessels at the base, and the limited, stochastic amount of cargo ar-

riving at each time step, makes the problem non-linear.

Objective function

Normally, when solving optimisation problems, there is a well-defined function describing

the relation between the fitness of a solution and the values of its decision variables. This
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objective function is of great help when searching for the optimal solution. If it is impossi-

ble, for some reason, to establish an analytic representation of the objective function for the

problem in question, this eliminates the possibility of using common MP methods. Also,

in the case of non-linear, combinatorial problems, there is generally no guarantee of find-

ing the optimal solution without sampling the entire solution space. The true fitness of a

solution may only be established through simulation, and stochasticity means that several

different realisations must be simulated to establish a certainty about the performance.

Solution space

The solution space holds all possible solutions to the problem. Initially, the solution space

goes from 0 to positive infinity, for every vessel concept. However, realistically, it is easy to

restrict the solution space to finite maximum values. Even having only the slightest knowl-

edge of the problem, one will probably know what a suitable order of magnitude for the

maximum value is. For the problem discussed in this report a maximum value for each

vessel concept of 100 would be plenty. For most of the cases described here, even 10 is

sufficient. The number of dimensions in the solution space corresponds to the number of

different vessel concepts, which, in this report, is set to either 10, 21 or 42, as described

earlier (Appendix A.1). This results in a solution space of at least 1110, and maximum 10142

solutions, which makes this a large solution space (Gosavi, 2015).

To conclude: A solution method is to be constructed for solving a discrete, stochastic, para-

metric and non-linear optimisation problem with no analytic expression for the objec-

tive function and a large solution space, with evaluation through the ArcticLog simulation

model.
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Chapter 3
Literature Review

This chapter serves as the first step of the solution method construction process. The

purpose of the chapter is to review relevant literature to establish an understanding of

which methods that are normally used, and what the cutting edge of research is, when

solving a problem of the type presented in Chapter 2. In the construction of the solution

method, these reviews will serve both as guidance when implementing established meth-

ods, and as inspiration where creativity is necessary. The literature review is divided into

three parts covering different approaches for optimising problems with simulation evalua-

tion; MP based methods(Section 3.1), Direct search methods (Section 3.2), and Simheuris-

tics(Section 3.3). The literature study is, to a large extent, based on the extensive reviews

and work of Hoff et al. (2010), Pantuso et al. (2014), Figueira and Almada-Lobo (2014),

Gosavi (2015) and Amaran et al. (2017). The chapter is concluded with some final remarks.

3.1 Mathematical Programming Based Methods

In this section, some examples of the application and evaluation of MP based methods

are presented. These methods combine mathematical programming and simulation in

some way, mostly either to quickly search the solution space for promising areas or to select

solutions which are then simply accepted or discarded by the simulation model. Most of
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the examples are from the maritime sector.

Bausch et al. (1998) Generates a deployment schedule covering 2-3 weeks, with hourly pre-

cision, within a couple of minutes. For bulk shipping. Demands and supplies are forecast.

A decision support tool for the dispatcher. "The system must be user friendly". "The sys-

tem must operate on a personal computer". Uses simulation to find all possible schedules

for each ship, and then runs an optimiser to select the optimal, minimum cost, solution.

Making sure that each ship is assigned to at most one schedule, and that all loads are trans-

ported. Applying this technique to a selection of possible vessels to charter, and extending

the time horizon, would make it possible to apply to strategic MFSMPs.

Vis et al. (2005) Developed a Mixed Integer Problem (MIP) to minimise the fleet of vehicles

needed for transporting transhipment containers from one buffer area in port, to another.

Every container is given a transportation start time window. To validate the solutions of

the MIP, they are simulated under various conditions. They found that the MIP gave results

close to those of the simulations.

Imai and IV (2001) presents an analytic and a simulation model for determining the num-

ber of refrigerated containers a company should own, and how many to lease, in order to

minimise costs. In the analytic model they assumed a constant cargo demand, for both

a balanced and an unbalanced trade. In the case of the company in question, a constant

demand is unlikely, therefore a simulation model was proposed. After running simulations

for five different demand profiles and five different own fleet sizes, the resulting graphs

were compared with the conclusion of what fleet size that incurred the lowest costs, given

each demand pattern. Adding the knowledge of the probability of each demand pattern,

the expected cost of each fleet size was calculated.

Halvorsen-Weare and Fagerholt (2011) solves the supply vessel planning problem by a

combination of integer programming (IP) and simulation. Possible schedules are con-

structed, for periods of a week, by the mathematical program, then they are tested for ro-

bustness in different weather conditions in a simulation model. Using several approaches

to reward robustness, they achieved a predicted cost saving of 3% compared to the previous

solution method.
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Fagerholt et al. (2010) combined optimisation and simulation to develop a methodology

for solving strategic planning problems in tramp and industrial shipping. The idea is that

the shortcomings of optimisation, with regard to stochasticity, and those of simulation,

with regard to short term decisions such as routing and scheduling, will be overcome by

combining the methods. The effect of strategic decisions is tested through a rolling hori-

zon Monte Carlo simulation, where a solver makes the optimal routing decisions for the

current horizon. The methodology is divided into four steps; (i) determining a set of strate-

gic decisions, (ii) creating a set of scenarios, (iii) evaluating each decision in each scenario

through simulation and (iv) analysing the results. A short-term scheduling optimisation is

performed for each horizon in the simulation. A feedback loop is placed between (i) and

(iv), leading to investigations of alternative strategic decisions if necessary.

Alvarez et al. (2011) Present a solution method for robust fleet sizing and deployment in

bulk shipping. They developed a MIP model to solve the deterministic problem, and then

the performance of the solutions was explored by "simulated realisations of the uncertain

parameters."

Matta (2008) Investigates different mathematical programming approaches to represent

discrete event systems. This includes both performance evaluation and optimisation mod-

els. Testing the approximate linear program shows that, for relatively simple cases, it is an

efficient way of finding promising areas in the solution space.

Bertsimas and Sim (2003) Developed MIPs for robust combinatorial optimisation and net-

work flow. The goal was to propose robust approaches of polynomial, deterministic prob-

lems, which also were polynomial. The robustness of the final solutions was evaluated by

simulating the "distribution of the objective by subjecting the cost components to random

perturbations."

3.2 Direct Search Methods

In this section a selection of heuristics, mostly metaheuristics and Stochastic Adaptive

Search (SAS) methods, are presented. Only a few of these are presented in relation to mar-

itime applications, but all are relevant given the simulation model and the final character-
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isation of the problem, given in Section 2.3. The books Simulation-Based Optimization by

Gosavi (2015), Handbook of Simulation Optimization by Fu (2015), and Metaheuristics by

Siarry (2016) have been of great guidance in studying the search methods of this section.

Ranking and Selection

Both the method developed by Larson et al. (1991) and the later improvement Richetta and

Larson (1997) used a computer simulation model for evaluation of the fleet size of tugboats

and barges for the transportation of refuse from New York City to Fresh Kills landfill on

Staten Island. The outcomes of each simulation run were plotted on several graphs. These

graphs were compared and assessed to determine the fleet size which responded best to

a set of scenarios. Thus performing a simplified ranking and selection approach, with a a

priori selection of interesting solutions.

Shyshou et al. (2010) used a simulation-based approach to test the effect of different future

spot-rates on the number of long-term anchor handling tug supply vessel (AHTS) hires.

Their goal was to develop a decision support tool, showing the consequences of having

a certain number of long-term AHTS hires given different scenarios for future spot rates.

They did not aim at finding the optimal fleet size given an uncertain future, rather they per-

formed a ranking and selection to find the cost-optimal fleet size for each of three different

future scenario spot rates; below average, average and above average. This was possible

because the solution space was so small, only on the order of 10.

Tabu Search

Cousineau-Ouimet (2002) uses Tabu Search to solve an inventory routing problem.The de-

mand is assumed to be deterministic. A general approach is described, and thereafter a

test is performed, proving the utility of the method in a simple case. In Dengiz and Alabas

(2000), increased productivity of a manufacturing system is the goal of employing tabu

search to a JIT-system, by finding the optimal number of kanbans.
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Genetic Algorithm

Aydın (2014) employs a genetic algorithm to solve an inventory routing problem with a ho-

mogeneous fleet of vehicles and stochastic demand at each customer. A chromosome is

set to be a string containing all visits done by all vehicles over the set of time periods, in-

cluding how much is delivered at each visit. An objective function including travel costs,

back-order costs and the inventory holding costs is used to calculate a fitness value. A big-

ger objective function gives a lower fitness value. Good chromosomes have a higher prob-

ability of being selected as parents, and then a two-point crossover with different lengths

is used to construct children. When mutating, two different chromosome elements, within

the same chromosome switch places.

Syberfeldt et al. (2008) and Syberfeldt et al. (2015) are two examples of combining an evolu-

tionary algorithm with discrete-event simulation models to solve network problems. The

first describes optimisation of transport solutions for The Swedish Postal Services imple-

menting a hybrid algorithm combining evolution strategies and genetic algorithms. The

second presents a study of optimising waste collection from households in Sweden. The

problem is approached as a travelling salesman problem (TSP) and is solved using evo-

lutionary algorithms with a performance focused repair function, and a non-destructive

cross-over operator to ensure only valid solutions.

Particle Swarm Optimisation

Introduced by Kennedy and Eberhart (1995) the method was initially constructed for the

optimisation of continuous non-linear functions. Marinakis et al. (2013) gives an example

of using particle swarm optimisation to solve a vehicle routing problem with stochastic

demand. They claim that instances with a large number of costumers can’t be solved to

optimality within a reasonable amount of time, therefore an approximation technique may

be used, and the Particle Swarm Optimisation (PSO) was chosen.
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Learning Automata Search Technique

Introduces by Thathachar and Sastry (1987), Learning Automata Search Technique(LAST)

is based on the ideas of pattern recognition, learning correct decision rules. In optimising

the network throughput of an asynchronous transfer mode (ATM) network, Atlasis et al.

(1998) uses a learning automata adaptive routing algorithm. The dynamic environment of

the ATM network requires the use of an adaptive algorithm.

Simulated Annealing

Utilising the connection between statistical mechanics and combinatorial optimisation

Kirkpatrick et al. (1983) develops a framework for the optimisation of large and complex

systems, called Simulated Annealing (SA). Kokubugata and Kawashima (2008) proposes an

algorithm using Simulated Annealing for solving a set of different routing problems in city

logistics. This includes the Vehicle routing problem, the capacitated arc routing problem

and the general routing problem with nodes, edges and arcs.

Backtracking Adaptive Search

Kristinsdottir et al. (2002) developed Backtracking Adaptive Search(BAS) as a means of bet-

ter understanding the effect of accepting certain non-improving movements in a search for

the global optimum. As opposed to SA, the acceptance threshold for worse solutions is de-

pendent only on the difference in objective function value. Tarantilis et al. (2002) presents

the development of a similar method; a stochastic search meta-heuristic algorithm, called

the backtracking adaptive threshold accepting algorithm. This is intended to solve large

instances of the Vehicle Routing Problem. This technique does not only allow some moves

into worse solutions, to avoid being trapped prematurely in a local optimum, but also back-

tracking the threshold for accepting such moves. The local search method is a 2-opt.
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Modified Stochastic Ruler

Introducing the Stochastic Ruler, Yan and Mukai (1992), propose the first non-heuristic for

identifying the global optimum of discrete stochastic problems. The solution estimate is

proven to converge to the global optimum. Alrefaei and Andradóttir (2001) proposes a so-

lution algorithm to any type of stochastic system, for which the objective function is found

by measurement or estimation through simulation. It is named the Modified Stochastic

Ruler method, benefiting from three changes to the original stochastic ruler method; (i) A

fixed number of observations per iteration, (ii) an approved approach for estimating the

optimal solution, and (iii) a less restrictive transition procedure.

Nested Partitions

Shi and Ólafsson (2000) present the Nested Partitions (NP) method. They prove a conver-

gence to global optimality with probability one, within finite time. The method combines

both local search and global search in partitioning the solution space and concentrating

the search on the most promising area. The theory and applications of NP is further pre-

sented in Nested partitions method, theory and applications by Shi (2009).

3.3 Simheuristics

In recent literature there are methods where extra emphasis is put on the relation between

the simulation and the optimisation. Efforts are made to study, and exploit, the benefits of

smart experiment design in order to spend only the time that is necessary on simulations

of different realisations. Ólafsson (2006) described the use of metaheuristics in simula-

tion optimisation, using GA, TS and NP to present how metaheuristics could be used in

S-O. Emphasis was put on the gap between optimal solutions of exact models, and their

practical counterparts. Juan et al. (2015) continued the research by presenting "a general

methodology for extending metaheuristics through simulation to solve stochastic com-

binatorial optimisation problems". The paper builds on an extensive review of the field,

extending previous work by introducing a new type of methaheuristics, which they call
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simheuristics. The method consists of two main features, as presented by the Juan et al.

(2015):

1. "It promotes a closer integration between optimisation and simulation. In particular,

the evaluation of solutions is performed not only by simulation, but also problem-

specific analytic expressions. Hence, it mixes simulation and ad hoc approximations,

although generic metamodels are avoided - while the simple nature of these models

is appealing for optimisation purposes they do not accurately represent the real un-

derlying system."

2. "The feedback of simulation can be used not only to evaluate solutions, but also to

refine the analytic part, so that the latter is able to generate and/or evaluate more

realistic solutions."

The curse of dimensionality is one of the problems sought to solve by Sanchez and Wan

(2011), when discussing the design of experiments. Focusing on simulation studies the

theory of Design of Experiments (DOE) is introduced. Examples are given on how it may be

used to increase insight and information gain from an experiment. The article is written in

the light of the interest in new, faster computers, and to the extent that they are predicted

to alter science. The article authors aim at convincing the reader that DOE is at least as

important, and that without DOE even the best computers would be hopeless at solving

the simplest problems.

Hong and Nelson (2006) present an optimisation-via-simulation algorithm, called COM-

PASS, for use when the performance measure is estimated via stochastic, discrete-event

simulation, and the decision variables are integer ordered. COMPASS is based on random

search, as many other discrete optimisation via simulation algorithms, but it has a unique

neighbourhood structure. The neighbourhood is defined as the most promising area, given

by the area which is closer to the best solution than any other simulated solution. Candi-

date solutions are uniformly generated from the promising area, and the number of repli-

cations of each is chosen according to a simulation-allocation rule. An improved version

of the metaheuristic is presented by (Hong et al., 2010), making it more efficient for high-

dimensional problems. A further improved version, Industrial Strength Compass (ISC),

was presented by Xu et al. (2010) it’s based on a three-phase framework; global search, lo-
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cal search and clean-up. The authors claim that it: "offers correctness guarantees while

also being competitive with the features provided by commercial products", and that it is

one of the first to do so.

Pinho et al. (2012) propose, and evaluate, an optimisation method for discrete-event sim-

ulation models based on genetic algorithms which exhibits more efficiency in relation to

computational time when compared to software packages that were on the market in 2011.

The background of the proposition is the slow pace level of these commercial software

packages when manipulating more than one input variable. The proposed method proved,

through the selected performance tests, to be much faster than the commercial software

SimRunner® in the majority of the cases.

Buchholz (2009) presents a brief overview of optimisation approaches for stochastic dis-

crete event simulation. In particular it shows, by the combination of different methods,

how to compose hybrid algorithms that fairly efficiently and reliably optimise medium

sized models. The main message is combining algorithms to have both an exploration

phase and an exploitation phase, in order to quickly find a good solution.

Andradóttir and Prudius (2009) discuss what features S-O methods include to be efficient

numerically when applied to discrete problems of little known structure. The focus is

on the balance between exploration and exploitation in the search. Two methods, called

the R-BEES and R-BEESE, are presented. Made to solve, respectively, deterministic, and

stochastic problems. The methods, the authors conclude, have the desired properties, the

R-BEESE also including an estimation phase.

Eskandari and Mahmoodi (2016) S-O to compare the effect of fixed scheduling vs. demand-

based scheduling for upstream offshore supply. An approximate analytic model was opti-

mised in OptQuest® to find the optimal system configuration for a five different platform

service levels. Then 50 simulations were run for each of the service levels, for each of the

scheduling strategies, using these configurations. The Pareto fronts of the two strategies

were compared, showing that demand-based scheduling could lead to great savings.

Introducing a nature-inspired heuristic called Attraction Force Optimisation (AFO). In the

algorithm, (Ilaria et al., 2016), initially, place the particles at the vertexes of the solution

space. The most fit particle in each iteration thereafter acts as a base for the attraction of
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the other particles. How far the non-base particles move in an iteration depends on their

distance from the base, and the difference in fitness. The method is tested on a real indus-

trial case, and shows promising results when compared to other, traditional optimisation

techniques that are implemented in MATLAB® toolboxes.

A taxonomy providing a complete overview of the spectrum of S-O methods, is presented

by Figueira and Almada-Lobo (2014). A four-dimensional spectrum, with each dimension

divided into four sections categorises all possible S-O methods. The paper both serves as a

contribution to establish a common taxonomy in the field, and as a guide for understand-

ing the effect of the different elements of the solution methods. In addition, as pointed out

by the authors, it shows what kinds of methods that has not yet been investigated.

Chica and A. Juan PPrez (2017) argues that simheuristics should be a first resort method

for solving stochastic optimisation problems with large solution spaces. The benefits and

limitations of simheuristics are discussed, and the authors present guidelines for design-

ing a simheuristic. The paper is concluded with highlighting the "white-box" paradigm of

simheuristics; "being understandable and enhancing the decision makers’ participation."

3.4 Concluding the Literature Survey

This literature review barely scratches the surface of methodologies for the combination of

simulation and optimisation. One reason for this is of course the vast amount of literature

available. Another reason is the inconsistent taxonomy in the field, as remarked by Figueira

and Almada-Lobo (2014), making the search process difficult. Still, the review covers a

broad spectrum of relevant solution methods, indicating the forest of available methods.

To figure out which method that is the best for any single problem may be an intractable

task and is highly dependent on the implementation. Nevertheless, review will serve as a

solid basis of guidance and inspiration for the construction of a solution method for the

problem of Chapter 2.
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Chapter 4
Establishing the Main Structure of

the Solution Method

In this chapter a base concept for the algorithm will be established. This means that the

main constituents of the algorithm and their order of action will be decided. These choices

are based on the classification of the problem made in Section 2.3, and the methods de-

scribed in Chapter 3. The chapter will start with the choice of concept in Section 4.1, be-

fore determining the main constituents in Section 4.2. Finally, a summary of the structure

is presented in Section 4.3.

4.1 Choice of Concept

From the review of Chapter 3, the choice of a main concept for the current solution method

is to be made from the three following concepts:

• Mathematical programming and simulation.

• Metaheuristic with simulation evaluations.

• Metaheuristic with both analytic and simulation evaluation.
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In order to determine which concept to use, they are reviewed with respect to the method

requirements, and the necessary main considerations which follow from the problem for-

mulation of Chapter 2. However, as elegantly put by Amaran et al. (2017): "The sheer diver-

sity of these algorithms also makes it somewhat difficult to assert which one is better than

another in general, and also makes it hard to compare between algorithms or their imple-

mentations." This means that, although the decisions are justified, there is no guarantee

they are perfect.

4.1.1 Method Requirements

As described in Section 1, the solution method is to be able to find good solutions within

a reasonable time, be intuitive and flexible. In order to achieve this, the meaning of these

requirements needs to be defined in relation to the features of the solution method.

Good solutions are defined by the user, comparing the quality of a solution to a set of re-

quirements and expectations stated by the decision maker. In the current problem, three

strict requirements are set concerning the carriage performance of a solution. If a solution

performs below the threshold, the solution is bad, that is, not accepted to be returned to the

user. On the other hand, if a solution performs above the threshold, it may be considered a

good solution if the cost of the solution is low enough.

For problems where the discovery of the optimal solution may be proven, or that of an

optimistic boundary, defining good solutions in terms of a maximum deviation is possible

(Lundgren et al., 2012). When it is impossible to establish such a measure of deviation,

the goodness of a solution may be based on the relative cost compared to other solutions

discovered by the solution method, or it may be compared to solutions based on other

solution methods such as expert judgement. In addition, the stagnation of a search process

often is indicative of the quality of the current best solution.

Reasonable time is a magnitude which correlates to the problem type in question. In this

case, tackling a strategic problem of which the solution will be in effect for several years,

reasonable time may be in the order of a day. Even though this seems like a long time, it only

allows for investigating a very small fraction of the solution space presented in Section 2.3.
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Consequently, this necessitates a solution method which has strong convergence proper-

ties, and quickly establishes areas of interest. Such properties are usually the realm of MPs,

but in the case of complex, combinatorial, stochastic problems, the computational time

before reaching the first legal solution may be extensive. Metaheuristics are well known for

quickly finding legal solutions, though not necessarily optimal, or even good.

