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Abstract. Technological advances, such as smart phones and mobile
internet, allow for new and innovative solutions for transportation of
goods to customers. We consider a setting where a company not only
uses its own fleet of vehicles to deliver products, but may also make use
of ordinary people who are already on the road. This may include people
who visit the store, who are willing to take a detour on their way home
for a small compensation. The availability of these occasional drivers is
naturally highly uncertain, and we assume that some stochastic informa-
tion is known about their appearance. This leads to a stochastic vehicle
routing problem, with dynamic appearance of vehicles. The contribution
of this paper is a mixed integer programming formulation, and insights
into how routes for the company vehicles could be planned in such a set-
ting. The results of the stochastic model are compared with deterministic
strategies with reoptimization.

Keywords: Vehicle Routing, Occasional Drivers, Stochastic Program-
ming

1 Introduction and Literature

Transportation can be a significant cost for last-mile and same-day delivery,
which has prompted many companies to seek creative and innovative solutions
to lower their costs. One such solution, considered by among others Walmart
and Amazon, is crowdshipping, i.e. getting ordinary people who are already en
route to pick up and deliver packages [5, 6]. Better utilization of vehicles that are
already on the road can be profitable both for the company and the occasional
drivers, and help lower emissions.

Walmarts vision of having in-store customers to help deliver goods ordered
by online customers, gives rise to new variants of the dynamic vehicle routing
problem (DVRP). In a recent survey and taxonomy of the DVRP [11], the au-
thors state that “some 80% of the problems in the taxonomy involve the dynamic
appearance of customers, some 10% involve dynamic travel times and some 3%
consider vehicle breakdowns. In our search we were not able to find papers han-
dling other types of dynamic events (...)”. Since then, some research has been
done on the effects of occasional drivers [3, 4], where [3] introduces crowdship-
ping and study a static version of the problem, and [4] looks at a deterministic
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approach of matching dynamically appearing customers and drivers. A crowd-
shipping platform would naturally contain a lot of uncertainty with respect to
the availability of drivers. Our problem is similar to [3, 4], but extends these
works by introducing stochasticity and studying how this uncertainty affects the
problem.

The related body of literature for this paper can be split into two parts.
Firstly, the work done on dynamic vehicle routing problems (see, for instance,
the surveys in [10, 11]) is relevant for models and solution methods for the
DVRP. Secondly, the various innovative variants of urban logistic problems, such
as ride-sharing [1, 7], transporting people and parcels simultaneously through
taxi networks [8] or public buses [9], together with the aforementioned papers
on crowdshipping, are relevant to put this paper into a larger frame of the
environmental direction of our research community.

Here we study a setting in which a company not only uses its own vehicles to
deliver a set of small parcels from a warehouse to customers, but may also use
dynamically appearing occasional drivers (ODs) that arrive at some point in time
during the day. This is a new variant of the DVRP, with one central depot, a set
of customers, one set of company vehicles, and a set of stochastically appearing
occasional drivers, see Fig. 1 for an illustration. We assume that some stochastic
information related to the ODs are known, and exploitable. The objective of the
problem is to generate routes for the regular vehicles that minimize the total
expected cost throughout the day, with the knowledge that ODs may appear
later in the day.
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Fig. 1. Example of a stochastic vehicle routing problem with dynamic occasional
drivers. The square located in the center of the graph is the warehouse, which also
is the origin and destination of the company vehicles, and the origin of the ODs. Cus-
tomers are circles, and the destinations of ODs are depicted as triangles in the upper
right corner. The availability of the ODs is revealed while the routes for regular vehicles
are executed.
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To model this problem, a two stage stochastic problem is proposed. The first
stage models decisions that must be made before information about the ODs
become available, and the second stage models decisions after. Customer delivery
locations are known in advance, together with a planning horizon starting in T0
and ending in T4. At a point in time T1, information related to ODs arrive, and
they may be used between T2 and T3. The company vehicles may start to deliver
goods before T1, or wait until the information is revealed. See Fig. 2 for the flow
of a day of planning.
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Fig. 2. Structure of the problem for one day of planning. Note that new information
is revealed at T1, so decisions are made at T0 and T1.

