
 

 

 

Inventory routing with 

pickups and deliveries 
 

Claudia Archetti, Marielle Christiansen, 

M. Grazia Speranza 
 

 

 

Published in 

European Journal of Operational Research 

Volume 268, Issue 1, 1 July 2018, Pages 314-324 

 

https://doi.org/10.1016/j.ejor.2018.01.010 

https://doi.org/10.1016/j.ejor.2018.01.010


Inventory routing with pickups and deliveries

Claudia Archetti (1) Marielle Christiansen (2)

M. Grazia Speranza (1)

(1)Department of Economics and Management

University of Brescia, Italy

{claudia.archetti,grazia.speranza}@unibs.it
(2) Department of Industrial Economics and Technology Management

Norwegian University of Science and Technology, Trondheim, Norway

marielle.christiansen@iot.ntnu.no

March 14, 2018

Abstract

This paper introduces a class of problems which integrate pickup
and delivery vehicle routing problems (PDPs) and inventory manage-
ment, and we call them inventory routing problems with pickups and
deliveries (IRP-PD). We consider a speci�c problem of this class, where
a commodity is made available at several origins and demanded by
several destinations. Time is discretized and transportation is per-
formed by a single vehicle. A mathematical programming model is
proposed together with several classes of valid inequalities. The mod-
els are solved with a branch-and-cut method. Computational tests
are performed to show the e�ectiveness of the valid inequalities on in-
stances generated from benchmark instances for the inventory routing
problem. Results show that the branch-and-cut algorithm is able to
solve to optimality 345 over 400 instances with up to 50 customers over
3 periods of time, and 142 over 240 instances with up to 30 customers
and 6 periods. From a management perspective, results show that the
average cost of a non integrated policy is more than 35% higher than
the cost of an integrated policy.

Keywords: Pickup and delivery problems, Inventory routing, Valid inequal-
ities
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1 Introduction

The literature that integrates vehicle routing problems (VRPs) with other
related decision problems has been constantly growing in the last decade.
The study of these complex problems is made possible by the advances in
optimization techniques and in technology, and is relevant because of the
bene�ts coming from the simultaneous optimization of inter-related prob-
lems (see [15], [33], [42], [9] and [25] for quantitative studies of the value
of integrated decisions). Papers have appeared which study, for example,
the integration of vehicle routing problems with loading problems (see the
survey by Iori and Martello [35] and, more recently, the one by Pollaris et al.
[38]), with location problems (see the surveys by Prodhon and Prins [39] and
by Drexl and Schneider [28]) and with production planning (see the survey
by Adulyasak et al. [2]). These problems are often called integrated vehicle
routing problems (see Bekta³ et al. [12]).

One of the most studied classes of integrated VRPs is the class of prob-
lems that integrate vehicle routing and inventory management decisions.
These problems are called Inventory Routing Problems (IRPs) (see Anders-
son et al. [5], Bertazzi and Speranza [14], and Coelho et al. [20]). A classical
version of the IRP for a single vehicle is studied by Archetti et al. [6], who
developed the �rst exact algorithm for the problem. A planning horizon is
considered discretized in time periods, for example in days. A product must
be shipped from a supplier to customers by means of capacitated vehicles.
The demand of each customer is given in each time period as well as the
availability at the supplier. Inventory capacity is known for the customers.
The objective is the minimization of the total cost of the distribution, that
includes routing cost and inventory cost at the supplier and at the cus-
tomers. Several exact algorithms have been proposed for multi-vehicle IRPs
(see Adulyasak et al. [1], Archetti et al. [7], Coelho and Laporte [22], [23],
and Desaulniers et al. [27]). Matheuristics (Archetti et al. [8]), metaheuris-
tics (Coelho et al. [19]) and decomposition-based heuristics (Cordeau et al.
[24]) have also been developed. In Cordeau et al. [24] multiple products are
considered as well. Recently, dynamic and stochastic versions of IRPs have
been studied (see Coelho et al. [21] and Roldán et al. [40]).

In this paper we extend the class of problems that integrate vehicle rout-
ing and inventory management decisions to include problems where a prod-
uct has to be picked up from multiple origins and delivered to multiple
destinations, that is we consider integrated problems where pickup and de-
livery operations and inventory management are simultaneously optimized.
Pickup and delivery problems (PDPs) have been studied for a long time (see
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Berbeglia et al. [13], Parragh et al. [37] and Battarra et al. [11]) and can be
classi�ed according to the patterns of goods movement, the characteristics of
the customers and restrictions on goods transported on vehicles. Several of
the studied PDPs are motivated by a broad range of applications. Unfortu-
nately, di�erent names are sometimes used to indicate the same problem. We
will refer here to the classi�cation adopted in [11] where problems are clas-
si�ed in many-to-many (M-M) problems, where commodities have multiple
origins and multiple destinations, one-to-one (1-1), where each commodity
has a single origin and a single destination, and one-to-many-to-one (1-M-1)
which is a mixture of the previous two classes.

Among the applications of PDPs, in this paper we are interested in distri-
bution problems where a single commodity is made available at several ori-
gins and demanded at several destinations. These problems are usually mod-
eled as M-M PDPs where quantities to be picked up at the origins (pickup
locations) and quantities demanded at the destinations (delivery locations)
are known. The focus is on the organization of the routes. We are interested
in introducing the time dimension in the M-M PDP, considering a planning
horizon discretized in time periods where a vehicle can perform at most one
route in each time period. This is in accordance with the de�nition of the
IRP by Archetti et al. [6]. Thus, the quantities made available at an origin
may be stored at the origin, if the inventory capacity allows us to do that,
or picked up. Similarly, the quantities demanded at a destination may be
delivered in advance and stored. As a result, the problem integrates the
pickup and delivery problem with the inventory management at the origins
and destinations.