Intuitive is defined by the Oxford dictionary as: ’Using or based on what one feels to be

true even without conscious reasoning’. Preferably, every action in the decision process

of the solution method should have a clear function. Two main "features" to avoid are;

(i) elements of which the workings may not be readily explained, but when included in

the solution method, it performs better, and (ii) a set of complex functions forming a sort

of "black box". This element clearly eliminates the possibility of employing an MP in the

solution process of the current problem. Naturally inspired metaheuristics exercise the

opposite characteristics, they are inherently intuitive in their workings, but their conver-

gence properties may be completely indecipherable (Gosavi, 2015). One such example is

the Genetic Algorithm (GA) (Syberfeldt et al., 2008). Also, the "white-box" properties of the

simheuristics

Flexible solution methods have the ability to solve a variety of problem types, with no or

little change necessary. Most MPs are specialised, coping only with a very restricted set of

problems, or even only one single problem (Fagerholt et al., 2010). Metaheuristics, on the

other hand, may solve a great variety of problems and problem types. For example, GA

and Simulated Annealing (SA) (Kirkpatrick et al., 1983) are conceptually only limited to the

format of the input and the output. Virtually any problem, where every solution can be

represented as a vector, can be solved by a metaheuristic. Whether the problem is solved

to optimality is a completely different matter.

4.1.2 Main Considerations

( Having established a working definition of a good solution, the next step is to identify the

necessary features of a solution method in order for it to find good solutions. Therefore,

in this section there is a discussion on how to overcome the four main difficulties of the

problem; dimensionality, discreticity, stochasticity, and non-linearity.
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Discreticity

A discrete solution space means that the different solutions have to be sampled and com-

pared, rather than a using a gradient, or other efficient methods applicable to continuous

problems (Gosavi, 2015). Several methods developed for continuous problems, such as

the gradient method, may be used for discrete problems, but the quality of the resulting

solutions depend on the "density" of the solution space, and the nature of the objective

function. For simple problems, these methods may yield acceptable performance, but for

complex problems they entail several issues. For example, in the case of high dimensional

solution spaces with small ranges, if the optimal "relaxed" solution is described by many

fractional decision variables, there is no guarantee that rounding of the variables yields the

optimal integer solution. In fact, there may be too many neighbours to even rank and se-

lect, and all of them may be illegal anyway (Sanchez and Wan, 2011). To solve these kinds of

problems, it is recommended to use metaheuristics and Stochastic Adaptive Search meth-

ods (Gosavi, 2015).

Dimensionality

Dimensionality, or rather the curse of dimensionality, is an expression coined by Richard E.

Bellman referring to the extremely rapid increase in the volume of the solution space when

the number of dimensions increases. In the case of a range of 0 to 10 in each dimension:

Going from Vessel data 1 (Appendix A.3) to Vessel data 2 (Appendix A.4), increasing the

number of dimensions from 10 to 21 results in a volume increase from 1110 = 2.59 ·1010 to

1121 = 7.40 ·1021. That is, a 110% increase in the number of dimensions gives a 2.85 ·1013%

increase in the number of solutions in the solution space.

Solution methods with a computational time depending on the size of the solution space

are not viable for large, high dimensional problems. Thus, algorithms sampling a propor-

tion of the solutions, or in some way sorting or evaluating the solutions on any level, are

too volatile to function for problems with a variable number of dimensions. For a solution

method to work with such problems, the computational time has to be independent, or

at least a polynomial function of the size of the solution space (Sanchez and Wan, 2011).

COMPASS (Hong et al., 2010) and PSO (Kennedy and Eberhart, 1995) are examples of meta-
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heuristics where the number of actions in the search process, to a great degree of precision,

may be controlled independently of the number of solutions in the solution space. Other

metaheuristics, such as NP (Shi, 2009) and AFO (Ilaria et al., 2016) are examples of a slow,

polynomial increase of actions as the number of dimensions increases.

The remaining difficulty of the polynomial time solution methods is that of still identifying

the good areas and solutions of these multi-dimensional solution spaces, although only

sampling a tiny fraction. COMPASS, PSO, NP and AFO comprise a selection of different

approaches, the suitability of which depend on other aspects of the problem in question.

As a consequence of the immense solution spaces of the current problem, the first fun-

damental error of Discrete Optimisation via Simulation (DOvS) problems, according to Fu

(2015), may be presented:

1. The optimal solution is never simulated.

Stochasticity

Continuing, on the topic of stochasticity, with the second and third fundamental error of

DOvS problems, according to Fu (2015):

2. The best solution that was simulated is not selected.

3. We do not have a good estimate of the objective function value of the solution we do

select.

The statements above highlight the two main problems of stochastic problems. Preferably,

the final solution method should contradict them by establishing certain estimates of the

quality of the different solutions, and subsequently selecting the best solution. One of the

reasons this is easier said than done is that the number of simulation realisations needed

for establishing a certain probabilistic measure for a solution may be very high, in the order

of 1000. In addition, evaluating a high number of realisations for each solution is of value

only if the behaviour of the simulation model is close enough to the behaviour of the real

system. One example of the difficulties in relation to the latter is that of the sea and weather

conditions - the simulation scenarios are based on interpretations of historical data. This

31



Chapter 4. Establishing the Main Structure of the Solution Method

may very well give a realistic and close to true prediction, especially for strategic problems,

but it will never be perfect in predicting the future. To quote George E.P. box: "All models

are wrong, but some are useful".

One common feature of solution methods for discrete stochastic optimisation is to vary the

number of visits to different solutions based on how promising the solution is. The mod-

ified stochastic ruler method (Alrefaei and Andradóttir, 2001) and NP (Shi, 2009) are two

examples of methods which revisit only the most promising solutions, while bad solutions

may never be visited. In the case of the general implementation of NP, the solution with the

most visits is returned as the best. Another, common approach is to tackle stochastic prob-

lems as though they were deterministic, by identifying the number of realisations needed

to get a certain estimate of the quality if the solution, and then simply running that many

realisations for every candidate solution.

Non-linearity

The final aspect of the problem to be discussed is that of non-linearity, and especially when

there is no closed form mathematical representation of the relation between the values of

the decision variables and the performance of the solution. As an example; in the case

of the problem in question, double the performance and twice the cost should not be as-

sumed when doubling the number of vessels in the fleet of each type. Also, the observed

effects of a change give no information about the effect of any other changes in the system.

To get information about a solution, it must be sampled.

There are three main approaches for directing the search process, for these problems; (i)

approximate response surface generation based on observations (Gosavi, 2015), (ii) ana-

lytic approximation of the problem (Juan et al., 2015), and (iii) pseudo-random selection

based on relations between observed solutions (Kennedy and Eberhart, 1995). The first

may be useful for mapping the major contours of the response in the solution space, but

it is, naturally, guaranteed to fail at precise predictions. Constructing an approximate an-

alytic function is an interesting and popular approach (Fagerholt et al., 2010), (Buchholz,

2009), (Sanchez and Wan, 2011), which has the same obvious weakness when it comes to

precise predictions. Finally, the third method is used in established methods such as PSO
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(Marinakis et al., 2013), LAST (Thathachar and Sastry, 1987), SA (Kirkpatrick et al., 1983)

and MSR (Yan and Mukai, 1992).

4.1.3 Convergence Properties

Finally, before deciding on how to design the solution method, the desired convergence

properties must be presented. The following definition is borrowed from Buchholz (2009):

1. If the algorithms runs infinitely long, then the probability of finding a point x such

that |µ∗− f (x)| < ε should approach zero for any ε> 0. This is the intuitive definition

of so called almost sure convergence (Andradóttir, 2006).

2. The algorithm should quickly find points with a small response.

3. If the algorithm determines point x as the point with the smallest response, then a

confidence interval for |µ∗− f (x)| should be computable, if the feasible set of param-

eters is finite.

Furthermore, according to Buchholz (2009), to get the behaviour of points 1 and 2, the

solution method must contain two phases; an exploration phase and an exploitation phase.

This means that the algorithm first identifies the promising areas of the solution space

before exploiting these areas to find local optima.

4.1.4 Concept Assembly

From the discussion in this section it is possible to make some decisions on the structure

of the solution method. No attempt is made to state that the following choices are the

best possible, or that the resulting structure is optimal, it is only believed that the resulting

structure is well suited for solving the problem presented in Chapter 2.

The preferred approach for tackling the challenge of discontinuity is that of constructing

an approximate analytic function. The reason for this is that this is an intuitive and flexible

method, allowing for any level of detail in the implementation, and additions may be made

when desired. Inspired by Fagerholt et al. (2010) and Juan et al. (2015), a feedback will

33



Chapter 4. Establishing the Main Structure of the Solution Method

be integrated from simulation results to the analytic function. Regarding stochasticity, an

adaptive method will be attempted, simulating more realisations for promising solutions.

Now, the remaining problem, taking away the stochasticity and replacing it with an analytic

function, is a discrete, parametric optimisation (DPO) problem. A selection of established

metaheuristics for solving DPO problems are presented in Section 3.2. Two algorithms are

to be chosen; one for the exploration phase, and one for the exploitation phase. This is

done, respectively, in subsections 4.2.1 and 4.2.2.

4.2 Choice of Solution Method Constituents

Following the choice of concept in the previous section, the topic of this section is to decide

on the concrete constituents of the solution method. That is, which metaheuristics to em-

ploy for the exploration phase and the exploitation phase, how the approximate analytic

function is to be set up, and possible additions for enhanced performance.

4.2.1 Global Search

The most important function of the global search metaheuristic in this solution method is

to quickly identify promising areas in a discrete solution space. As pointed out earlier, a key

trait is a polynomial increase in computation time with an increasing number of dimen-

sions. SAS methods are able to deliver on these requirements, in addition to guaranteeing

global convergence (Gosavi, 2015).

Of the SAS methods, the following constitutes a popular selection: LAST, SA, BAS, MSR,

NP and COMPASS. The performance of LAST, SA, BAS and MSR are dependent on a set

of assumptions regarding the solution space, which make them less desirable than NP

and COMPASS for this problem. For example, LAST needs a minimum and maximum for

possible solution values, the closer to the true values the better. These values should be

changed with a substantial change in the problem formulation. Another example is for SA;

a scheme for the temperature change and neighbourhood structure is necessary. These
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problem specific assumptions, reduces the flexibility of the methods, and the intuitiveness

of their search processes as compared to NP, AFO and COMPASS.

NP and COMPASS are conceptually similar in that they partition the solution space, with-

out the need for any particular a priori knowledge of the problem or the solution values.

Both quickly identifies solutions with small responses and explores widely. Their search

processes are flexible and intuitive. With respect to the solution time, the NP is superior to

COMPASS because it is easy to predict and control the increase in solution time as a func-

tion of the number of dimensions and their ranges. Also, NP is a more general approach, al-

lowing for greater customisation of the implementation as opposed to COMPASS, in which

basically only the number of samples may be changed. Furthermore, the computation of

distances across the different dimensions in the solution space, as necessary in COMPASS,

may cause for unfortunate comparisons leading to the wrong decisions (Shi, 2009), (Hong

et al., 2010).

Review of the Nested Partitions algorithm

Introduced by Shi and Ólafsson (2000), NP seeks to step-wise reduce the search area until

a good solution is reached. Then the search expands, and the procedure is repeated. In

the long run, the solution which the algorithm visits the most times is assumed to be the

optimal solution. In what way the search area is reduced is dependent on the problem

in question and the gut feeling of the user. An extra feature added to the algorithm is the

ability to take a step back. This means that if the algorithm, during any iteration, sees a

better solution outside the reduced search area, it will restart by expanding the search area

to include the whole solution space. This guarantees the optimal solution is found as the

number of iterations goes to infinity, but it may be noted that very little information is

stored from one iteration to another.

According to Shi (2009) there are several possible modifications of the algorithm, but the

one presented is attempted to be general. The algorithm starts out by dividing the entire

solution space into a set of subareas. For example, it may divide each dimension into two

parts, making eight subareas out of a three-dimensional solution space. For each subarea,

a random number of samples are done. The best performing sample solution for each sub-
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area is stored. The algorithm then proceeds to reduce the search area to the subarea with

the best performing sample solution. This subarea is then, further divided into subareas.

Again, a random number of samples are done in each subarea. Now, in addition to the

subareas, also a random number of samples are done in the surrounding parts of the so-

lution space. If the best performing sample is found in any of the subareas, the algorithm

will divide the search space once more. On the other hand, if the best performing sam-

ple is found outside the reduced search area, the algorithm will return to search the whole

solution space. When the algorithm has reached the point where it is no longer possible

to divide the search space any more, that is; the search space includes only one solution,

this solution gets its visit count increased by one. The algorithm then returns to search the

whole solution space. When the algorithm is done it returns the solution with the most

visits as the best solution.

Generic Nested Partitions pseudo code
Let x be a solution.

Let xa be the best solution found in a subarea.

Let xK be the best xa found in a given iteration.

Let xbest be the best solution found overall.

Let Mmax be the maximum number of iterations.

Let f(x) be the objective function value of a solution.

Let fa be the objective function value of xa.

Let fK be the objective function value of xK.

Let fbest be the objective function value of the best found solution.

Let S be the entire solution space.

Let S0 be the set of all singletons.

Let F(m) be the promising area, the reduced search space, of iteration m.

Let I be the number of subdivisions done in an iteration.

Let Y(i) be subarea i of F(m).

Let K be the number of subareas to draw samples from.

Let V(x) denote the number of visits to the solution x.

Let T be an integer.
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Algorithm 1 Nested Partitions

1: F(m) ← S
2: for x=1:S0 do
3: V(x) ← 0

4: Select an initial solution x
5: xbest ← x
6: for m=1:Mmax do
7: if F(m) ∈ S0 then
8: I = 1
9: Y(I) = F(m)

10: else
11: I ← Some user defined function or value
12: Partition F(m) into I subareas; Y(1) through Y(I)

13: if F(m)==S then
14: K = I
15: else
16: Y(I+1) = S \ F(m)
17: K = I + 1
18: for k=1:K do
19: L ← Uniform(1,2,...,T)
20: for l=1:L do
21: Select a random solution x in subarea k
22: f (x) ← evaluate x
23: if f(x) < fa then
24: xa = x
25: if fa < fK then
26: xK = xa
27: Set the subarea, which contains xK, as Ystar
28: if F(m)==S then
29: F(m+1) = Ystar
30: else
31: if Ystar ∈ F(m) then
32: F(m+1) = Ystar
33: else
34: F(m+1) = S

35: if F(m+1) ∈ S0 then
36: V(F(m+1)) ← V(F(m+1)) + 1

37: if V(F(m+1)) > V(xbest) then
38: xbest ← F(m+1)

39: return xbest,fbest
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4.2.2 Local Search

In addition to being subject to the same considerations as for the global search metaheuris-

tic, the choice of a local search metaheuristic is dependent on efficient communication

with the selected NP. The main concern is that the local algorithm is able to continue the

search based on a set of promising solutions provided by the NP. Population based meta-

heuristics are an easy way of ensuring this feature; the set of promising solutions from the

NP can be translated to the population of the algorithm. Three such algorithms include

GA, PSO and AFO.

PSO and AFO are partly based on the assumption that there exists a well-defined area of

global optimum, which the population is seeking to find through a collective effort. How-

ever, for the current problem this assumption is not made. The solution method must

function adequately irrespective of the content of the provided list of vessel concepts. A

clustering of the best solutions, justifying the assumptions of PSO and AFO may not be

ensured.

In GA, on the other hand, every particle may commit to an individual search for a local op-

timum. This feature coincides better with the mission of exploiting the information pro-

vided by the NP search. The locations of the area of the best solutions are assumed found

by the NP, the local algorithm is "simply" supposed to pin point the best solution in each

area. Comparing these, the best solution of the solution space may be found. This task de-

scription harmonises the best with the GA. Also, determining the behaviour of the particles

in the PSO and AFO, in such a way as to ensure proper convergence, is a substantially more

complex task than for the GA. Finally, another reason to choose GA is the superior flexibil-

ity of the method, allowing for the addition or subtraction of elements such as mutation,

selection, reproduction and elitism.

Review of the Genetic Algorithm

Genetic algorithms are inspired by Darwin’s evolution theory, which is based on the term

"survival of the fittest". This is about favouring reproduction of the fittest individuals,

meaning that the fittest individuals are more likely to produce offspring. The algorithm
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is a very popular metaheuristic, and has been widely applied in the industry with a lot of

success (Syberfeldt et al., 2008), (Aydın, 2014), (Syberfeldt et al., 2015). The statement can

be amplified by looking at the amount of available literature.

The algorithm starts by selecting an initial population of solutions, also called particles.

Thereafter, the particles are exposed to the "evolution" of a number of generations. For

each generation the population is altered in several different ways; through mutation of

the particles, "killing" the least fit, reproduction from the most fit. In addition, there are

other possible elements of alteration such as elitism, performing a quick local search for

each particle.

Selection and reproduction are the key features of the algorithm. "Children" are generated

by combining traits from a set of "parents". The parents are chosen from the surviving

particles of the selection process. The children restore the population size. The mutation

usually means a small random alteration of the solution.

Generic Genetic Algorithm pseudo code

Let N be the number of decision variables.

Let P be the population size.

Let x(p,:)=(x(p,1),x(p,2),...,x(p,N)) be solution p.

Let A(i ) be the set of values that decision variable i can take on.

Let x(1:P,:) be the population.

Let G be the number of generations.

Let f(x(p,:)) be the objective function value of x(p,:).

Let m be the number of solutions that survives the selection process.
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Algorithm 2 Genetic Algorithm

1: for p=1:P do
2: for i=1:N do
3: x(p,i) ← Uniform A(i)

4: f(x(p,:)) ← Evaluate x(p,:)

5: Sort x. x(1,:)=best, x(2,:)=2nd best, ..., x(P,:)=worst.
6: for g=1:G do
7: x = x(1 : m, :)
8: for p=(m+1):P do
9: x(p,:) ← Child of a set of solutions from x(1 : m, :)

10: for p=1:P do
11: x(p,:) ← Randomly selected neighbour of x(p,:)

12: Sort x. x(1,:)=best, x(2,:)=2nd best, ..., x(P,:)=worst.

13: return xbest

4.2.3 Analytic Approximation

As mentioned decided earlier, the constructed solution method employs two types of so-

lution evaluations. One is simulation, which gives the true solution performance, but it

is stochastic in every simulation thus only returning a statistical measure, and it is time

consuming. The other is an analytic function, returning deterministic measures of the per-

formance, and doing so very quickly. However, a drawback of the analytic function is the

inherent lack of precision entailing a deterministic measure of a stochastic variable, and

the possibly substantial deviation of the evaluations from the true values.

Because the simulation model is treated as a black box, it is sufficing to say that; evaluation

is simply performed by inputting the desired data into the model and running it for the

desired number of realisations. Thereafter the result is analysed. The analytic model, on

the other hand, is constructed as a set of problem type-specific functions, approximating

the performance of the solutions.
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Cost evaluation

The analytic function is built to serve as the measure of solution quality for the NP and

GA search processes. Because the algorithms rank solutions based only on one value, the

restrictions of Equation 2.2 need to be included in the cost. This is done by setting the cost

of illegal solutions, that is solutions which break at least one restriction, equal to infinity.

Now, the functions necessary to calculate an approximation of the cost of a solution are

established. The set of functions needed to approximate the service quality of a solution

follow later.

Soluti onQual i t y =
Cost if legal solution

In f i ni t y if illegal solution
(4.1)

The main cost drivers are the dayrates of the vessels and the fuel. In addition, the cost of

helicopters are based on a price pr. flight hour. This leads to the following equation:

Cost = Dayr ates +FuelCost +F li g htCost (4.2)

Dayrates is simply the sum of the dayrates of each vessel in the solution multiplied by the

number of days in the period under consideration. In Equation 4.3, AL is the set of different

vessel concepts, NoV ( j ) is the number of vessels of type j in the solution, DV ( j ) is the

dayrate of vessel type j in dollars, and T is the duration of the period, in days.

Dayr ates =
AL∑
j=1

(NoV ( j ) ·DV ( j )) ·T (4.3)

The fuel cost is somewhat more complicated to approximate properly, because it depends

on the ratio of sailing time, standby time and idle time for each vessel. In turn, this depends

on the inter vessel departure time. In Equation 4.4 NT is the total number of round trips the

PSVs perform during the period. AC is the average consumption of the PSVs when sailing

in tons pr day, D is the distance of a round trip in nautical miles, P f is the price of fuel in
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dollars pr ton, and ASP is the average sailing speed of the PSVs in knots.

FuelCost = NT ·D

24h · ASP
· AC ·P f (4.4)

Explaining the NT in Equation 4.5, it is approximated as the minimum of to values. The

first is the maximum number of PSV departures allowed from the base, given the minimum

inter vessel departure time, IV D . The second is the number of trips the PSVs are able to

make during the duration of the simulation. P is the set of all vessel concepts which are

categorised as PSVs.

