
Setup and Interfacing of a KUKA Robotics
Lab

Ivar Eriksen

Master of Science in Cybernetics and Robotics

Supervisor: Jan Tommy Gravdahl, ITK
Co-supervisor: Mathias Hauan Arbo, ITK

Department of Engineering Cybernetics

Submission date: December 2017

Norwegian University of Science and Technology

NTNU Fakultet for informasjonsteknologi,
Norges teknisk-naturvitenskapelige matematikk og elektroteknikk
universitet Institutt for teknisk kybernetikk

0BMSc thesis assignment

Name of the candidate: Ivar Eriksen
Subject: Engineering Cybernetics
Title: Setup and interfacing of a KUKA robotics lab

1BBackground

The department of Engineering Cybernetics at NTNU has recently acquired a former SINTEF robotics
laboratory. The laboratory consists of two KUKA KR-16 robots, one mounted on the floor, and one
mounted on the end of a GÜDEL gantry crane. Setup of the laboratory is challenging in both the dated
software and unique setup of the hardware. The old interface had a significant communication delay,
and it was difficult to establish an overview of the system. This project is an effort to revitalize the
laboratory for modern robotics research. The project includes surveying the available hardware,
outlining the possible choices of middleware for communication and control, and creating or extending
drivers for use with the unique robot setup. Two control interfaces are of particular interest
(KUKAVARPROXY and KUKA.RSI) with regards to possibility of using the laboratory for both research
and laboratory assignments for control engineering students.

Key topics of the projects are:
- Survey the available hardware and summarize the information
- Assess safety and security risks in the laboratory
- Evaluate the feasibility of KUKAVARPROXY as a control interface
- Investigate the use of workspace monitoring when external axes (gantry crane) are
controlled via KUKA.RSI
- Create necessary files and configurations for using the force-torque sensor (Schunk FTC-
50-80) and toolchange system (Schunk SWS-020) with ROS

To be handed in by: 18/12-2017

Jan Tommy Gravdahl
Professor, supervisor

Abstract

To evaluate the feasibility of controlling KUKA robots via KUKAVARPROXY, the
performance of two libraries for communicating with KUKAVARPROXY is inves-
tigated. It is shown that the BoostCrossCom C++ library and the jOpenShowVar
Java library have comparable performance on a KUKA KRC 2. Both libraries
have a mean access time of 3ms for single connections, increasing too 12ms for 5
simultaneous connections.

To interface with a gantry mounted KR 16 the existing ROS Industrial driver
is expanded to control mathematically linked external axes. The raw control that
RSI allows can be a safety hazard for novice users, therefore a ROS driver using
BoostCrossCom is implemented.

ROS interfaces for reading data from a Schunk FTC-50-80 force-torque sensor
is developed using both RSI and BoostCrossCom. In order to control a Schunk
SWS-020 tool change system from ROS, a service node using BoostCrossCom is
created.

ii

Sammendrag

For å evaluere muligheten for å styre KUKA roboter via KUKAVARPROXY, er
ytelsen til to biblioteker for kommunikasjon med KUKAVARPROXY blitt under-
søkt. Det er vist at BoostCrossCom C ++ biblioteket og jOpenShowVar Java-
biblioteket har sammenlignbar ytelse på en KUKA KRC 2. Begge biblioteker har
en gjennomsnittlig tilgangstid på 3ms for enkeltforbindelser, og øker til 12ms for
5 samtidige tilkoblinger.

For å styre KR 16 montert på en traveskran, er den eksisterende ROS Industrial-
driveren blitt utvidet til å kontrollere matematisk koblede eksterne akser. RSI
kan være en sikkerhetsfare for nybegynnere, derfor er en ROS-driver som bruker
BoostCrossCom implementert.

Et ROS-grensesnitt for lesing av data fra en Schunk FTC-50-80 kraftmoment
sensor er utviklet ved hjelp av både RSI og BoostCrossCom. For å styre et Schunk
SWS-020 verktøybyttesystem fra ROS, er det skrevet en service node som kom-
muniserer via BoostCrossCom.

iii

Preface

The technical work for this thesis has been independently executed, including
information gathering, configuration and software design. This has been an
exciting project to work on, and I have enjoyed developing the laboratory and
trying out my ideas on real hardware. During the time spent working on this thesis
the Department of Engineering Cybernetics (ITK) have provided full access to
the robotics laboratory, including 3D models and basic hardware documentation
that followed the laboratory from SINTEF.

I would like to thank both my supervisor Tommy Gravdahl and my co-
supervisor Mathias Hauan Arbo for their support and guidance throughout an
eventful year.

I would also like to thank Filippo Sanfilippo for introducing me to jOpenShow-
Var and KUKAVARPROXY, on which much of this work is based.

iv

Contents

Abstract ii

Sammendrag iii

Preface iv

1 Introduction 1

2 KUKA robot system 3
2.1 KUKA Robot Controller . 4

2.1.1 Control computer . 4
2.1.2 KUKA Control Panel . 5
2.1.3 Power supply . 5
2.1.4 Servo control . 5
2.1.5 Braking and deceleration 7
2.1.6 Backup batteries . 8
2.1.7 Safety . 9

2.2 KR 16 . 10
2.3 KUKA System Software . 13
2.4 Interpolation Cycle . 14
2.5 Submit Interpreter . 15
2.6 Programming . 15

2.6.1 Advance run . 16
2.6.2 Coordinate systems . 16
2.6.3 Torque mode . 19

v

2.6.4 Collision monitoring . 19
2.6.5 Workspace monitoring 20

2.7 External axes . 20
2.8 Robot Sensor Interface . 21
2.9 Fieldbus . 23

3 Robot software 25
3.1 Robot Operating System . 25
3.2 ROS 2 . 32
3.3 ROS Industrial . 32

3.3.1 Godel - Robotic blending 33
3.3.2 Descartes . 33
3.3.3 Robot support packages 33

3.4 Gazebo . 34
3.5 Orocos . 35

3.5.1 Bayesian Filtering Library 35
3.5.2 Kinematics and Dynamics Library 35
3.5.3 Real-Time Toolkit . 36

3.6 YARP . 36
3.7 OpenRAVE . 37
3.8 RoboDK . 37
3.9 FlexGUI . 37
3.10 KUKAVARPROXY . 38

4 Robot cell setup 39
4.1 Robot cell hardware . 40
4.2 Selection of middleware . 41
4.3 Safety . 43

4.3.1 Electric shock and Electrocution 43
4.3.2 Crunch and pinch . 43
4.3.3 Collision . 43
4.3.4 Ejection of tool during operation 44

4.4 Security . 45

vi

4.4.1 Physical access . 45
4.4.2 Remote access . 45

4.5 Control of mathematically coupled external axes with RSI 47
4.6 Path planning and robot motion 48

5 Development and experimental work 51
5.1 Access time for KUKAVARPROXY 52

5.1.1 Results . 53
5.1.2 Discussion . 55

5.2 Movement latency using KUKAVARPROXY 59
5.2.1 Results . 60
5.2.2 Discussion . 61

5.3 ROS with RSI and mathematically coupled external axis 61
5.4 BoostCrossCom ROS Control interface 62

5.4.1 Joint Position Command 62
5.4.2 Follow Joint Trajectory 63

5.5 Force-Torque sensor . 64
5.6 Tool changer . 64
5.7 Updates to ROS support packages 65
5.8 Centralized code and documentation repository 65
5.9 Example packages . 66

6 Conclusion and future work 67

References 69

vii

List of Tables

2.1 Safety features dependent on operating mode 9
2.2 Maximum rated load for the KR 16 11
2.3 Predefined data types . 17
2.4 Commonly used KRL keywords 18
2.5 Predefined coordinate systems 19
2.6 Pre-existing RSI objects . 23

4.1 Comparison of robotic middleware. 42

5.1 Round-trip delay time (RTD) for ICMP ping requests 55
5.2 Access times for READ operations 55
5.3 Access times for WRITE operations 56
5.4 Access times for WRITE-COPY-READ operation 56
5.5 Additional C++ read and write test 56
5.6 RTD between the Arduino and the control computer 60
5.7 Movement latency . 60

viii

List of Figures

1.1 Screenshot of robot cell from rviz. 1

2.1 KRC 2 layout . 4
2.2 Power module placement in the KRC 2 6
2.3 KUKA KR 16 . 10
2.4 Rotational direction for robot axes 11
2.5 Principal dimensions and working envelope of the KR 16 12
2.6 Interruptbased task scheduling 13
2.7 Illustration of approximation during PTP movement 17
2.8 RSI timing diagram . 22

3.1 Example of nodes and topics in ROS 27
3.2 Example of URDF tree . 29
3.3 Data flow in ROS Control . 30
3.4 MoveIt! system architecture . 31
3.5 Communication between and external system and KSS using KVP 38

4.1 The laboratory as seen from the control station 41

5.1 KVP processing during IPOC . 54
5.2 Illustration of write-copy-read strategy 54
5.3 Possible IPOC layout with timers and interrupts 58
5.4 Extra time to WRITE-COPY-READ due to extra KVP read 58
5.5 Arduino and IMU fastened to A6 on the KR 16 60

ix

Abbreviations

BFL Bayesian Filtering Library. 35

DDS Data-Distribution Service for Real-Time Systems. 32

DOF Degrees-of-freedom. 2, 66, 67, 69, 70

DSE Digital Servo Electronics. 5, 7, 8

E-STOP emergency stop. 4, 5, 15, 42, 45, 47

ESC Electronic Safety Circuit. 9

FTP Focused Technical Project. 33

GUI graphical user interface. 14, 15, 28, 37

IPOC Interpolation cycle. 14, 22, 49, 51, 55, 56, 59, 60, 63–65, 69

ITK Department of Engineering Cybernetics. 1

KCP KUKA Control Panel. 5, 9, 45

KDL Kinematics and Dynamics Library. 35, 36

KRC KUKA Robot Controller. 3–10, 13–15, 20, 22, 23, 25, 26, 38, 41–43, 46, 47,
49–51, 54, 55, 59, 61, 64, 65, 69

KRL KUKA Robot Language. 15, 16, 18, 21–23, 37–39, 41, 55, 61, 63–66

KSD KUKA Servo Drive. 5, 7

x

KSS KUKA System Software. 3, 7, 13, 14, 21, 38, 46, 49, 54, 57

KUKA.HMI KUKA Human-Machine Interface. 14

KVGA KUKA VGA card. 4, 5

KVP KUKAVARPROXY. 2, 23, 38, 41, 47, 50, 51, 53–57, 59–61, 64–66, 69

LTS Long Term Support. 45

MFC3 multi-function card. 4, 5, 7, 13

NMI non-maskable interrupt. 13

ocl Orocos Component Library. 36

ODE Open Dynamics Engine. 34

OpenRAVE Open Robotics and Animation Virtual Environment. 37

Orocos Open RObot Control Software. 35, 36

osd Orocos State machine Description. 36

PLC Programmable Logic Controller. 15, 23, 24

PTP pose-to-pose. 17

RDC Resolver Digital Converter. 5, 7, 8, 42

RIC ROS Industrial Consortium. 33

ROS Robot Operating System. 2, 25, 26, 28, 32–37, 44, 48–51, 53, 54, 63–67, 69

ROS-I ROS Industrial. 33, 37, 38, 66, 67

RSI Robot Sensor Interface. 2, 21–23, 41, 47, 49–51, 54, 63–65, 69

RtAcc Real Time Accelerator. 13

xi

RTD round-trip delay time. 54, 55, 57, 59, 62, 63

RTT Real-Time Toolkit. 35, 36

SPS Submit interpreter. 15, 55, 59, 65, 66

TCP Tool Center Point. 16, 19–21, 46, 49, 50, 63, 65, 66, 69

URDF Unified Robot Description Format. 28, 34, 35, 69, 70

YARP Yet Another Robot Platform. 36

xii

Chapter 1

Introduction

In Isaac Asimov’s The Caves of Steel, R. Daneel once said “Aimless extension of
knowledge, however, which is what I think you really mean by the term curiosity,
is merely inefficiency". The lens with which curiosity is focused into research is
laboratories. To this purpose the Department of Engineering Cybernetics (ITK)
acquired a previously used robotics laboratory during the summer of 2016.