Several practical examples of an IRPs with pickups and deliveries can
be thought of and have inspired our work. In road-based transportation,
freight is often loaded onto Europe pallets for unit load or other load carri-
ers. These pallets need to be picked up at locations where freight is delivered
(for instance, food stores) and transported to other facilities where they are
needed. Normally, there is a limited amount of space for such load carriers at
both types of locations, and the transportation of pallets may be performed
by a dedicated truck located at a warehouse (depot). A similar problem can
be observed in a chain of stores where it often happens that some stores have
an excess of inventory and others are running out of stock. A truck may be
dedicated to pickup and deliver products to rebalance the inventory levels.
We expect that IRPs with pickups and deliveries will become even more im-
portant in the future with new business models and systems for sharing and
collaborative economy. In situations with several small producers and con-
sumers where none of the producers or consumers are large enough to have
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their own transportation system, a separate transporter can have the respon-
sibility of the transportation. With increased digitalization and information
availability, the transporter should be able to use the inventory information
from these producers/consumers. Another very di�erent example is from
maritime transportation. Arnesen et al. [10] studied an in-port ship rout-
ing and scheduling problem faced by chemical shipping companies. They
modeled the problem as a Traveling Salesman Problem with Pickups and
Deliveries, Time Windows and Draft Limits. In situations where a shipping
company has the responsibility of both the transportation and the inventory
management at the di�erent locations in a port area and a particular ship is
dedicated to perform the transportation, the problem has the structure of an
inventory routing problem with pickups and deliveries. For simplicity, we use
the terms supply at the pickup location (origins) and demand at the delivery
location (destinations) independently of the relevant terms in practice.

Similar problems, integrating PDPs with inventory management, have
been studied in the literature. An important class of such problems is re-
lated to closed-loop supply chain, which include the return processes besides
forward �ows to recover the value from the customers or end-users. This
means that the locations are simultaneously pickup and delivery locatons.
Closed-loop inventory routing problems for returnable transport items with
simultaneous pickup and delivery are studied by Soysal [41] for transporta-
tion of soft drink bottles and Iassinovskaia et al. [34] for transporting all
sorts of returnable items (boxes, trays, trolleys etc). These problems deviate
from our work due to the characteristics of the commodities and locations.
We do not allow simultaneous pickup and delivery at a customer, and our
locations are classi�ed as either a pickup or delivery location. In addition, we
consider a single commodity. Another combined inventory management and
pickup and delivery routing problem is studied by Van Anholt et al. [43],
where the authors present the problem of replenishing automated teller ma-
chines (ATMs). Commodities can be brought to and from a depot, as well as
being exchanged among customers to manage their inventory shortages and
surpluses. This means that at a particular ATM, both pickup and delivery
operations can be performed depending on the inventory level. There are
several points in common with the problem studied in this paper. A major
di�erence is that an ATM can act as both a pickup and delivery location.

PDP problems with inventory management have been extensively studied
in the maritime context. We refer to Christiansen et al. [18] and Christiansen
and Fagerholt [17] for an introduction and overview of maritime inventory
routing problems (MIRPs) with pickup and delivery structure. These MIRPs
deviate from the inventory routing problem studied in this paper in several
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ways. Normally, the �eet consists of several ships and is heterogeneous. Fur-
thermore, there exists no depot, and the ships are sailing around the clock.
The maritime routing problems are characterised by the long sailing times
and time in port. All these aspects make the problem structure substan-
tially di�erent from the problem considered in this paper. The underlying
mathematical models are either formulated with a continuous time variable
(see e.g. Christiansen [16]) or the time is discretized in time periods (see e.g.
Agra et al. [3]). For the time discrete models, a sailing leg or a stay in port
may consist of several time periods. In addition, many of these works are
strongly related to real applications; e.g. [31, 30, 4].

Finally, we would like to mention that there exist also contributions re-
lated to the study of IRPs where pickup operations are performed instead of
the classical delivery operations. One example is given by Edirisinghe and
James [29], where a problem arising in barge scheduling for oil pickup from
o�-shore oil-producing platforms with limited holding capacity is studied.
The authors present a problem formulation which is then used to solve the
problem and tested on the o�-shore barge scheduling application.

The aim of this work is to introduce, and study, a basic version of the
inventory routing problem with pickups and deliveries. In particular, we
start by studying the problem where a single vehicle is available for the
distribution. A vehicle starts and ends its tour at a depot which also plays
the role of warehouse, in the sense that the commodity can be stored. Such
a depot may coincide with one of the origins or destinations. We call the
problem single-commodity, single-vehicle inventory routing problems with
pickups and deliveries (1-1-IRP-PD).

The contribution of this work can be summarized as follows:

1. the 1-1-IRP-PD is introduced;

2. a mathematical programming formulation for the problem and several
families of valid inequalities are presented;

3. a branch-and-cut algorithm is proposed;

4. benchmark instances on the basis of benchmark IRP instances intro-
duced in [6] are generated;

5. the bene�t of integrating the inventory management and routing prob-
lem with pickup and delivery structure compared to a non-integrated
policy is highlighted.
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Results show that the branch-and-cut algorithm is able to solve to op-
timality 345 over 400 instances with up to 50 customers over 3 periods of
time, and 142 over 240 instances with up to 30 customers and 6 periods. A
computational study shows that the average cost of a non integrated policy is
more than 35% higher than the cost of an integrated policy. A similar study
on the value of integration in lot sizing, inventory control and distribution is
done in Darvish and Coelho [26].

The outline of the rest of the paper is as follows. In Section 2 we describe
the problem and present the mathematical programming formulation. Sev-
eral sets of valid inequalities are given in Section 3 together with a description
of the branch-and-cut algorithm. Section 4 is devoted to the computational
experiments, while conclusions are illustrated in Section 5.