Tr i ps = mi n(
T

IV D
,

T · ASP ·∑P
j=1 NoV ( j )

D
) (4.5)

Flight cost is the product of flight hours, H , and the price pr flight hour, PH . The latter is

simply a constant, set to $2000, the former is a function of the available workload, the num-

ber of helicopters and their interaction with the base and platforms. In order to have a rel-

atively simple expression, the result, Equation 4.6 is partly empirically based. MP (MinPax)

is the system input value that is the basis for the pax demand in the simulation, as de-

scribed in Section 2.1. AF D is the average flight distance in nautical miles, which is twice

the average distance from the base to the platforms. ACp is the average pax capacity of the

helicopters, ASH is the average speed of the helicopters in knots, NoV is the total number

of helicopters. H is the set of vessels categorised as helicopters.

F li g htCost = Ph ·mi n(
MP ·D · AF D

7 · ACp · AS ·0.77
,

2 ·∑H
j=1 NoV ( j ) ·T

24h
· (

AF D

ASH
+2)) (4.6)

The "min" expression of Equation 4.6 approximates the number of flight hours by choosing

the lowest of the two alternatives. The first calculation is based on the number of helicopter

trips needed to transport all the demand. The 7 is because the demand is set on a pr week

basis in the input file, see Appendix A.1. The 0.77 is the assumed utilisation of the heli-

copters. The second part is based on the maximum number of trips the fleet of helicopters

manage to perform in the given time period. The first 2 is due to the assumption that a
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helicopter may perform two trips a day, and the second 2 is the turnaround time in hours.

Performance evaluation

The performance of a solution is divided into three measures; (i) delivered bulk cargo, (ii)

delivered deck cargo and (iii) delivered pax. The prediction of bulk and deck performance

is straight forward; the average capacity of a vessel multiplied with the number of trips

performed by the fleet in a week, This is shown for bulk cargo in Equation 4.7, and deck

cargo in Equation 4.8. 168 is the number of hours in a week, CB ( j ) is the bulk capacity of

vessel type j in m3 and CD ( j ) is the deck capacity of vessel type j in m2.

Bulk = 168h ·NT

T
·
∑AL

j=1(NoV ( j ) ·CB )∑AL
j=1 NoV ( j )

(4.7)

Deck =
168h ·T ·∑AL

j=1 NoV ( j ) ·CD

PSV s ·Dur ati on
(4.8)

Approximating the pax performance is done somewhat differently because both heli-

copters and ships may transport pax. The total pax transportation capacity is thus the sum

of the ShipPax and the HeliPax. ShipPax is calculated in the same manner as for bulk and

deck, with CP ( j ) being the pax capacity of vessel type j . The number of flight hours is used

as the basis for computing the HeliPax. The first part of the sum in Equation 4.9 is the

ShipPax contribution, the second is that of HeliPax. HF is the flight hours as calculated in

Equation 4.6. ASH is the average speed of the helicopters.

Pax =
168h ·T ·∑P

j=1(NoV ( j ) ·CP )∑P
j=1 NoV ( j ) ·T

+ 168h ·CP ·HF · ASH

AF D ·T
(4.9)

4.2.4 Additions

As decided in Subsection 4.1.4, a feedback from the simulation results to the analytic func-

tion, from now on called adjustment, is to be integrated in the solution method. Also, other
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additions are considered to improve efficiency; Intensification (Juan et al., 2015), Optimal

Computing Budget Allocation (Chen, 2011), Variance-reduction techniques (Figueira and

Almada-Lobo, 2014) and Implicit enumeration (Lundgren et al., 2012). For additions to

be implemented in the solution method, it must be certain that the benefits it yields are

greater than the disadvantages with respect to computational time and complexity in im-

plementation.

Adjustment

Adding the feature of adjusting the analytic function is a simple solution for improving the

predictions. Comparing the predicted performance to the results of the simulations, gives

a factor which in the next run is used to adjust the prediction in the way shown in Equation

4.10. Factor Bulk, F B , and its equals F D and F P are vectors, where a new element is added

to the end after every simulation run. Pr od(F B) means the product of all the elements in

F B .

Bulk = Pr od(F B) · 168h ·NT

T
·
∑AL

j=1(NoV ( j ) ·CB )∑AL
j=1 NoV ( j )

(4.10)

Only the performance predictions are adjusted, not the costs. This is because the adjust-

ment does not change the order of solutions, that is, it affects all solutions equally. When

considering cost, it is only of interest how the solutions stand in relation to each other.

On the other hand, when considering performance, there are absolute thresholds to reach.

Therefore, which solutions that are legal depends on the adjustment.

Intensification

The idea is that a long memory saves information about the visited solutions. This can

then be used to decide on a set of variables to fix to certain values in the future search. For

example, fixing a variable to the most common value, or to the most common value of the

10 best solutions. The motivation for this is that it is more likely that the variable should

take this value in an optimal solution. The effect is a significant reduction in the size of the

solution space (Andradóttir and Prudius, 2009). Also, the opposite, diversification, could
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be applied to ensure exploration of less visited areas.

Optimal Computing Budget Allocation

This is a whole field in itself, as presented by Chen (2011). "The ultimate goal is to minimise

the total simulation budget while achieving a desired optimality level, or to maximise the

probability of finding the best design using a fixed computing budget"(Chen, 2011). The

reason for this interest is, of course, the same as for the use of analytic solution evaluation;

in simulation "(...) obtaining the function value, at even one point, can be time consum-

ing. As a consequence, one must make an economic choice of the number of points to be

sampled." (Gosavi, 2015)

There are two main drivers of the computational burden; the number of solutions which

are simulated, and the number of realisations simulated for each solution. Especially in

the case of computationally expensive simulations, minimising the number of simulations

is of great importance. The first step is to make sure that only solutions of special interest

are simulated. That is, solutions of which certainty about their performance is of great

value. The second step is to only have as many realisations as are necessary. Initially, it

is only of interest to use the simulations to adjust the predictions of the analytic function,

rather than to find the best solutions. When it is believed that the analytic function is well

adjusted, the number of realisations may be increased in order to increase certainty about

the simulation results. A simple version of Optimal Computing Budget Allocation (OCBA)

will be implemented in the solution method.

Variance-Reduction Techniques

"VRTs are methods that aim at reducing the variance of results for a given number of

replications. This means that for the same confidence level, the application of Variance-

Reduction Techniques (VRT)s may allow reducing the number of replications and hence,

the computational effort."Figueira and Almada-Lobo (2014). The most common method,

common random numbers (Chen, 2013), uses common scenarios for evaluation of the so-

lutions in a set. The set may be of any size, from the closest neighbours of a solution to
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the entire solution space. Common random numbers will be implemented in the current

solution method by simulating sets of solutions at a time, with the same realisations. In

this way the variance is reduced, increasing the quality of the adjustment factors.

Another benefit from simulating a set of solutions at a time is the increased stability in the

resulting adjustment factors. "Sampling more than one solutions increases the chance to

converge to a better local optimal solution" (Hong and Nelson, 2006). Furthermore, due to

the manual process of running the simulations, simulating sets at a time reduces the total

time spent on manual actions.

Implicit Enumeration

Implicit enumeration is a technique for constraining the solution space based on the find-

ings of legal solutions. The idea is: "(...) to use different tests to conclude that some solu-

tions can not lead to better solutions than the best available." Lundgren et al. (2012). An

illustrative example would be the case of only one vessel concept in the current problem,

in which case a legal solution of four ships would probably be sufficient to disregard all

higher solutions because of their higher cost. In the case of 10, 21 or 42 vessel concepts, the

necessary tests would be difficult to design. Therefore, this feature is not implemented in

the solution method.

4.3 Summary of Base Concept

The complete base concept is shown in Figure 4.1. In chapter 5 an algorithm of this de-

sign will be implemented in MATLAB and tested. First, some inputs are sent to NP, then

NP returns a set of solution vectors in a matrix, then they are sorted and the best, unique

solutions are forwarded to the GA. Then the GA is ran returning a set of solutions in a ma-

trix, which in turn are sorted and the best, unique are forwarded to be simulated. If a ter-

mination criterion is met, the algorithm stops and the solutions are returned to the user,

otherwise adjustments are made to the analytic function and the process repeats from NP.

One complete round, from one run of the NP to the next run of the NP, is called a cycle.
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Figure 4.1: A high level flow chart of the Base Concept.
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Chapter 5
Completing the Solution Method

The constituents of the solution method, and their order, were decided in Chapter 4. Now,

the interaction between the different parts, and their implementation, is to be established.

Choosing the method is only half the job, to make an algorithm work as intended it has to

be implemented properly.

5.1 Implementing the Metaheuristics

The implementation process starts with the main constituents, the NP and the GA. The

key aspect for this section is to make sure that they are customised to perform well on

their respective tasks. In addition, emphasis is put on a flexible and intuitive structure.

The main mission of the NP is to perform an adequate exploration, and the GA to perform

an adequate exploitation. An important aspect of the relation between the two phases,

is presented in Figure 5.1. Too early switch between the phases leads to a sub-optimal

stagnation, too late leads to a longer computation time. Therefore, the tactic of the current

solution method is rather to be too late than too early.
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Figure 5.1: Identification of a Proper Switch Point from Exploration to Exploitation, in a maximisa-
tion problem. The illustration is borrowed from Andradóttir and Prudius (2009).

5.1.1 Nested Partitions

The decisions to be made for the implementation of the NP are; (i) the partitioning, (ii)

sampling, (iii) backtracking, (iv) storage, (v) rounds and (vi) output. Terminating the sub-

section is a pseudo code of the final NP.

Partitioning

This is the main feature of NP, but there are many different ways to partition the solution

space. First, polynomial time increase with respect to an increase in the number of dimen-

sions must be ensured. This means a polynomial increase in the number of evaluations.

One way to achieve this is by dividing along one dimension at a time. "To alleviate this

problem, we suggest a coordinate sampling scheme which randomly chooses solutions

that differ in only one coordinate from the current sample-best solution. Both empirical

and analytic evidence shows that this is a much more efficient sampling scheme, espe-

cially when the dimension of the problem is high" Hong et al. (2010). The increase in the

number of evaluation, with the addition of an extra dimension would then be constant,

given a constant range for every dimension.
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Sampling

Remembering that the purpose of the NP is to explore the solution space, only choosing

one sample from each part at every partitioning seems like a good idea. This facilitates a

great variation in the convergence from one round to another. Sampling a great number

of solutions at each partitioning, the algorithm would be more likely to choose the same

convergence path every time. For the same reason, uniform sampling is chosen.

Backtracking

To further enhance the exploration of the metaheuristic, backtracking is included, with two

samples. This means that if the two parts of the promising, currently being investigated, are

not covering the whole solution space, two samples are drawn from outside the promising

area. These extra samples are uniformly chosen. If one of these has the best solution, the

promising area is reset to equal the complete solution space.

Memory

From each round of the NP, the best solution visited during that round is saved. This differs

from the usual NP implementation but makes more sense for this problem because the

approximate analytic function is deterministic. The reason for not saving every solution

which is visited is illustrated by the comparison of the running times of the NP in Table 5.1.

Table 5.1: Comparing the running times of the NP with memory enabled and disabled, as a function
of the number of rounds and samples.

Memory enabled Memory disabled
No. Rounds Running time [s] No. Samples Running time [s] No. Samples
1 0.0415 285 0.0315 285
2 0.05 558 0.0459 558
3 0.0626 828 0.0465 840
5 0.076 1380 0.0544 1389
10 0.149 2811 0.0708 2784
20 0.379 5541 0.1038 5597
40 1.156 11136 0.1633 11226
80 4.265 22389 0.2879 22335
160 20.631 44481 0.4937 44622
320 91.357 89205 0.9297 89172
32000 - - 91.8608 8923770
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Rounds

The number of rounds decides how long the NP is to run, and thus, how much of the so-

lution space it explores. Naturally, the higher the number the better, but restrictions re-

garding reasonable time sets a practical limit. Seeing the computational times of Table

5.1, a value of 1000 should yield a good compromise, with a running time of about three

seconds.

Output

1000 rounds mean that 1000 solutions are stored from running the NP. These are sorted,

based on cost, and then the unique solutions are copied to another list. From running the

NP, it is evident that the quality of the solutions vary greatly, and only the best are worth

forwarding to the GA. Choosing the 100 best means a great diversity is maintained, and at

the same time not wasting too much time on hopeless solutions or areas.

NP Summary

Based on the previous decisions, a description of the complete NP is provided. Initially,

the promising area is the complete solution space. A dimension is chosen at random, and

the solution space is divided into two equal parts, each covering half of the range of the

chosen dimension. A random solution is drawn from each part. The space containing the

best solution is labelled as the promising area. Now, a new dimension is chosen, and the

process is repeated within the promising area of the previous iteration. If the promising

area does not cover the entirety of the randomly selected dimension, two random samples

are chosen from outside the promising area, in addition to the two others. If any of the two

samples from outside give the best solution value, the promising area is reset to equal the

entire range of the dimension in question. When the promising area has become so small

that it only contains a single solution, the the best visited solution of the round is stored in

memory. Then, the promising area is reset to cover the complete solution space, and the

process is repeated 1000 times. After 1000 rounds, identical solutions are removed so that

all solutions are unique. The 100 best of these solutions are forwarded to the GA. If there

are fewer than 100, all are forwarded.
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Figure 5.2: 2D conceptual illustration of the search process of the customised NP algorithm. Parti-
tions are made in one dimension at a time.

Customised Nested Partitions pseudo code.

Let x=x(1),x(2),..,x(N) be a solution.

Let f(x) be the objective value of solution x.

Let R be the number of iterations of the algorithm.

Let BestNPVal(1:R) be the best solution value of each iteration.

Let N be the number of decision variables in a solution.

Let ARS(d) be the complete set of allowed values of variable d.

Let ARS(d)L and ARS(d)U be the lower and upper halves of the set ARS(d).

Let RS(d) be the promising area of variable d.

Let RS(d)L and RS(d)U be the lower and upper halves of the set RS(d).

Let DP(d,1 and DP(d,2 be the values of the decision parameter to be tested, from each side

of the promising area.

Let DP(d,3 and DP(d,4 be the values of the decision parameter to be tested, from outside

the promising area.

Let A be the number of different values the decision parameter takes on in the current

partitioning.
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Algorithm 3 Customised Nested Partitions

1: for r = 1 : R do
2: BestNPVal(1:R) ←∞
3: for i = 1 : N do
4: if ARS(i )L == ARS(i )U then
5: cont(i) ← 0
6: else
7: cont(i) ← 1

8: contS ← 1
9: RS ← ARS

10: while contS==1 do
11: d ← Uniform N
12: if cont(d)==1 then
13: Limits(d) ← [RS(d)L ,RS(d)U ]
14: DP(d,1) ← Uniform RS(d)L

15: DP(d,2) ← Uniform RS(d)U

16: for k = 1 : N do
17: x(k) ← Uniform RS(k)

18: if RS(d)==ARS(d) then
19: A=2
20: else
21: A=4
22: DP(d,3) ← Uniform (ARS(d) \ RS(d))
23: DP(d,4) ← Uniform (ARS(d) \ RS(d))

24: BestDP ←∞
25: for a = 1 : A do
26: x(d) ← DP(d,a)
27: f(x) ← Evaluate x
28: if f(x)<BestDP then
29: PromisingArea ← Origin of DP(d,a)
30: BestDP ← f(x)
31: if f(x)<BestNPVal(r) then
32: BestNPSol(r) ← x
33: BestNPVal(r) ← f (x)

34: RS(d) ← PromisingArea
35: if RS is singleton then
36: cont(d) ← 0

37: if sum(cont)==0 then
38: contS ← 0
39: return BestNPSol(:)

54



5.1 Implementing the Metaheuristics

5.1.2 Genetic Algorithm

Implementing the GA, choices have to be made regarding the structure of the algorithm.

This means whether to include elements such as selection, crossover, mutation, and

elitism, and how to do so. Also, the number of particles, and the number of generations

must be set. Not forgetting the intensification.

Particles

The GA starts with importing the list of the best unique solutions from the NP. These solu-

tions are the first generation of the population and are stored as the best solutions of the

GA, initially.

Intensification

If a decision variable has the same value for all the solutions transferred from the NP, then

this decision variable is fixed to having that value for the complete GA. Also, limits are set

for every variable, with a minimum value and a maximum value equal to the respective

extremes of the transferred solutions. This is done to increase the exploitation.

Mutation

At the beginning of every generation, the current population is mutated randomly. This

means that, every generation and for each particle a random decision variable is chosen,

and its value either goes up or down by one. The values always stay within the limits set

through intensification. The reason for only changing one variable, and only by one unit,

is to maximise the exploitation.

Selection & Reproduction

After the mutated solutions have been evaluated, they are sorted based on cost, and the

most expensive 75% solutions are removed. The reason the fraction is set so high as 75% is

to increase the exploitation. When reproducing, new solutions are built by putting together

the first half of one surviving solution, and the second part of another. Having only two

parent solutions, combined in a regular manner, reduces the variation, and thus increases

the exploitation.

Generations
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The same consideration is made for the choice of the number of generations here, as for the

number of rounds in the NP, but the reason is quite different. Here an increased number of

generations ensures an increased exploitation of the promising areas. Therefore, as many

generations as possible is preferred. As seen in Figure 5.3, 200 generations is a reasonable

compromise.

Figure 5.3: GA computation time as a function of the number of generations.

Output

The output of the GA is the list of the best 100 solutions. This list is sorted, to only contain

unique solutions. Then only a couple of the best solutions are forwarded to be simulated.

Exactly how many is determined in Section 5.2.2.

GA Summary

Based on the inputs from the NP, the limits for intensification are established. The cur-

rent population is saved as the 100 best solutions. For each generation the particles are

mutated, then the best are selected for survival, and finally the remaining population is
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restored through reproduction. In the mutation stage, for each particle a random decision

variable is chosen, and its value is either increased or reduced by a unit. The choice is made

randomly, but if the value of the variable is already at the intensification limit, the change

is set in the opposite direction. After the mutation the particle is evaluated analytically, and

if it is better than any of the 100 best solutions, it is stored.

After every particle of the population has been mutated and evaluated, the worst 75 in the

population are removed. Then 75 new particles are constructed from randomly combining

the first half of one surviving solution, and the second half of another. These new particles

are then evaluated, and those good enough are stored as one of the 100 best. The complete

process is repeated for 200 generations.

Customised Genetic algorithm pseudo code

Algorithm 4 Customised Genetic Optimisation

1: x(1 : M , :) ← Input
2: for j = 1 : N do
3: A( j , :) ← [mi n(x(:, j )),max(x(:, j ))]

4: BestGA ← x(1 : M , :)
5: for g = 1 : G do
6: for i = 1 : M do
7: j = Uniform(N \ A( j ,1) = A( j ,2))
8: x(i , j ) ← Uniform[+1,−1],withinA( j , :)
9: if f (x(i , :)) < f(BestGA(end,:)) then

10: BestGA(end,:) ← x(i , :)
11: Sort BestGA(1 : M , :) based on f(x)

12: Sort x(1 : M , :) based on f(x(i,:))
13: x ← x(1 : (M/4), :)
14: for i=(M/4+1) : M do
15: x(i ,1 : (N /2)) ← x(Uniform((M/4) : M),1 : (N /2))
16: x(i , (N /2+1) : N ) ← x(Uniform((M/4) : M), (N /2+1) : N )
17: if f (x(i , :)) < f(BestGA(end,:)) then
18: BestGA(end,:) ← x(i , :)
19: Sort BestGA(1 : M , :) based on f(x)

20: return BestGA
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Let x(i,j) be the value of decision variable j of solution i.

Let N be the number of decision variables in a solution.

Let A( j ,1) and A( j ,2) be, respectively, the lower and upper intensification limit of decision

variable j .

Let x(1:P,1:N) be a population of P particles.

Let M be the population size.

Let G be the number of generations.

Let f(x(i,:)) be the objective value of x(i,:).

5.2 Implementing Additions

In addition to the metaheuristics, some other important aspects of the implementation

must be decided. The adjustment of the analytic function, the size of the simulation sets,

the OCBA, and the termination criteria of the solution method.

5.2.1 Adjustment

The purpose of the adjustment is to improve the predictions of the analytic approxima-

tion. That is, to make the predictions better match the results of the simulation model.

As presented in Equation 4.10, a practical method for adjustment is to add a factor to the

equation of each cargo type. There are two choices for what the factor is to represent; (i) the

relation between actual delivery and predicted delivery, or (ii) the relation between the ac-

tual performance and the restriction threshold. The second is the most intuitive, because

when it gets close to one the solutions match the restrictions well. For the first alternative,

it is easier to relate to Equation 4.10, but when it approaches one, it is not guaranteed that

the solutions approach the threshold of the restrictions.

The value of the adjustment must be chosen in such a way as to ensure a steady conver-

gence towards 1. An easy way to do this is to set it as the 50th percentile of the set. This is

more stable than the average, because it may be influenced by extreme values in either of
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the ends. Thus, adjustment is as presented in Equation 5.1.

F B(i ) = P50(BulkPer f or mance) ∀i ∈ I (5.1)

BulkPerformance is a vector with length equal to the number of simulations in the set. Each

element is defined as follows, in line with the constraints from Equation 2.2. I is the set of

cycles in the solution method.