The purpose of this paper is to study the effects of uncertainty in planning
of routes when ODs can appear later in the day. The contribution is a pre-
sentation of a new vehicle routing problem, the vehicle routing problem with
dynamic occasional drivers. A mathematical formulation is proposed, together
with an extended formulation, symmetry breaking constraints and valid inequal-
ities. This allows us to solve large enough instances such that we can show how
the uncertainty of this problem affects the routes. The results are compared with
the solutions from deterministic models with different risk profiles, showing the
strength of a stochastic model.

The remainder of the paper is organized as follows. In Sect. 2, we formally
define the stochastic vehicle routing problem with occasional drivers and present
a mixed integer programming formulation. The formulation is strengthened with
an extended formulation, valid inequalities and symmetry breaking constraints
in Sect. 3, and a computational study is presented in Sect. 4. Finally, in Sect. 5,
we present some final remarks and discuss future research directions.

2 Mathematical Formulation

The stochastic vehicle routing problem with dynamic occasional drivers consists
of a set of nodes N = {1, . . . , n}. A homogeneous fleet of regular vehicles KR,
and a fleet of occasional drivers KO, are available to service these nodes. Vehicle
k ∈ K = KR ∪ KO has an origin o(k) at the depot and a destination d(k).
For all regular vehicles, the destination is at the depot, while for the ODs, the
destination is at a different location. Let Nk ⊆ N ∪ {o(k), d(k)} be the set of
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nodes a vehicle k can visit, and Ak ⊂ Nk × Nk be the set of possible arcs for
vehicle k, and denote the arc from node i to node j as (i, j).

All vehicles have time windows for their origin node [T o(k), T o(k)] and desti-

nation node [T d(k), T d(k)]. For the regular vehicles this spans the entire planning
horizon, while the ODs are only available for parts of the day. There is a cost of
Cijk and travel time of Tijk to travel from node i to node j with vehicle k.

Let W be the set of all scenarios and let pω be the probability of scenario ω.
The binary variables xijk and zωijk denote if vehicle k uses arc (i, j), in respec-
tively the first or second stage in scenario ω. The variable tik denotes the time
when vehicle k starts service at node i in the first stage, if a node is visited in a
scenario in the second stage then uωik denotes start of service. The parameter αω

k

is 1 if occasional driver k is available in scenario ω and 0 otherwise; for regular
vehicle k, αω

k = 1.
The ODs can be used to serve one or more of the customers. Customers can

be assigned to OD k and a compensation fk(zω) is given to this OD in scenario
ω, where zω denotes the arcs used in scenario ω. The binary variable yωi is 1
if customer i is not served in scenario ω, and 0 otherwise. If customer i is not
served, a penalty γi is given. The objective is to design a set of routes, one
for each vehicle, such that the average cost, consisting of the routing cost plus
the compensation to the ODs and the penalties of not serving a customer, is
minimized.

min
∑

k∈KR

∑
(i,j)∈Ak

Cijkxijk +
∑
ω∈W

pω(
∑

k∈KR

∑
(i,j)∈Ak

Cijkz
ω
ijk

+
∑

k∈KO

αω
k fk(zω) +

∑
i∈N

γiy
ω
i ) (1)

subject to∑
j∈N∪{d(k)}

(xo(k)jk + zωo(k)jk) = αω
k ω ∈ W, k ∈ K (2)

∑
i∈N∪{o(k)}

(xijk + zωijk)

−
∑

i∈N∪{d(k)}

(xjik + zωjik) = 0
ω ∈ W, k ∈ K, j ∈ N (3)

∑
i∈N∪{o(k)}

(xid(k)k + zωid(k)k) = αω
k ω ∈ W, k ∈ K (4)

∑
k∈K

∑
j∈N∪{d(k)}

(xijk + zωijk) + yωi = 1 ω ∈ W, i ∈ N (5)