2 Problem description and formulation

We consider the distribution problem over a planning horizon discretized
in time periods. A single commodity is made available at several pickup
locations and consumed at several delivery locations. One vehicle is available
for the transportation. At each location, pickup or delivery, the commodity
can be stored. An upper and a lower limit on the inventory stored at each
location is known, where the lower limit may represent a safety stock against
uncertainty and the upper limit storage capacity. In each time period, the
quantity made available at each pickup location and the demand of each
delivery location are known. These quantities may vary over time. The
vehicle can perform at most one route in each time period, and the vehicle
starts and ends its route at a depot where the commodity can be stored.
A given amount of commodity is available at the depot at the beginning of
the planning horizon. The depot acts as a warehouse where the commodity
can be stored. The vehicle can visit any sequence of locations in a route.
However, each location can be visited at most once in a route. At any time
in the route the load of the vehicle cannot exceed the vehicle capacity. The
costs include the inventory holding costs per period at pickup and delivery
locations and the routing costs. The problem consists in deciding, for each
time period, which locations to serve, how much to pickup or deliver at
each visited location, and the route of the vehicle. If bene�cial, the vehicle
may stay at the depot in a time period without performing a route. As
already mentioned, we call this problem the single-commodity, single-vehicle
inventory routing problems with pickups and deliveries (1-1-IRP-PD). The
objective is to minimize the sum of transportation cost and inventory cost at
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all locations. The sequence of operations performed at any pickup or delivery
node in each time period is the following: �rst the commodity is delivered,
in case of a delivery node, or picked up, in case of a pickup node, then the
supply or demand is satis�ed, and, �nally, the inventory level is calculated.
This sequence of operations is consistent with the assumption made in [7]
and [20].

The 1-1-IRP-PD is de�ned on a graph G = (N 0; A), where N 0 is the set of
nodes (depot and pickup and delivery nodes) and A is the arc set. We denote
by 0 the depot and by NP and ND the sets of pickup and delivery nodes,
respectively. N = ND [ NP is the set of all n pickup and delivery nodes.
Thus, jN 0j = n+1. A cost cij is associated with each arc (i; j) 2 A. The set
of time periods within the planning horizon is denoted by T = f1; ::::; Tg.
The quantity made available at pickup node i or demanded at delivery node
i, i 2 N , in time period t, t 2 T , is indicated by dit. The initial inventory
level, the lower and upper limits on the inventory at node i, i 2 N , are
denoted as I0i , Li and Ui, respectively. No upper and lower limit is set at
the depot, while an initial inventory level I00 is considered. No stock-out
is allowed, i.e., the quantity distributed from the depot cannot exceed the
amount of commodity in inventory. The unitary inventory holding cost at
node i, i 2 N , is denoted by hi. The vehicle capacity is Q.

The mathematical programming formulation makes use of various sets of
variables. Variables qit identify the quantity picked up at node i, i 2 NP ,
or delivered to node i, i 2 ND, in time period t, t 2 T . The route of the
vehicle in time period t is de�ned by means of the usual binary variables
fxijtg, where xijt takes value 1 if arc (i; j) is traversed in time period t,
and 0 otherwise. The visits to pickup and delivery nodes are identi�ed by
variables fyitg, where yit takes value 1 if node i, i 2 N , is visited in time
period t, and 0 otherwise. Two other sets of variables will be used. Variables
flijtg are load variables and fIitg are inventory level variables. In particular,
lijt gives the quantity on the vehicle when traversing arc (i; j), i; j 2 N 0, in
time period t. Variable Iit gives the inventory level at node i, i 2 N 0, in time
period t.

For easy reference, the notation is summarized in the following.

Indices

i; j Nodes (depot and pickup and delivery nodes)
t Time periods
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Sets

A Set of arcs
NP Set of pickup nodes
ND Set of delivery nodes
N Set of pickup and delivery nodes, {1,....,n}
N 0 Set of all nodes, {0,1,. . . ,n}
T Set of time periods, {1,....,T}
S Subset of pickup and delivery nodes

Parameters

n Number of pickup and delivery nodes
cij Routing cost to travel directly from i to j, i; j 2 N 0

dit Supply at i, i 2 NP , or demand at i, i 2 ND, in time period t
hi Inventory holding cost at node i per time period
I0i Initial inventory level at node i, i 2 N 0

Li Lower inventory limit at node i, i 2 N
Q Vehicle capacity
T Number of time periods
Ui Upper inventory limit at node i, i 2 N

Decision variables

Iit Inventory level at node i, i 2 N 0, in time period t
lijt Quantity on the vehicle when traversing arc (i; j), i; j 2 N 0, in time period t
qit Quantity picked up at i, i 2 NP , or delivered to i, i 2 ND, in time period t
xijt 1 if arc (i; j), i; j 2 N 0, is traversed by the vehicle in time period t, and 0 otherwise
yit 1 if node i, i 2 N , is visited in time period t, and 0 otherwise

The 1-1-IRP-PD can be formulated as follows.

min z =
X

(i;j)2A

X
t2T

cijxijt +
X
i2N 0

X
t2T

hiIit; (1)

X
j2N 0

xijt �
X
j2N 0

xjit = 0; i 2 N 0; t 2 T ; (2)

X
j2N 0

xijt � yit = 0; i 2 N 0; t 2 T ; (3)

X
i2S

X
j2S

xijt �
X
i2S

yit � ymt; S � N;m 2 S; t 2 T ; (4)
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Iit � Ii(t�1) � dit + qit = 0; i 2 NP ; t 2 T (5)

Iit � Ii(t�1) + dit � qit = 0; i 2 ND; t 2 T ; (6)

I0t � I0(t�1) +
X
i2ND

qit �
X
i2NP

qit = 0; t 2 T ; (7)

Ii0 = I0i ; i 2 N 0; (8)

Ii(t�1) + qit � Ui; i 2 ND; t 2 T ; (9)

Iit � Li; i 2 ND; t 2 T ; (10)

Iit � Ui; i 2 NP ; t 2 T ; (11)

Ii(t�1) � qit � Li; i 2 NP ; t 2 T ; (12)

0 � qit � minfQ;Ui � Ligyit; i 2 N; t 2 T ; (13)

qit � Qy0t; i 2 N; t 2 T ; (14)

X
j2N

ljit + qit �
X
j2N

lijt = 0; i 2 NP ; t 2 T ; (15)

X
j2N

ljit � qit �
X
j2N

lijt = 0; i 2 ND; t 2 T ; (16)