BulkPer f or mance( j ) = P1−T _r (1)(F r acBulkLi f ted( j ))

T _p(1)
∀ j ∈ J (5.2)

FracBulkLifted(j) is a vector with a length equal to the number of realisations which the

solutions were simulated for. J is the set of solutions in the set. T_r(1) is the desired level

of certainty of the solution performance. That is, T_r(1)=0.95 means that a solution has

to be 95% certain to perform above the threshold to be accepted. T_p(1) is the threshold.

T_p(1)=0.9 means that the solution has to transport at least 90% of the cargo to be accepted.

F r acBulkLi f ted( j ,m) = (BulkLi f ted( j ,m))

W DB(m)
∀m ∈ M (5.3)

M is the set of realisations which were simulated. WDB(m) is the average weekly demand

of bulk in scenario m. The same calculations are performed for all cargo types.

5.2.2 Simulation Evaluation

Firstly, because of the deviation of the simulated weekly demands of the cargoes, compared

to the input value decided by the user, see Appendix D, an extra "zero-concept" will be sim-

ulated in every set in addition to the actual solutions. This "zero-concept" has no vessels,

and thus the cargo piles up at the base. The reason for this approach is that the simulation

model does not return an average weekly demand, but it does return a measure of waiting

cargo which can be used to estimate the average weekly demand, by using Equation 5.4.

BulkWaiting is given in days · m3. The equation assumes that the graph takes the form of a

triangle, Appendix B.6, thus it finds the height of a triangle when the area is given. The 7 is

to make it the weekly demand, rather than the daily.
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W DB(m) = BulkW ai ti ng (m) ·2

T 2 ·7 ∀m ∈ M (5.4)

The next step is to decide the number of solutions in each simulation set. In this regard, two

things are important; (i) the set must be big enough to ensure a stable adjustment, and (ii)

the set has to cover the variance in the cost-ordered list from prediction to simulation. For

the former, the convergence of the adjustment factor is studied as the number of solutions

in the set increases. For the latter, the cost-ordered lists from the analytic approximation

and the simulations are compared to see how big the variance is.

(i) For this convergence study, Table 5.2, one specific case is studied, and the results are

assumed to be valid for all other cases. This is of course not perfect, but other trials seem

to give the same results. The tested case is; B=3000, D=2000, P=280, Vessel data 2, and 100

realisations, and the factors are from the first cycle.

Table 5.2: Changes in adjustment factors for the 25 cheapest solutions. Retrieved from the first cycle
when B=3000, D=2000 and P=280.

No. Simulations [FB, FD, FP]
1 [1.0008, 0.6573, 0.2891]
2 [1.0056, 0.6582, 0.2979]
3 [1.0008, 0.6591, 0.3068]
4 [1.0008, 0.6705, 0.3134]
5 [1.0008, 0.6591. 0.3200]
6 [1.0008, 0.6705, 0.3134]
7 [1.0008, 0.6818, 0.3200]
8 [1.0015, 0.6832, 0.3134]
9 [1.0008, 0.6845, 0.3200]
10 [1.0015, 0.7991, 0.3195]
11 [1.0008, 0.9137, 0.3200]
12 [1.0008, 0.9169, 0.3200]
13 [1.0008, 0.9202, 0.3200]
14 [1.0015, 0.9326, 0.3233]
15 [1.0021, 0.9202, 0.3265]
25 [1.0083, 0.9451, 0.4088]

Clearly, and as expected, the adjustment factors do not converge, they increase. This is

because every extra solution added to the set is more expensive, and probably better per-
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forming, than all those that are already in the set. Thus, the bigger the set, the less informa-

tion the resulting adjustment factors actually give about the relation between the analytic

function and the simulation. In addition, as few simulations as possible is a key aspect of

OCBA. This means that a compromise is needed, as small as possible, but big enough so

that an extraordinarily bad prediction does not shift the value. That is, the set must pro-

vide a stable convergence of the adjustment. Figure 5.4 shows that the increase in time is

linearly dependent on the number of solutions in the set, which means that a set size of 5

solutions may work well in this respect.

Figure 5.4: Simulation time for a set, as a function of the number of solutions in the set. 100 realisa-
tions for every solution.

(ii) The cost ordered variance is tested by comparing a cost ordered list of predictions for

the analytic function, with the resulting list of the simulated costs. The greatest number

of positions a solution has moved, indicates the variance that can be expected. The same

25 solutions from Table 5.2 are used in this test, in Table 5.3. The results of Table 5.3 in-

dicates that a deviation of 5 positions can be expected, but in general it seems that the

cost-ordered lists match very well. Taking this observation into account, the simulation set

size is increased to 6 solutions. Experiencing bigger deviations is assumed to be unlikely.
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Table 5.3: Mismatch between predicted cost and actual cost. The "identity" of the solutions are in
parenthesis, making it possible to see how they "move" in the sorted list from predicted cost to sim-
ulated cost.

Predicted cost (ID) Simulated cost (ID) Position change
1.232e+07 (1) 6.265e+06 (1) 0
1.282e+07 (2) 6.767e+06 (2) 0
1.302e+07 (3) 6.965e+06 (3) 0
1.424e+07 (4) 8.154e+06 (4) 0
1.431e+07 (5) 8.220e+06 (5) 0
1.434e+07 (6) 8.470e+06 (6) 0
1.451e+07 (7) 8.626e+06 (7) 0
1.484e+07 (8) 8.962e+06 (8) 0
1.501e+07 (9) 9.127e+06 (9) 0
1.504e+07 (10) 9.166e+06 (10) 0
1.521e+07 (11) 9.324e+06 (11) 0
1.551e+07 (12) 9.625e+06 (12) 0
1.571e+07 (13) 9.826e+06 (13) 0
1.591e+07 (14) 1.002e+07 (14) 0
1.594e+07 (15) 1.007e+07 (15) 0
1.602e+07 (16) 1.014e+07 (16) 0
1.621e+07 (17) 1.035e+07 (17) 0
1.628e+07 (18) 1.042e+07 (18) 0
1.635e+07 (19) 1.051e+07 (20) -1
1.638e+07 (20) 1.051e+07 (21) -1
1.638e+07 (21) 1.057e+07 (22) -1
1.644e+07 (22) 1.058e+07 (23) -1
1.646e+07 (23) 1.064e+07 (24) -1
1.652e+07 (24) 1.065e+07 (19) +5
1.653e+07 (25) 1.078e+07 (25) 0

5.2.3 Optimal Computing Budget Allocation

In this section, a decision will be made as to how the OCBA of the solution method is to

be implemented. The previous section decided the number of solutions to be simulated

in each set, and the number of sets being simulated is a user decision with respect to the

termination criteria of the next section. Therefore, the final aspect regarding OCBA is to

decide the number of realisations in each simulation set. There are two allocation tactics

which seem to be the most obvious; (i) gradually increasing the number when approach-

ing good solutions, or (ii) having a small number in an initial phase, before increasing to a
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high number in the final phase. The first may yield the best savings, but is harder to im-

plement, because of the need for some function adjusting the number of realisations from

one simulation set to the next. The second may also yield good savings, but it necessitates

knowledge about the quality of the solutions beforehand in order to know exactly when to

increase the number of realisations.

In this thesis an implementation of the second suggestion will be attempted. The necessary

preliminary knowledge will be provided by running the algorithm to termination with a

low number of realisations. After termination, the algorithm will be ran again with a high

number of realisations, starting with the adjustment factors of the best known solution

from the previous run, establishing a more certain confidence interval for the solutions. If

the solutions are still valid, they are returned as the output of the algorithm to the user.

What exactly a low number and a high number means can be defined as follows. The low

number must be as small as possible, but big enough to return realisations which, in a sat-

isfactory way, reflects the extreme values of the distributions of interest. The high number

must be as small as possible, but big enough to, in a satisfactory way, completely reflect the

distributions. The distributions of interest are, in this case, the weekly supply of bulk cargo,

deck cargo and persons brought to the base. The definitions are illustrated in Figure 5.5,

which is one of three distributions from one of three experiments to find the values. The

two other distributions, and the distributions of the two other experiments may be seen in

Appendix D.

By visual inspection, it is not obvious what the low number should be. The first criteria is

that it should be significantly lower than the high number, therefore, the process is sim-

plified by choosing that number first. The high number seems to be in the area of plot 10

- which translates to somewhere around 256 realisations. Without further discussion the

choice falls on 250. Now, the low number may be chosen from the range of the first 9 plots.

Seeing a stable increase in the range for every distribution, from plot 1 through plot 6, the

decision falls on 75. A round number, close to the 76 of the 6th plot. Only rarely, even for a

much higher number of realisations, does values outside those of plot 6 occur. Also, 75 is

still a significantly lower number than 250, yielding time savings of 70%.
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Figure 5.5: Distribution of realisations of bulk supply. The user input is Bulk=2000. x-axis=tons/week,
y-axis=realisations. The total number of realisations in each subplot is, from upper left: 10, 15, 23, 34,
51, 76, 114, 171, 256, 384, 577, 865.

5.2.4 Termination Criteria

The termination criteria (TC) defines when the solution method terminates, when one, or

a set, of the criteria are met. For this solution method four criteria will be established. If

any one of these are met, the solution method terminates. The first is a maximum total

duration. This being a strategic problem, 1 hour is suitable. This criterion will be called

TC1 in the remainder of the report. The three other termination criteria are defined by the

development of the search process.

First, a two-cycle start-up phase is ran, with a low number of realisations. This is because
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Figure 5.6: Simulation time for a set, as a function of the number of realisations. 6 solutions in the
set.

the predictions of the analytic function may be way off initially and needs to be adjusted.

Thereafter, the process checks the termination criteria every cycle, still with the low num-

ber of realisations. If a TC is met, the final phase is initiated, meaning a high number of

realisations when simulating, and the best solutions are ran. If any of them prove to be

legal, the search process is terminated. This termination process is illustrated in Figure 5.7.

TC2

No change in the set of solutions to be simulated from one turn to the next. This means

that the algorithm has stagnated and is unable to find alternative solutions it believes to be

better. Three scenarios may give this situation: The solutions are at the absolute lower end

of the solution space, or the opposite, that the solutions are at the absolute upper limit of

the solution space. For very special cases the third situation is an option - the adjustment

is so small that, even though the solution set is in the middle of the solution space, the

complete solution set of the previous turn is kept through the next. In the case of the latter,

the situation is transitory because the solutions will yield factors less than 1 for every turn,

eventually introducing new solutions. An example of TC2 is illustrated in Figure 5.8

65



Chapter 5. Completing the Solution Method

Figure 5.7: A flow chart of the complete
termination process. First two initial cy-
cles must be finished, then the termina-
tion criteria must be met, and finally at
least one solution must be legal.

TC3

Given that a legal solution is already found, the al-

gorithm fails in improving the best solution during

the next two turns. Hopefully, this happens because

the optimal solution is found, but it may also be a

different explanation; TC3 may happen when, after

a good solution is found, the adjustment increases

the cost of the next sets drastically, and it takes sev-

eral cycles before the adjustment is back down. An

example of TC3, though not very realistic, is illus-

trated in Figure 5.9.

TC4

If a legal set and an illegal set has solutions in com-

mon. This is a TC because finding a whole set of

only illegal solutions indicates that there are very

few legal solutions in the area. Thus, finding a legal

solution in the vicinity of an illegal set could mean

that the legal solution is close to optimal. An exam-

ple of TC4 may be seen in Figure 5.10.
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Figure 5.8: Termination Criteria 2. The simulated set does not change from one cycle to the next.

Figure 5.9: Termination Criteria 3. The best solution does not improve for the next two cycles.

Figure 5.10: Termination Criteria 4. A legal and an illegal set is found which have at least one solution
in common.
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5.3 Summary of Solution Method

The complete algorithm, as defined so far, is presented as a flow chart in Figure 5.11. The

full, detailed implementation may be seen in Appendix C, where the MATLAB code is dis-

played. In the block "Input from user" the case is defined by inputting the following, see

Appendix A.1:

• Bulk, deck and pax demand pr week

• Vessel concept list

• Characteristics of platform

• Characteristics of base

The output the user gets back is a table of solutions on the form given by Table 5.4. In the

example solution displayed, the threshold reliability is 95%, and the threshold performance

is 90%. Also, the cost is defined as the 95th percentile value. As can be seen, the P5 values are

all above 90%, thus the displayed solution is legal. This is also a requirement for a solution

to be returned to the user. The solution uses one vessel of type 5, and one of type 9.

Table 5.4: On what form legal solutions are returned to the user.

Solution P95(Cost) P5(BulkPerf ) P5(DeckPerf ) P5(PaxPerf )
[0 0 0 0 1 0 0 0 1 0] $6.265e+06 90.07% 91.34% 90.61%
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Figure 5.11: A high level flow chart of the complete solution method.
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Chapter 6
Testing and Results

In this chapter, the solution method presented in Section 5.3 is tested to see how well it

meets the criteria of finding good solutions within reasonable time, and being flexible and

intuitive. The chapter starts, in Section 6.1, by designing the experiments necessary to

test for the criteria, and by explaining the execution process as it is performed by the user.

Thereafter, the tests are performed in Section 6.2, presenting all relevant results.

6.1 Preparations

Before performing the tests, certain preparations must be made. The tests have to be prop-

erly designed, in order to ensure that they yield the desired information about the solution

method. Furthermore, the interaction between the solution method and the simulation

model has to be established.

6.1.1 Experiment Design

For the testing to be of any value, it is important that the results actually give valuable infor-

mation in relation to the purpose and criteria of the development of the solution method.

At the same time, performing experiments is a tedious process and therefore smart design,
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reducing the number of tests necessary, may save a lot of time. By running the experiments,

the following three questions are to be answered:

1. Does the solution method find good solutions within reasonable time?

2. How does computation time for the solution method increase with increasing prob-

lem size and vessel concepts list?

3. Is the solution method flexible?

For the tests to answer these questions, first the various terms must be defined.

Good solutions may be defined in several ways: (i) Those that can be proven to be optimal.

(ii) Those which are as good or better than the solutions found by traditional methods.

(iii) Those that are within some limit from an optimistic bound. Attempting (i) and (iii) is

not realistic, therefore the choice falls on (ii). This means that the results of the solution

method are to be compared to those of expert judgement. The search process of the expert

judgement approach is completely independent from the results of the solution algorithm.

Also, the goodness of a solution may be defended with qualitative arguments regarding the

specific problem.

Reasonable time is defined as having a linear relation between the computation time, and

a change in any single input parameter. This is tested both by comparing the solution times

for the complete solution method, and the computation times for the constituents, for the

different cases. In addition, there is an upper time limit, set by TC1 to 1 hour.

Flexibility is measured by the amount of work needed to modify the solution method for a

different case. If only seconds or a few minutes are needed, the solution method is flexible.

If several hours or more is needed, it is not flexible. The solution method should be flexible

for all cases which can be evaluated by the simulation model. In order to test this, the cases

have to reflect the range of problems that are possible to test with this set up. This means;

different weekly transport requirements, different platforms, different characteristics in the

base, and different lists of vessel concepts.

Following the previous discussion, the solution method is to be tested for 9 different cases,

presented in Table 6.1. The explanations of the H’s and P’s are presented in Table 6.2, and

a visualisation may be seen in Appendix B.2. For every case, the search process is logged,
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including complete solution time, the time necessary to prepare for the case, the number

of cycles, the tested solutions, and the related adjustment factors.

Table 6.1: Definitions of the cases which are used in the experiments. All other parameters are equal
for all of the cases. The platforms are listed in order of visit.

Case Vessel data Restrictions Base Platforms
1 VD1 [2000 1200 70] H1 [P2 P4]
2 VD1 [4000 2400 140] H2 [P1 P3 P5 P6]
3 VD1 [8000 4800 280] H3 [P1 P2 P3 P4 P5 P6 P7]
4 VD2 [2000 1200 70] H1 [P2 P4]
5 VD2 [4000 2400 140] H2 [P1 P3 P5 P6]
6 VD2 [8000 4800 280] H3 [P1 P2 P3 P4 P5 P6 P7]
7 VD3 [2000 1200 70] H1 [P2 P4]
8 VD3 [4000 2400 140] H2 [P1 P3 P5 P6]
9 VD3 [8000 4800 280] H3 [P1 P2 P3 P4 P5 P6 P7]

Table 6.2: Coordinate locations and specifications of the onshore home-bases, H, and offshore plat-
forms, P. Bulk loading rate(BLR), deck loading rate(DLR), inter vessel departure time(IVD).

Name Position (N,E) [deg] BLR [ton/h] DLR [m2/h] IVD [h]
H1 70.7, 23.7 120 100 72
H2 70.7, 23.7 240 200 36
H3 70.7, 23.7 480 400 6
P1 73, 20 100 50 -
P2 74, 27 100 50 -
P3 75, 32 100 50 -
P4 76, 38 100 50 -
P5 73, 37 100 50 -
P6 73, 30 100 50 -
P7 72, 23 100 50 -

To finalise the case definitions, the threshold reliability and performance have to be set

for each cargo type, as described in Section 2.3. In addition, the probabilistic measure of

interest of the cost function has to be determined. Because there are no special reasons for

choosing any specific value for each of them, the following choice was made: Threshold

reliability for all cargo types; T_r(1)= T_r(2)= T_r(3)=95%. Threshold performance for all

cargo types; T_p(1)=T_p(2)=T_p(3)=90%. Measure of the cost function; the 95th percentile.
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This means that, for a solution to be legal, the 5th percentile value of the weekly average of

delivered cargo must be at least 0.9 times the demand, for all cargo types.

6.1.2 Process

Before performing the tests, the solution method must be connected to the simulation

model. The solution method is implemented in MATLAB and the simulation model is a

runnable .jar-file which reads input from two excel-files and writes to a .csv-file. Opening

the simulation model and loading the input-files is done manually. Also, saving the simu-

lation results to the .csv file is done manually. This means that the simulation evaluation

of a set, that is, once every cycle, has to be initiated by the user. Therefore, the solution

method is divided into three MATLAB-scripts, with the connections seen in Figure 6.1. The

input-files may be seen in Appendix A.1, the output-file may be seen in Appendix B, and

the MATLAB scripts may be seen in Appendix C.

6.2 Execution

First the solution method is tested for the given cases, then the expert judgement ap-

proach is tested for comparison. Finally, the computation times of the solution method

constituents are investigated.

6.2.1 Solution Method

The solution process of solving case 1 with the constructed solution method is displayed

in its log in Table 6.3. Three cycles were performed. In each cycle the six solutions that

were evaluated through simulation are presented. The "Vessels" column describes the fleet

composition, the two following columns gives the 95% confidence values for cost and per-

formance. "Legal?" says if the solution meets the requirements or not, and "Adjustment"

presents the last adjustment factor included when finding the solutions of the set. For ex-

ample, the first solution of the first cycle only included one vessel of type 6, had a cost of $
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3.89 ·106 and performed 0.94, 0.77 and 0.95. Because P5(D) is less than 0.90, the solution is

not legal. The adjustments used to find this set of solutions was FB=1, FD=1 and FP=1.

Table 6.3: A log of the solution process for Case 1.

Cycle Solutions Legal? Adjustment

nr. Vessels P95(Cost) P5(B), P5(D), P5(P)

1 C6=1 3.89e+06 0.94, 0.77, 0.95 No FB(0)=1

C7=1 4.38e+06 0.78, 0.95, 0.95 No

C4=1 C10=1 4.63e+06 0.89, 0.92, 0.91 No FD(0)=1

C4=1 C6=1 6.22e+06 0.94, 0.95, 0.78 No

C4=1 C9=1 6.99e+06 0.94, 0.95, 0.95 Yes FP(0)=1

C4=1 C7=1 6.67e+06 0.94, 0.95, 0.80 No

2 C6=1 3.90e+06 0.93, 0.74, 0.95 No FB(1)=1.040

C7=1 4.38e+06 0.79, 0.93, 0.95 No

C4=1 C10=1 4.63e+06 0.91, 0.92, 0.92 Yes FD(1)=1.051

C4=1 C6=1 6.22e+06 0.92, 0.92, 0.76 No

C4=1 C9=1 6.99e+06 0.92, 0.92, 0.95 Yes FP(1)=1.034

C4=1 C7=1 6.71e+06 0.92, 0.92, 0.85 No

3 C6=1 3.90e+06 0.92, 0.74, 0.95 No FB=FB(0)

C7=1 4.38e+06 0.78, 0.91, 0.95 No

C4=1 C10=1 4.63e+06 0.91, 0.89, 0.89 No FD=FD(0)

C4=1 C6=1 6.22e+06 0.92, 0.91, 0.77 No

C4=1 C9=1 6.99e+06 0.91, 0.91, 0.95 Yes FP=FP(0)

C4=1 C7=1 6.70e+06 0.92, 0.91, 0.88 No

Case 1 returned the same solution sets in cycle 1 and cycle 2, thus meeting TC2. The third

cycle is performed to confirm the legality of the best found solution, having 250 realisations

as opposed to the 75 of the previous cycles. Legality was confirmed, and the solution was

returned to the user; a fleet composition of C4=1 and C9=1, costing $6.99 ·106.