(tjk − tik − Tijk)xijk ≥ 0 ω ∈ W, k ∈ KR, (i, j) ∈ Ak (6)

(uωjk − uωik − Tijk)zωijk ≥ 0 ω ∈ W, k ∈ K, (i, j) ∈ Ak (7)

zωijk + xjlk + yωj ≤ 1 ω ∈ W, k ∈ KR, (i, j), (j, l) ∈ Ak (8)
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uωik − tik ≥ 0 ω ∈ W, k ∈ KR, i ∈ Nk (9)

uωik ≥ T1 ω ∈ W, k ∈ K, i ∈ Nk (10)

T i ≤ tik ≤ T i k ∈ KR, i ∈ {o(k), d(k)} (11)

T i ≤ uωik ≤ T i ω ∈ W, k ∈ K, i ∈ {o(k), d(k)} (12)

zωijk ∈ {0, 1} ω ∈ W, k ∈ K, (i, j) ∈ Ak|αω
k = 1 (13)

xijk ∈ {0, 1} k ∈ KR, (i, j) ∈ Ak . (14)

The objective function (1) minimizes the here-and-now routing costs in the
first stage, plus the expected costs of the second stage, namely routing costs,
compensations offered to ODs and penalties. The compensation is set to make
up for the detour of the occasional driver, times a compensation parameter P ,
such that fk(zω) = P (

∑
(i,j)∈Ak

Cijkz
ω
ijk − Co(k),d(k),k). To increase readability,

the sums in constraints (2)-(5) are made over both xijk and zωijk for all vehicles,
even though the first stage variables xijk do not exist for the ODs. Constraints (2)
and (4) make sure that a vehicle exits its origin and enters its destination, and for
the company vehicles this may happen in the first or second stage. Constraints
(3) ensure that the flow is balanced from origin to destination. Further, (5) force
every delivery to be performed either by a regular vehicle in stage one, or any
vehicle in stage two, or a penalty is paid if the customer is not served. Constraints
(6) and (7) are scheduling constraints, and ensure that time passes when an arc
is traversed, and waiting is allowed. Constraints (8) ensure that the first stage
arc variables are no longer used, after a second stage arc variable has been used.
The term yωj in (8) is added to strengthen the constraints. Constraints (9) and
(10) couple the first and second stage time variables. Constraints (10) require
that the second stage variables cannot be used before T1, while (9) enforce that
the second stage variables cannot be used for a regular vehicle k that is on its
way to a customer i at T1, before it has visited that customer at tik > T1.
Constraints (11) and (12) set time windows on origin and destination nodes.
Finally, the binary restrictions for the arc variables are given in (13) and (14).
To increase readability, we have not included that several of the constraints are
only necessary when αω

k = 1.

3 Strengthening Formulation

In the following we show an extended formulation, symmetry breaking con-
straints for the homogeneous vehicles and when to shift from first to second
stage variables, and valid inequalities. Additionally, as there are time windows
on the origin and destination of each vehicle, there are implicitly time windows
on all deliveries, which we strengthen to the earliest possible arrival and latest
possible departure. This is not further explained.

3.1 Extended Formulation

To exploit the structure of the problem, we extend the formulation. Extended
formulations may create tighter relaxations, at the cost of adding more variables
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and constraints [2]. The flow variable fωijdk is equal to 1 only if vehicle k traverses
arc (i, j) on the way to d in scenario ω. Let Fk ⊂ N ×N ×N be the set of all
possible flows (i, j, d) on arc (i, j) on its way to node d for vehicle k. Then we
add the following constraints to obtain an extended formulation,

fωijdk ≤ 1− yωd ω ∈ W, k ∈ K, (i, j, d) ∈ Fk (15)∑
k∈K

∑
j∈N

fωo(k)jdk = 1− yωd ω ∈ W, d ∈ N (16)

∑
i∈N∪{o(k)}

fωijdk −
∑

i∈N∪{d(k)}

fωjidk = 0 ω ∈ W, k ∈ K, j, d ∈ N|j 6= d (17)