Figure 1.1: Screenshot of robot cell from rviz.

SINTEF andHydro originally commissioned the laboratory in 2005 for research

1

2 CHAPTER 1. INTRODUCTION

into unmanned inspection and maintenance of offshore oil platforms[1]. Some of
the research conducted in the laboratory includes model based collision avoidance,
teleoperation and active camera control[2], [3].

The laboratory consists of two KUKA KR 16 6 Degrees-of-freedom (DOF)
robot manipulators along with a gantry crane from Güdel. One of the KR 16’s is
mounted on the gantry crane, giving it 9 DOF. Figure 1.1 shows a 3D model of
the laboratory. Future plans for the laboratory include research into large scale
additive manufacturing, and as a lab task for an introductory course during first
semester in the Cybernetics and Robotics study program.

This thesis is a continuation of the work started in [4], and starts with an in
depth introduction to a KUKA robot system in Chapter 2. Chapter 3 introduces
middleware for use in robotics. The laboratory setup, along with safety and secu-
rity concerns is outlined in Chapter 4. Timing experiments for KUKAVARPROXY
(KVP) and expansion of the Robot Operating System (ROS) interfaces are ex-
plained in Chapter 5. Key contributions presented in this thesis include

• Access time and movement latency measurements for KVP

• FTC-50-80 integration with ROS

• SWS-020 integration with ROS

• Use of mathematically coupled external axes with ROS using Robot Sensor
Interface (RSI)

Chapter 2

KUKA robot system

KUKA is one of the biggest robot manufacturing companies in the world[5]. The
company was founded in 1898, and soon expanded into welding and welding
solutions. After the rise of the Unimate, the first industrial robot, KUKA saw
an opportunity in industrial manipulators. And by 1971 they delivered Europe’s
first welding transfer line with robots to Volkswagen AG. In 1973 KUKA made
the first robot with six electromechanically driven axes. In 1996 they released
the KUKA Robot Controller (KRC) 1 controller, which was the first PC based
controller running both Windows and a real-time OS[6].

A typical robot system is made up from a robot or manipulator, a robot
controller, software and some way to interface with the system. In this chapter
we will give a description of the underlying system and their importance for
safety and usability.

Several versions of the KRC and KUKA System Software (KSS) exist, and
there have been some major changes between versions. Unless specified, all
information regarding KRC and KSS in this text refers to version 5.4 and KRC 2
2005 edition for use with standard robots. There might be small changes in KRC
and KSS for use with heavy-duty, palletizer or press-to-press robots.

3

4 CHAPTER 2. KUKA ROBOT SYSTEM

2.1 KUKA Robot Controller

Most robot controllers consist of the same basic components: power supplies,
servo controllers, a logic unit, and a human-machine interface of some sort. Figure
2.1 outlines the placement of these components in the KRC 2. This section is
based on information found in [7].

Figure 2.1: KRC 2 layout. Adapted from [7, Fig 2-2]. Courtesy of KUKA.

2.1.1 Control computer

The logic unit in the KRC is a standard x86 computer with a single core Pentium
CPU. It has a few specialized PCI expansion cards for connecting to the servo
drivers, field buses, analog and digital I/O as well as the emergency stop (E-STOP)
system. The KUKA VGA card (KVGA) and multi-function card (MFC3) is the only
non-optional expansion cards. The motherboard has several USB ports, RS232
serial ports, a parallel port, and one Ethernet port. The USB ports and Ethernet
port is reserved for use with Windows.

2.1. KUKA ROBOT CONTROLLER 5

The KVGA has a proprietary connection to the KUKA Control Panel (KCP),
and offers a standard VGA plug for an extra monitor. This monitor will show the
same image as is on the KCP display. MFC3 handles most of the communication
between the computer and robot systems. It connects the servo controllers,
E-STOP controller and DeviceNet bus.

2.1.2 KUKA Control Panel

KUKA Control Panel (KCP) is the physical part of the human-machine interface.
This is a handheld programming device, commonly known as a teach pendant.
Traditionally, all programming and manual control of the robot is done with the
KCP. It is fitted with an 8", 640x480 px display. Along with a keypad and numpad
there are several soft-keys, whose function changes depending on program con-
text. Input from the KCP is transmitted over CAN bus. It is connected to the KRC
via a 10-60 meter cable.

2.1.3 Power supply

The KRC is powered by 3x400VAC, with a rated power input of 7.3kVA. The
KPS-600 is the main power supply, and is responsible for distributing both AC
and DC power to the rest of the robot system. Both the main contactor, which
supplies drive current to the KUKA Servo Drive (KSD), and the brake release
contactor is located on the KPS 600. In addition the KPS-27 transforms 230VAC
to 24VDC for use in the control electronics. Figure 2.2 outlines the placement of
power modules in the KRC 2.

2.1.4 Servo control

Three main components are involved in servo control on the KRC: Resolver Digital
Converter (RDC), Digital Servo Electronics (DSE) and KUKA Servo Drive (KSD).

Resolver Digital Converter (RDC)
Responsible for A/D-conversion and serialization of signals from servo
encoders. The RDC is a 8 channel card, and can be used for up to two extra
motors. It is placed on the robot base, and has a connection to the DSE.

6 CHAPTER 2. KUKA ROBOT SYSTEM

Figure 2.2: Power module placement in the KRC 2. Courtesy of KUKA[7, Fig
2-20].

2.1. KUKA ROBOT CONTROLLER 7

Digital Servo Electronics (DSE)
The brain in the servo control chain. In addition to monitoring the servo
control chain it moves the servo to set points given from KSS. It is placed
directly on the MFC3. In addition to the RDC connection, there is an
Interbus connection from the DSE to the KSD.

KUKA Servo Drive (KSD)
Regulates and monitors servo drive current. Comes in different sizes de-
pending on servo (robot) size. The KRC is able to operate servo motors
in a master-slave configuration. This allows it to use several servos for
actuating the same axis. For example, on a gantry placed on two rails, one
could place one servo at each rail to ensure even traction. The standard
cabinet fits a total of 8 KSD.

The RDC gives feedback on joint movement, but does not provide an ab-
solute position of the joint. For the KRC to know which position a joint is
in, a process known as mastering must be performed. During mastering,
every axis is moved into a predefined position before mastering information
is saved. The KRC can then use relative movement from this position to
determine absolute joint position. Mastering is usually only performed
during installation and after service.

A top-mounted extension cabinet is used if more than two extra servos is
used. This contains extra power supplies and KSDs for controlling the external
axes. One extra DSE along with an extra RDC card is required when using more
than 8 servos.

2.1.5 Braking and deceleration

The robot servos are fitted with brakes. The brakes are operated by 24V DC, and
needs power to release. As all brakes are controlled by the same relay in the KPS
600, they are released and engaged at the same time. To minimize response time,
brakes are not used to keep the robot stationary during normal operation. If the
robot is stationary for a prolonged time, or no program is running, the brakes
will be applied and servo drive circuit will be disengaged.

8 CHAPTER 2. KUKA ROBOT SYSTEM

The KRC has four different modes for stopping a robot’s movement.

Ramp-down braking
Equivalent to EN 60204-11 STOP 2. This is used for deceleration during
normal operation. Will keep the planned path during braking.

Path-maintaining braking
Equivalent to EN 60204-1 STOP 1. This uses servos to decelerate the robot.
Once the robot is stationary, or after a maximum allowed time of 1 second,
it applies the brakes and cuts power to the servos. Will keep the planed
path during braking.

Path-oriented braking
Equivalent to EN 60204-1 STOP 0. This immediately cuts power to the
servos and applies the brakes. It will attempt to follow the planned path
using what remains of available energy in the drive circuit.

Short-circuit braking
Only used during controller shutdown, power failure or connection loss
between the RDC and DSE. The brakes are immediately applied and power
to the servos are cut.

To handle energy generated from back EMF, a ballast resistor is installed in
the KRC. Energy from back EMF is dumped into this resistor. To avoid damage
to the servos, temperature of the ballast resistor, brakes and servo is continu-
ously monitored. Should any of these overheat, the controller will stop program
execution and enter a fault state.

2.1.6 Backup batteries

The KRC 2 is fitted with backup batteries. During power loss, or if the KRC is
turned off, these batteries provide power to the control computer. This enables the
controller to save the current state to disk, before performing a graceful shutdown.
The batteries are continually charged while the controller is powered on. If the

1Safety of machinery - Electrical equipment of machines - Part 1: General requirements

2.1. KUKA ROBOT CONTROLLER 9

controller remains powered off for long periods, or the controllers are frequently
turned on and off, the batteries might deplete or lose the ability to retain charge. If
the KRC is turned off or loses power without working battery backup, mastering
information will be lost.

2.1.7 Safety

The safety system consist of external and internal safeguards. The external
safeguards are installation specific, like fences, gates, pressure mats, etc. Internal
safeguards consists of axis monitoring, workspace monitoring, operating modes,
etc. Electronic Safety Circuit (ESC) is responsible for monitoring all safety related
hardware. The KRC 2 safety electronics are made in accordance with the now
withdrawn EN 954-1 Category 3. This guarantees a single fault in the safety
system will not interfere the function of said system. The KRC has four operating
modes, different safety features are available depending on the active mode. See
table 2.1 for the different modes. The KCP is outfitted with a local emergency
stop. In addition to this, there is an input for external emergency stop.

External safeguards like safety gates, safety mats and laser fences are con-
nected to the Operator safety input. In automatic mode, triggering this input
will stop robot movement. Its intended purpose is to protect an operator entering
the cell during normal operation, for example at a loading station. While there are
both mechanical end stops and software limit switches, these are only intended
as machine protection and should not be relied upon for operator safety. To move
the robot in T1 or T2, one of the enable switches on the KCP must be pressed
down.

Safety feature T1 T2 AUT AUT EXT

Emergency stop STOP 0 STOP 0 STOP 1 STOP 1
Enabling switch Active Active Not active Not active
Operator safety Not active Not active Active Active
Max 250mm/s Active Not active Not active Not active

Jog mode Active Active Not active Not active

Table 2.1: Safety features dependent on operating mode[7]

10 CHAPTER 2. KUKA ROBOT SYSTEM

2.2 KR 16

Figure 2.3: KUKA KR 16. Courtesy of KUKA[8, Fig 1-1].

The KUKA KR 16 is a 6 axis industrial robot in KUKA’s "low payload" category.
The robot is depicted in Figure 2.3, and major components are labeled. Several
versions of the KR 16 has been made, including versions for use in foundries or
clean rooms[8]. The standard version can be floor, ceiling or wall mounted. While
it has a maximum payload of 16kg, there are fixtures for supplementary load on
the rotating column, arm, and link arm. Refer to Table 2.2 for maximum load
weights. Figure 2.5 shows the working envelope and dimensions for the KR 16.
Rotational direction for all joints are specified in Figure 2.4. AC servo motors are
used for all joints. The robot is not outfitted with springs or hydraulic gravity
compensation, but uses brakes and servo motors to compensate for gravity.

The KR 16-2 is an updated version that was released for the KRC 2 2005ed.
Apart from electrical connections, the only change is an improvement in re-
peatability from 0.1mm with the KRC 2, to 0.05mm with the KRC 2 2005ed[8],
[9].