0 � lijt � Qxijt; (i; j) 2 A; t 2 T ; (17)

l0jt � I0(t�1) j 2 N; t 2 T ; (18)

xijt 2 f0; 1g; (i; j) 2 A; t 2 T ; (19)

yit 2 f0; 1g; i 2 N 0; t 2 T : (20)
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The objective function (1) minimizes the sum of routing and inventory
holding costs. Constraints (2) are the �ow conservation constraints, while
constraints (3) link the fxijtg and fyitg variables. The subtour elimination
constraints are given in constraints (4), where set S is a subset of nodes.
Furthermore, inventory balance for pickup and delivery nodes is ensured
in constraints (5) and (6), respectively. Inventory levels at the depot are
de�ned in (7). The initial conditions for the inventory levels are given by
constraints (8), and the inventory limits are ensured in constraints (9)-(11).
Constraints (9)-(11) are consistent with the assumption about the sequence
of operations: �rst the node is served (the goods are picked up, in case of a
pickup node, or delivered, in case of a delivery node), the demand (negative
for a pickup node and positive for a delivery node) is satis�ed and, �nally,
the inventory level is calculated. Constraints (12) establish that the quantity
picked up at pickup nodes at time t should not exceed the inventory level at
time t� 1 adjusted for the lower limit Li. The limits for the quantity picked
up or delivered are provided by (13). Constraints (14) state that distribution
can be performed in a given period only if a route is performed in the same
period. The load balance constraints for pickup and delivery nodes are given
by constraints (15) and (16), respectively. Constraints (17) ensure that the
load on the vehicle does not exceed the capacity. Constraints (18) state that
what is distributed from the depot at time t does not exceed the inventory
level available at the end of the previous period. Finally, the requirements
for the binary variables can be found in (19) and (20).

3 Solution method

The model is solved by a branch-and-cut algorithm. In Section 3.1 we present
the valid inequalities developed, while Section 3.2 is devoted to a brief de-
scription of the branch-and-cut algorithm.

3.1 Valid inequalities

In the following we introduce sets of valid inequalities for the 1-1-IRP-PD
problem. Inequalities

Ii(t�1) � dit(1� yit) + Li i 2 ND; t 2 T (21)

imply that if delivery node i is not served at time t, i.e. yit = 0, then the
inventory level Ii(t�1) at node i at time t is at least equal to the quantity
dit consumed by i at time t plus the minimum level Li, while Ii(t�1) � Li
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otherwise. Inequalities

Ii(t�k�1) �

0
@ kX

j=0

di(t�j)

1
A
0
@1�

kX
j=0

yi(t�j)

1
A+Li i 2 ND; t 2 T ; k = 0; 1; : : : ; t�1

(22)
extend inequalities (21) to the case where, given k, delivery node i is not
served at times t � k; t � k + 1; : : : ; t. Therefore, if

Pk
j=0 yi(t�j) = 0, then

Ii(t�k�1) �
Pk

j=0 di(t�j) + Li. Otherwise, Ii(t�k�1) � Li. In

tX
j=1

yij �

&Pt�1
j=1 dij � I0i + Li

minfQ;Ui � Lig

'
i 2 ND; t 2 T (23)

quantity
Pt�1

j=1 dij�I0i +Li is the minimum quantity that has to be delivered
to delivery node i up to time t. Since the maximum shipping quantity is

minfQ;Ui�Lig, then i has to be visited at least

�Pt�1
j=1 dij�I

0

i +Li
minfQ;Ui�Lig

�
times up

to time t.
Inequalities (21)�(23) can be extended to pickup nodes. This is done in

(24)�(26) in the following:

Ii(t�1) � Ui � dit(1� yit) i 2 NP ; t 2 T ; (24)

Ii(t�k�1) � Ui�

0
@ kX

j=0

di(t�j)

1
A
0
@1�

kX
j=0

yi(t�j)

1
A i 2 NP ; t 2 T ; k = 0; 1; : : : ; t�1;

(25)

tX
j=1

yij �

&Pt�1
j=1 dij + I0i � Ui

minfQ;Ui � Lig

'
i 2 NP ; t 2 T : (26)

In addition, we have consistency inequalities (27) and (28). Inequalities

yit � y0t i 2 N; t 2 T (27)

state that, if any node i is visited at time t, i.e. yit = 1, then the depot has to
be included in the route traveled at time t, i.e. y0t = 1, whereas inequalities

xijt � yit i 2 N 0; j 2 N 0; t 2 T (28)
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state that, if node j is the successor of node i in the route traveled at time
t, i.e. xijt = 1, then i has to be visited at time t, i.e. yit = 1.

The valid inequalitites (21)�(28) are based on the valid inequalities de-
veloped in [6] and [21], but are adjusted for the pickup and delivery structure
of the problem.

The following four classes of valid inequalities have been proposed in
Hernández-Pérez and Salazar-González [32] for the Pickup and Delivery
Traveling Salesman Problem (PDTSP) and are valid for the 1-1-IRP-PD:

X
i2NP[f0g

X
j2ND

xijt �

P
j2ND qjt

Q
t 2 T ; (29)

X
i2ND

X
j2NP[f0g

xijt �

P
i2ND qit

Q
t 2 T ; (30)

X
i2ND[f0g

X
j2NP

xijt �

P
j2NP qjt

Q
t 2 T ; (31)

X
i2NP

X
j2ND[f0g

xijt �

P
i2NP qit

Q
t 2 T : (32)

3.2 Branch-and-cut algorithm

We propose a branch-and-cut algorithm to solve the 1-1-IRP-PD. Formula-
tion (1)�(20) is solved by relaxing constraints (4), which are exponentially
many and are dynamically inserted only when violated. To separate subtour
elimination constraints, we use the classical min-cut algorithm proposed in
[36]. In particular, for each t 2 T , we build an auxiliary graph where the
weights of the edges correspond to the values of variables xijt. Then, the
min-cut algorithm is called which returns the value of the min-cut and the
corresponding set S. If the corresponding inequality (4) is violated, it is
added to the formulation.Valid inequalities (21)�(32) are all added to the
formulation as they are polynomial in number. At each node of the branch-
and-bound tree, we solve the relaxation of formulation (1)�(20), with the
addition of all valid inequalities and the subtour elimination constraints sep-
arated in previous nodes. Once the relaxation is solved, the separation algo-
rithm is called, the violated subtour elimination constraints are added to the
formulation and the procedure is repeated. If no violated subtour elimina-
tion constraint is found, branching is performed. The branching strategy as
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well as the exploration strategy are performed using the default setting of the
commercial solver we used in our tests, which is speci�ed in Section 4. This
setting is similar to the one used in [23] where a branch-and-cut algorithm
is proposed which is currently a state-of-the-art exact solution algorithm for
the IRP.