∑
k∈K

∑
i∈N

fωiddk = 1− yωd ω ∈ W, d ∈ N (18)

fωijdk ≤ xijk + zωijk ω ∈ W, k ∈ K, (i, j, d) ∈ Fk (19)

fωijdk ≥ 0 ω ∈ W, k ∈ K, (i, j, d) ∈ Fk . (20)

Constraints (15) ensure that no flow for delivery d occurs if d is not serviced.
Constraints (16) and (18) ensure that if the delivery is serviced, then the flow
of delivery d is one out of the depot and one into the delivery. Constraints (17)
make sure that the flow is balanced through all nodes, except the depot and the
delivery node. Constraints (19) ensure that there is no flow on arcs that are not
used. Constraints (20) define the variables. Note that due to the time windows,
several of these variables and constraints may in some instances be excluded
from the problem.

3.2 Symmetry Breaking Constraints

As the regular vehicles are homogeneous, the symmetry caused by any permu-
tation of their routes can be broken, and hopefully decrease solution time. This
is done by requiring that the lowest indexed delivery that is served by a regular
vehicle, is served by the lowest indexed regular vehicle in either the first stage or
in the second stage in a chosen scenario ω1. The following constraints are added,

xijk = 0, zω1

ijk = 0, k ∈ {2 . . . |KR|}, i ∈ {1 . . . k − 1}, (i, j) ∈ Ak (21)

∑
j∈Nk

(xijk + zω1

ijk) ≤
i−1∑

p=k−1

min {p,|KR|}∑
s=k−1

∑
j∈Ns

(xpjs + zω1
pjs),

i ∈ N\{1}, k ∈ {2 . . .min {i, |KR|}},

(22)

where ω1 can be any scenario. We set ω1 to be the scenario with no ODs in
the computational study. Constraints (21) enforce that the i-th delivery is not
done by a higher indexed regular vehicle in the first stage or second stage in ω1.
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Constraints (22) force the set of regular vehicles that can deliver to node i, to
be equal to the set of regular vehicles that can deliver to node i − 1, plus one
extra regular vehicle if available. In effect, the set of possible regular vehicles for
a delivery gets smaller if a lower indexed delivery is served by an OD, a lower
indexed regular vehicle or not delivered at all.

Different constraints can be used to decide when the first stage variables xijk
and tik should no longer be used, and the second stage variables zwijk and uωik
should take over. The following constraints make the change directly based on
T1, such that a first stage arc variable xijk can only be used if tik ≤ T1,

tik ≤ T1 + (T4 − T1)(1−
∑
j∈Nk

xijk) i ∈ Nk, k ∈ KR . (23)

Note that this does not enforce that tjk ≤ T1. If arc (i, j) is part of an optimal
solution, where i is serviced before T1 and j is serviced after T1, then (6) together
with tjk ≤ T1 would make that solution infeasible. Thus we need to allow tjk to
be greater than T1 when there are no first stage arcs out of node j.

An alternative way of changing between stages is to make the change when
decisions become different for a vehicle, i.e. if the same arc is traversed in all
scenarios with the same vehicle just after the first stage, then this can be forced
to be stated with the first stage variables instead. This leads to an alternative
way of breaking symmetry,∑

w∈W
zωijk ≤ |W| −

∑
l∈Nk

xlik (i, j) ∈ Ak, k ∈ KR . (24)

These constraints enforce that if a first stage arc variable is used into a node i,
then all second stage arc variables for (i, j) out of that node cannot be used. This
causes xijk to be one, instead of letting zωijk be one for all scenarios ω. In effect
this can cause the first stage variables to be used, even after T1, as long as all
scenarios lead to the use of the same arcs by the same vehicles. This makes (23)
and (24) incompatible. Constraints (24) do not apply to the occasional drivers,
as they are not modelled with first stage variables.

3.3 Valid Inequalities

To further exploit the structure of the problem, valid inequalities have been
developed to strengthen the LP relaxation and in turn reduce the solution time.