2.2. KR 16 11

Load Weight [kg]

Payload 16
Supplementary load

Arm 10
Link arm Variable
Rotating column 20

Robot mass 235
Total mass 281

Table 2.2: Maximum rated load for the KR 16[8]

Figure 2.4: Rotational direction for robot axes. Courtesy of KUKA[8, Fig 1-2].

12 CHAPTER 2. KUKA ROBOT SYSTEM

Figure 2.5: Principal dimensions and working envelope of the KR 16. Courtesy of
KUKA[8, Fig 3-9].

2.3. KUKA SYSTEM SOFTWARE 13

2.3 KUKA System Software

KUKA System Software (KSS) is the software collection responsible for all robot
operations. KSS v5.x is the newest version available for the KRC 2. KSS uses
VxWorks and VxWin, which is included in the KSS installation. VxWorks is a
real time operating system created by Wind River. VxWin was created by KUKA
Controls to allow Windows and VxWorks to run on a single core processor. The
original KRC 2 shipped with Windows 95, and required custom hardware to hand
over control from Windows to VxWorks[10]. This consisted of a Real Time Accel-
erator (RtAcc) chip on the MFC3. The RtAcc triggered a non-maskable interrupt
(NMI), forcing Windows to hand over the CPU to VxWorks[11]. This is illustrated
in figure 2.6. With Windows XP an API providing the same functionality was
introduced, removing the need for the RtAcc[12].

Figure 2.6: Interruptbased task scheduling. Courtesy of KUKA[13].

When starting KSS, VxWorks along with all robot programs is loaded into
a RAM disk. According to [13] the x86 MMU is used to protect this RAM disk,
along with VxWorks RAM space from Windows XP. This ensures VxWorks will
run as expected, even if Windows XP segfaults (bluescreen). This places a limit
on how much space one can use for creating programs for the robot.

Communication between VxWorks and Windows is done over a virtual net-
work utilizing standard TCP/IP protocols. While most of the KSS runs on VxWorks,
KUKA Human-Machine Interface (KUKA.HMI) runs in Windows XP. KUKA.HMI

14 CHAPTER 2. KUKA ROBOT SYSTEM

is the graphical user interface (GUI) for KSS. All robot programming and most of
the configuration can be done directly fromKUKA.HMI. In addition to KUKA.HMI,
KUKA.Cross3, which runs in Windows, sets up and manages the connection and
information flow between VxWorks and Windows. There is also a KUKA Cross-
Com Visual Basic library that is used internally by KUKA. Among other functions,
it allows reading and writing to global variables on the KSS.

KUKA offers several "tech packages", which expands the functionality of
KSS. This includes packages for specialized operation, like KUKA.ArcTech which
provides support functions for for arc welding, as well as more general packages
for communication with other systems like KUKA.RSI and KRL.Ethernet.

By default three user levels are configured in KSS. These are user, expert
and administrator. Not all functions are available for all users, and most con-
figuration options are unavailable for the user level. Additional users and access
levels can be set up on the KSS[14].

2.4 Interpolation Cycle

To decrease cost, there is no dedicated hardware for off-loading trajectory gen-
eration, path smoothing, etc. Instead the single core CPU on the KRC is shared
between all processes. These tasks are ordered into the 12 ms long Interpolation
cycle (IPOC)[15]. This cycle is again divided into four main parts:

1 KRL Interpreter and advance run
Main program execution. Motion planning and path smoothing is done in
this step.

2 I/O and field bus
Fieldbus along with analog and digital I/O is updated in this step. This is
one of the prioritized tasks for the controller.

3 Submit interpreter
Periodic tasks. Worth noting is that it might not complete a single run,
or complete several runs depending on the execution time of code in the
SPS.SUB.

2.5. SUBMIT INTERPRETER 15

4 Windows
Execution of all Windows programs and functions, including updating of
GUI is in this step.

In an e-mail from KUKA Support it was clarified that part 1 and 2 runs at a
higher priority than part 3. Windows has the lowest priority on the controller,
and runs instead of the VxWorks idle task. Depending on complexity of part 1
and 2, run time for part 3 and 4 might be reduced.

2.5 Submit Interpreter

The Submit interpreter (SPS) acts as a software Programmable Logic Controller
(PLC) in the KRC[16]. The German translation for PLC is "Speicherprogrammier-
bare Steuerung" and is shortened to SPS. A single KUKA Robot Language (KRL)
program must be set to act as the main SPS program, by default this is SPS.SUB.
It is started at controller boot, and runs as long as the controller is powered. Most
KRL functions are available for use with the SPS, but it is not possible to move the
robot or synchronous external axes. It is possible to control I/O and asynchronous
external axes from SPS[16].

The SPS will run regardless of E-STOP status[17]. This means it can trigger I/O
with an active E-STOP state. Any tooling connected to the robot could conceivably
be started from the SPS even with an active E-STOP.

2.6 Programming

KRL is a high level programming language created by KUKA. It is based on PAS-
CAL, and used on all KRC controllers. A KRL program consists of a .SRC file and
an optional .DAT file. All program code is in the .SRC file. To increase readability
a .DAT file, referred to as a datalist, can be used to initialize variables with data,
and store it between program runs. KRL has support for conditional branching,
loops, timers and interrupts[15]. Using interrupts it is possible to react to input or
events during program execution. Table 2.4 has the most common KRL keywords.
KRL has support for both subprograms and functions. Whereas a function returns

16 CHAPTER 2. KUKA ROBOT SYSTEM

a value, a subprogram does not return a value. A local subprogram or function is
declared within the same file as the main program, and is only available for this
program. A global subprogram or function must be declared in its own file, and is
available for all programs. There is no distinction between a global subprogram
or a program. Table 2.3 lists predefined datatypes. INT S and INT T in POS

and E6POS stand for Status and Turn. As some robots can reach the same point
with multiple joint configurations, these are used to limit axis range, giving a
unique joint position for a point. The meaning of Status is dependent on robot
configuration, and [15, pp. 62-65] should be consulted for the use of these.

Three main commands for motion programming is available, point-to-point
(PTP), circular (CIRC) and linear motion (LIN)[15]. PTP moves the robot along the
shortest path in joint space. Input can be either a joint space specification like
E6AXIS, or a Cartesian position like E6POS. LIN and CIRC is used to program a
continuous path for the Tool Center Point (TCP). LIN creates a linear movement
from the current position, and takes a Cartesian position as input. In the case of
CIRC, two Cartesian points are used as input. It creates an arc from the current
position through the auxiliary point to the end point. If several motions are
executed in order to create a trajectory, it is possible to define some points as
approximate, allowing the controller to avoid unnecessary slowdowns due to hard
turns[15]. See Figure 2.7 for an example using approximation with PTP motion.

2.6.1 Advance run

Advance run analyzes the KRL program, and plans movements ahead of time
while waiting for the robot to complete the current move operation. If the current
goal is not an end-point for the motion, advanced run is used to determine speed
and acceleration through to the next goal. How many steps in advance should be
calculated can be specified per program, up to a maximum of 5. It is worth noting
this is the number of motion instructions, and not other logical instructions[15].

2.6.2 Coordinate systems

Cartesian coordinates is specified using X, Y, Z, A, B, C. Points in space are given
by X, Y and Z, while A, B, C gives the rotation of this point. Transformation

2.6. PROGRAMMING 17

Figure 2.7: Illustration of approximation during PTP movement. Courtesy of
KUKA[15, Fig. 33]

configuration

Keyword Data type Range

INT Integer −231..231 − 1
REAL Floating point ±1.1x10−38.. ± 3.4x1038

BOOL Bolean TRUE, FALSE
CHAR 1 Character ASCII character
AXIS Struct REAL A1,A2,A3,A4,A5,A6
E6AXIS Struct REAL A1,A2,A3,A4,A5,A6,E1,E2,E3,E4,E5,E6
FRAME Struct REAL X,Y,Z,A,B,C
POS Struct REAL X,Y,Z,A,B,C, INT S,T
E6POS Struct REAL X,Y,Z,A,B,C,E1,E2,E3,E4,E5,E6, INT S,T

Table 2.3: Predefined data types[15]

18 CHAPTER 2. KUKA ROBOT SYSTEM

Keywords Function

FOLD Used to organize code in logical blocks. A fold can be opened
or closed, hiding the code contained within the fold. One
must have user level expert or above to see a FOLD.

STRUC Create a composite data type.
ENUM Create an enumeration data type.
DECL Declare a variable.

IF, ELSE, ENDIF Used for conditional branching.
SWITCH Conditional branching. Can be used to avoid many nested

IF statements
FOR Counting loop
WHILE Conditional loop
REPEAT Conditional loop. Condition is checked at end of loop. Code

is run atleast once
LOOP Infinite loop. Must use EXIT to end loop.

PTP Point-to-point motion. Moves all joints into the position
supplied. This can either be supplied as joint angles or a
Cartesian position.

PTP_REL Same as PTP, but moves relative to current position.
LIN Linear motion between a start point and a end point.
CIRC Circular motion. Defined by three points: a start point, a

end point and a auxiliary point. These are used to calculate
an arc that the robot follows.

: Geometric operator. Calculates transformation of two coor-
dinate systems.

Table 2.4: Commonly used KRL keywords[15]

2.6. PROGRAMMING 19

between coordinate frames can be calculated using the geometric operator ":".
The four predefined Cartesian coordinate systems is listed in Table 2.5. In addition
to Cartesian coordinate systems, there is a joint coordinate system. This is axis
specific, and all joint values are used to define a point in space.

Coordinate system Description

WORLD Fixed, write-protected. Used as a reference for everything
in the robot cell.

ROBROOT Fixed but configurable. Located at the robot base. Defines
position of robot in the WORLD coordinate system.

TOOL Tip of the current tool (TCP). Located at the flange by default.
Must be set up individually for each tool.

BASE Used to define position of workpiece. Defaults to WORLD

Table 2.5: Predefined coordinate systems[15]

2.6.3 Torque mode

To allow the robot to be pushed around, for example during ejection of a workpiece
from another machine, Torque mode is used. It limits the current used to hold a
servo stationary, making the joint compliant[18]. While Torque mode is activated,
active control of joint position is not possible. Torque mode can be activated
for all axes, but it is only recommended for use with A1. For A2-A6 it is either
not recommended due to axis sagging or physically not feasible due to gearing
considerations[18].

2.6.4 Collision monitoring

The robot automatically adjusts the required motor torque in order to keep to the
programmed path and speed. If the robot collides during movement, it will simply
increase torque to keep to the programmed path. It is possible to set up a torque
range the robot should stay within during movement to minimize damage during
a collision[18]. KUKA refers to this range as a "monitoring-tunnel". If torque
monitoring is enabled, and the robot exceeds the set torque range, the robot stops

20 CHAPTER 2. KUKA ROBOT SYSTEM

with path maintaining braking. The monitoring-tunnel must be adjusted for each
movement where it is required. Collision monitoring is not available for external
axes[18].

2.6.5 Workspace monitoring

Workspace monitoring can be used to detect TCP entering or leaving a defined
area. This can then be used to trigger I/O or stop robot motion[18]. Workspaces
can either be defined by a set of joint ranges or as a box in Cartesian space. If it is
used to protect an area from collision, the brake time of the robot must be taken
into consideration when creating the workspace. A total of 8 workspaces can be
monitored simultaneously. Refer to [18, pp. 42-63] for configuration instructions.

2.7 External axes

An external axis is any servo controlled by the KRC 2 that is not part of the robot.
The KRC can control up to six external axes. There is support for using several
servo motors to control one external axis. To achieve this the motors are coupled
using either torque mode or position mode depending on the stiffness of the axis.