While the logs of all the other cases are presented in Appendix E, a summary is shown in

Table 6.4.

75



Chapter 6. Testing and Results

Table 6.4: Main results of test-runs of the solution method on cases 1 through 9. The complete log of
each search process may be found in the Appendix, as indicated.

Case Preparation time TC Search time Process log Lowest cost
[-] [min:sec] [-] [min:sec] [-] [$]
1 1:40 2 3:15 Appendix E.1 6.99e+06
2 1:26 4 4:15 Appendix E.2 9.20e+06
3 0:50 2 16:16 Appendix E.3 2.07e+07
4 1:52 2 & 3 5:33 Appendix E.4 2.45e+06
5 1:20 4 6:55 Appendix E.5 5.65e+06
6 0:52 3 29:07 Appendix E.6 1.73e+07
7 1:30 2 & 4 3:34 Appendix E.7 2.45e+06
8 1:27 2 & 4 10:13 Appendix E.8 7.18e+06
9 0:43 3 20:50 Appendix E.9 1.70e+07

6.2.2 Expert Judgement

An attempt was made to solve Case 1 using expert judgement. The approach was simply

to make educated guesses for good solutions and simulate them to get feedback on the

choices. The solutions were chosen in sets of three, and the simulations included 75 reali-

sations. The best solution was verified by running a simulation with 250 realisations. The

result was a best solution of C4=1, C7=1 and C10=1, costing $8.78 ·106, found and verified

after 19 minutes and 30 seconds. Attempts at solving other cases seemed to give similar re-

sults; somewhat worse solutions and a quick increase in complexity and resulting increase

in solution time.

6.2.3 Duration Dependency

In this section there will be a short presentation of the time consumption of the various

parts of the solution method. Two main consumers, the search process and the evalua-

tion, are presented in the following. These are chosen because their duration is dependent

on factors which may vary from one problem to another. Summation of the presented

durations will not add up to the durations of the complete processes as presented in the

previous section. This is due to three factors: (i) The durations of the necessary manual

actions are not included, (ii) the duration of other necessary code is not included, and (iii)
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the duration of read and write processes between different files is not included.

Search Process

NP and GA are tested for computation time dependency on the number of possible vessel

concepts, and the amount of weekly cargo demand.

Table 6.5: Search time as function of problem size and number of vessel concepts. The durations are
those of the final cycle of each case, as found when solving the cases in the previous subsection.

Case number Number of concepts NP duration GA duration
[-] [-] [seconds] [seconds]
1 0.26 1.41
2 10 0.52 1.71
3 0.52 1.47
4 1.25 0.99
5 21 1.25 0.79
6 1.23 0.64
7 1.97 0.55
8 42 2.85 0.58
9 3.08 0.53

Clearly, there is some variation in the computation times of both the NP and the GA. For

the NP the computation time increases for both increased cargo demand, and even more

so for an increased number of vessel concepts. The GA, on the other hand, has the exact

opposite behaviour.

Evaluation Process

The computation time of the analytic function is a function of the number of vessels con-

cepts in the current Vessel Design list. This is because the only elements that vary in du-

ration are for-loops going through each concept in the list, Appendix . In addition, the

linearity of the analytic function is evident by the computation times in Table 6.5. In 1.50

seconds, 1 000 000 analytic evaluations of 10-concept solutions are performed.

The variation in time of the simulation model as a function of the number of realisations

or the number of solutions in the set may be seen in Section 5.2. Moreover, the simulation
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time does naturally not depend on the size of the current Vessel Data list. Computation

time, as a function of problem size, is presented in Table 6.6.

Table 6.6: Computation times of simulations of the final sets of Case1, 2 and 3. 75 realisations.

Case number Simulation times [seconds]
1 23.37
2 27.23
3 53.96

The simulation model using discrete event simulation (DES), an increase in time, following

increased weekly demand, is expected. This comes as a result of a larger fleet performing

more actions, which in turn take more time to compute. To compare the times with the

analytic function; the times from Table 6.6 equals 13-29 simulation evaluations in 1.50sec-

onds.
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Figure 6.1: Algorithm execution flow chart. The user inputs data to both AlgorithmV2D1.m and
DataSet1.xlsx. Then the action files are ran in the order displayed. See Appendix A.1 for details on
"Dataset1.xlsx" and "ConceptsFile.xlsx". See Appendix C for details on the .m-files. See Appendix B
for details on "ConceptsFile_solution.csv" and the "Return".
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Chapter 7
Discussion

In this chapter, the performance and suitability of the solution method is discussed. The

discussion will be based on both the results of the tests performed in Chapter 6, and the

insight given by some relevant literature. First, in Section 7.1 the quality of the solutions

found by the solution method will be discussed. Section 7.2 delivers a thorough assessment

of the method suitability.

7.1 Solution Quality

Not having proven optimality, or even established an optimistic bound, the discussion will

be based on logical assumptions and observations. The goal is to determine whether or

not a statement about the goodness of the solutions may be supported at all, and if so; how

good they are. In this case the goodness of a solution is, of course, measured by the cost

of the solution, but it is important to note that for the costs to bear any information, the

values have to be of sufficient certainty. As discussed in Section 5.2, the key point is that the

order of the cost list of the analytic function gets as close to the true one, as possible. This

means that, after making the solutions that are assumed to be illegal infinitely expensive, if

the order of the list matches the true order, the rest is up to the search of the metaheuristics.

The complete process is discussed in the following.
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7.1.1 Assumptions

The first assumption made in the construction of the solution method is that the decision

maker prefers to obtain a good solution within reasonable time, rather than finding the

optimal solution within indefinite time. This is reasonable for practical problems, as con-

firmed by Juan et al. (2015). Although optimality is sought after, a decision maker can’t wait

for the first legal solution forever.

The second assumption is that there exists, for every problem case, a true sorted list based

on some measure of the costs of all the solutions, in this case the 95th percentile value. This

means that if every solution is simulated enough times, the sorted list would reach some

steady state order, placing every solution in its true position. The assumption is based on

the law of large numbers, which is believed to hold because every stochastic parameter is

based on some set of probabilities. The behaviour of the entities in the system, and their

interaction, on the other hand, is not certain to reach a steady state.

The third assumption is that only a finite number of realisations of each solution is nec-

essary to establish the true order of the list. This is the first step towards a manageable

solution time. The idea is that the distributions of the different stochastic elements may

be observed to converge as the number of realisations increases. At some point the distri-

butions are certain to the degree that more realisations give no extra information. This is

only done for the weekly distributions; where clear normal distributions were seen. Maybe

250 realisations were too few, but at the same time the decision was based on a balance

between computation time and accuracy. Also, only testing the distributions of the weekly

demands greatly reduces the certainty of the solution quality. The effects of other stochas-

tic elements such as weather and interaction between the vessels, may not reach a steady

state at the same number of realisations, if ever.

The fourth assumption is that it is possible to say anything about the order of the list with-

out performing any simulations. That is, the problem has a structure which can be ex-

ploited to predict, to some degree of certainty, the quality of solutions in relation to each

other. The more accurate such analytic models may be in predicting the quality of the solu-

tions, the fewer simulations are necessary. Therefore, putting some effort into the analytic

model may well be worth it time-wise. This is clearly a reasonable assumption for this prob-
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lem, but how accurate the analytic model actually is, is an important and difficult question.

The number of necessary simulations is based on the variability of the analytic list, com-

pared to the list based on 250-realisation simulations. This was the reason for choosing a

6-solutions set, but the choice was made after investigating a list of only 25 solutions.

As seen in the tests of Chapter 6, the analytic models were often far off in their initial pre-

dictions. Meaning that there were some important features of the simulation model which

it did not consider. This issue was addressed by incorporating an adjustment of the trans-

port performances. The fifth assumption is that a common adjustment of the restriction

specific performance of every solution leads to the best solution. The cost is not adjusted

because the exact value is not of importance in the analytic model, only the relations be-

tween the solutions. The validity of the assumption is hard to prove, but intuitively it is

obvious that it is helpful in directing the search. Also, the implementation of the adjust-

ment, leading the search to the "intersection" between legal and illegal solutions seems

logical, but certainty about the validity of the approach is not established.

The sixth and final assumption is that the metaheuristics are able to identify the best solu-

tion in the deterministic solution space of the analytic function. The metaheuristic being

globally convergent (Hong and Nelson, 2006), the optimal solution will be found, given

enough time. However, even for the finite solution space in the current problem, optimal-

ity may not be proven in reasonable time. Therefore, the assumption does not hold, but

assuming the identification of close to optimal solutions seems reasonable given that the

metaheuristics are well designed. The convergence of the NP in Figure 7.1, may suggest

that close to optimal solutions are found within reasonable time.

The solution method reaching termination criteria 2, 3 or 4 for every case indicates that

the solutions are good. TC2 and TC3 requires stagnation of the search process. This is not,

in itself, an evidence for high solution quality, but the fleet compositions of the solutions,

and the cost reductions from the first cycle to the last, are strong indicators of that. For the

solutions which were terminated by TC4, the assumption of the variability of the predicted

list from the true one, is crucial. However, TC4 is much more certain than the assumption,

meaning that TC4 may hold even if the variability is twice as large as assumed.
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Figure 7.1: The convergence of the value of the best solution found by the NP algorithm. The test
case is the last cycle of Case 9. 1000 rounds equated to 3.7seconds.

7.1.2 Observations

In order to evaluate the goodness of the solutions with respect to observations, some ba-

sis for comparison must be established. The "Expert judgement" approach attempted in

Chapter 6, and the behaviour of the solution method when solving the cases, is discussed

in the following.

Expert judgement means choosing solutions which are believed to be good, by some ex-

pert, and then simulate them with a high number of realisations, to get a proper evaluation.

An expert interprets the results, before either simulating new solutions, or terminating the

search. Case 1 was solved with this approach. The result was not convincing; after spend-

ing four times the time, an inferior best solution was found. However, it is worth to mention

that no formal or structured approach was used, only the intuition and gut feeling of the

author. Thus, the result may not prove anything, but a comparison of the methods makes

it clear that the constructed solution method simply may be described as an automation
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of the traditional method, which would lead to the conclusion that the solution method is

faster, if not also better. Relating this to the quality of the solutions of the solution method,

strictly speaking proving optimality is not necessary if the solutions are better than those

of the current method.

During the tests, some peculiar behaviour was observed, as results of the assumptions

being imperfect. The first is related to the third assumption. In Case 8, during a 250-

realisation simulation, a solution was found to be illegal, then, in the next 250-realisation

simulation, it was found to be legal. This proves that the assumption does not hold for

250-realisations, a higher number is needed.

The second peculiarity is related to the sixth assumption. Although using the same factors

in Cycle 9 and Cycle 12 of Case 6, the sets are not identical. This means that the meta-

heuristic does not manage to find the best solutions when searching the solution space,

if it did; identical adjustment factors would yield identical sets. The metaheuristics may

still be very good, but they are not perfect. A similar observation was made for Cycle 7 and

Cycle 10 in Case 9, where it resulted in finding a new best solution in the 250-realisation

simulation.

7.2 Method Suitability

Usually, for metaheuristics solving large-scale problems, the most certain measure of

method suitability is how quickly it identifies solutions of a certain quality, compared to

other methods (Gosavi, 2015). In particular, methods are compared to the performance of

Pure Random Search (PRS). However, when PRS was tested on Case 9, it failed to identify

any legal solutions. While this indicates that the constructed algorithm is, at least some-

what, suited for the problem, the poor performance of the PRS was expected. This is be-

cause the legal solutions constitute a very small part of the solution space; too few vessels

and the capacity is too low, and too many vessels and a queue builds up reducing the ca-

pacity. Therefore, the probability of finding a legal solution through PRS is very small. This

problem of a low concentration of legal solutions is solved in the NP by exploiting the trend

in the solution space. For all the cases in question a lower number of vessels are needed,
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therefore when the algorithm compares two equal solutions, the one with the lower de-

cision variable value is preferred. This trend suits the NP algorithm very well, because it

means that most of the partitions are decisive, in that they are most likely not backtracked.

Thus, the NP is very efficient.

In the following, the rest of the structure and constituents of the solution method is eval-

uated using the taxonomy and categorisation scheme developed by Figueira and Almada-

Lobo (2014). They categorise methodologies based on four dimensions; (i) Hierarchical

structure, (ii) Simulation purpose, (iii) Search scheme and (iv) Search method. Each di-

mension is divided into four levels, which in total covers the complete range of the dimen-

sion. The two illustrations Figure 7.2 and Figure 7.3 show the division of the dimensions,

and how different methods fall into the two two-dimensional tables.

Figure 7.2: "Classification according to the interaction between simulation and optimization: simu-
lation purpose and hierarchical structure." - Figueira and Almada-Lobo (2014)

The constructed solution method has an Optimisation with Simulation-based iterations

(OSI) structure in the first dimension. For every iteration in the optimisation algorithm, a

complete run of the simulation model is performed. In the second dimension, the current

method falls into the Analytic Model Enhancement (AME) category. AME is defined by
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Figueira and Almada-Lobo (2014) as using a "problem specific model which is modified

according to the simulation output".

Figure 7.3: ""Classification according to the search design: method and scheme."" - Figueira and
Almada-Lobo (2014)

In the Search scheme dimension, the algorithm is placed somewhere between Different

realisations for each solution (DR1S) and Common realisations for each solution (CR1S).

The solutions which are simulated in the same set are given the same realisations, but the

realisations change from one set to the next. However, as described in Section 7.1, the idea

is that the many realisations would equate the effect of common realisations, although this

was proven to be false for the number used in the tests. Finally, in the Search method

dimension, the solution method belongs to the Discrete-space Heuristic (DH) category.

The solution space is discrete, and a Nested Partitions algorithm and a Genetic Algorithm

are employed.

Subsequently, the solution method constructed in this report is an AME-OSI/DH-

[DR1S,CR1S], according to Figueira and Almada-Lobo (2014). There are no general exam-

ples of similar solution methods in Figure 7.2 and Figure 7.3, with Memory-based meta-

heuristics (MMH) as the closest. Based on the classification of the algorithm, it is suitable

for problems of the following type:

• It is practicable to construct a priori a useful analytic model, but it needs to be im-
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proved. (AME)

• The optimisation is highly dependent on feedback from the simulation model. (OSI)

• The problem is difficult and combinatorial. (DH)

• It’s harder to travel the solution space than the probability space, and both diversifi-

cation (DR1S) and convergence is important (CR1S).

This description fits well with the problem described in Chapter 2. Especially, AME, as

pointed out by Figueira and Almada-Lobo (2014): "Typically, when a linear relationship be-

tween most input and output variables exists and is known, but there are particular aspects

difficult or undesirable to be included in the analytic model, AME can be very efficient and

effective". This is exactly the case for the problem in question; for elements such as the

weather, the demands and the effect of the loading rates and opening hours on the flow of

vessels.

7.2.1 Computational Complexity

The aspect of reasonable time is also important for evaluating the suitability of this solu-

tion method. Because the size of the solution space may vary greatly, a linear increase in

computational complexity is required for a solution method to be considered suited for

the problem. Figure 7.4a shows how the computation time for the NP changes with the

number of possible vessel concepts, and Figure 7.4b shows the same for the GA.

The linear increase of the NP indicates method suitability, not only because such a linear

increase is required, but also because of what it represents. Since backtracking is included

in the NP, there is no upper limit for how long time it could take to perform one round of

the algorithm. The lower limit for the number of evaluations, and thus time, on the other

hand, increases linearly with the size of the solution space. Therefore, this means that the

NP efficiently searches the solution space. The downward trend for the computation time

of the GA is somewhat of a mystery. A plausible explanation is that the intensification limits

are closer for the cases with more vessel concepts. Therefore a lot more solutions are re-

visited in these cases, meaning that they jump out of the for-loops at line 40 and at line 64

in Appendix C.5.
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(a) NP time averaged for each Vessel Data list,
as a function of concepts in the list.

(b) GA time averaged for each Vessel Data list,
as a function of concepts in the list.

Figure 7.4: Plots of how the computation times of each of the two algorithms change with an increas-
ing number of possible vessel concepts.

Even though the time of the NP and GA searches increase slowly, the most important con-

sideration is the change in the computational time of the solution method as a whole. In

this respect, the number of necessary cycles, and the simulation time is also of importance.

The solution times for the different cases are compared in Figure 7.5, as a function of the

number of vessel concepts.

Figure 7.5 does not give much information about the development of the computation

time, because only three different numbers of concepts are tested. However, it may be

stated, with some certainty, that the development is slower than exponential, although

varying greatly. This is because the great variation in the number of cycles performed, be-

fore the termination criteria were reached, in the different cases. Predict this behaviour is

hard due to its dependency on the number of legal solutions found by the analytic function

in each cycle. For big, complex vessel concept lists many cycles may be necessary because

even the smallest of adjustments may introduce new, better solutions.

7.2.2 Flexibility and Intuitiveness

The flexibility of the solution method was tested by logging how long it took to prepare

for solving new cases. The results of Table 6.4 is that it took less than two minutes for all
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Figure 7.5: A plot of how the computation time of the complete solution method changes as a func-
tion of the length of the vessel concept list. The lower line is the 10 concepts list. The middle line is
the 21 concepts list. The upper line is the 42 concepts list.

the tested cases. This is a manageable time, meaning that the solution method may be

called flexible with respect to the tested cases. However, whether the diversity in the cases

is sufficient to really call it flexible, is an open question. On the other hand, changing the

objective evaluation and restrictions is also relatively easy, for example if Oil Spill Response

(OSR) times are of importance. Both the NP and the GA is modular and may, to a large

extent, be customised to fit the current problem.

As discussed in Section 7.1, the constructed solution method may simply be considered an

automation of the traditional method for solving the problem. This is a strong argument

for the method being intuitive. The structure of the process follows human intuition by

making a qualified guess, testing it, and then improving the guess for the next round as

more information is acquired. The search processes of the metaheuristics are also easy

to follow; they are inspired by nature and simple partitioning. One aspect of the solution

process that can be considered as little intuitive is the analytic evaluation of the concepts,

although it is based on simple assumptions regarding the specific problem formulation.

On the other hand, for someone with knowledge of the problem, this should not be an

issue.
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7.3 Alternative Implementations

Although the choices made in the construction of the solution method, there are many

alternative implementations which are worth to discuss. Some of them may even be better

than the current implementation, and some may be better for variations of the problem.

One obvious change that probably would improve the solution method is to change the

treatment of illegal solutions. Rather than giving all illegal solutions a value of infinity, a

finite punishment could be given, preferably as a function of the deviation of the solution

from the thresholds of the restrictions. This would make the trend of the solution space

clearer for the NP and GA and would not necessitate the user to assume the nature of the

trend. In addition, it would be much more adaptive than the current approach manages.

While on the subject of the analytic function, adding loading rates and opening hours to

the consideration probably would increase the accuracy of the predictions. However, this

would mean a considerable complication of the analytic model. Also, the benefit from such

an addition is not certain to outweigh the increased computation time. While the accuracy

of the analytic model clearly isn’t perfect, as indicated by the significant adjustment factors

needed in Case 3, the issue is not that of miscalculating the loading times, but rather the

stochastic elements.

To further reduce the computational time of the solution method, the vessel concept list

could be "prepared" before the solution method is ran. That is, similar concepts could be

removed from the list, reducing the size of the solution space. When good solutions are

found, the concepts similar to those chosen in the best solutions could be re-entered into

the list. The potential time savings are huge, but the quality of the solutions is hard to

guarantee. First, the selection of concepts to remove must be very good. Second, there is

no way to ensure that large areas of good solutions are not cut from the solution space.

In Cycle 4 of Case 6, all the solutions have exactly the same performance for all three cargo

types. This is a result of how the performance is measured, there is only so much cargo to

transport, therefore all solutions which transport all the cargo are given the same score. If

the excess capacity of the fleet was returned from the simulation model, this could be used

to compute a more accurate measure of the performance of the different "over performing"
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fleets. A consequence of the current setup is that it leads to the adjustment factors not

reflecting the actual performance. This is the reason for situations like the one observed

from Cycle 3 to Cycle 7 in Case 9, where the adjustment was set very low initially, then four

cycles were needed to adjust back to the "intersection".
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Conclusion

The constructed solution method proved efficient at solving Maritime fleet size and mix

problems on the form given by the ArcticLog-simulation model, provided by SINTEF

Ocean. That is, a platform supply problem with one base, any number of platforms, any

number of vessel concepts, and any cargo demand. The characteristics of the base and

platforms may be changed in any way, in addition to the desired risk level. In addition to

supporting this spectrum of variations to the problem, the flexibility of the solution method

was proven by an average of 1 minute and 18 seconds needed for preparations for solving

a new problem case. Notably, no changes were needed on the solution method, only input

parameters and data sets.