Firstly, the total amount of time used in the second stage for each vehicle
and scenario can be limited. By studying Figure 2, we see that these limits are
different for the regular and occasional drivers, and valid inequalities may be
expressed as, ∑

(i,j)∈Ak

Tijkz
ω
ijk ≤ T4 − T1 ω ∈ W, k ∈ KR

∑
(i,j)∈Ak

Tijkz
ω
ijk ≤ T3 − T2 ω ∈ W, k ∈ KO .

(25)
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Secondly, as the flow balance constraints (3) include both first and second
stage variables, the flow is not necessarily balanced in the first and second stage
variables separately. Except for through the node where we change from first
to second stage, the flow should be balanced in both the first and second stage
variables over all nodes in N . As the node where this shift is done is not known
in advance, these valid inequalities instead state that the flow of the second stage
variables increase through every node, and that the first stage flow through nodes
decrease. This is stated as,∑

j∈Nk

zωjik ≤
∑
j∈Nk

zωijk ω ∈ W, k ∈ K, i ∈ N

∑
j∈Nk

xijk ≤
∑
j∈Nk

xjik k ∈ KR, i ∈ N .
(26)

Thirdly, the time windows of the vehicles can lead them to be able to visit
two nodes separately, but not in the same route. If this is the case for node i
and j, then the following holds,∑

l∈Nk

(xilk + zωilk + xjlk + zωjlk) ≤ 1 ω ∈ W, k ∈ K, i, j ∈ Nk . (27)

Lastly, subtour elimination constraints between two nodes are written as,

xijk + zωijk + xjik + zωjik + yωi ≤ 1 ω ∈ W, k ∈ K, (i, j) ∈ Ak . (28)

4 Computational Study

All instances of our mathematical programming models are solved using Mosel
Xpress in Windows 7 Enterprise, on a Dell Precision M4800 with Intel(R) Core(TM)
i7-4940MX CPU @ 3.10GHz, 3.30GHz and 32 GB RAM. Note that Xpress solves
LP problems integrated with the IP solution procedure. Due to the use of Pre-
solve in Xpress, the LP bounds that are reported in this section may be higher
than if the LP relaxation of the IP problem was solved explicitly. All figures
of routes in this section break the symmetry between stages by (24), such that
equal decisions in all scenarios are assigned to first stage variables.

4.1 Instance Generation

Four main instances with 20 delivery locations each were randomly generated on
a square of 50× 50, and named A, B, C and D. These are each divided into four
sizes of the first 5, 10, 15 and 20 deliveries (S, M, L and XL). A concatenation
of these are used as reference, such that AL refers to the instance with the first
15 destinations in A.

The instances have either two or three ODs, with destinations at (40, 50)
and (50, 40) for two ODs, and (30, 50), (50, 50), and (50, 30) for three. To show
the effect of the location of the destinations of the ODs, these are in some of
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the examples rotated 90, 180 and 270 degrees around the center of the 50 × 50
square.

From preliminary tests we have chosen several parameters of the problem
that seems to be suitable to demonstrate the effects of ODs and the uncertainty
of the ODs. The planning horizon starts at T0 = 0 and ends at T3 = T4 = 100,
and ODs can be used as soon as the information is revealed at T1 = T2 = 50.
The ODs are compensated P = 1.3 times the cost of their detour. The penalty
of not serving a customer is set to 50, and two regular vehicles are available in
all instances. All possible realizations of ODs are used in the scenarios, giving

|W| = 2|K
O| number of scenarios, with equal probability pω = 1

|W| for each
scenario.

4.2 Effect of Strengthening the Formulation

In this section, the results from the testing of the model, the valid inequalities
and symmetry breaking constraints are presented. We have tested the valid in-
equalities and symmetry breaking constraints independently, as well as in some
promising combinations. Table 1 shows results from these tests for a subset of
the instances. The compact formulation (1)-(14) is noted by C, and the extended
formulation (1)-(20) is noted by E. The columns of the table show these formula-
tions with different symmetry breaking constraints and valid inequalities. C+X
and E+X give respectively C and E with (21), (24) and all valid inequalities. A
maximum of 2 hours CPU time is allowed, and the linear relaxation bound, best
bound, best integer solution and used CPU time is reported.