If the motions of the external axes should be coupled with a reference frame,
they can be configured as an external kinematic system. Up to three external axes
can be used in one kinematic system, and 6 external kinematic systems can be
defined on the KRC 2[19]. These are referenced as #EASYS to #EFSYS. If the robot
itself is mounted on an external kinematic system, such as a linear positioner,
it is configured as a ROBROOT kinematic system. Only one ROBROOT system
is supported on the controller, and is referenced by #ERSYS[19]. In addition
to ROBROOT, BASE and TOOL kinematic systems are available. A BASE kinematic
system moves the workpiece, while the TOOL kinematic system moves the TCP.

The motion of an external axis can be either synchronous or asynchronous
to the robot motion. For a synchronous external axis, the motion starts and
ends at the same time as a programmed robot motion[19]. Synchronous motions
are further divided into mathematically coupled or non-coupled motions. For
mathematically coupled motions the robot must take the external kinematics into

2.8. ROBOT SENSOR INTERFACE 21

account during path planning. For non-coupled motions, like the feed servo for a
welding gun, this is not required. Asynchronous motions are either coordinated
or uncoordinated. Coordinated motions are controlled from the KRL program,
while uncoordinated motions are controlled from a separate operating panel.

With a ROBROOT kinematic system, the ERSYSROOT coordinate system is de-
fined. This is located at the zero point of the first axis in the kinematic system.
The WORLD coordinate system can be offset from ERSYSROOT, and a transform
between ROBROOT and WORLD is calculated using ERSYSROOT along with current
axis positions for the kinematic system[19]. This allows the controller to compute
the TCP position in reference to the WORLD coordinate system. Using a ROBROOT
system, the position of the external axes must be supplied for any robot move-
ment where it is required to move the external axes. If only a Cartesian point is
specified, the controller will try to reach this point only using the robot axes. If
the point is out of reach for the robot an error will be reported and the program
halted.

2.8 Robot Sensor Interface

This section is based on information found in [20], [21]. RSI is a software extension
package for KSS intended for sensor assisted motion. It can directly offset paths
or joint values during interpolation. Maximum allowed path and axis correction
is set in software, and this defaults to ±5mm for translation and ±5° for rotational
corrections.

If an extra Ethernet network card is installed and assigned to VxWorks in
the KRC, RSI1 is able to communicate over TCP/IP or UDP/IP. There is a fast
mode and normal mode for Ethernet communication. As shown in figure 2.8, in
fast mode the remote system must respond within a 2ms window, whereas it has
roughly 12ms to respond in normal mode. While there still is only one position
correction during each IPOC, with fast mode the correction can be made with
recent data.

Transmitting KRL variables is done by linking said variables to an RSI object.
1RSI versions under 2.1 requires KUKA.Ethernet RSI XML, a licensed software package of

KUKA

22 CHAPTER 2. KUKA ROBOT SYSTEM

Remote system

Normal mode

Remote system

12ms cycle

Fast mode
12ms cycle 12ms cycle 12ms cycle

12ms cycle 12ms cycle 12ms cycle 12ms cycle

Figure 2.8: RSI timing diagram[4]

This object is then automatically updated against the KRL variable when RSI
sends or receives data. Table 2.6 shows pre-existing RSI objects. Incoming data
can be used for input to sensor guided motion. RSI will try to apply any position
or axis corrections within the same IPOC it receives them. This allows for precise
position control in 12ms steps. Large corrections will cause steep acceleration
and fast motions.

RSI works on a lower level than the KRL interpreter, and some of the safety
features of the controller is ignored. If a Cartesian, or joint value, correction is
issued using RSI, the KRC will attempt to reach the new set point within the
current 12ms IPOC. Validity of the new point is not checked before the move-
ment is initiated. Programming errors can lead to very sudden and unexpected
movements. It is recommended to limit workspace size to minimum requirements
to minimize consequences of errors.

During normal KRL execution, velocity and acceleration is automatically
limited to the defined maximum speed for the robot. It is possible to limit this
further by setting a maximum joint speed for the current KRL program using
OV _PRO . By limiting robot velocity to what is necessary for the planned motion,
the damage caused by programming errors can be limited. These limits are
enforced if the robot is being remote controlled using KVP. However, RSI does

2.9. FIELDBUS 23

Keyword Description

DEF_RIst Send the Cartesian actual position
DEF_RSol Send the Cartesian command position

DEF_AIPos Send the axis-specific actual position of axes A1 to A6
DEF_ASPos Send the axis-specific command position of axes A1 to A6
DEF_EIPos Send the axis-specific actual position of axes E1 to E6
DEF_ESPos Send the axis-specific command position of axes E1 to E6

DEF_MACur Send the motor currents of robot axes A1 to A6
DEF_MECur Send the motor currents of external axes E1 to E6
DEF_Delay Send the number of late data packets

Table 2.6: Pre-existing RSI objects[20]

not honor these restrictions. During testing in T1 mode it was found that the
KRC will enter a protective STOP mode after the velocity exceeds the limit of 250
mm/s. We have not attempted to exceed maximum velocity or acceleration for
the robot, but assume the controller will apply brakes and abort the program with
error 1101 COMMAND ACCELERATION EXCEEDED or 1102 COMMAND VELOCITY

EXCEEDED[22].

2.9 Fieldbus

Fieldbus is a set of standards defining networks and protocols for communication
in process automation, usually between a PLC and programmable sensors and
devices. It was first standardized by ISA in 1992, and received significant expan-
sion when standardized by IEC in 2000[23]. Various transmission protocols and
topologies exist within these standards, but the trend for the last years is to move
to devices using Ethernet as a transmission media[23].

Profibus started out as a German national standard, to serve as a link between
HMI and PLCs. When IEC 61158 was released in 2000, Profibus was included as
one of the 8 fieldbus standards[23]. It uses a master-slave topology, where the
master cyclically polls slaves for information. All Profibus devices must have a

24 CHAPTER 2. KUKA ROBOT SYSTEM

GSD (equipment master data) file, which is used when configuring the master for
work with a slave. The maximum transfer rate is between 9600Kbps and 12Mbps
depending on cable length[23].

DeviceNet is an extension to the CAN protocol, and intended for connecting
simple sensors and actuators with PLC or PCs. It can operate in either master-
slave or a producer-consumer peer to peer topology, with a maximum transfer
rate of 500Kbps[23]. Devices can be powered over the DeviceNet bus, eliminating
the requirement for separate cabling. DeviceNet is managed by ODVA.

Interbus is divided into two section, local loop and remote bus. Devices like
sensors and actuators are connected to the local loop, which is terminated in
remote nodes. These nodes are connected through the remote bus, usually over
Category 5, twisted-pair copper wiring. One pair is usualy used for power, and the
local loop and remote bus uses 1 or 2 pairs for communication. Data is forwarded
from nodes in a ring structure, with a maximum of 4096 local and remote modules.
The transmission protocol has a data rate of 500Kbps and is designed to have very
little overhead[23].

Chapter 3

Robot software

Software for controlling industrial robots is traditionally made by the robot
manufacturer. The robot is then installed and programmed for use in a specific
working environment by a systems integrator. Programming and integration
costs can be more than half the up-front cost of a new robot cell[24]. In recent
years robots are coming out of the big factory floors and into smaller factories
and shops. This has created a demand for easier programming and smarter robots
and sensors. Both manufacturer software, 3rd party proprietary software, and
open source software have started to fill this gap. This chapter describes some of
choices of software packages that is relevant for use with KUKA KRC 2 controllers.

3.1 Robot Operating System

Apart from paragraphs regarding rqt, rviz and diagnostics this section is taken in
its entirety from [4].

ROS is an open source robotics framework. It grew out of the robotics com-
munity at Stanford University, with Willow Garage, a now defunct robotics
laboratory, doing significant developments on the early versions. As of July 2016
there are over 100 supported robots, and ROS has a worldwide user base[25].

In [26] the philosophical goals of ROS are listed as:

• Peer-to-peer, with respect to intercommunication,

• Tools-based, one small program per task,

25

26 CHAPTER 3. ROBOT SOFTWARE

• Multi-lingual, programming language-neutral,

• Thin, all complex libraries should be reusable outside ROS,

• Free and Open-Source

In accordance with these goals, today there are over 7000 unique ROS pack-
ages[25]. These packages are loosely connected, and it is easy to change out
components to suite whatever needs one might have. ROS has native bindings
for Python, C++ and LISP, with experimental support for Java and Lua.

Nodes in ROS are usually programs designed for specific tasks. A complete sys-
tem consists of many nodes, where each node is responsible for part of the
total control of the robot. In figure 3.1, nodes are marked as ellipses. The
kuka_hardware_interface is responsible for communication between ROS and
the KRC. The robot_state_publisher is responsible for computing all necessary
transformations for the robot.

Communication between different nodes are done using custom message
formats. These messages are then sent over communication channels called
topics. Topics use a publisher-subscriber communication paradigm, where nodes
can communicate in a one-to-many, many-to-one, or many-to-many fashion.[27]

In figure 3.1 topics are marked as squares, with lines between the nodes.
kuka_hardware_interface listens on the position_trajectory_controller/command
topic, and publishes the current robot position on the joint_states topic.

In addition to topics, ROS has support for request based communication. This
is implemented using services and the action server. Services work in a request-
reply communication paradigm. A client sends a request to a service provider,
and waits for a reply from the service provider. The action server operates in
an asynchronous manner, and offers some more flexibility. Action servers are
typically used for tasks with longer processing time, where feedback and the
possibility to stop an action is required. An action client sends a goal to an action
server. During computation the action server will send feedback to the action
client. Upon reaching the goal a result is sent to the action client.[28]

3.1. ROBOT OPERATING SYSTEM 27

Figure 3.1: Example of nodes and topics in ROS

28 CHAPTER 3. ROBOT SOFTWARE

Unified Robot Description Format (URDF) is an XML format used to de-
scribe robots. It specifies elements for links and joints. Links are described using
3D models or textual definition of simple geometric figures. The links are con-
nected using joint elements, and there is support for different joint types, namely
fixed, revolute, continuous, prismatic, floating and planar. It has support for
defining joint speed, link inertia and link mass. Figure 3.2 shows the link and
joint relationship for a KUKA KR 16 robot.

Xacro is an XML macro language. It makes it easier to work with large URDF
models. It has support for parameters, simple math functions, inclusion of other
files, parameters and conditional blocks. This makes it easy to use concise URDF
files to build large, complex robot models.

ROS Control is a collection of ROS packages for abstraction of hardware
drivers. It contains a set of controllers and hardware interfaces, and does the
mapping between them. Figure 3.3 shows the data flow internally in ROS Control.
If one can reuse one of the existing interfaces, creating a new robot driver for
ROS is reduced to updating parameters with current robot data, and forwarding
control data to the robot.

MoveIt! is a motion planner for ROS. According to [30] it is "state of the art
software for mobile manipulation, incorporating the latest advances in motion
planning, manipulation, 3D perception, kinematics, control and navigation". It
has a modular design, and supports several libraries for planning, kinematics and
collision checking. MoveIt! can be interfaced through C++, Python, or a GUI.
Figure 3.4 illustrates the integration of MoveIt! with ROS.

rqt is a qt based GUI framework for ROS. It can be expanded by plugins, and
is the preferred way to create new GUI applications for ROS. Over 20 plugins is
available, including plugins for robot diagnostics and control[31].

rviz is a 3D visualization tool for ROS, that can be run through rqt or as a
standalone app. In addition to render robots poses, it is used for displaying sensor

3.1. ROBOT OPERATING SYSTEM 29

base_link

base_link-base

xyz: 0 0 0
rpy: 0 -0 0

joint_a1

xyz: 0 0 0.675
rpy: 0 -0 0

base link_1

joint_a2

xyz: 0.26 0 0
rpy: 0 -0 0

link_2

joint_a3

xyz: 0.68 0 0
rpy: 0 -0 0

link_3

joint_a4

xyz: 0.67 0 -0.035
rpy: 0 -0 0

link_4

joint_a5

xyz: 0 0 0
rpy: 0 -0 0

link_5

joint_a6

xyz: 0 0 0
rpy: 0 -0 0

link_6

joint_a6-tool0

xyz: 0.158 0 0
rpy: 0 1.5708 0

tool0

Figure 3.2: Example of URDF tree

30 CHAPTER 3. ROBOT SOFTWARE

Figure 3.3: Data flow in ROS Control[29]. CC-BY-3.0 wiki.ros.org

3.1. ROBOT OPERATING SYSTEM 31

Figure 3.4: MoveIt! system architecture[30] CC-BY-3.0 wiki.ros.org

32 CHAPTER 3. ROBOT SOFTWARE

data, forces, path visualization (with MoveIt!), navigation data, and more[32].