The solution method was found to be intuitive, with the main argument being that the

principal ideas of the method follow the same search procedure as the traditional approach

of educated guessing. The details of the search are based on a nature inspired algorithm,

the Genetic Algorithm, and a relatively simple partitioning algorithm, the Nested Partitions

method. The solution method therefore succeeds in being practically tractable for decision

makers without any expertise in the fields of simulation or optimisation.

The solution method succeeded at finding good solutions, both regarding to cost-

optimality and reliability. However, optimality was not proven, and some issues regarding

the reliability were revealed. That is, too few realisations were performed to ensure stable
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evaluations from one cycle to another.

Finally, the solution method proved to reach a termination criterion within reasonable

time. The average solution time was 11 minutes and 6 seconds, and the solution method

seems to have a polynomial time increase with respect to all relevant inputs. The compu-

tation time of both the exploration phase and the exploitation phase algorithms increases

linearly with the number of dimensions in the problem.

Even though solution quality is not guaranteed with respect to optimality, the thesis objec-

tive is fulfilled: An S-O based solution method is established, which solves the main objec-

tive of the Arctic Offshore Logistics project. The solution method is intuitive and flexible

and identifies good solutions within reasonable time.
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Recommendations for Further Work

The solution method is not complete in any way, but rather a proof of concept. In this

chapter a selection of recommendations for further work are highlighted. Following these

the method’s applicability and suitability will be properly assessed for practical use.

Better Evaluation of the Usefulness

An evaluation of the actual usefulness of the solution method: A thorough analysis of the

convergence properties of the method would be useful with respect to determining its suit-

ability and benefits. Preferably, this includes a guaranteed worst-case computation time

increase, and the establishment of an optimistic bound. In addition, the method should be

compared to the traditional method as performed by professionals.

Better Evaluation of the Flexibility

The flexibility of the method should also be further investigated, preferably establishing

the complete range of problems it may solve, and the necessary changes. Maritime fleet

renewal problems, problems with different sets of restrictions and different objectives are

some of the variations of immediate interest.
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Chapter 9. Recommendations for Further Work

The solution method could be tested in combination with other models for evaluation,

such as the model developed in Fagerholt et al. (2010), which requested a solution method

of this exact type.

Better Implementation

The choices made in the current implementation may be re-evaluated, based on the dis-

cussion of Section 7.1 and Section 7.3. This includes a more comprehensive use of Optimal

Computing Budget Allocation methods, and an improvement of the analytic function.

In order to fully exploit the benefits of the solution method, the transfer of information

between the solution method and the simulation model should be made completely au-

tomatic. This reduces the solution time significantly. Also, the implementation should be

done in a more efficient programming language, such as C++. The implementation could

also be improved by streamlining the script, avoiding unnecessary loops.

Long Term

As quantum computers become increasingly powerful and popular, it would be interesting

to see how this affects the efficiency and usefulness of this solution method. Both simula-

tion and optimisation are likely to be revolutionised through the introduction of quantum

computers. Implementing the solution method, with the necessary changes in a quantum

environment, such as IBM Q Experience (International Business Machines (IBM), 2018),

could disrupt the solution method efficiency.
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Appendix A
Input Files

There are two input files to the simulation model which are of interest in this report;

DataSet1.xlsx and ConceptsFile.xlsx. In addition weather, but not changed...

A.1 DataSet1.xlsx

The input file containing all parameters determining the state, and response of the system,

consisting of three sheets. The first containing A.1, the second containing either A.3, A.4 or

A.5, and the third containing A.2.
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Figure A.1: Input data to the simulation model and the analytic function of the solution method.
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Figure A.2: Definitions of the platforms, for input to the simulation model and the analytic function
of the solution method.

Figure A.3: Vessel data 1, 10 vessel concepts.

Figure A.4: Vessel data 2, 21 vessel concepts.
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Figure A.5: Vessel data 3, 42 vessel concepts.

A.2 ConceptsFile.xlsx

The fleet concepts to be evaluated in the simulation model. Only containg this one table.
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Figure A.6: An example of ConceptsFile.xlsx, showing 6 fleet concepts generated from Vessel Data 1.
K7 is a zero-concept for reference when calculating the performance of the fleets. The table may have
any number of fleet concepts(columns), consisting of any number of vessel concepts(rows).
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Appendix B
Simulation Output

Figure B.1: The results of five fleet concepts, simulated with four realisations each. A zero-concept is
added at the end for reference.
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Figure B.2: An example of the visualisation feature of the simulation model. The platform and base
names are added later.

Figure B.3: An example of the graphical representation of the cargo and pax waiting to be picked up
at the base.
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Figure B.4: An example of the output written to a .csv file, which is read to the solution method. Each
row corresponds to a realisation. This is the same results as shown in Figure B.1, the first four rows
are thus the same fleet concept, as are the four next. For each row, the outputs are ordered as follows
(comma separated): Total cost, Ship cost, Helicopter cost, Deck cargo lifted, Deck cargo waiting, Bulk
cargo lifted, Bulk cargo waiting, Voyages, PSV idle time, Pax lifted, Pax waiting, Number of flights.
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Figure B.5: An example of the scenario data of a simulation realisation.
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Figure B.6: A graph showing the increase in pax waiting at the base, for the zero-concept. That is,
when there are no vessels in the solution. The simulation model would not allow a figure to be made
for concepts that does not pick up bulk cargo or deck cargo, so the only zero-concept figure available
is for pax.
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Appendix C
Solution Method Implementation

C.1 AlgorithmV2D1.m

AlgorithmV2D1.m is the first script to run when running the solution method. This file sets

all parameters which are used by all the other files in the solution method. Some of the

parameters are loaded into DataSet1.xlsx from here, such as MinBulk and MinDeck, and

some are read from DataSet1.xlsx and loaded into the MATLAB workspace. The ranges of

the different dimensions (ARS) are set. Also, the distances between the different platforms

and the base, and the round trip distance is calculated.

1

2 clear;%clc;

3 format long;

4

5 %CASE DEFINING PARAMETERS

6 MinBulk =8000; %Tons pr week.

7 MinDeck =4800; %M^2 pr week.

8 MinPax =280; %Persons pr week.

9 SpreadDep =6; %Hours.

10 BLR =480; %Bulk loading rate base.

11 DLR =400; %Deck loading rate base.
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12 Duration =2400; %Hours.

13 UB=20; %Upper boundary for the number of vessels of one type.

14 T_r =[0.95 0.95 0.95]; %Threshold reliability. (the probability

that the actual performance of the solution is better than the

returned value .)

15 T_p =[0.9 0.9 0.9]; %Threshold performance. (the limit for what

transportation coverage that is acceptable .)

16 C_r =0.95; %Cost reliability. (the probability that the actual

cost will be lower than the returned value.)

17

18 %ALGORITHM DEFINING PARAMETERS

19 FB=1; FD=1; FP=1; %The initial values of the adjustment factors.

20 R=1000; %The number of "rounds" in the Nested Partitions

algorithm.

21 NoFromNP =100; %The maximum number of unique solutions transferred

from NP to GA.

22 NoPar=NoFromNP; %The population size in the GA.

23 Generations =200; %The number of generations in the GA.

24 NoSim =6; %The maximum number of unique solutions being simulated

at a time.

25 f=1; %The counter for the adjustment factor.

26 %t=0;

27

28 %WRITING TO THE DATASET -FILE

29 xlswrite(’DataSet1.xlsx’,[MinBulk MinDeck MinPax]’,’Input ’,’B10:

B12’);

30 xlswrite(’DataSet1.xlsx’,SpreadDep ,’Input ’,’B13’);

31 xlswrite(’DataSet1.xlsx’,[BLR ,DLR]’,’Input ’,’B30:B31’);

32

33 %READING FROM THE DATASET -FILE

34 A1=xlsread(’DataSet1.xlsx’,’Input’,’B4:B40’);

35 A2=xlsread(’DataSet1.xlsx’,’Vessels ’,’D2:Q11’);

36 A3=xlsread(’DataSet1.xlsx’,’Rigs’,’B2:C8’);

37

38 %SETTING THE BOUNDARIES FOR THE DECISION VARIABLES
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39 AL=length(A2(:,1));

40 for i=1:AL

41 ARS(i,:)=[0,UB ,1];

42 end

43

44 circ =40075/1.852; %Circumference of the earth in nautical miles

45

46 %ROUND TRIP DISTANCE

47 for i=0: length(A3(:,1))

48 if i<1

49 arclen(i+1) = distance(’rh’,[A1(15),A1(16)],[A3(i+1,1),A3

(i+1,2)])*circ /360;

50 elseif i>0 && i<length(A3(:,1))

51 arclen(i+1) = distance(’rh’,[A3(i,1),A3(i,2)],[A3(i+1,1),

A3(i+1,2)])*circ /360;

52 else

53 arclen(i+1) = distance(’rh’,[A3(i,1),A3(i,2)],[A1(15),A1

(16)])*circ /360;

54 end

55 end

56 RndDist=sum(arclen);

57

58 %AVERAGE DISTANCE FROM BASE TO PLATFORMS

59 for i=1: length(A3(:,1))

60 arclen2(i) = distance(’rh’,[A1(15),A1(16)],[A3(i,1),A3(i,2)])

*circ /360;

61 end

62 AvgDist=sum(arclen2)/length(A3(:,1));

xiii



C.2 AlgorithmV2D2.m

AlgorithmV2D2.m is the second script to run. Here the searches of the Nested Partitions

algorithm and the Genetic Algorithm are performed, including sorting the outputs before

forwarding them. The solutions to be simulated are written to ConceptsFile.xlsx, and the

number of scenarios are set.

1 %RUNNING THE NESTED PARTITIONS ALGORITHM

2 tic;

3 BestNP = AlgorithmNP(Duration ,AL ,ARS ,A1,A2,R,FB,FD ,FP ,MinBulk ,...

4 MinDeck ,MinPax ,RndDist ,AvgDist ,SpreadDep); %Running the NP.

5 BestNPUnique = AlgorithmUnique(BestNP ,AL,NoFromNP); %Removing all

copies , so that the list consists only of unique entries.

6 toc;

7 %RUNNING THE GENETIC ALGORITHM

8 tic;

9 BestGA = AlgorithmGA3(Generations ,NoPar ,AL,A1,A2,BestNPUnique ,...

10 Duration ,FB,FD ,FP ,MinBulk ,MinDeck ,MinPax ,ARS ,RndDist ,AvgDist ,

SpreadDep); %Running the GA.

11 BestGAUnique = AlgorithmUnique(BestGA ,AL,NoSim); %Removing all

copies , so that the list consists only of unique entries.

12 toc;

13 %WRITING THE CHOSEN CONCEPTS TO THE CONCEPTS -FILE

14 Sim =[]; %Resetting the Sim -matrix.

15 Sim=BestGAUnique (:,1:AL); %Setting the solutions of the Sim -matrx

equal to that of BestGAUnique.

16 FC= [BestGAUnique (:,1:AL); zeros(1,AL)]’; %Defining the solutions

(Fleet Concepts) to be simulated , adding a zeros -concept for

reference.

17

18 for SheetNum =1:1 %Removing previous entries from the concepts -

file.

19 [~, ~, Raw]= xlsread(’ConceptsFile.xlsx’,’Ark1’,’B6:V47’);

20 [Raw{:, :}]= deal(NaN);

21 xlswrite(’ConceptsFile.xlsx’, Raw , ’Ark1’,’B6:V47’);

xiv



22 end

23 xlswrite(’ConceptsFile.xlsx’,FC ,’Ark1’,’B6’); %Writing the new

concepts to the concepts -file.

24

25 NoScen =75; %The number of scenarios simulated for each solution.

26 %75 until TC, then 250.

27 xlswrite(’DataSet1.xlsx’,NoScen ,’Input ’,’B38’);

28

29

30 %NOW , RUN THE SIMULATIONS.
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C.3 AlgorithmV2D3.m

AlgorithmV2D3.m is the third script to run. The simulation model is ran between Algo-

rithmV2D2.m and this script. Here, the outputs of the simulation model are read from the

ConceptsFile_solutions.csv to the MATLAB workspace, and the relevant information is re-

trieved into different variables. The performances of the different solutions are computed,

legal solutions are returned and adjustment factors are calculated.

After this script is ran, the user decides whether to run AlgorithmV2D2.m again, and repeat

the cycle, or to terminate based on the TCs.

1 %READING THE SIMULATION RESULTS

2 tic;

3 Results=csvread(’ConceptsFile_solution.csv’);

4 toc;

5

6 J=length(Results (:,1))/( NoSim +1); %

7 i=0;j=0;

8 TotalCost=zeros(NoSim ,J);

9 ShipCost=zeros(NoSim ,J);

10 HelicopterCost=zeros(NoSim ,J);

11 FracDeckCargoLifted=zeros(NoSim ,J);

12 DeckCargoWaiting=zeros(NoSim ,J);

13 FracBulkCargoLifted=zeros(NoSim ,J);

14 BulkCargoWaiting=zeros(NoSim ,J);

15 Voyages=zeros(NoSim ,J);

16 PSVidle=zeros(NoSim ,J);

17 FracPaxLifted=zeros(NoSim ,J);

18 PaxWaiting=zeros(NoSim ,J);

19 Flights=zeros(NoSim ,J);

20 DeckCargoLifted=zeros(NoSim ,J);

21 BulkCargoLifted=zeros(NoSim ,J);

22 PaxLifted=zeros(NoSim ,J);

23

24 %COMPUTING A MEASURE OF THE AVERAGE WEEKLY DEMAND FOR EACH
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SCENARIO

25 WDB=Results(J*NoSim +1:J*( NoSim +1) ,7)/(( Duration /24) ^2) *7*2; %

Weekly demand bulk.

26 WDD=Results(J*NoSim +1:J*( NoSim +1) ,5)/(( Duration /24) ^2) *7*2; %

Weekly demand deck.

27 WDP=Results(J*NoSim +1:J*( NoSim +1) ,11)/(( Duration /24) ^2) *7*2; %

Weekly demand pax.

28

29 %TRANSLATING SIMULATION RESULTS INTO CONFIDENCE INTERVALS AND

FRACTIONS FOR

30 %ADJUSTMENT

31 for i=1: NoSim %For every fleet concept

32 for j=1:J %For every scenario

33 TotalCost(i,j)=Results ((i-1)*J+j,1);

34 ShipCost(i,j)=Results ((i-1)*J+j,2);

35 HelicopterCost(i,j)=Results ((i-1)*J+j,3);

36 DeckCargoLifted(i,j)=Results ((i-1)*J+j,4);

37 FracDeckCargoLifted(i,j)=Results ((i-1)*J+j,4)/WDD(j);

38 DeckCargoWaiting(i,j)=Results ((i-1)*J+j,5);

39 BulkCargoLifted(i,j)=Results ((i-1)*J+j,6);

40 FracBulkCargoLifted(i,j)=Results ((i-1)*J+j,6)/WDB(j);

41 BulkCargoWaiting(i,j)=Results ((i-1)*J+j,7);

42 Voyages(i,j)=Results ((i-1)*J+j,8);

43 PSVidle(i,j)=Results ((i-1)*J+j,9);

44 PaxLifted(i,j)=Results ((i-1)*J+j,10);

45 FracPaxLifted(i,j)=Results ((i-1)*J+j,10)/WDP(j);

46 PaxWaiting(i,j)=Results ((i-1)*J+j,11);

47 Flights(i,j)=Results ((i-1)*J+j,12);

48 end

49

50 Performance(i,:)=[ prctile(TotalCost(i,:),C_r) prctile(

FracBulkCargoLifted(i,:) ,(1-T_r(1))) ...

51 prctile(FracDeckCargoLifted(i,:) ,(1-T_r(2))) prctile(

FracPaxLifted(i,:) ,(1-T_r(3))) ...

52 mean(BulkCargoWaiting(i,:)) mean(DeckCargoWaiting(i,:))
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mean(PaxWaiting(i,:))];

53

54 Fraction(i,:)=[ prctile(FracBulkCargoLifted(i,:) ,(1-T_r (1)))/

T_p (1) ...

55 prctile(FracDeckCargoLifted(i,:) ,(1-T_r(2)))/T_p (2) ...

56 prctile(FracPaxLifted(i,:) ,(1-T_r(3)))/T_p (3)];

57 end

58

59 %EVALUATING THE SIMULATION RESULTS

60 Sim(:,AL+1:AL+7)=Performance (1: length(BestGAUnique (:,1)) ,:); %

Adding the simulation results to the solution -matrix.

61 i=1;

62 j=1;

63 Result=zeros(1,AL+7);

64 for i=1: length(Sim(:,1))

65 if Sim(i,AL+2)>T_p (1) && Sim(i,AL+3)>T_p (2) && Sim(i,AL+4)>

T_p (3) %At least 95% of the scenarios delivered more than

90% of what they should.

66 Result(j,:)=Sim(i,:);

67 j=j+1;

68 end

69 end

70

71 f=f+1;

72 FB(f)=prctile(Fraction (:,1) ,50);

73 FD(f)=prctile(Fraction (:,2) ,50);

74 FP(f)=prctile(Fraction (:,3) ,50);

75

76 if Result(1,AL+1) ~=0 %If this simulation returned a legal set.

77 format long;

78 Result=sortrows(Result ,AL+1)

79 end

80

81 Sim
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C.4 AlgorithmNP.m

This is the MATLAB implementation of the customised NP algorithm used in the solution

method.

1 function [BestNP] = AlgorithmNP(Duration ,AL ,ARS ,A1,A2,R,FB,FD ,FP ,

MinBulk ,...

2 MinDeck ,MinPax ,RndDist ,AvgDist ,SpreadDep)

3

4 for r=1:R

5 BestNP(r,:)=[ zeros(1,AL) inf zeros (1,3)];

6 cont=ones(AL ,1);

7 for i=1:AL

8 if ARS(i,2)==ARS(i,1)

9 cont(i)=0;

10 end

11 end

12 contS =1;

13 RS=ARS;

14 while contS ==1

15 d=ceil(length(ARS(:,1))*rand);

16 if cont(d)==1

17 Limits(d,:)=[RS(d,1),floor ((RS(d,2)-RS(d,1))/2)+RS(d

,1) ,...

18 floor((RS(d,2)-RS(d,1))/2)+RS(d,1)+1,RS(d,2)];

19 DP(d,1)=round(( Limits(d,2)-Limits(d,1))*rand())+

Limits(d,1);

20 DP(d,2)=round(( Limits(d,4)-Limits(d,3))*rand())+

Limits(d,3);

21 for k=1:AL

22 part(k)=round((RS(k,2)-RS(k,1))*rand())+RS(k,1);

23 end

24 if RS(d,1)==ARS(d,1) && RS(d,2)==ARS(d,2)

25 A=2;

26 else
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27 A=4;

28 if RS(d,2)<ARS(d,2)

29 DP(d,3)=ceil((ARS(d,2)-RS(d,2))*rand)+RS(d,2)

;

30 DP(d,4)=ceil((ARS(d,2)-RS(d,2))*rand)+RS(d,2)

;

31 if RS(d,1)>ARS(d,1)

32 a=ARS(d,2)-RS(d,2);

33 b=RS(d,1)-ARS(d,1);

34 tilf=rand;

35 if tilf <a/(a+b)

36 DP(d,3)=ceil((ARS(d,2)-RS(d,2))*rand)

+RS(d,2);

37 DP(d,4)=ceil((ARS(d,2)-RS(d,2))*rand)

+RS(d,2);

38 else

39 DP(d,3)=round((RS(d,1)-ARS(d,1) -1)*

rand)+ARS(d,1);

40 DP(d,4)=round((RS(d,1)-ARS(d,1) -1)*

rand)+ARS(d,1);

41 end

42 end

43 elseif RS(d,1)>ARS(d,1)

44 DP(d,3)=round((RS(d,1)-ARS(d,1) -1)*rand)+ARS(

d,1);

45 DP(d,4)=round((RS(d,1)-ARS(d,1) -1)*rand)+ARS(

d,1);

46 end

47 end

48 for a=1:A

49 part(d)=DP(d,a);

50 part=AlgorithmAnalytic(part ,A1,A2 ,AL ,Duration ,...