4 Computational results

In this section we describe the computational tests we performed. Section
4.1 is devoted to the description of the instances we generated, while compu-
tational results are reported in Sections 4.2 and 4.3. Section 4.2 is focused
on the analysis of the performance of the formulation presented in Section 2
and of the valid inequalities. In particular, we analyze the impact of vehicle
capacity on problem di�culty, e�ectiveness of valid inequalities and solution
cost. Section 4.3 is instead devoted to the analysis of the bene�ts obtained
when solving the 1-1-IRP-PD with respect to applying a decentralized pol-
icy. The aim of this analysis is to highlight the bene�t of considering the
integrated IRP and PDP instead of solving the subproblems related to the
di�erent actors of the system independently, as it happens in a decentralized
policy.

The branch-and-cut algorithm presented in Section 3.2 is implemented
in C++ in a Windows 10 operating system and compiled under Visual C++
2012 Express Edition. The computational experiments are carried out on an
Intel(R) Xeon(R) CPU E5- 1650 v2, 3.50 GHz machine with 64 GB of RAM.
CPLEX 12.6 (64 bit version) is used to solve all MILPs on a single thread,
for the ease of future comparison. CPLEX default parameters are used.

4.1 Instance generation

We generate instances by adapting the IRP instances described in [6]. In
these instances, customer demand is constant over the entire planning hori-
zon. Data related to customers are kept as such. A pickup node will have
a negative value of demand, whereas a delivery node will have a positive
value. In order to decide which customers are pickup nodes and which are
delivery nodes we sum up the per period demand of customers with an odd
index and the demand of customers with an even index. Then, the set of
customers with the largest demand becomes the set of pickup locations. The
instances have the following characteristics. The horizon T is equal to 3 and
6 and the number of customers is n = 5t, with t = 1:::6 when T = 6 and
t = 1:::10 when T = 3. Two classes of instances are considered: with low
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and high inventory cost. For each instance characteristic (horizon, number
of customers, inventory cost), 5 random instances were generated for a total
of 160 instances.

4.2 Computational results: Formulation and valid inequali-

ties

The experiments described in this section are aimed at testing the impact
of the valid inequalities on the size of the instances solved to optimality and
the optimality gaps for the unsolved instances. In addition, we will assess
the impact of vehicle capacity on solution quality and problem di�culty. In
fact, preliminary tests showed that, in most cases, only a small portion of the
vehicle capacity inherited from the IRP instances was used in the optimal
solution. Thus, we derived new instances by multiplying the original IRP
vehicle capacity Q by a parameter �. We tested the following values of
� : 1; 1=2; 1=4; 1=8.

First, we performed a set of preliminary tests to evaluate the impact
of the di�erent classes of valid inequalities on the lower bound at the root
node and on the �nal solution. In particular, we tested the impact of in-
equalities (21)�(32). In addition, we tested the impact of separating subtour
elimination constraints on integer solutions only or on integer and fractional
solutions. We ran these tests on instances with n = 50 for T = 3, n = 30 for
T = 6 and all values of �, for a total of 80 instances, 20 for each value of �.
We tested the following sets of inequalities:

� Set I: Inequalities (21)�(22) and (24)�(25).

� Set II: Inequalities (23) and (26).

� Set III: Inequalities (27).

� Set IV: Inequalities (28).

� Set V: Inequalities (29)�(32).

� Set VI: All valid inequalities (21)�(32).

� Set VII: None of the valid inequalities (21)�(32). Subtour elimination
constraints are separated on integer and fractional solutions.

� Set VIII: All valid inequalities (21)�(32). Subtour elimination con-
straints are separated on integer and fractional solutions.

14



Note that, when testing sets I�VI, subtour elimination constraints are sep-
arated on integer solutions only while they are separated also on fractional
solutions when testing VII and VIII.

The results are presented in Tables 1 and 2. Table 1 reports the average
and maximum percentage improvement of the lower bound at the root node
of the branch-and-bound tree for the di�erent sets of valid inequalities and
for each value of � with respect to the case where no valid inequality is
considered. For each value of �, each row summarizes the results over the
20 instances with the corresponding value of �.

Table 1: Valid inequalities: improvement of the lower bound at the root node

� = 1 � = 1=2 � = 1=4 � = 1=8

av. % gap max % gap av. % gap max % gap av. % gap max % gap av. % gap max % gap

Set I 4:68 14:77 4:57 14:18 4:00 13:36 3:07 12:22
Set II 2:87 8:91 2:87 8:33 2:46 7:29 1:89 5:84
Set III 0:13 0:88 0:03 0:35 0:00 0:29 0:02 0:31
Set IV 0:00 0:00 0:00 0:00 0:00 0:00 0:00 0:00
Set V 0:05 0:37 0:04 0:35 0:02 0:31 0:00 0:31
Set VI 4:77 15:03 4:65 14:50 4:05 13:52 3:01 12:02
Set VII 0:11 0:72 0:12 0:89 0:05 0:70 �0:01 0:20
Set VIII 4:77 15:03 4:65 14:50 4:05 13:52 3:01 12:02

We can notice that the most e�ective sets of inequalities are the ones of
sets I and II. It also seems that the entire improvement obtained by adding
all inequalities (related to the results of set VIII) is attributable to set I.

Table 2 reports the results obtained at the end of the computation. The
table reports the following values: the number of instances where feasible
and optimal solutions are found, the average and maximum improvement of
the lower bound at the end of the computation with respect to the case where
no valid inequality is considered, and the average and maximum optimality
gap. Results are reported for each set of valid inequalities and for each value
of �.