Diagnostics is a helper package for collecting and analyzing diagnostics mes-
sages from a robot[33]. It is easily expanded with plugins. The rqt_robot_monitor
uses diagnostics data to show color coded status information for a robot. It has
tools for exporting diagnostics data to CSV files. This makes it easier to use
standard plotting and analyzing tools on ROS diagnostics data.

3.2 ROS 2

Several limitations exist in the current ROS design, most notably are missing real-
time support, lack of security features and support for running multiple robots
at the same time. In order to address these issues, it was not deemed feasible to
maintain backwards compatibility, and work was started on ROS 2[34]. Among
other infrastructure changes, ROS 2 is designed to be real-time safe, and uses
Data-Distribution Service for Real-Time Systems (DDS) for communication. A list
of changes between ROS 1 and ROS 2 is in [35]. The default DDS implementation
used in ROS 2 is eProsima Fast RTPS[36]. It offers both authentication and
encryption of traffic[37]. The first non-beta release of ROS 2, Ardent Apalone,
was released on December 8, 2017[38]. A communication bridge for allowing ROS
1 and ROS 2 packages to communicate is available with the ROS 2 distribution.

3.3 ROS Industrial

"ROS-Industrial is an open source project that extends the advanced capabilities
of the Robot Operating System (ROS) software to manufacturing"[39]. This is
done by creating hardware drivers for equipment used in manufacturing, such as
industrial robots, fieldbuses, sensors, etc. In addition to hardware drivers, they
create and maintain packages and plugins related to industrial use of ROS.

ROS Industrial (ROS-I) is managed by the ROS Industrial Consortium (RIC).
This is a membership organization that sets the roadmap and provide support
for the ROS-I community. Members interested in supporting development of

3.3. ROS INDUSTRIAL 33

new features can create a Focused Technical Project (FTP), where development is
funded by interested RIC members.

3.3.1 Godel - Robotic blending

An example for a FTP is Godel. It is a project to create a automatic surface blending
(sanding) application. It scans the workspace with a 3D scanner and visualizes the
result, the operator then selects the surfaces that should be blended[40]. Godel
automatically creates a trajectory for blending the selected surfaces. After this is
done, the operator can execute the blending process. After the blending process
is completed, the robot does a quality assurance scan, and additional blending is
done if any defects are detected. This is intended to become a general Scan’n’Plan
framework for robotic processes[40].

3.3.2 Descartes

Descartes is another example of an FTP. It is a path planning library for semi-
constrained Cartesian paths. Semi-constrained in this context means that the
path is specified with less degrees of freedom compared to what is available on
the robot. This could for example be for drilling, where rotation around the drill
bit is indifferent. As it is a Cartesian planner, it takes a list of Cartesian points,
and calculates a trajectory following these points[41]. MoveIt! currently lacks a
good Cartesian planner, and there is an open issue on GitHub for integrating the
Descartes with MoveIt![42].

3.3.3 Robot support packages

ROS-I maintains a set of packages for using industrial manipulators frommost ma-
jor robot suppliers[43]. These packages are organized into a metapackage named
after the manufacturer, and strive to have the same layout between manufacturers.
The typical layout is listed below.

<robotname>_support
Necessary 3D models and XACRO files for creating a robot URDF. By using

34 CHAPTER 3. ROBOT SOFTWARE

XACRO macros to define the robot, it is easy to reuse these packages in
larger setups.

<robotname>_moveit_config
Configuration files for using MoveIt! with robot.

<robotname>_moveit_plugins
Robot specific MoveIt! plugins, like kinematic solvers.

<robotname>_gazebo
Configuration files for using Gazebo

<manufacturer>_driver
Driver for connecting the robots to ROS. Naming is inconsistent across
manufacturers

Experimental features are gathered in a separate metapackage for each man-
ufacturer, following the same layout as the non-experimental packages. The
packages for KUKA robots is still deemed experimental, and is located the
kuka_experimental1 repository.

3.4 Gazebo

Gazebo is a 3D physics simulation environment for robotics, which started at the
Robotics Research Labs, University of Southern California[44]. By simulating a
wide range of sensors, with optional noise, it provides a realistic environment
for the simulated robots[44]. It has support for several physics engines, but the
choice must be made at compile time. Open Dynamics Engine (ODE) is the default
physics engine, and is distributed with the binary release[45]. Gazebo uses the
SDF format to describe the simulation, with Collada or STL files for describing 3D
objects.

ROS uses Gazebo as the primary physics simulation tool. The Gazebo release
cycle is independent from the ROS release cycle, a specific Gazebo version is
therefore locked to a ROS distribution in order to maintain lifecycle compatibility.

1https://github.com/ros-industrial/kuka_experimental

3.5. OROCOS 35

A SDF description is auto generated from an URDF file when using Gazebo with
ROS. A <gazebo> element is added to URDF to provide information needed by
Gazebo that not specified in the URDF standard.

3.5 Orocos

Herman Bruyninckx of Katholieke Universiteit Leuven first launched the idea of
an open control framework for robotics, Open RObot Control Software (Orocos),
on the EURON mailing list in December 2000. The project was made possible by
an EU grant, and the initial version was released in 2002[46]. This release then
turned into the Real-Time Toolkit (RTT). By 2009 both the Bayesian Filtering
Library (BFL) and the Kinematics and Dynamics Library (KDL) had been added
as subprojects to Orocos. They provide stand-alone functionality, allowing them
to be used outside Orocos. While lack of activity on the project web site1 might
indicate this project is dead, all three sub projects have seen releases on Github
over the past two years[47]–[49]. The Orocos project is focused on creating
a framework for real-time control of robots[46], as such both KDL and BFL is
real-time safe.

3.5.1 Bayesian Filtering Library

BFL is framework for inference in Dynamic Bayesian Networks[50]. Particle
filters and Kalman filters are implemented in BFL. The documentation has not
been updated since 2010, and [51] hints to undocumented features in the library.

3.5.2 Kinematics and Dynamics Library

KDL is a framework for modelling and computation of kinematic chains. Ac-
cording to [52] it has extensive support for geometric primitives, kinematic trees,
motion trajectories and solvers for kinematics and dynamics. It is application
independent, and is used by more than 20 ROS applications[53].

1http://orocos.org/

36 CHAPTER 3. ROBOT SOFTWARE

3.5.3 Real-Time Toolkit

RTT is a C++ framework for creating real-time applications that is modular and
run-time configurable[54]. RTT programs are divided into packages that consists
of one or more components. Each component then implements some functionality.
Components are run by the Orocos deployer. Orocos State machine Description
(osd) provides support for event driven components[55].

Communication between components is done through directional ports. The
connection between these ports are made using transport libraries. Current
implementations include MQueue for interhost communication, and CORBA for
intrahost communication. Transport of all data types can be made hard real-time
as long as the underlying protocol supports this[55].

OroGen is a code generator for RTT that assists in the creation of new
RTT components. One specifies the component in a definition file, and oroGen
creates C++ and CMake files based on this specification[56]. Orocos Compo-
nent Library (ocl) contains optional RTT infrastructure components. The ROS
rtt_ros_integration package provides RTT and ROS integration.

3.6 YARP

Yet Another Robot Platform (YARP) stems from research in humanoid robotics
at the LIRA Laboratory at University of Genova, and the CSAIL and AILabs at
Massachusetts Institute of Technology[57]. It started out as a library to increase
maintainability and usability of software in complex systems with changing hard-
ware. It does this by providing communication and hardware abstraction[57]. A
YARP based system is organized into small processes, where each is responsible
for a task. The underlying communication mechanism is plugin based, and can
be easily changed to suit requirements and available hardware without changing
code in the processes[58].

3.7. OPENRAVE 37

3.7 OpenRAVE

Open Robotics and Animation Virtual Environment (OpenRAVE) is a motion
planning framework for use in robotics, developed at the Robotics Institute in
Carnegie Mellon University, and first released in 2008[59]. It is not intended to be
used for stand alone control of robots, but rather provide motion planning capabil-
ities to other robotic middleware. It has an plugin based architecture, and provides
abstraction layer for motion planners, hardware, and physics engines[60].

3.8 RoboDK

RoboDK is a commercial program for simulation and offline programming of
robots. It is manufacturer agnostic, and has support for over 30 different man-
ufacturers[61]. This is achieved by using post processors to generate programs
in robot specific languages like KRL. Programs can be created graphically or in
python. For some cases like 3D printing or milling, the program can be created
automatically from CAD files, like STL or DXF. RoboDK is not free or open source,
but the post processors have been released to ROS-I under an open source license.

3.9 FlexGUI

FlexGUI is a web based GUI for robot and factory management, created by PPM
A/S. Since it is web based, it can run on any device with a web browser. FlexGUI
4.0 connects to ROS, and is able to control any ROS enabled robot. Custom control
and monitoring screens is created from within a web browser, and allows for
creating a GUI highly customized to the current user and process. With Factory
Designer it is possible to create a screen containing all processes in a plant. While
advanced features like Factory Designer is not free, part of FlexGUI has been
open sourced, and is available via ROS-I[62].

38 CHAPTER 3. ROBOT SOFTWARE

3.10 KUKAVARPROXY

KVP is created by the IMTS S.r.L. Company, and released in binary form on
sourceforge1 together with openshowvar. It acts as a TCP/IP bridge between
external systems and KSS. According to [63] a maximum of 10 simultaneous
connections to KVP is supported. KVP runs on the Windows side of the KRC,
and is able to communicate with the VxWorks side of the controller via KUKA
CrossCom. This communication is illustrated in Figure 3.5. We have not been
successful in finding any documentation on the KUKA CrossCom library. The
only place KVP appears to be documented is in [63]. KVP appears to have been
used successfully in numerous research projects as well as commercial software
like roboDK[63]–[66].

Figure 3.5: Communication between and external system and KSS using KVP.

Two libraries for communicating with KVP is available. JOpenShowVar, pre-
sented in [63], is a Java library for accessing KVP. In addition to communicating
with KVP, it has implemented classes for all KRL variable types. BoostCrossCom
is a C++ library inspired by JOpenShowVar, and was created for use in [64]. In
an e-mail from autumn 2016, Njåstad has stated that it’s going to be released on
GitHub under an open licence. It is not as feature rich as JOpenShowVar, and
lacks classes for KRL variables types.

IMTS S.r.L. is in the process of creating an open-source release of KUKAVARPROXY.
This will help "demystify" KUKAVARPROXY and could increase the willingness
to depend on it from other open-source projects like ROS-I.

1https://sourceforge.net/projects/openshowvar/

Chapter 4

Robot cell setup

Two of the planned research scenarios for the laboratory is additive manufacturing
and testing gripping scenarios. Both of these will most likely require gathering
and processing of (depth) images, which is computationally expensive. The
computing power of the KRC 2 controller is limited, and outdated by today’s
standard. Instead of upgrading the KRC controllers, it was decided to let them
only handle motion and safety, and use a external system to handle everything
else.