51 FB,FD ,FP ,MinBulk ,MinDeck ,MinPax ,RndDist ,

AvgDist ,SpreadDep);

52 SolVal(a)=part(AL+1);
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53 if part(AL+1)<BestNP(r,AL+1)

54 BestNP(r,:)=part;

55 end

56 end

57 if A==2

58 if SolVal (1) <=SolVal (2)

59 RS(d,1)=Limits(d,1);

60 RS(d,2)=Limits(d,2);

61 elseif SolVal (2)<SolVal (1)

62 RS(d,1)=Limits(d,3);

63 RS(d,2)=Limits(d,4);

64 end

65 elseif A==4

66 if SolVal (1) <=SolVal (2) && SolVal (1) <=SolVal (3)

&& SolVal (1) <=SolVal (4)

67 RS(d,1)=Limits(d,1);

68 RS(d,2)=Limits(d,2);

69 elseif SolVal (2)<SolVal (1) && SolVal (2)<SolVal (3)

&& SolVal (2)<SolVal (4)

70 RS(d,1)=Limits(d,3);

71 RS(d,2)=Limits(d,4);

72 elseif SolVal (3)<SolVal (1) && SolVal (3)<SolVal (2)

&& SolVal (3)<SolVal (4)

73 RS(d,1)=ARS(d,1);

74 RS(d,2)=ARS(d,2);

75 elseif SolVal (4)<SolVal (1) && SolVal (4)<SolVal (2)

&& SolVal (4)<SolVal (3)

76 RS(d,1)=ARS(d,1);

77 RS(d,2)=ARS(d,2);

78 end

79 end

80 RS3=RS;

81 if RS(d,2)-RS(d,1)<ARS(d,3)

82 cont(d)=0;

83 end
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84 if sum(cont)==0

85 contS =0;

86 end

87 end

88 end

89 end

90 BestNP=sortrows(BestNP ,AL+1);

91 end
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C.5 AlgorithmGA3.m

This is the MATLAB implementation of the customised GA used in the solution method.

1 function [BestGA] = AlgorithmGA3(Generations ,AntPar ,AL,A1,A2 ,part

,...

2 Duration ,FB,FD ,FP ,MinBulk ,MinDeck ,MinPax ,ARS ,RndDist ,AvgDist ,

SpreadDep)

3

4 for j=1:AL

5 size(j)=max(part(:,j))-min(part(:,j));

6 Range(j,:)=[min(part(:,j)) min(part(:,j)+size(j))];

7 end

8

9 part=sortrows(part ,AL+1);

10 BestGA=part;

11

12 contD=ones(AL ,1);

13 for i=1:AL

14 if Range(i,1)== Range(i,2)

15 cont(i)=0;

16 end

17 end

18

19 for k=1: Generations

20 for i=1: AntPar

21 %Choosing a dimension

22 d=randi(AL);

23 while contD(d)==0

24 d=randi(AL);

25 end

26 %+1 or -1 for that variable.

27 if part(i,d)== Range(d,1)

28 part(i,d)=part(i,d)+1;

29 elseif part(i,d)== Range(d,1)
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30 part(i,d)=part(i,d) -1;

31 else

32 part(i,d)=part(i,d)+(1 -2* round(rand));

33 end

34 %Evaluate the solution.

35 part(i,:)=AlgorithmAnalytic(part(i,:),A1 ,A2,AL,Duration

,...

36 FB,FD ,FP ,MinBulk ,MinDeck ,MinPax ,RndDist ,AvgDist ,

SpreadDep);

37 if part(i,AL+1)<BestGA(end ,AL+1)

38 lik =0;

39 for m=1: AntPar

40 if sum(part(i,1:AL)== BestGA(m,1:AL))==AL

41 lik =1;

42 break;

43 end

44 end

45 if lik==0

46 BestGA(end ,:)=part(i,:);

47 BestGA=sortrows(BestGA ,AL+1);

48 end

49 end

50 end

51 %Selection

52 part=sortrows(part ,AL+1);

53 part=part (1: round(AntPar /4) ,:);

54 %Reproduction

55 for i=(round(AntPar /4) +1):AntPar

56 part(i,1: ceil(AL/2))=part(ceil(round(AntPar /4)*rand) ,1:

ceil(AL/2));

57 part(i,ceil(AL/2) +1:AL)=part(ceil(round(AntPar /4)*rand),

ceil(AL/2)+1:AL);

58 part(i,:)=AlgorithmAnalytic(part(i,:),A1 ,A2,AL,Duration

,...

59 FB,FD ,FP ,MinBulk ,MinDeck ,MinPax ,RndDist ,AvgDist ,SpreadDep
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);

60 if part(i,AL+1)<BestGA(end ,AL+1)

61 %If it ’s not in BestGA from earlier.

62 lik =0;

63 for m=1: AntPar

64 if (part(i,1:AL)== BestGA(m,1:AL))>0

65 lik =1;

66 break;

67 end

68 end

69 if lik==0

70 BestGA(end ,:)=part(i,:);

71 BestGA=sortrows(BestGA ,AL+1);

72 end

73 end

74 end

75 part=sortrows(part ,AL+1);

76 end

77 end
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C.6 AlgorithmAnalytic.m

This is the MATLAB implementation of the analytic function used in the solution method.

See Chapter 4 for details.

1 function [particle] = AlgorithmAnalytic(part ,A1 ,A2,AL,Duration

,...

2 FB ,FD ,FP ,MinBulk ,MinDeck ,MinPax ,RndDist ,AvgDist ,SpreadDep)

3 DayrateCost =0; FuelCost =0; Trips =0; PSVs =0; AvgCons =0; AvgSpeed

=0;

4 Consumption =0; TransSpeed =0; FlightHours =0; FlightCost =0;

5

6 for j=1:AL

7 DayrateCost=DayrateCost+part(j)*A2(j,1)*Duration /24;

8 Consumption=Consumption+part(j)*A2(j,3); %Only sailing

9 PSVs=PSVs+part(j);

10 TransSpeed=TransSpeed+part(j)*A2(j,7);

11 end

12 AvgCons=Consumption/PSVs;

13 AvgSpeed=TransSpeed/PSVs;

14 Trips=min(Duration/SpreadDep ,Duration*AvgSpeed*PSVs/RndDist);

15 FuelCost=Trips*AvgCons /24* RndDist/AvgSpeed*A1(2);

16 FlightHours=min(MinPax *100/7/ A2(9,14) *(2* AvgDist)/A2(9,7)*1.3 ,2*

part (9) *((2* AvgDist)/A2(9,7)+2)*Duration /24);

17 FlightCost=A1(21)*FlightHours;

18

19 Bulk =0; Deck =0;Pax =0; ShipPax =0; HoursinWeek =168;

20 for j=1:AL

21 if A2(j,7) <80 %Distinguishes between ships and helicopters.

22 Bulk=Bulk+part(j)*A2(j,8);

23 Deck=Deck+part(j)*A2(j,9);

24 ShipPax=ShipPax+part(j)*A2(j,14);

25 elseif A2(j,7) >80

26 Pax=Pax+A2(j,14)*FlightHours /((2* AvgDist)/A2(j,7));

27 end
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28 if part(j)>0 && part(j)*A2(j,8) ==0 && part(j)*A2(j,9) ==0 &&

part(j)*A2(j,14) ==0 %Avoiding "dummy -ships" in the concept

list.

29 FuelCost=inf;

30 end

31 end

32

33 Bulk=Bulk/PSVs*Trips /(100/7);

34 Deck=Deck/PSVs*Trips /(100/7);

35 ShipPax=ShipPax/PSVs*Trips;

36 Pax=(Pax+ShipPax)/(100/7);

37

38 Bulk=prod(FB)*Bulk;

39 Deck=prod(FD)*Deck;

40 Pax=prod(FP)*Pax;

41 part(AL+2)=Bulk;

42 part(AL+3)=Deck;

43 part(AL+4)=Pax;

44

45 if Bulk >MinBulk && Deck >MinDeck && Pax >MinPax

46 part(AL+1)=DayrateCost+FuelCost+FlightCost; %Legal solution

47 else

48 part(AL+1)=inf;%Illegal solution

49 end

50 particle=part;

51 end
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C.7 AlgorithmUnique.m

This is the sorting algorithm used to ensure that only unique solutions are forwarded, both

from the NP and the GA.

1 function [BestNPUnique] = AlgorithmUnique(BestNP ,AL,NoFromNP)

2 j=0;

3 sol=zeros(1,AL+4);

4 for i=1: length(BestNP (:,1)) %For every solution in the input

matrix.

5 lik =0;

6 for k=1: length(sol(:,1)) %For every solution previously

stored from the input matrix.

7 if sum(BestNP(i,1:AL)==sol(k,1:AL))==AL %If this solution

equals one that is previously checked (that is , has a

smaller index value).

8 lik =1;

9 break;

10 end

11 end

12 if lik==0 %If this solution has not been seen before in this

input matrix.

13 j=j+1;

14 sol(j,:)=BestNP(i,:); %Add to the list of seen solutions.

15 end

16 if j== NoFromNP

17 break;

18 end

19 end

20 BestNPUnique=sol;

21 end
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Appendix D
Supply Distributions

Pay attention to the relation between the average weekly demands in the realisations, and

the value input by the user. F.ex. in D.1 the user has set a basis for the weekly demand of

deck cargo to be 1200m2. Clearly, this is not even close to the average, and cannot be said

to be anything more than just a basis.
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Figure D.1: Distribution of realisations of deck supply. D=1200. x=m2/week, y=realisations. Total
number of realisations, from upper left: 10,15,23,34,51,76,114,171,256,384,577,865.
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Figure D.2: Distribution of realisations of pax supply. P=70. x=pax/week, y=realisations. Total num-
ber of realisations, from upper left: 10,15,23,34,51,76,114,171,256,384,577,865.
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Figure D.3: Distribution of realisations of bulk supply. B=4000. x=tons/week, y=realisations. Total
number of realisations, from upper left: 10,15,23,34,51,76,114,171,256,384,577,865.
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Figure D.4: Distribution of realisations of deck supply. D=2500. x=m2/week, y=realisations. Total
number of realisations, from upper left: 10,15,23,34,51,76,114,171,256,384,577,865.
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Figure D.5: Distribution of realisations of pax supply. P=140. x=pax/week, y=realisations. Total num-
ber of realisations, from upper left: 10,15,23,34,51,76,114,171,256,384,577,865.
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Figure D.6: Distribution of realisations of bulk supply. B=7000. x=tons/week, y=realisations. Total
number of realisations, from upper left: 10,15,23,34,51,76,114,171,256,384,577,865.
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Figure D.7: Distribution of realisations of deck supply. D=3500. x=m2/week, y=realisations. Total
number of realisations, from upper left: 10,15,23,34,51,76,114,171,256,384,577,865.
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Figure D.8: Distribution of realisations of pax supply. P=300. x=pax/week, y=realisations. Total num-
ber of realisations, from upper left: 10,15,23,34,51,76,114,171,256,384,577,865.
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Appendix E
Solution Process Logs

The log-table setup

The tables display all the cycles that were part of the solution process. For each cycle, the

six solutions which were evaluated by simulation are presented. C6=1 means that 1 vessel

of vessel concept 6 was included in the solution. P95(Cost) is the 95th percentile value of the

cost of the solution, based on the different realisations the solutions were tested for. Simi-

larly, the P5(B),P5(D) and P5(P), are the 5th percentile values of the solution performances

in the respective areas. Whether or not a solution is legal is presented in the fifth column.

In the "Adjustment" column, for each cycle, the last set of adjustments which lead to the

solutions of the cycle, are presented. As an example: in Table E.3, the solutions of cycle 3

were found based on the adjustment F B = F B(0) ·F B(1) ·F B(2) = 1 ·0.575 ·0.946 = 0.544,

and clearly similarly for FD and FP.
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E.1 Case1 log

Table E.1: A log of the solution process for Case 1.

Cycle Solutions Legal? Adjustment

nr. Vessels P95(Cost) P5(B), P5(D), P5(P)

1 C6=1 3.89e+06 0.94, 0.77, 0.95 No FB(0)=1

C7=1 4.38e+06 0.78, 0.95, 0.95 No

C4=1 C10=1 4.63e+06 0.89, 0.92, 0.91 No FD(0)=1

C4=1 C6=1 6.22e+06 0.94, 0.95, 0.78 No

C4=1 C9=1 6.99e+06 0.94, 0.95, 0.95 Yes FP(0)=1

C4=1 C7=1 6.67e+06 0.94, 0.95, 0.80 No

2 C6=1 3.90e+06 0.93, 0.74, 0.95 No FB(1)=1.040

C7=1 4.38e+06 0.79, 0.93, 0.95 No

C4=1 C10=1 4.63e+06 0.91, 0.92, 0.92 Yes FD(1)=1.051

C4=1 C6=1 6.22e+06 0.92, 0.92, 0.76 No

C4=1 C9=1 6.99e+06 0.92, 0.92, 0.95 Yes FP(1)=1.034

C4=1 C7=1 6.71e+06 0.92, 0.92, 0.85 No

3 C6=1 3.90e+06 0.92, 0.74, 0.95 No FB=FB(0)

C7=1 4.38e+06 0.78, 0.91, 0.95 No

C4=1 C10=1 4.63e+06 0.91, 0.89, 0.89 No FD=FD(0)

C4=1 C6=1 6.22e+06 0.92, 0.91, 0.77 No

C4=1 C9=1 6.99e+06 0.91, 0.91, 0.95 Yes FP=FP(0)

C4=1 C7=1 6.70e+06 0.92, 0.91, 0.88 No
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E.2 Case2 log

Table E.2: A log of the solution process for Case 2.

Cycle Solutions Legal? Adjustment

nr. Vessels P95(Cost) P5(B), P5(D), P5(P)

1 C4=1 C10=1 4.74e+06 0.89, 0.49, 0.68 No FB(0)=1

C7=1 4.66e+06 0.47, 0.63, 0.69 No

C4=1 C6=1 6.42e+06 0.91, 0.82, 0.62 No FD(0)=1

C4=1 C7=1 6.94e+06 0.91, 0.90, 0.62 No

C4=1 C9=1 8.55e+06 0.89, 0.50, 0.95 No FP(0)=1

C6=2 7.97e+06 0.91, 0.72, 0.95 No

2 C7=1 4.66e+06 0.48, 0.65, 0.69 No FB(1)=1.001

C6=2 7.97e+06 0.92, 0.75, 0.94 No

C6=1 C7=1 8.50e+06 0.92, 0.88, 0.94 No FD(1)=0.751

C4=1 C7=1 C10=1 9.20e+06 0.91, 0.92, 0.94 Yes

C7=2 9.12e+06 0.78, 0.94, 0.94 No FP(1)=0.764

C4=1 C7=1 C9=1 12.29e+06 0.92, 0.93, 0.94 Yes

3 C7=1, 4.66e+06 0.47, 0.64, 0.68 No FB=FB(1)

C6=2 7.97e+06, 0.92, 0.73, 0.94 No

C6=1 C7=1 8.51e+06 0.91, 0.87, 0.94 No FD=FD(1)

C4=1 C7=1 C10=1 9.20e+06, 0.91, 0.91, 0.94 Yes

C7=2 9.14e+06 0.78, 0.92, 0.94 No FP=FP(1)

C4=1 C7=1 C9=1 12.29e+06, 0.91, 0.91, 0.95 Yes
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E.3 Case3 log

Table E.3: A log of the solution process for Case 3.

Cycle Solutions Legal? Adjustment

nr. Vessels P95(Cost) P5(B), P5(D), P5(P)

1 C6=1 C9=1 9.49e+06 0.38, 0.16, 0.60 No FB(0)=1

C6=1 C7=1 8.49e+06 0.55, 0.39, 0.47 No

C4=1 C6=1 C10=1 8.68e+06 0.79, 0.35, 0.53 No FD(0)=1

C1=1 C9=1 C10=1 10.10e+06 0.31, 0.14, 0.64 No

C1=1 C7=1 C10=1 9.12e+06 0.49, 0.39, 0.53 No FP(0)=1

C1=1 C4=1 C10=2 9.30e+06 0.75, 0.34, 0.58 No

2 C4=1 C6=1 C9=1 1.19e+07 0.80, 0.36, 0.63 No FB(1)=0.575

C1=1 C7=1 C9=1 1.24e+07 0.51, 0.40, 0.63 No

C4=1 C7=1 C9=1 1.25e+07 0.66, 0.47, 0.68 No FD(1)=0.387

C1=1 C4=1 C6=1 C9=1 1.42e+07 0.90, 0.51, 0.64 No

C4=2 C6=1 C9=1 1.44e+07 0.90, 0.58, 0.68 No FP(1)=0.621

C1=1 C4=2 C9=1 C10=1 1.50e+07 0.90, 0.56, 0.73 No

3 C4=2 C7=2 C9=1 1.94e+07 0.93, 0.88, 0.93 No FB(2)=0.946

C4=3 C6=1 C7=1 C9=1 2.12e+07 0.93, 0.92, 0.93 Yes

C1=1 C4=2 C7=2 C9=1 2.17e+07 0.93, 0.92, 0.93 Yes FD(2)=0.543

C4=3 C7=2 C9=1 2.18e+07 0.93, 0.93, 0.94 Yes

C4=1 C7=3 C9=1 2.13e+07 0.91, 0.89, 0.94 No FP(2)=0.732

C4=4 C6=2 C9=1 2.31e+07 0.93, 0.93, 0.94 Yes

4 C4=3 C7=1 C9=1 1.74e+07 0.92, 0.87, 0.78 No FB(3)=1.034

C4=4 C6=1 C9=1 1.93e+07 0.92, 0.93, 0.78 No

C4=5 C9=1 C10=1 2.00e+07 0.92, 0.93, 0.85 No FD(3)=1.024

C4=4 C7=1 C9=1 1.99e+07 0.92, 0.93, 0.82 No

C4=2 C7=2 C9=1 1.94e+07 0.92, 0.88, 0.94 No FP(3)=1.040

C4=3 C6=1 C7=1 C9=1 2.12e+07 0.92, 0.93, 0.94 Yes

5 C4=2 C6=1 C7=1 C9=1 1.88e+07 0.92, 0.82, 0.93 No FB(4)=1.020

C1=1 C4=1 C7=2 C9=1 1.93e+07 0.91, 0.83, 0.92 No

C4=2 C7=2 C9=1 1.94e+07 0.91, 0.90, 0.92 Yes FD(4)=1.037

C4=3 C6=2 C9=1 2.07e+07 0.92, 0.91, 0.93 Yes

C1=1 C4=2 C6=1 C7=1 C9=1 2.11e+07 0.92, 0.92, 0.92 Yes FP(4)=0.928

C4=3 C6=1 C7=1 C9=1 2.12e+07 0.92, 0.93, 0.94 Yes

6 C4=2 C6=1 C7=1 C9=1 1.88e+07 0.90, 0.80, 0.93 No FB(5)=1.023

C1=1 C4=1 C7=2 C9=1 1.93e+07 0.90, 0.83, 0.93 No

C4=2 C7=2 C9=1 1.94e+07 0.89, 0.89, 0.95 No FD(5)=1.010

C4=3 C6=2 C9=1 2.07e+07 0.90, 0.90, 0.94 Yes

xli



C1=1 C4=2 C6=1 C7=1 C9=1 2.11e+07 0.89, 0.89, 0.92 No FP(5)=1.032

C4=3 C6=1 C7=1 C9=1 2.12e+07 0.90, 0.91, 0.94 Yes

7 C4=2 C6=1 C7=1 C9=1 1.88e+07 0.90, 0.80, 0.91 No FB=FB(1-5)

C1=1 C4=1 C7=2 C9=1 1.93e+07 0.90, 0.83, 0.91 No

C4=2 C7=2 C9=1 1.94e+07 0.91, 0.89, 0.93 No FD=FD(1-5)

C4=3 C6=2 C9=1 2.07e+07 0.91, 0.91, 0.92 Yes

C1=1 C4=2 C6=1 C7=1 C9=1 2.11e+07 0.91, 0.90, 0.91 Yes FP=FP(1-5)

C4=3 C6=1 C7=1 C9=1 2.12e+07 0.91, 0.92, 0.93 Yes
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E.4 Case4 log

Table E.4: A log of the solution process for Case 4.

Cycle Solutions Legal? Adjustment

nr. Vessels P95(Cost) P5(B), P5(D), P5(P)

1 C5=1 2.44e+06 0.92, 0.91, 0.94 Yes FB(0)=1

C6=1 2.94e+06 0.92, 0.91, 0.94 Yes

C7=1 3.14e+06 0.92, 0.91, 0.94 Yes FD(0)=1

C8=1 3.89e+06 0.93, 0.75, 0.95 No

C10=1 4.04e+06 0.93, 0.65, 0.95 No FP(0)=1

C11=1 4.38e+06 0.78, 0.92, 0.95 No

2 C5=1 2.45e+06 0.91, 0.90, 0.93 Yes FB(1)=1.025

C6=1 2.95e+06 0.91, 0.90, 0.93 Yes

C7=1 3.15e+06 0.91, 0.90, 0.93 Yes FD(1)=1.052

C8=1 3.90e+06 0.93, 0.75, 0.94 No

C10=1 4.04e+06 0.93, 0.64, 0.94 No FP(1)=1.051

C13=1 4.38e+06 0.72, 0.90, 0.94 No

3 C5=1 2.45e+06 0.91, 0.92, 0.93 Yes FB(2)=1.013

C6=1 2.95e+06 0.91, 0.92, 0.94 Yes

C7=1 3.15e+06 0.91, 0.92, 0.94 Yes FD(2)=1.001

C8=1 3.90e+06 0.91, 0.74, 0.95 No

C10=1 4.04e+06 0.91, 0.64, 0.95 No FP(2)=1.037

C13=1 4.38e+06 0.72, 0.91, 0.94 No

4 C5=1 2.45e+06 0.92, 0.93, 0.94 Yes FB=FB(1)

C6=1 2.95e+06 0.92, 0.93, 0.94 Yes

C7=1 3.15e+06 0.92, 0.93, 0.94 Yes FD=FD(1)

C8=1 3.90e+06 0.92, 0.74, 0.95 No

C10=1 4.04e+06 0.92, 0.64, 0.95 No FP=FP(1)

C13=1 4.38e+06 0.71, 0.92, 0.95 No
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E.5 Case5 log

Table E.5: A log of the solution process for Case 5.