E provides tighter LP bounds than C, but due to the added complexity it
struggles to improve the lower bound for larger instances. Even though C has a
weaker LP bound, it manages to improve the lower bound more than E during
the solution process. Due to this, C outperforms E in solution time for several of
the instances, while for the XL instances the bound of C never reaches the LP
bound of E. The symmetry breaking constraints and valid inequalities improve
the bounds and solution time for most instances, both separately and together,
for both C and E. We note that adding constraints (22) to C+(21) did not
improve the performance significantly, neither did adding constraints (27) and
(28) to the compact formulation. Both formulation C+X and E+X solve up to
15 customers with 2 and 3 ODs, with C+X being slightly faster on the M and L
instances. For all instances, we see that E+X gives an LP bound that is at most
12% from the best known integer solution. Thus, E+X may be useful to get a
dual bound for larger instances together with heuristics for primal bounds.

4.3 Routes under Uncertainty

In this section two figures are included to show the effect of uncertainty on the
routes of the regular vehicles. In Fig. 3, the destinations of the ODs are rotated
clockwise to clearly illustrate the effect of uncertainty on the first stage routes
of the regular vehicles. The trend is that the regular vehicles wait to serve the
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Table 1. Results for a subset of the instances with different methods of strengthening
the formulation. zLP , z and z give objective value of the LP bound, and the best bound
and integer solution after two hours, respectively. A - indicates no integer solution was
found. Bold font is used to indicate the quickest formulation, or the best bounds for
those instances that were not solved to optimality.

Inst. Info C C+(21) C+(23) C+(24) C+(25) C+(26) C+X E E+X

AS zLP 60.8 60.8 60.8 60.8 60.8 60.8 79.9 85.6 87.7
2OD z 96.2 96.2 96.2 96.2 96.2 96.2 96.2 96.2 96.2

z 96.2 96.2 96.2 96.2 96.2 96.2 96.2 96.2 96.2
t 1.4 1.0 1.1 0.5 1.7 1.0 0.6 1.1 0.6

BM zLP 113.3 114.4 115.4 114.4 113.2 114.7 120.0 124.5 128.7
2OD z 134.5 134.5 134.5 134.5 134.5 134.5 134.5 134.5 134.5

z 134.5 134.5 134.5 134.5 134.5 134.5 134.5 134.5 134.5
t 3643.7 52.3 283.0 112.6 71.1 21.1 8.8 54.4 26.7

CL zLP 160.1 160.1 160.1 160.1 160.1 160.1 163.0 198.1 199.1
2OD z 197.7 211.4 211.4 211.4 211.4 211.4 211.4 199.9 211.4

z 211.4 211.4 211.4 211.4 211.4 211.4 211.4 211.4 211.4
t 7200.0 1361.0 359.7 2184.4 766.8 100.1 19.4 7200.0 185.2

DXL zLP 104.1 104.8 104.1 104.1 104.1 104.1 105.8 159.6 162.5
2OD z 119.3 126.7 119.5 120.3 134.2 121.5 139.4 160.1 163.8

z 273.7 185.9 220.2 - 173.5 256.8 176.4 602.8 182.9
t 7200.0 7200.0 7200.0 7200.0 7200.0 7200.0 7200.0 7200.0 7200.0

AS zLP 56.8 57.3 56.8 56.8 56.8 56.8 70.5 76.5 78.4
3OD z 89.0 89.0 89.0 89.0 89.0 89.0 89.0 89.0 89.0

z 89.0 89.0 89.0 89.0 89.0 89.0 89.0 89.0 89.0
t 3.5 4.7 5.1 16.3 5.4 6.2 4.4 3.2 1.3