Table 2: Valid inequalities: evaluation of performance at the end of computa-
tion

# feasible # optimal av. % max % av % max %
solutions solutions gap LB gap LB opt. gap opt. gap

� = 1

Set I 20 13 0:17 2:65 0:95 9:33
Set II 20 12 0:02 0:69 0:91 7:12
Set III 17 11 �0:04 0:63 0:40 4:99
Set IV 18 12 0:00 0:01 0:88 9:47
Set V 18 13 0:06 1:18 0:73 6:49
Set VI 19 13 0:19 2:25 0:72 7:35
Set VII 19 18 0:49 5:26 0:33 6:15
Set VIII 19 18 0:47 5:27 0:12 2:15

15



� = 1=2

Set I 20 14 0:13 2:69 0:92 10:03
Set II 19 14 0:00 1:16 0:96 7:83
Set III 20 12 �0:03 0:80 1:18 14:13
Set IV 20 14 0:00 0:01 0:97 8:50
Set V 20 13 0:04 1:29 1:25 10:93
Set VI 19 14 0:07 1:24 0:66 5:48
Set VII 20 16 0:35 5:63 1:08 11:68
Set VIII 20 18 0:43 5:63 0:78 10:16

� = 1=4

Set I 16 8 0:01 0:91 0:80 4:74
Set II 17 7 �0:04 0:35 1:12 6:14
Set III 17 6 0:01 0:39 1:43 10:49
Set IV 18 7 0:00 0:01 1:13 5:71
Set V 16 7 0:00 1:42 0:88 4:53
Set VI 19 8 0:00 0:91 1:88 16:56
Set VII 16 4 �0:10 5:18 1:90 10:57
Set VIII 18 4 0:00 5:18 3:50 23:55

� = 1=8

Set I 10 2 0:02 0:47 3:06 7:73
Set II 11 2 0:00 0:50 4:20 15:79
Set III 9 2 �0:02 0:38 3:94 13:83
Set IV 10 2 0:00 0:00 3:58 12:06
Set V 10 2 0:00 0:47 3:57 14:36
Set VI 12 2 0:04 0:80 4:21 12:80
Set VII 9 0 �0:03 2:74 5:38 12:76
Set VIII 11 0 0:00 1:97 18:94 53:29

The results show that the advantage of separating subtour elimination
constraints on integer and fractional solutions (in sets VII and VIII) is rel-
evant for large values of �, as a larger number optimal solutions is found
in this case in sets VII and VIII with respect to the other sets. However,
the advantage decreases when the capacity of the vehicles decreases. Con-
cerning the other sets of valid inequalities, there are slight di�erences among
them and in general set I performs better than the others. Concerning the
inequalities of sets III, IV and V, both tables show that their contribution
to the performance of the branch-and-cut algorithm is negligible. However,
we decided to keep them in the following tests as they are in polynomial
number and, thus, they do not make the formulation heavier.

On the basis of the results of the preliminary tests shown above, in the
following tests we decided to compare three di�erent formulations:

� Basic: Formulation (1)�(20) is implemented with no valid inequalities
reported in Section 3. Subtour elimination constraints are separated
on integer solutions only.

� All-subtour: Formulation (1)�(20) is implemented together with all
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valid inequalities reported in Section 3. As in the basic formulation,
subtour elimination constraints are separated only on integer solutions.

� All: Formulation (1)�(20) is implemented together with all valid in-
equalities reported in Section 3. Subtour elimination constraints are
separated on integer and fractional solutions.

Tables 3�5 report a summary of the results of the three formulations
classi�ed by capacity (�), horizon (T ) and number of customers (n). We
report, in columns 2�8, the following values: the number of instances in
each class, the number of feasible solutions found, the number of optimal
solutions, the optimality gap, the gap between the lower bound at the end
of computation and the best upper bound found by all formulations, the
average CPU time in seconds and the average number of nodes in the branch-
and-bound tree. Note that, even if no formulation is able to �nd a feasible
solution for an instance, this does not mean there does not exist a feasible
solution for that instance. It simply means that no formulation is able to
�nd one.

Table 3: Performance of the Basic formulation

# instances # feasible # optimal av % opt. gap av % gap av. CPU time av. # of
w.r.t best UB B&B nodes

� = 1 160 156 116 0:76 0:69 1187:46 34791:19
� = 1=2 160 156 136 0:24 0:34 688:82 8901:73
� = 1=4 160 154 139 0:27 0:30 659:18 9777:30
� = 1=8 160 139 60 2:42 2:76 2350:73 74625:87
T = 3 400 399 340 0:53 0:49 707:82 22275:10
T = 6 240 206 111 1:57 1:91 2077:77 48272:23
n = 5 80 80 80 0:00 0:00 0:94 777:30
n = 10 80 80 68 0:40 �0:04 632:15 57096:84
n = 15 80 80 65 0:60 0:58 745:76 29845:60
n = 20 80 75 48 1:27 1:51 1805:71 51716:59
n = 25 80 69 40 1:75 2:39 1905:71 39537:86
n = 30 80 62 31 1:49 2:15 2243:13 29826:00
n = 35 40 40 32 0:50 0:46 832:48 24982:86
n = 40 40 40 34 0:45 0:44 753:68 16499:80
n = 45 40 39 29 1:22 1:11 1373:25 24300:46
n = 50 40 40 24 1:49 1:26 1918:58 29000:95

All 640 605 451 0:88 1:00 1221:55 32024:02

Table 4: Performance of the All-subtour formulation

# instances # feasible # optimal av % opt. gap av % gap av. CPU time av. # of
w.r.t best UB B&B nodes

� = 1 160 153 138 0:20 20:41 641:87 9227:39
� = 1=2 160 155 136 0:25 20:77 657:91 9588:83
� = 1=4 160 155 117 0:68 20:21 1139:33 32432:86
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� = 1=8 160 138 63 2:35 18:99 2327:19 71517:29
T = 3 400 397 345 0:43 18:15 655:34 20376:39
T = 6 240 204 109 1:61 23:66 2085:30 47883:60
n = 5 80 80 80 0:00 4:92 1:09 643:96
n = 10 80 80 68 0:41 14:40 634:80 53474:90
n = 15 80 80 65 0:58 19:58 763:64 31720:94
n = 20 80 76 46 1:20 21:93 1772:81 47519:78
n = 25 80 69 41 2:02 24:90 1896:44 39554:93
n = 30 80 59 32 1:41 30:26 2209:85 28000:38
n = 35 40 40 34 0:42 22:79 760:43 24451:93
n = 40 40 40 34 0:47 22:45 756:10 16870:73
n = 45 40 38 28 0:82 24:00 1365:50 24178:88
n = 50 40 39 26 1:03 24:76 1625:93 23734:20