Cycle Solutions Legal? Adjustment

nr. Vessels P95(Cost) P5(B), P5(D), P5(P)

1 C5=1 C21=1 4.48e+06 0.90, 0.51, 0.43 No FB(0)=1

C6=1 C20=1 4.58e+06 0.90, 0.51, 0.43 No

C13=1 4.66e+06 0.44, 0.58, 0.65 No FD(0)=1

C11=1 4.65e+06 0.48, 0.71, 0.68 No

C5=2 4.95e+06 0.93, 0.92, 0.85 No FP(0)=1

C12=1 4.73e+06 0.42, 0.69, 0.75 No

2 C5=2 4.95e+06 0.92, 0.92, 0.84 No FB(1)=0.765

C5=1 C6=1 5.45e+06 0.92, 0.92, 0.89 No

C5=1 C7=1 5.65e+06 0.92, 0.92, 0.92 Yes FD(1)=0.707

C6=2 5.95e+06 0.92, 0.92, 0.92 Yes

C6=1 C7=1 6.15e+06 0.92, 0.92, 0.92 Yes FP(1)=0.737

C7=2 6.35e+06 0.92, 0.92, 0.94 Yes

3 C5=2 4.95e+06 0.91, 0.92, 0.85 No FB=FB(1)

C5=1 C6=1 5.45e+06 0.91, 0.92, 0.89 No

C5=1 C7=1 5.65e+06 0.91, 0.93, 0.92 Yes FD=FD(1)

C6=2 5.95e+06 0.91, 0.92, 0.92 Yes

C6=1 C7=1 6.15e+06 0.91, 0.93, 0.94 Yes FP=FP(1)

C7=2 6.35e+06 0.91, 0.93, 0.94 Yes
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E.6 Case6 log

Table E.6: A log of the solution process for Case 6.

Cycle Solutions Legal? Adjustment

nr. Vessels P95(Cost) P5(B), P5(D), P5(P)

1 C5=1 C18=1 7.90e+06 0.46, 0.21, 0.54 No FB(0)=1

C5=1 C19=1 7.81e+06 0.46, 0.21, 0.44 No

C5=1 C17=1 8.23e+06 0.46, 0.21, 0.59 No FD(0)=1

C6=1 C18=1 8.39e+06 0.46, 0.21, 0.56 No

C6=1 C17=1 8.73e+06 0.46, 0.21, 0.61 No FP(0)=1

C6=1 C19=1 8.31e+06 0.46, 0.21, 0.46 No

2 C5=3 C19=1 1.27e+07 0.91, 0.61, 0.79 No FB(1)=0.513

C5=2 C6=1 C19=1 1.32e+07 0.91, 0.61, 0.81 No

C5=2 C7=1 C18=1 1.35e+07 0.91, 0.62, 0.91 No FD(1)=0.237

C5=2 C7=1 C19=1 1.34e+07 0.91, 0.62, 0.82 No

C5=1 C6=2 C19=1 1.37e+07 0.91, 0.61, 0.82 No FP(1)=0.615

C5=1 C6=1 C7=1 C18=1 1.39e+07 0.91, 0.62, 0.93 No

3 C7=8 C19=1 2.90e+07 0.93, 0.93, 0.96 Yes FB(2)=1.016

C7=8 C18=1 2.89e+07 0.93, 0.93, 0.96 Yes

C7=9 C19=1 3.19e+07 0.93, 0.93, 0.96 Yes FD(2)=0.682

C7=9 C17=1 3.19e+07 0.93, 0.93, 0.96 Yes

C5=11 C7=1 2.90e+07 0.93, 0.93, 0.95 Yes FP(2)=0.915

C5=10 C6=1 C7=1 2.95e+07 0.93, 0.93, 0.95 Yes

4 C5=1 C7=6 C19=1 2.54e+07 0.92, 0.92, 0.96 Yes FB(3)=1.031

C7=7 C19=1 2.60e+07 0.92, 0.92, 0.96 Yes

C7=7 C18=1 2.59e+07 0.92, 0.92, 0.96 Yes FD(3)=1.031

C6=1 C7=6 C17=1 2.59e+07 0.92, 0.92, 0.96 Yes

C7=7 C17=1 2.60e+07 0.92, 0.92, 0.96 Yes FP(3)=1.062

C5=4 C7=4 C18=1 2.63e+07 0.92, 0.92, 0.96 Yes

5 C5=1 C7=5 C19=1 2.25e+07 0.92, 0.92, 0.96 Yes FB(4)=1.025

C6=1 C7=5 C19=1 2.29e+07 0.92, 0.92, 0.96 Yes

C6=1 C7=5 C18=1 2.28e+07 0.92, 0.92, 0.96 Yes FD(4)=1.020

C7=6 C19=1 2.31e+07 0.92, 0.92, 0.96 Yes

C7=6 C18=1 2.29e+07 0.92, 0.92, 0.96 Yes FP(4)=1.071

C6=1 C7=5 C17=1 2.29e+07 0.92, 0.92, 0.96 Yes

6 C7=5 C19=1 2.06e+07 0.91, 0.91, 0.93 Yes FB(5)=1.017

C7=5 C18=1 2.05e+07 0.91, 0.91, 0.93 Yes

C5=3 C7=3 C17=1 2.12e+07 0.91, 0.91, 0.93 Yes FD(5)=1.026

C5=2 C6=1 C7=3 C17=1 2.16e+07 0.91, 0.91, 0.93 Yes
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C5=2 C7=4 C17=1 2.18e+07 0.91, 0.91, 0.93 Yes FP(5)=1.065

C5=6 C7=1 C18=1 2.20e+07 0.91, 0.91, 0.93 Yes

7 C5=1 C7=4 C19=1 1.99e+07 0.92, 0.92, 0.95 Yes FB(6)=1.012

C6=1 C7=4 C19=1 2.04e+07 0.92, 0.92, 0.95 Yes

C6=1 C7=4 C18=1 2.03e+07 0.92, 0.92, 0.95 Yes FD(6)=1.013

C7=5 C19=1 2.06e+07 0.92, 0.92, 0.95 Yes

C7=5 C18=1 2.05e+07 0.92, 0.92, 0.95 Yes FP(6)=1.035

C5=4 C7=2 C19=1 2.05e+07 0.92, 0.92, 0.95 Yes

8 C5=3 C7=2 C18=1 1.86e+07 0.92, 0.93, 0.95 Yes FB(7)=1.023

C5=2 C6=1 C7=2 C18=1 1.90e+07 0.92, 0.93, 0.95 Yes

C5=2 C7=3 C19=1 1.93e+07 0.93, 0.93, 0.95 Yes FD(7)=1.023

C5=2 C7=3 C18=1 1.92e+07 0.93, 0.93, 0.95 Yes

C5=1 C6=2 C7=2 C18=1 1.95e+07 0.92, 0.93, 0.95 Yes FP(7)=1.060

C5=6 C19=1 1.92e+07 0.93, 0.94, 0.95 Yes

9 C5=1 C7=3 C19=1 1.70e+07 0.91, 0.89, 0.94 No FB(8)=1.026

C5=5 C19=1 1.73e+07 0.90, 0.92, 0.94 Yes

C5=5 C18=1 1.73e+07 0.90, 0.92, 0.95 Yes FD(8)=1.036

C5=4 C6=1 C19=1 1.78e+07 0.90, 0.92, 0.95 Yes

C5=4 C6=1 C18=1 1.77e+07 0.90, 0.92, 0.95 Yes FP(8)=1.057

C5=4 C7=1 C19=1 1.80e+07 0.90, 0.92, 0.94 Yes

10 C5=3 C7=1 C19=1 1.57e+07 0.93, 0.86, 0.94 No FB(9)=1.052

C5=2 C6=1 C7=1 C19=1 1.62e+07 0.93, 0.86, 0.94 No

C5=2 C7=2 C19=1 1.64e+07 0.93, 0.87, 0.94 No FD(9)=1.025

C6=2 C7=2 C19=1 1.73e+07 0.93, 0.87, 0.94 No

C5=5 C19=1 1.73e+07 0.94, 0.93, 0.94 Yes FP(9)=1.050

C5=5 C18=1 1.72e+07 0.94, 0.93, 0.94 Yes

11 C5=1 C7=3 C19=1 1.71e+07 0.91, 0.89, 0.95 No FB(9)=1.052

C5=5 C19=1 1.73e+07 0.91, 0.92, 0.95 Yes

C5=5 C18=1 1.72e+07 0.91, 0.92, 0.95 Yes FD(9)=1.025

C6=1 C7=3 C19=1 1.75e+07 0.91, 0.89, 0.95 No

C7=4 C19=1 1.77e+07 0.91, 0.89, 0.95 No FP(9)=1.050

C5=4 C6=1 C19=1 1.78e+07 0.91, 0.92, 0.95 Yes

12 C5=1 C7=3 C19=1 1.70e+07 0.92, 0.89, 0.95 No FB=FB(1-8)

C5=5 C19=1 1.73e+07 0.92, 0.93, 0.95 Yes

C5=5 C18=1 1.72e+07 0.92, 0.93, 0.95 Yes FD=FD(1-8)

C6=1 C7=3 C19=1 1.75e+07 0.92, 0.89, 0.95 No

C7=4 C19=1 1.77e+07 0.92, 0.90, 0.95 Yes FP=FP(1-8)

C5=4 C6=1 C19=1 1.78e+07 0.92, 0.93, 0.95 Yes
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E.7 Case7 log

Table E.7: A log of the solution process for Case 7.

Cycle Solutions Legal? Adjustment

nr. Vessels P95(Cost) P5(B), P5(D), P5(P)

1 C5=1 2.45e+06 0.92, 0.92, 0.94 Yes FB(0)=1

C26=1 2.55e+06 0.92, 0.92, 0.94 Yes

C6=1 2.95e+06 0.92, 0.92, 0.94 Yes FD(0)=1

C27=1 3.05e+06 0.92, 0.92, 0.94 Yes

C7=1 3.15e+06 0.92, 0.92, 0.94 Yes FP(0)=1

C28=1 3.25e+06 0.92, 0.92, 0.94 Yes

2 C5=1 2.44e+06 0.90, 0.89, 0.94 No FB(1)=1.022

C26=1 2.55e+06 0.90, 0.89, 0.94 No

C6=1 2.95e+06 0.90, 0.89, 0.94 No FD(1)=1.027

C27=1 3.05e+06 0.90, 0.89, 0.94 No

C7=1 3.15e+06 0.90, 0.89, 0.94 No FP(1)=1.049

C28=1 3.25e+06 0.90, 0.89, 0.94 No

3 C5=1 2.45e+06 0.91, 0.92, 0.94 Yes FB=FB(0)

C26=1 2.55e+06 0.91, 0.92, 0.94 Yes

C6=1 2.95e+06 0.91, 0.92, 0.95 Yes FD=FD(0)

C27=1 3.05e+06 0.91, 0.92, 0.95 Yes

C7=1 3.15e+06 0.91, 0.92, 0.95 Yes FP=FP(0)

C28=1 3.25e+06 0.91, 0.92, 0.95 Yes
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E.8 Case8 log

Table E.8: A log of the solution process for Case 8.

Cycle Solutions Legal? Adjustment

nr. Vessels P95(Cost) P5(B), P5(D), P5(P)

1 C30=1 4.14e+06 0.87, 0.44, 0.56 No FB(0)=1

C5=1 C21=1 4.48e+06 0.89, 0.52, 0.43 No

C5=1 C20=1 4.58e+06 0.89, 0.52, 0.43 No FD(0)=1

C5=1 C42=1 4.58e+06 0.89, 0.52, 0.43 No

C21=1 C26=1 4.58e+06 0.89, 0.52, 0.43 No FP(0)=1

C11=1 4.65e+06 0.48, 0.72, 0.68 No

2 C5=1 C9=1 6.49e+06 0.92, 0.87, 0.93 No FB(1)=0.999

C9=1 C26=1 6.58e+06 0.92, 0.86, 0.93 No

C6=1 C9=1 6.98e+06 0.92, 0.87, 0.93 No FD(1)=0.575

C9=1 C27=1 7.08e+06 0.92, 0.86, 0.93 No

C7=1 C9=1 7.18e+06 0.92, 0.89, 0.94 No FP(1)=0.474

C9=1 C28=1 7.28e+06 0.92, 0.89, 0.93 No

3 C5=1 C9=1 6.48e+06 0.91, 0.89, 0.93 No FB(2)=1.021

C9=1 C26=1 6.58e+06 0.91, 0.89, 0.93 No

C6=1 C9=1 6.98e+06 0.91, 0.89, 0.93 No FD(2)=0.964

C9=1 C27=1 7.08e+06 0.91, 0.89, 0.93 No

C7=1 C9=1 7.18e+06 0.91, 0.91, 0.94 Yes FP(2)=1.033

C9=1 C28=1 7.28e+06 0.91, 0.90, 0.94 Yes

4 C5=1 C9=1 6.48e+06 0.91, 0.88, 0.93 No FB=FB(1-2)

C9=1 C26=1 6.58e+06 0.91, 0.88, 0.93 No

C6=1 C9=1 6.98e+06 0.91, 0.88, 0.94 No FD=FD(1-2)

C9=1 C27=1 7.08e+06 0.91, 0.88, 0.94 No

C7=1 C9=1 7.18e+06 0.91, 0.89, 0.94 No FP=FP(1-2)

C9=1 C28=1 7.28e+06 0.91, 0.89, 0.94 No

5 C5=1 C9=1 6.48e+06 0.92, 0.89, 0.92 No FB=

C9=1 C26=1 6.58e+06 0.92, 0.89, 0.92 No

C6=1 C9=1 6.98e+06 0.92, 0.89, 0.94 No FD=

C9=1 C27=1 7.08e+06 0.92, 0.89, 0.94 No

C7=1 C9=1 7.18e+06 0.92, 0.90, 0.94 Yes FP=

C9=1 C28=1 7.28e+06 0.92, 0.89, 0.94 No
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E.9 Case9 log

Table E.9: A log of the solution process for Case 9.

Cycle Solutions Legal? Adjustment

nr. Vessels P95(Cost) P5(B), P5(D), P5(P)

1 C5=1 C18=1 7.90e+06 0.45, 0.21, 0.53 No FB(0)=1

C5=1 C17=1 8.23e+06 0.45, 0.21, 0.58 No

C5=1 C19=1 7.81e+06 0.45, 0.21, 0.43 No FD(0)=1

C5=1 C39=1 8.00e+06 0.45, 0.21, 0.53 No

C18=1 C26=1 8.00e+06 0.45, 0.21, 0.53 No FP(0)=1

C19=1 C26=1 7.91e+06 0.45, 0.21, 0.43 No

2 C5=3 C19=1 1.27e+07 0.90, 0.63, 0.81 No FB(1)=0.503

C5=3 C40=1 1.28e+07 0.90, 0.63, 0.81 No

C5=2 C19=1 C26=1 1.28e+07 0.90, 0.63, 0.81 No FD(1)=0.238

C5=1 C19=1 C26=2 1.29e+07 0.90, 0.63, 0.81 No

C19=1 C26=3 1.30e+07 0.90, 0.63, 0.81 No FP(1)=0.586

C26=3 C40=1 1.31e+07 0.90, 0.63, 0.81 No

3 C7=6 C19=1 2.31e+07 0.92, 0.94, 0.94 Yes FB(2)=1.002

C7=6 C40=1 2.32e+07 0.92, 0.94, 0.94 Yes

C7=6 C39=1 2.31e+07 0.92, 0.94, 0.94 Yes FD(2)=0.700

C7=6 C17=1 2.32e+07 0.92, 0.94, 0.94 Yes

C7=6 C38=1 2.33e+07 0.92, 0.94, 0.94 Yes FP(2)=0.897

C19=1 C28=6 2.37e+07 0.92, 0.94, 0.94 Yes

4 C5=1 C7=3 C28=1 C40=1 2.01e+07 0.94, 0.93, 0.95 Yes FB(3)=1.028

C7=3 C26=1 C28=1 C40=1 2.02e+07 0.94, 0.93, 0.95 Yes

C7=2 C26=1 C28=2 C40=1 2.31e+07 0.94, 0.93, 0.95 Yes FD(3)=1.041

C7=5 C19=1 2.06e+07 0.94, 0.93, 0.95 Yes

C6=1 C7=3 C28=1 C40=1 2.06e+07 0.94, 0.93, 0.95 Yes FP(3)=1.045

C7=5 C18=1 2.05e+07 0.94, 0.93, 0.95 Yes

5 C5=3 C7=1 C28=1 C40=1 1.88e+07 0.93, 0.91, 0.94 Yes FB(4)=1.044

C5=3 C28=2 C40=1 1.89e+07 0.93, 0.91, 0.94 Yes

C5=1 C26=1 C27=2 C28=2 C40=1 1.96e+07 0.93, 0.91, 0.94 Yes FD(4)=1.034

C5=2 C28=3 C40=1 1.97e+07 0.93, 0.91, 0.94 Yes

C5=6 C39=1 1.92e+07 0.93, 0.91, 0.94 Yes FP(4)=1.052

C5=1 C26=1 C28=3 C40=1 1.98e+07 0.93, 0.91, 0.94 Yes

6 C5=4 C7=1 C18=1 1.79e+07 0.90, 0.92, 0.94 Yes FB(5)=1.032

C7=1 C26=4 C39=1 1.84e+07 0.90, 0.92, 0.94 Yes

C5=1 C18=1 C26=2 C28=2 1.89e+07 0.90, 0.92, 0.94 Yes FD(5)=1.010

C6=1 C18=1 C26=2 C27=1 C28=1 1.92e+07 0.90, 0.92, 0.94 Yes
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C5=2 C7=3 C39=1 1.93e+07 0.90, 0.92, 0.94 Yes FP(5)=1.050

C5=1 C6=1 C18=1 C26=1 C28=2 1.93e+07 0.90, 0.92, 0.94 Yes

7 C5=5 C18=1 1.72e+07 0.93, 0.94, 0.96 Yes FB(6)=1.003

C5=4 C19=1 C26=1 1.74e+07 0.93, 0.93, 0.96 Yes

C7=4 C19=1 1.77e+07 0.91, 0.89, 0.96 No FD(6)=1.022

C7=4 C40=1 1.78e+07 0.91, 0.89, 0.96 No

C5=1 C18=1 C26=4 1.76e+07 0.93, 0.93, 0.96 Yes FP(6)=1.048

C18=1 C26=5 1.77e+07 0.93, 0.93, 0.96 Yes

8 C5=3 C7=1 C40=1 1.58e+07 0.91, 0.98, 0.95 No FB(7)=1.029

C5=3 C28=1 C40=1 1.59e+07 0.91, 0.98, 0.95 No

C5=1 C7=1 C26=2 C40=1 1.60e+07 0.91, 0.98, 0.94 No FD(7)=1.039

C7=1 C26=3 C40=1 1.62e+07 0.91, 0.98, 0.95 No

C5=2 C6=1 C7=1 C40=1 1.63e+07 0.91, 0.98, 0.95 No FP(7)=1.070

C5=2 C7=1 C27=1 C40=1 1.64e+07 0.91, 0.98, 0.95 No

9 C6=2 C7=1 C19=1 C28=1 1.74e+07 0.90, 0.86, 0.95 No FB(8)=1.016

C5=5 C18=1 1.72e+07 0.90, 0.93, 0.95 Yes

C5=5 C40=1 1.74e+07 0.90, 0.93, 0.95 Yes FD(8)=0.978

C5=5 C39=1 1.74e+07 0.90, 0.93, 0.95 Yes

C5=3 C19=1 C26=2 1.75e+07 0.90, 0.93, 0.95 Yes FP(8)=1.050

C5=3 C18=1 C26=2 1.75e+07 0.90, 0.93, 0.95 Yes

10 C5=1 C7=3 C19=1 1.70e+07 0.92, 0.90, 0.95 Yes FB=FB(1-6)

C7=3 C26=1 C40=1 1.73e+07 0.92, 0.90, 0.95 Yes

C5=5 C19=1 1.73e+07 0.92, 0.93, 0.95 Yes FD=FD(1-6)

C5=3 C19=1 C26=2 1.75e+07 0.92, 0.93, 0.95 Yes

C7=3 C19=1 C27=1 1.76e+07 0.92, 0.90, 0.95 Yes FP=FP(1-6)

C7=4 C19=1 1.77e+07 0.92, 0.91, 0.95 Yes
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