BM zLP 106.7 107.6 105.9 109.9 106.0 107.3 106.8 118.3 121.7
3OD z 117.6 128.1 114.6 122.4 128.1 118.1 128.1 128.1 128.1

z 128.1 128.1 128.1 128.1 128.1 128.1 128.1 128.1 128.1
t 7200.0 673.8 7200.0 7200.0 765.0 7200.0 39.7 6319.2 62.4

CL zLP 155.1 155.2 155.1 155.1 155.1 155.1 157.6 197.2 197.6
3OD z 209.5 209.5 192.9 209.5 209.5 209.5 209.5 197.9 209.5

z 209.5 209.5 209.5 209.5 209.5 209.5 209.5 211.1 209.5
t 3376.6 2933.5 7200.0 3959.7 3460.9 1015.9 340.9 7200.0 4985.9

DXL zLP 102.4 103.1 102.4 102.4 102.4 102.4 104.0 157.0 158.9
3OD z 112.0 111.8 112.0 112.3 114.2 113.0 115.7 157.7 161.0

z 299.2 390.9 340.1 - 175.3 175.7 278.1 - 180.5
t 7200.0 7200.0 7200.0 7200.0 7200.0 7200.0 7200.0 7200.0 7200.0

deliveries that can be taken by ODs, until this information gets revealed. We also
see that at the end of the first stage, the vehicles tend to position themselves to
make good second stage decisions possible. This is especially obvious in the two
graphs to the left and the upper right graph. In the upper right graph, only one
of the the company vehicles are used in the first stage, but this vehicle is well
positioned to serve the cluster of customers to the right of the depot if necessary.
Finally, in the lower right, we see one of the regular vehicles moving close to the
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destination of the ODs, which might seem like a bad decision at first glance, but
the second stage solutions that follow show this to be a good decision.
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Fig. 3. Four examples of how the first stage routes for the company vehicles change
when only the destinations of the ODs are altered, for the instance CL. Notice that the
customers are the same in all graphs. Starting in the first graph with the destinations
of the two ODs in the upper right corner, and rotating the destinations 90 degrees
around the center for each graph.

Second stage solutions for the lower right graph from Fig. 3 is shown in Fig.
4. This shows how the behaviour of the regular vehicles in the first stage fits
well with the different scenarios. The route of the regular vehicle that served a
delivery close to the destination of the ODs in the first stage now seems more
reasonable. All the deliveries in this area are served in all scenarios, with ODs
when they are available and through rerouting of the company vehicles when no
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ODs appear. Notice also how the route crosses itself when no ODs are available.
This would obviously be suboptimal if we knew beforehand that no ODs occur,
but this is part of the repositioning that happens due to the information flow of
the problem.
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Fig. 4. Comparison of second stage solutions of different scenarios. Notice that the first
stage solution is the same in all graphs, and allows for good second stage solutions in
all the scenarios.

4.4 Comparison to Deterministic Strategies

To test the quality of the stochastic solutions, we compare them to the solutions
of three strategies where deterministic planning and reoptimization are used. The
strategies differ in their risk profiles, where the no risk, medium risk and high
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risk profile relate to planning with respectively zero, one or all ODs available. A
plan is created at T0 for the entire day, with the assumption that either zero, one
or all ODs are available. All decisions from the plan that are taken before T1 are
considered fixed, and reoptimization is done at T1 for each scenario. An average
over all scenarios is considered the expected actual cost of the strategy for a
given instance, while the cost of the initial plan is referred to as the objective
value.

Table 2 shows that the objective value from the deterministic planning with
high risk gives an optimistic value when we compare with the actual cost of that
solution, and that the no risk solution gives a pessimistic objective value. The
deterministic models never give a better actual cost than the solution from the
stochastic model.

The objective values of the no risk profile corresponds to solving the VRP
without ODs, and thus give us results for the potential savings by using crowd-
shipping in these instances. In a paper with only deterministic models, the ob-
jective value of the no risk profile is often compared to the objective values that
are found in the medium or high risk profiles. This could for our instances show
savings of up to almost 50 %. A more realistic comparison is however to com-
pare the no risk objective value to the objective value of the stochastic models.
These savings are on average 13% for our instances and up to 23%. Further, a
comparison of the actual costs of the deterministic strategies to the costs of the
stochastic solution, gives us the value of solving a stochastic model over a deter-
ministic model. This shows that the stochastic model gives 2-3% better solutions
than the medium and high risk deterministic profiles, and 12% better solutions
than the no risk profile.