All 640 601 454 0:83 20:12 1191:58 30691:59

Table 5: Performance of the All formulation

# instances # feasible # optimal av % opt. gap av % gap av. CPU time av. # of
w.r.t best UB B&B nodes

� = 1 160 158 152 0:08 20:11 281:99 321:11
� = 1=2 160 159 152 0:08 20:49 326:24 667:21
� = 1=4 160 158 111 0:73 20:10 1263:09 7702:24
� = 1=8 160 137 58 4:45 19:11 2427:26 14224:24
T = 3 400 392 331 1:12 18:33 744:35 2838:79
T = 6 240 220 142 1:42 22:93 1625:16 10545:21
n = 5 80 80 80 0:00 4:92 1:93 524:59
n = 10 80 80 68 0:39 14:37 599:28 20949:03
n = 15 80 80 64 0:50 19:50 753:61 7392:35
n = 20 80 77 57 1:13 21:55 1304:45 7002:66
n = 25 80 76 52 1:65 23:81 1384:86 4349:63
n = 30 80 67 40 1:95 30:12 2023:51 2749:47
n = 35 40 40 31 0:96 23:17 952:60 2125:90
n = 40 40 39 32 1:14 22:60 1005:90 1439:70
n = 45 40 38 27 4:94 24:15 1341:13 1137:55
n = 50 40 35 22 1:81 24:99 1759:53 1020:58

All 640 612 473 1:22 19:97 1074:65 5728:70

All variants are able to �nd a feasible solution for almost all instances
when T = 3 (for 399, 397 and 392 over 400 instances, respectively) while,
when T = 6, the variant which �nds the largest number of feasible solutions
is the All variant, with 220 feasible solutions found over 240 instances, while
the other two versions �nds a solution for 206 and 204 instances, respectively.
Also in terms of optimal solutions found, the results indicate that the All
variant achieves the largest number of optimal solutions, 331 over 400 with
T = 3 and 142 over 240 with T = 6, for a total number of 473 instances
solved to optimality against 451 and 454 of the other two variants. When
the average optimality gap is considered, we observe that all variants obtain
small average optimality gaps. The relatively larger gap of the All variant
is due to the instances with small vehicle capacity. We comment on this
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further in the following.
We now focus the analysis on the impact of the vehicle capacity on the

performance of all variants. Table 6 reports a summary of the performance
of the three formulations on the basis of the value of �. Each row reports
the summary of the results of the 160 instances with the speci�ed value of
�.

Table 6: Performance of the three formulations

# feasible # optimal av % opt. gap av % gap av. CPU time av. # of
w.r.t best UB B&B nodes

� = 1

Basic 154 139 0.27 0:30 659:18 9777:30
All-subtour 153 138 0.20 20:41 641:87 9227:39
All 158 152 0.08 20:11 281:99 321:11

� = 1=2

Basic 156 136 0.24 0:34 688:82 8901:73
All-subtour 155 136 0.25 20:77 657:91 9588:83
All 159 152 0.08 20:49 326:24 667:21

� = 1=4

Basic 156 116 0.76 0:69 1187:46 34791:19
All-subtour 155 117 0.68 20:21 1139:33 32432:86
All 158 111 0.73 20:10 1263:09 7702:24

� = 1=8

Basic 139 60 2.42 2:76 2350:73 74625:87
All-subtour 138 63 2.35 18:99 2327:19 71517:29
All 137 58 4.45 19:11 2427:28 14224:24

From Table 6 it is clear that the problem becomes more di�cult to solve
when the value of � decreases and that the advantage of enhancing the
formulation through subtour elimination constraints is lost. This con�rms
what we noticed from the results of Table 2 and can be explained by the
fact that, when � decreases, the vehicle routes become shorter and, thus,
the separation procedure for the subtour elimination constraint often leads
to no violation found, and therefore turns out to be a waste of time. On the
other side, the valid inequalities introduced in Section 3 are more e�ective
when the vehicle capacity decreases, as shown by the number of optimal
solutions found.

Finally, in the following tables, we provide a comparison of solution costs
with respect to the value of �. In particular, we compare the cost components
of the solutions obtained when � = 1=2; 1=4; 1=8 with the solutions obtained
when � = 1. We consider only those instances for which we have the optimal
solution for all values of �. Table 7 refers to the instances with low inventory
cost while Table 8 to the instances with high inventory cost. For each table,
we separate instances with T = 3 and T = 6 and, for each value of T , results
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are summarized over the di�erent values of n. We �rst report the number of
instances solved to optimality over all values of �, in the second column, and
then the average number of routes in the solution with � = 1. The following
three groups of 5 columns refer to the di�erent values of � lower than 1.
The �rst column reports the average number of routes while the following
four provide the average gap in total cost (TC), transportation cost (TrC),
inventory cost at the pickup and delivery locations (IC) and inventory cost
at the depot (ID) with respect to the solution with � = 1, respectively.
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The tables show that the value of � has a big impact on total cost,
especially in the case of low inventory cost. This is due to the fact that
the major cost component which is in�uenced by the reduction in vehicle
capacity is the transportation cost. When the inventory cost is low, the
transportation cost covers a wider portion of the total cost and, thus, the
increase in total cost is more remarkable with respect to the case when the
inventory cost is high. We also notice that the increase in total cost is
reduced when the capacity is halved while it starts to be remarkable when it
becomes a quarter of the original capacity. Finally, the impact on total cost
is smoother when n and T increase. Similar observations can be made when
considering the number of routes.

4.3 Computational results: Comparison of management strate-

gies

In this section, we perform a computational study with the aim of show-
ing the value of the integrated policy in the 1-1-IRP-PD. In particular, we
compare the solution obtained by solving the 1-1-IRP-PD with the solution
obtained through a decentralized policy where:

� The customers, which correspond to the set of the delivery nodes, de-
cide when they want to be served and how much they want to receive.
In particular, they apply the classical (s; S) policy, i.e., when the in-
ventory level reaches the minimum level, i.e., s, they order a quantity
equal to S � s.