For open-loop control, a path can be preplanned and used to generate KRL
files, for example with the postprocessors from RoboDK. These files would then
be uploaded to the KRC and executed. For closed-loop control, the ability to
adjust the path during execution is required. In our laboratory we can use either
RSI or KVP to achieve closed-loop control.

In this chapter will go through available hardware in the laboratory, before
describing the choice and setup of middleware. Safety and security considerations
for the laboratory is also described in this chapter. In line with the definition found
in [67], throughout this text safety is considered protection against unintended
harm, while security is protection against willful harm.

39

40 CHAPTER 4. ROBOT CELL SETUP

4.1 Robot cell hardware

The layout of the robot cell is a large fenced area and a control station directly
outside the fence. As seen from Figure 4.1, a clear acrylic wall separates the
control station from the robots. There are two gates in the fenced area, both
monitored by gate switches connected to the E-STOP controller. The robot cell
contains the following equipment:

• 1x floor mounted KUKA KR 16

• 1x 3-axis Güdel gantry crane with a ceiling mounted KUKA KR 16

• 2x KRC 2 2005 edition controllers

• 2x FTC-50-80 force-torque sensors

• 2x SWS-020 toolchangers

• 2x SMC EX250 pneumatic controllers

• 2x auxiliary DC power systems

• 1x E-STOP controller

The KRC 2 for the gantry mounted KR 16 is fitted with an expansion cabinet
for controlling the gantry. The RDC for the gantry is placed on the right leg,
seen from the control station. Apart from the gantry, setup for both robots
are identical. The Schunk FTC-50-80 force-torque sensors are mounted on the
robots, and connected to the KRC over DeviceNet. The SWS-020 toolchanger is
pneumatically operated, and controlled over Profibus via the SMC EX250. The
SMC EX250 is placed on 3rd axis arm of the KR 16. The auxiliary DC power
system consists of two power supplies placed at the KRC, and DC-DC converters
at each robot base. Together these supply 24V, 12V and 5V to equipment and
tools on the robot.

4.2. SELECTION OF MIDDLEWARE 41

Figure 4.1: The laboratory as seen from the control station. The KRC cabinets are
on the left side, with the control computer on the right side.

4.2 Selection of middleware

As seen from chapter 3 there are several available frameworks and software
solutions for use in robotics. Some of the key points that were considered when
selecting software solutions are listed below.

Documentation and support
Is it well documented? Is it easy to get support?

Availability
Free to use? Available sourcecode?

Adaptability
How easy is it to adapt to the current task at hand?

Interoperability
Is it already integrated into other frameworks? How easy is it to integrate
with other frameworks?

42 CHAPTER 4. ROBOT CELL SETUP

Expected lifetime/Community
Is this something that will be around for years to come? How big is the
userbase?

Metric ROS YARP Gazebo Orocos RoboDK

Citations1 3826 [26] 470 [57] 813 [44] 573 [68] -
Google search 263,0002 9,9303 90 2004 11 7005 2286

Open source Yes Yes Yes Yes No
Licence BSD LGPL Apache 2.0 LGPL, GPL

1 Citations to referenced article. Based on data from Google scholar pr 2017-10-30.
2 Search term ros "robot operating system"
3 Search term yarp "yet another robot platform"
4 Search term gazebo robot simulator
5 Search term orocos "open robot control software"
6 Search term robodk "robot development kit"

Table 4.1: Comparison of robotic middleware. Based of table found in [69].

ROS has almost 19 000 wiki pages, along with some 18 000 users on the
primary support platform1, meaning there is a large community around ROS[70].
According to [70] ROS has over 13million downloads of over 9000 unique packages.
By utilizing existing packages in the robotics lab, we are able to spend less time
on creating a support framework and more time on completing the wanted task.
The major drawback of ROS is the lack of hard real-time support. It is possible to
use Orocos for tasks with real-time demands, and offloading non-real-time tasks
to ROS. Due to the high number of preexisting packages, and interoperabillity
with other middleware, it was decided to interface the laboratory with ROS.

As ROS is primarily targeted for Ubuntu, this was a natural choice of Operating
System for the control computer. In [4], the laboratory was set up using ROS
Indigo and Ubuntu 14.04. MoveIt! was released for ROS Kinetic in late December
2016, and it was decided to upgrade the laboratory to Kinetic and Ubuntu 16.04
Xenial Xerus. Both Kinetic and Xenial are Long Term Support (LTS) releases, with
support until April 2021[71].

1https://answers.ros.og

4.3. SAFETY 43

4.3 Safety

The following safety hazards have been identified in the robot cell:

• Electric shock and Electrocution

• Crunch and pinch

• Collision

• Ejection of tool during operation

4.3.1 Electric shock and Electrocution

Shock and electrocution risks can be negated by removing power before per-
forming any maintenance or service work on the equipment. Both controllers
and robots comply with Directive 73/23/EEC (Low Voltage Directive), and do not
constitute shock or electrocution risk under normal operation. As the auxiliary
power supply is rated under 50V DC, it does not impose a shock or electrocution
risk.

4.3.2 Crunch and pinch

Crunch risks are from collisions between the robots and humans. In addition,
several pinch points have been identified on both robot and gantry crane. These
risks are negated by keeping humans outside the workcell during normal oper-
ation. This is done with a security fence that is placed around the robots. The
gates are monitored by the E-STOP system. Any movement of the robots while
the gates are open is only possible in T1 mode, and requires physically depressing
the enable switch on the KCP. While in T1 mode speed is limited to 250mm/s[7].

4.3.3 Collision

Two main collision scenarios have been identified:

44 CHAPTER 4. ROBOT CELL SETUP

Robot - robot collision
Any unwanted contact between the two robots, or any part connected to
the robot.

Robot - environment collision
Any unwanted contact between a robot and any object not part of the robot.
Main contributors here are the security fence, tool holders and floor.

To minimize risk of collision, workspace monitoring in KSS should be applied.
This will monitor the TCP position, and stop robot motion if the TCP enter a
restricted area. For both robots, a Cartesian area where the robot can move should
be defined. If the TCP leaves this area it will halt robot motion. The workspace
should be defined so the following items are excluded from it:

• Floor

• Gantry rail

• Gantry leg

• Fence

While this will help in minimizing collision, it will not negate the risk com-
pletely. The robots could still collide with each other inside the defined workspace.
For the gantry robot, the elbow joint and robot base could collide with the floor
or gantry rails and legs even though the TCP is inside the defined workspace.
As the robot needs to come in contact with the toolholders during a tool change
operation, protecting against these are not possible using workspace monitoring.

The KRC has collision monitoring, but this requires tuning for each pro-
grammed path. Since this is a laboratory setup, where robot paths are expected
to change often, this is not suitable for use in our case.

4.3.4 Ejection of tool during operation

It is possible to release the tool while the robot is moving, as the locking mecha-
nism is not connected to robot motion in any way. Worst case scenario is tool

4.4. SECURITY 45

release during motion, followed by the tool being thrown over the security fence.
To negate this risk, one should check that the robot is stationary and positioned
at a toolholder before releasing the tool lock.

4.4 Security

The security risks are identified as unauthorized access, use or modification of
the robot cell. These can again be divided into physical or remote access.

4.4.1 Physical access

The laboratory itself is locked, and access is limited to NTNU staff and students
with the Cybernetics department. Access the control station and the KRC cabinets
should ideally be restricted to only users of the laboratory, but this is not physically
feasible due to other lab equipment in the same room. To avoid unauthorized
use of the robots a lockable switch is connected to the E-STOP. This must be
unlocked to move the robots. In addition, the gate to the fenced area is padlocked,
limiting physical access to the robots to only authorized personnel. Access to the
control computer and KRC is restricted by username and password.

4.4.2 Remote access

Neither KVP or RSI has any form of authentication or authorization. This, in
addition to any potential security holes in Windows XP, means we should have a
separate physical network for the KRCs, and other lab equipment that operates
over Ethernet. With a separate physical network for lab equipment, these can be
interconnected without security risks of remote access. The Ethernet switch for
this network is placed inside the fence, minimizing the chance of unauthorized
access to this network. The control computer has two Ethernet ports, meaning we
can connect it to the lab network and Internet at the same time. The risk vs benefit
of connecting the control computer to the Internet deserves some attention.

With this being a laboratory setup, the required software stack on the control
computer will evolve with current research projects. The ability to download new

46 CHAPTER 4. ROBOT CELL SETUP

software directly, rather than transfer it to the system via other media simplifies
this work. Should the computer not have an Internet connection, the process
of installing the latest security and bug fixes will become cumbersome, and
likely something that is not done regularly. Moreover, it will ease the software
development process, as changes made during laboratory testing can easily be
synchronized to a centralized repository.

As this is a small laboratory, where it is relatively easy to gain physical
access, we consider the risk of a targeted, Internet based attack to be minimal.
Untargeted attacks usually exploit known security holes in software, and patches
to fix security issues are frequently released. Ubuntu has support for automatically
installing security updates, limiting this attack vector[72].

ROS is not designed with security in mind, and has no mechanisms for au-
thentication or authorization of incoming traffic. Running ROS on a system with
Internet connection and no firewall would allow anyone to take control of the
system. Security must therefore be solved outside of ROS itself before the control
computer is connected to the Internet.

To highlight this problem, scans for open ROS installations in NTNU’s network
was performed on 8 occasions during February and March of 2017. These revealed
an average of 6 accessible installations, spread over 13 unique IP addresses. While
this is a low number of installations, each of them could expose control of real
hardware to anyone on the Internet.

While Ubuntu by default comes without an enabled firewall, it has support for
a kernel level firewall through Netfilter[73]. This can easily be used to only allow
incoming traffic that is related to current outgoing traffic. With all unwanted
incoming traffic blocked, the risk from security holes in software that opens
outgoing connections still remain. Automatically installing security updates will
reduce this risk, but not entirely remove it. In addition, there are plans for moving
the control computer from a public routable network, to a internal NTNU network.
This network uses a NAT to allow outgoing Internet traffic while limiting the
exposure of connected devices.

With proper security measures, like automatic updates and a firewall, we
believe the benefits far outweighs the risks of connecting the control computer to
the Internet.

4.5. CONTROL OFMATHEMATICALLY COUPLED EXTERNAL AXESWITH RSI47

4.5 Control of mathematically coupled external

axes with RSI

If the robot is mounted on an external axis, the axis should be mathematically
coupled. This enables KSS to factor in external axes when determining joint
movements with regard to maximum TCP momentum. It also enables KSS to
compute the Cartesian TCP position in the WORLD frame, allowing us to use
Cartesian workspace monitoring with external axes. This is done by calculating
ROBROOT w.r.t. WORLD frame, and TCP w.r.t. ROBROOT, giving TCP positions in the
WORLD frame.

RSI can be used to change the robot position, either as a offset in TCP Cartesian
position, or as a change in axis joint values. To be able to control axis position, the
ST_AXISCORR object is used. This sets a correction for the current axis joint value,
and KSS attempts to reach this new axis configuration within the current IPOC.
When RSI is used to move mathematically coupled external axes, it will lead to a
change in ROBROOTw.r.t. WORLD frame. As KSS tries to keep the TCP constant w.r.t.
WORLD frame, it will compensate for this change in ROBROOT by moving the robot
axes. The same behaviour is seen using PTP_REL with underspecified joint values.
As the ROS driver expects full control of all joints, this is unwanted behaviour
that must be corrected for. KUKA support has confirmed in an e-mail that it is
not possible to disable this behaviour for mathematically coupled axes. They
proposed a solution where ST_PATHCORR is used to offset TCP position by the
same amount as the axis correction for the external axes. They did not guarantee
that this solution would work, and recommended through testing if it was applied.
As a correction for both Cartesian position and joint offsets must be set, this
solution will lead to added complexity.