Deterministic planning gives optimal solutions for the scenarios that match
their risk profile, while the stochastic solution plans for the uncertainty and thus
performs better on average. The table does however also show the problem of
the stochastic model, where the XL instances are not solved in reasonable time
and therefore omitted. The deterministic models are faster to solve, and can be
used as heuristics to solve the stochastic model.

5 Final Remarks

In this paper, we develop a stochastic mixed integer programming formulation
for a new vehicle routing problem, where occasional drivers appear dynamically.
Symmetry breaking constraints and valid inequalities are proposed, and some
of them are shown to decrease solution time substantially. The LP bounds are
strengthened by an extended formulation, while the compact formulation slightly
outperforms it with respect to solution time. Several figures are included to
show the effects of the uncertainty in the problem. This shows that the company
vehicles focus on first delivering to the customers that are unlikely to be served
by the ODs. The solutions from the stochastic model are compared to solutions
from deterministic models, showing that the stochastic model performs 2-3%
better than planning with some ODs and reoptimizing when information became
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Table 2. Planned deterministic objective function value for different risk profiles, com-
pared to actual expected cost of implementing the solutions from these profiles. The
rightmost column gives the stochastic optimal value. The avg. ratio gives the average
ratio between the stochastic solution and the solutions in that column. Italics are used
for best integer solution when the optimal solution is not found in 2 hours.

Objective value Actual cost Stoch

Instance \ Risk No Medium High No Medium High

AS 113.9 78.9 70.0 105.9 102.1 100.2 96.2
AM 169.7 140.5 119.3 169.7 163.7 158.9 158.9
AL 223.1 170.0 163.1 223.1 200.0 195.9 194.8
BS 107.3 96.4 82.4 107.3 93.3 101.6 93.3
BM 160.4 142.8 102.0 159.2 143.4 153.1 134.5

2OD BL 172.6 155.1 123.7 172.6 170.3 180.0 165.5
CS 81.9 68.3 52.0 81.9 68.9 68.9 68.9
CM 134.3 113.7 96.7 134.3 112.7 112.7 112.7
CL 219.3 215.0 204.1 219.3 212.0 212.9 211.4
DS 133.3 112.2 112.0 133.3 118.2 132.0 118.2
DM 171.7 149.1 149.1 171.7 160.5 161.9 156.5
DL 176.5 151.8 151.8 176.5 163.2 163.2 160.1

AS 113.9 73.5 42.7 107.9 94.5 89.0 89.0
AM 169.7 135.1 106.7 169.7 156.2 148.8 148.8
AL 223.1 164.8 152.2 220.1 191.0 196.3 188.1
BS 107.3 90.2 70.5 107.3 85.1 89.7 85.1
BM 160.4 112.4 89.5 160.4 132.7 134.8 128.1

3OD BL 172.6 144.0 104.0 170.8 164.2 157.2 157.2
CS 81.9 62.9 45.8 81.9 64.0 63.1 63.1
CM 134.3 108.3 92.6 134.3 107.0 107.0 107.0
CL 219.3 209.6 199.7 219.3 214.7 215.5 209.5
DS 133.3 110.6 100.7 133.3 121.1 131.1 118.4
DM 171.7 147.5 147.5 171.7 158.0 158.0 156.8
DL 176.5 150.3 149.7 160.0 160.8 160.7 160.0

Avg. ratio 0.87 1.06 1.26 0.88 0.98 0.97

available, and 12% better than planning without ODs and reoptimizing. For
our instances, the average cost savings of using ODs are 13%. Creating better
solution methods, e.g. through scenario generation, heuristics and decomposition
algorithms, together with testing on real data, is future research.
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