� The supplier determines the distribution plan on the basis of the quan-
tities required by the customers. Goods are picked up directly from
the depot (supplier's warehouse) or from pickup locations.

The idea is that supplier and pickup locations belong to the same supply
chain and thus are controlled by a central decision maker. However, the de-
cision maker has no control over the customers, corresponding to the delivery
locations, who independently determine their optimal delivery schedule.

In order to have a fair comparison between the integrated and the de-
centralized policy, we impose that the �nal inventory level at the delivery
customers is zero. Thus, we reduce the quantity delivered in the last visit
in order to achieve a �nal zero inventory level. In fact, given that in the
decentralized policy each customer applies the (s; S) policy, it may happen
that there is a positive �nal inventory level, while this does not happen in
the 1-1-IRP-PD where no constraint is considered on the quantity delivered
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to customers. Moreover, we also modify the instances used in the tests pre-
sented in the previous section in order to assure that the inventory cost at
the delivery customers is higher than the inventory cost at the supplier and
at the pickup locations. This in order to avoid that the integrated policy
takes advantage from transferring goods from pickup customers (or supplier)
to delivery customers with a lower inventory costs. The instances have been
modi�ed as follows. For the instances with high inventory cost, the inventory
cost at the supplier is set at 0.1, the inventory cost at the pickup customers
is randomly generated in [0:1; 0:3] and the inventory cost at the delivery
customers is randomly generated in [0:3; 0:5]. For the instances with low
inventory cost, the inventory cost at the supplier is set at 0.01, the inventory
cost at the pickup customers is randomly generated in [0:01; 0:03] and the
inventory cost at the delivery customers is randomly generated in [0:03; 0:05].
We tested instances with � = 1. Results are summarized in Tables 9-10. The
All formulation has been used to solve both policies. Table 9 summarizes the
behavior of the All formulation on the new instances for both policies. We re-
port, for both policies, the number of feasible solutions found, the number of
optimal solutions, the average CPU time in seconds and the average number
of nodes. Results are classi�ed by horizon and by number of customers.

Table 9: Performance of all variants when solving the integrated and decen-
tralized policies on the new instances

# instances # feasible # optimal av. CPU time av. # of
B&B nodes

Integrated policy

T = 3 100 100 100 26:94 28:71
T = 6 60 58 57 452:27 860:72
n = 5 20 20 20 0:00 0:50
n = 10 20 20 20 0:85 20:65
n = 15 20 20 20 6:30 65:15
n = 20 20 20 20 116:75 788:95
n = 25 20 20 20 294:95 680:90
n = 30 20 18 17 944:30 1049:25
n = 35 10 10 10 9:60 10:40
n = 40 10 10 10 51:40 92:50
n = 45 10 10 10 104:50 83:10
n = 50 10 10 10 91:20 54:60

All 160 158 157 186:44 340:71

Decentralized policy

T = 3 100 100 95 363:94 680:87
T = 6 60 60 60 138:37 343:47
n = 5 20 20 20 0:00 0:20
n = 10 20 20 20 0:15 8:15
n = 15 20 20 20 1:25 21:10
n = 20 20 20 20 8:40 74:95
n = 25 20 20 20 29:50 161:90
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n = 30 20 20 20 394:15 981:30
n = 35 10 10 10 68:40 345:90
n = 40 10 10 9 634:70 1936:80
n = 45 10 10 9 1026:70 1973:70
n = 50 10 10 7 1872:90 2117:90

All 160 160 155 279:35 554:34

We notice that the new instances seem to be easier to solve than the
ones used in the previous section. In fact, looking at the �rst part of the
table reporting data on the integrated policy, we note that 157 out of 160
instances are solved to optimality and the average computing time is 186.44
seconds. Looking at Table 5, we see that, on the previous instances with
� = 1, the All variant is able to solve 152 instances to optimality and the
average computing time is 281.99 seconds.

Table 10 reports the comparison of solution costs. We report the gap
of the solution obtained with the decentralized policy with respect to the
solution obtained with the integrated policy in terms of: total cost (TC),
transportation cost (TrC), inventory cost at the pickup and delivery loca-
tions (IC), inventory cost at the depot (ID) and number of routes. For
all cost components we report the minimum, average and maximum gaps.
For the number of routes we report the average and the maximum gaps as
the minimum is always 0. We consider only instances that were solved to
optimality by both policies. Results are classi�ed by horizon, number of
customers and inventory cost.
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The results show that the decentralized policy is indeed expensive. In
fact, there is an average increase in total cost of 40.47% when T = 3 and
of 27.66% when T = 6. The increase in total cost is not in�uenced by the
inventory cost. In fact, the average increase is very similar for high and low
inventory cost. There is a minor impact of the number of customers. The
gap tends to increase when the number of customers increases, even though
the relation is not monotonic. Finally, the main components of the total cost
that generate the increase are transportation cost and inventory cost at the
depot.

5 Concluding remarks

We introduced and studied the 1-1-IRP-PD which is an inventory routing
problem with pickup and delivery locations. We presented a mathematical
formulation of the problem together with di�erent classes of valid inequali-
ties. The problem is solved through a branch-and-cut algorithm. We studied
the e�ectiveness of valid inequalities by performing tests on di�erent prob-
lem formulations. The results show that subtour elimination constraints are
e�ective when the vehicle capacity is big and the planning horizon is long.
On the other side, the e�ectiveness of ad-hoc valid inequalities improves
when the vehicle capacity decreases. Finally, we performed a computational
study to show the bene�t of using an integrated strategy like the one which
is at the basis of the 1-1-IRP-PD, where all decisions are centralized, versus
a decentralized policy where customers optimize their own decisions. The
results show that integration is highly bene�cial. We believe this is an im-
portant message that shows that classical sequential approaches should be
updated with more sophisticated, and bene�cial, integrated approaches. In
fact, complex problems used to be handled by decomposing them in subprob-
lems, as no other viable way was available. However, modern technologies
and methodologies enable to face more complex problems, and this study is
an example that this is worthwhile.
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