Two alternative solutions to this problem exists, but both are suboptimal. The
first is to remove themathematical coupling. Movement of the external axes would
then move the WORLD reference frame. Use of Cartesian workspace monitoring
would become impossible. In addition, we must make sure the dynamic load
is within acceptable limits as the KRC is unable to monitor this. The second
solution is to issue corrections to robot axes to counteract KSS. This is a reactive
solution, where we first must observe what corrections the controller makes,

48 CHAPTER 4. ROBOT CELL SETUP

before counteracting these corrections. This is not easily implemented into the
current kuka_rsi_hw_interface, and would require restructuring the driver.

The ability to use workspace monitoring makes up for the added complexity
of the controller code. In addition to workspace monitoring, it will make it
possible to check the Cartesian TCP position before releasing the tool lock on the
toolchanger. It is not possible to set the mathematical coupling of axes at runtime.
If it is removed, it will not be possible to use Cartesian workspace monitoring
with the KVP driver. The KVP driver is unaffected by this problem as we only
use fully specified joint values.

4.6 Path planning and robot motion

We are able to control the robots from an external system, like our control com-
puter, using either KVP or RSI. In [4] it was concluded that both these interfaces
could be used, and that both should be used, as they serve different needs. While
KVP provides better safety, for example by being able to limit robot speed on the
KRC, the RSI interface provides a real-time control loop running at 12ms. RSI
however, does not forgive programmings errors. With the largest gantry axis
being 4.7m long, and a top speed of 0.83 m/s, it will take just under 6 seconds to
travel the entire length of the axis. As this has the potential to cause damage, the
use of the RSI interface should be limited to applications needing the real-time
control capabilities it offers.

ROS Control uses hardware interfaces to communicate with hardware, and
controllers to communicate with ROS. This allows for some flexibility between
controllers and hardware interfaces as they do some internal conversion. For
example, a Joint Command interface, which takes a set-point and updates the
hardware can be used with both the Joint Trajectory and Joint Position controllers.
The Joint Position controller simply forwards a set-point to the hardware inter-
face, while the Joint Trajectory controller will take a trajectory as an input, and
interpolate in order to provide set-points to the Joint Command interface at every
control loop update[74].

While communication with the KRC is different, both RSI and KVP hardware

4.6. PATH PLANNING AND ROBOT MOTION 49

interfaces uses the same ROS Control interfaces. The Joint State Interface, along
with the Joint State Controller is used to publish the current joint values on the
joint_states topic. As the KRC does not provide joint velocity or acceleration
values, only joint position is published. The Joint Command interface is used to
receive a joint value from ROS, which is forwarded to the KRC. Update frequency
for the RSI interface is controlled from the KRC and follows the IPOC. The KVP
interface attempts to follow the IPOC 12ms update rate, but is dependent on read
and write speed from KVP.

It is possible to use ROS Control as a Orocos Component, enabling hard-
realtime control of the robot. A example of how to create this integration is
available on GitHub1.

MoveIt! is the best supported path planner for ROS. It uses a concept of move
groups to plan motions. A move group is a collection of joints that should be con-
trolled simultaneously. When given a start and goal position, it plans a collision
free path in joint space between the points. Using iterative parabolic time param-
eterization MoveIt! can add optional time parameters to this path, generating a
trajectory. This parameterization is based on velocity and acceleration limits[75].
The generated path or trajectory is handed over to a joint trajectory controller.
This controller is responsible for executing the trajectory on actual hardware. An
example for a trajectory controller is the ROS Control Joint Trajectory controller.

1https://github.com/skohlbr/rtt_ros_control_example

50 CHAPTER 4. ROBOT CELL SETUP

Chapter 5

Development and experimental
work

Based in part on work done in [4], the following areas have been identified for
improvements.

Workspace monitoring
In order to enable workspace monitoring, we need the ability to control
mathematically coupled axes from ROS.

Investigate KVP timing information
To determine the viability for using KVP, more data on access time is
required.

Improve the KVP driver
Restructure the current KVP driver to increase reliability and maintainabil-
ity.

ROS support for F/T sensor
The robots have Schunk FTC-50-80 sensors mounted on them. They should
be integrated with ROS

ROS support for tool changers
The robots have Schunk SWS-020 tool changers mounted on them. A ROS
node for safely controlling them should be developed.

51

52 CHAPTER 5. DEVELOPMENT AND EXPERIMENTAL WORK

ROS Kinetic upgrade
As MoveIt! had not been released into Kinetic yet, the lab was set up for
Indigo in [4]. MoveIt! has since received a Kinetic release. Required changes
to use Kinetic in the laboratory should be performed.

Export robot status information from KSS to ROS
Currently, only joint state information is exported from the KRC to ROS.

Create example code for the laboratory

5.1 Access time for KUKAVARPROXY

The only documentation of KVP performance appears to be [63]. While it shows
promising results, all tests are done on a KRC 4. In order to compare the proficiency
of KVP with other control methods, like RSI, performance data for the KRC 2
must be gathered.

There are three main factors that affect the performance of the library used.

1. Processing delay on control computer

2. Network round-trip delay time (RTD)

3. Processing delay on KRC

Processing delay on the control computer is expected to be negligible. As
there is only one switch and less than 30m of cable between the KRC and the
control computer, RTD is expected to be under 1ms. Processing delay on the KRC
is a bit more complex, and can be divided into the following parts

1. KVP receives TCP/IP packet.

2. KVP executes CrossCom call

3. VxWorks responds to CrossCom call

4. KVP processes the data and transmits it over TCP/IP

5.1. ACCESS TIME FOR KUKAVARPROXY 53

Since Windows XP is running as the VxWorks’ idle task, the CPU time avail-
able for Windows will depend on controller load. As the exact task planning for
VxWorks on the KRC is unknown to us, we have to assume non-deterministic be-
haviour for windows runtime. In Figure 5.1 it is assumed all VxWorks tasks finish
before Windows XP uses the remaining IPOC. This is most likely an oversimplifi-
cation, but illustrates some wait-delays that may occur during KVP processing.

A number of ICMP ping tests should be done to find an average RTD. Timing
a number of read and write tests with different variables, will provide data on
KVP latency. By testing with two different libraries, and all other parts being
equal, any major difference in test results should be due to performance of the
libraries on the control computer.

In [63] it is concluded that access time is the same regardless of data type.
To confirm this on a KRC2, tests will be run with a single data type (INT) and a
composite data type (E6AXIS).

To see if multiple connections affects access time, tests should be run using
both a single connection and multiple connections.

While it is nice to know how long it takes to write to a variable, there might be
an unknown delay from KVP reports the variable as written until it is accessible
from a KRL program. To get an idea of the order of magnitude of this delay, a
write-copy-read strategy, which is illustrated in Figure 5.2, is used.

1. Use KUKAVARPROXY to write to a VAR1

2. SPS copies VAR1 to VAR2

3. Read VAR2 using KUKAVARPROXY

5.1.1 Results

54 CHAPTER 5. DEVELOPMENT AND EXPERIMENTAL WORK

Figure
5.1:K

VP
processing

during
IPO

C

Figure
5.2:Illustration

ofw
rite-copy-read

strategy

5.1. ACCESS TIME FOR KUKAVARPROXY 55

All tests are conducted with the robot stationary and no program selected
on the controller. Access time is measured from a command is issued until it is
completed. This includes formatting of KVP packages and network delay. Each
test is run 1000 times. In the 5 thread WRITE-COPY-READ test, only one of the
threads is used for measurement. The remainder of the threads run read and write
operations in order to add load to the network and controller.

Max Min Median Mean Std dev

3.13 0.28 0.34 0.59 0.63

Table 5.1: Round-trip delay time (RTD) for ICMP ping requests in ms. n=1000

Language Type Threads Max Min Median Mean Std. Dev

Java INT 1 23.60 1.71 2.14 2.48 0.89
C++ INT 1 23.78 1.77 2.15 2.48 0.91
Java E6AXIS 1 13.46 1.84 2.29 2.64 0.86
C++ E6AXIS 1 9.37 1.86 2.29 2.64 0.86
Java INT 5 30.03 6.04 11.36 11.73 1.30
C++ INT 5 74.49 2.45 11.62 11.78 1.42
Java E6AXIS 5 36.02 1.81 12.16 11.82 2.61
C++ E6AXIS 5 36.52 2.36 12.77 12.38 1.32

Table 5.2: Access times for READ operations in ms. n=5000

5.1.2 Discussion

During tests in the lab, it has not been possible to use more than 5 simultaneous
connections. This might be from some underlying differences in KUKA CrossCom
between KSS 5.x and KSS 8.x, which is propagated to KUKAVARPROXY.

Results from the ICMP ping test in Table 5.1 places the network RTD in the
expected range of below 1ms.

In [63] access time is reported as 4.27ms average using JOpenShowVar on a
KRC4. This is higher than the 2.64ms - 3.64ms average access time on the KRC 2

56 CHAPTER 5. DEVELOPMENT AND EXPERIMENTAL WORK

Language Type Threads Max Min Median Mean Std. dev.

Java INT 1 10.55 1.64 2.06 2.38 0.82
C++ INT 1 16.05 1.67 2.08 2.39 0.87
Java E6AXIS 1 13.00 2.64 3.33 3.64 0.96
C++ E6AXIS 1 14.44 2.60 3.28 3.60 0.96
Java INT 5 24.14 8.45 10.82 11.35 1.28
C++ INT 5 72.86 2.14 10.97 11.41 1.54
Java E6AXIS 5 29.74 10.30 16.15 15.38 1.88
C++ E6AXIS 5 30.48 3.44 16.55 16.08 1.33

Table 5.3: Access times for WRITE operations in ms. n=5000

Language Type Threads Max Min Median Mean Std. dev.

Java INT 1 36.50 12.79 24.07 23.97 0.80
C++ INT 1 47.61 6.97 24.03 23.92 1.14
Java E6AXIS 1 57.71 11.55 23.79 23.97 0.98
C++ E6AXIS 1 59.03 6.89 23.69 23.91 1.35
Java INT 5 51.99 12.83 33.57 31.35 5.81
C++ INT 5 97.55 11.40 23.42 24.11 3.12
Java E6AXIS 5 59.29 11.37 37.08 35.80 9.55
C++ E6AXIS 5 60.27 11.86 25.03 32.58 10.83

Table 5.4: Access times for WRITE-COPY-READ operation in ms. n=5000

Test Threads Max Min Median Mean Std. dev # > 30ms

Read 1 61.66 1.64 2.05 2.40 0.96 5
Write 1 58.76 1.57 2.00 2.32 0.95 4
Read 5 622.96 4.95 10.68 11.34 2.38 114
Write 5 78.78 4.05 10.17 10.92 1.52 273

Table 5.5: Additional C++ read and write test in ms. n=500 000

5.1. ACCESS TIME FOR KUKAVARPROXY 57

using JOpenShowVar. This could be due to differences in hardware and software
on the KRC or differences in network setup. Without more knowledge about
average RTD, configuration of the KRC 4 and other hardware used in [63] it is
hard to come to any conclusions as to why there is a small difference between
the tests.

As can be seen from Table 5.2 and Table 5.3, timing differences between
JOpenShowVar and BoostCrossCom is negligible for single thread operations.
However, for INT read and write operations using 5 threads, BoostCrossCom
does have a significant higher maximum time compared to JOpenShowVar. For
both read and write operations, only four of the 5000 samples are above 30ms.
To determine the frequency of these spikes, additional read and write tests was
performed. Results from this test is in Table 5.5. For 5 thread read and write
operations, this test yielded respectively 114 and 273 samples above 30ms. The
root cause for these spikes are unknown, but the occurrences are fairly rare.

While both read and write times for E6AXIS are higher than for INT, this
is faster than two sequential reads. Variables could therefore be bundled into a
composite data type to lower access time. This is in line with the findings from
[63].

As the average access times are much lower than the 12ms IPOC, the model
used in Figure 5.1 is too simplistic. In Figure 5.3 the IPOC is illustrated with
interrupts and periodic start of tasks. This is likely closer to the actual structure
of the IPOC.

From Table 5.4 it can be seen that averageWRITE-COPY-READ time is around
twice the cyclic rate of the KRC2. The only change made on the KRC was in the
SPS loop. The contents of the SPS loop does not affect Windows run-time, as it
will loop for a constant time regardless of contents. This delay could be from an
IPOC more or less consistent with Figure 5.2, or a design weakness in the test.
The test runs in a single thread using one connection to KVP. After executing the
write command, it will issue consecutive reads until it gets the correct value back.
This means a read call might be underway as the SPS is run, adding extra time to
the response. See Figure 5.4 for an illustration of this.

For each series of tests, the operations are run back-to-back. This could
potentially affect the results, as the controller is in the same place of the IPOC

58 CHAPTER 5. DEVELOPMENT AND EXPERIMENTAL WORK

Figure
5.3:Possible

IPO
C
layoutw

ith
tim

ersand
interrupts

Figure
5.4:Extra

tim
e
to

W
RITE-CO

PY-REA
D
due

to
extra

K
VP

read

5.2. MOVEMENT LATENCY USING KUKAVARPROXY 59

every time a request is sent. Further studies could asses this by introducing a
random wait [0-12ms] between each request.

5.2 Movement latency using KUKAVARPROXY

The time it takes for the robot to move after a write command is issued will be
referred to as the movement latency. We have investigated this by placing an
external accelerometer on the robot that is connected to the control computer. The
movement latency is then the time from a command is sent until it is registered
by the accelerometer. Since more computing is involved it is expected that this
time is around half of the average WRITE-COPY-READ time from section 5.1.

The simplest way of moving the robot from KVP is with a KRL program that
loops over the PTP command. Input to the PTP command is given as a AXIS or
E6AXIS variable, that is updated using KVP. Listing 5.1 contains an excerpt of the
code running on the KRC for these tests. AXIS_ACT is an global E6AXIS variable.

The external accelerometer consists of an Arduino micro and a MPU-6050
triple axis accelerometer. This is connected to the external computer using USB,
and programmed to write to a serial terminal when movement in any direction is
detected. As show in Figure 5.5, a breadboard with the Arduino and MPU was
jury-rigged to a cable support on axis 6.

In order to determine the communication latency between the control com-
puter and the Arduino, an echo test was performed. For this test the Arduino
was set up to send back any data it received over USB. A program on the control
computer is set up to send a byte to the Arduino, and measure the time it takes
before it is returned. A static delay was added on the Arduino to simulate a
processing delay. This has been subtracted from the results to get the actual
transmission time.

LOOP
PTP AXIS_ACT

ENDLOOP

Listing 5.1: KRL code to move robot using KVP

60 CHAPTER 5. DEVELOPMENT AND EXPERIMENTAL WORK

Figure 5.5: Arduino and IMU fastened to A6 on the KR 16

The testing the movement latency, a program on the control computer is set
up to measure time from writing a new position to the robot until the external
accelerometer detects movement.

5.2.1 Results

Language Max Min Median Mean Std. dev.

Java 6.66 0.23 0.88 0.89 0.35
C++ 0.92 0.66 0.85 0.85 0.03

Table 5.6: RTD between the Arduino and the control computer in ms. n=200

Language Max Min Median Mean Std. dev.

Java 19.93 2.01 5.59 6.71 4.61
C++ 29.59 2.01 5.04 5.74 4.07

Table 5.7: Movement latency in ms. n=298

5.3. ROS WITH RSI AND MATHEMATICALLY COUPLED EXTERNAL AXIS 61

5.2.2 Discussion

RTD between the Arduino and control computer is within the expected range. For
C++ this test was done using Boost’s serial port library. For the actual movement
test, this library produced too high readings due to resetting of the serial port
after a timeout. It was therefore dropped in favor of using the POSIX termios.h

library. This is used by Boost on Linux, and removing the extra layer provided by
boost should not affect performance in a negative way.

The first result from both the C++ and Java datasets was abnormally large,
and has been discarded. The extra time for these results is most likely from the
Arduino opening the serial port.

The mean movement latency of 5.74 ms for jOpenShowVar and 6.71 ms for
BoostCrossCom is roughly half of the 12 ms IPOC. With the expected results
around 12 ms, both libraries perform better than expected. The only major
difference between jOpenShowVar and BoostCrossCom is in maximum time,
where BoostCrossCom has a 1/3 higher maximum compared to jOpenShowVar.

On average one should be able to update the robot position once every IPOC.
This is comparable with the performance of RSI. However, unlike RSI, the simple
KRL programwe used for this test is not able to abort or affect an ongoing motion.

5.3 ROSwithRSI andmathematically coupled ex-

ternal axis

Support for controlling external axes was added to the RSI-based ROS driver in [4].
This implementation does joint position corrections by using the ST_AXISCORR
object. It is linked to an XML formatted input which is sent over UDP/IP from an
external source. While it has performed well, it does not address the problems
described in Section 4.5, and requires uncoupled external axes to work correctly.
To enable use of mathematically coupled external axes, the the solution suggested
by KUKA support by e-mail has been implemented.

A ST_PATHCORR object was added to the KRL code, which is used to offset
current TCP position in relation to the KUKA #WORLD coordinate frame. It was not
possible to link both ST_AXISCORR and ST_PATHCORR objects to the same input,

62 CHAPTER 5. DEVELOPMENT AND EXPERIMENTAL WORK

and extra input has to be sent from the external system. Necessary changes was
made for kuka_rsi_hw_interface to send changes in X,Y,Z for the ST_PATHCORR
object. Currently, the link between external axes and the #WORLD frame is hard-
coded to align with our setup. This solution has performed well during testing,
and no additional work is needed for it to work with our hardware setup. Should
this code be considered for inclusion in the official repository, some more work
is needed to make the coupling between axes and directions configurable at run
time.

5.4 BoostCrossCom ROS Control interface

The proof of concept driver using KVP from [4] has been rewritten. To achieve a
smooth path execution, two different approaches for a KVP based driver have been
attempted. The first approach is largely structured after ros_control_boilerplate1

example code. It uses ROS Control to handle the ROS side of the controller. The
second approach implements a Follow Joint Trajectory Action server in
order to execute trajectories. It is not possible to adjust movement speed with
these controllers, but maximum speed can be limited by setting the program
override speed ($OV_PRO) on the KRC.

The BoostClientCross library from [64] is still used for communication with
KVP. A few functions for easier handling of KRL variables have been added to
the library. Based on results from section 5.1 it was decided to use two threads,
one for reading joint state, and one for writing joint commands. By doing parallel
reads and writes, joint states can be read once every IPOC. In addition it will
increase the responsiveness of the controller.

5.4.1 Joint Position Command

Like the RSI driver, the first approach uses ROS Control, and implements a Joint
Position Command interface. With the Joint Position Controller it will forward
the target pose to the KRC, and the KRC will create and execute a motion profile
between the current position and target pose.

1https://github.com/davetcoleman/ros_control_boilerplate

5.4. BOOSTCROSSCOM ROS CONTROL INTERFACE 63

By updating the controller with the next goal pose after the motion has started,
path interpolation during the KRL advance run can update the motion profile to
avoid a full stop at the current goal. For this to work, there must be enough time
left of the ongoing motion for the KRC to update the motion profile. If this is not
the case, the robot will slow down near to a full stop at the current pose, before
starting the next motion. The result of this is a jerky motion.

The RSI driver uses the Joint Trajectory Controller from ROS Control to
handle path interpolation. The interpolated points will be sent to the KRC every
12 ms, allowing for control of velocity and acceleration from ROS. Testing have
shown that this update rate is too fast for KVP, producing both jerky motion and
skipping some trajectory points altogether.

5.4.2 Follow Joint Trajectory

In an attempt to achieve smooth trajectory execution, a FollowJointTrajectory
action server has been created. It has an actionlib interface for receiving a trajec-
tory, which is then forwarded to the KRC pose for pose. During movement, KSS
sets two KRL variables, indicating the start pose and goal pose for the current
movement. The KVP trajectory controller uses this goal pose variable to synchro-
nize with the KRC. As soon as a motion is started, the next trajectory point is
uploaded to the KRC. This guarantees all trajectory points are executed, and the
correct order of execution. If the poses are sufficiently far away in joint space,
the KRC is able use the newly uploaded pose for path interpolation during the
KRL advance run. This allows the KRC to create a motion profile where it avoids
a full stop at every trajectory point.

Similar to the Joint Position Command driver, it uses ROS Control’s Joint State
interface for reading state from the KRC. To increase readability of the code, it
has been separated into its own ROS node.

Unfortunately, this controller also shows jerky movements if the trajectory
points are too close. Future trials should assess the impact of changing the KRL
code to use a ringbuffer instead of a single variable. By continuously keeping this
buffer updated with the remainder of the trajectory, the KRC will have a larger
horizon during interpolation, and should provide a smoother motion profile.

64 CHAPTER 5. DEVELOPMENT AND EXPERIMENTAL WORK

5.5 Force-Torque sensor

Even though the FTC sensor has a measuring frequency of 1kHz, we are limited
to an update frequency of 83Hz due to the 12ms IPOC. It is also worth noting that
the sensor has a movement area of ±1.4mm[76]. This is quite large compared to
the repeatability of 0.1mm for the robot, and should be taken into consideration
for any tasks requiring high positional accuracy. It is possible to read the position
offset from the sensor, which could then be used as a TCP correction offset for
RSI.

The previous owner had set up both KRCs to read data from the FTC during
the SPS run. The FTC is connected over DeviceNet, and configured to cyclically
output force and torque data. This data is then converted from INT to FLOAT
in accordance with [76], and stored into a global composite variable, FTC. This
consists of 6 floats, storing forces and torques for X, Y and Z direction.

For use with the KVP based ROS interface, a separate ROS node has been
created. It reads the FTC variable from the KRC and uses ROS Control’s Force-
Torque sensor interface to publish it as a ROS WrenchStamped message.

For use with RSI, the FTC variable is linked to the RSI XML output. The
ROS kuka_rsi_hw_interface has been expanded to publish this data using the
Force-Torque sensor interface from ROS Control.

5.6 Tool changer

Release and locking of the tool is not considered time-critical, and the use of RSI
to control it not deemed necessary. A ROS node using KVP has been created to
control the tool changer. It is able to read the status of the tool changer, and can
write to a flag for locking or unlocking the toolholder. This flag is read by a KRL
program that is created on the controller. To ensure the tool is only released when
it is safe to do so, workspaces surrounding the toolholders are created. The KRL
program checks that the TCP is inside the workspace before it toggles the lock
on the tool changer. The ROS node disconnects from KVP after each request, as
locking and unlocking the tool changer is not a frequent event. The KRL program
is run from the SPS.

5.7. UPDATES TO ROS SUPPORT PACKAGES 65

5.7 Updates to ROS support packages

The support packages containing URDF and launch files have received some small
updates to work correctly with ROS Kinetic. Visual and collision objects have
been added for auxiliary equipment placed on the KR 16s. Both toolchanger and
force-torque sensor have been added to the xacro files. For the toolchanger a
3D model from Schunk is used for both visual and collision models. Schunk did
not have any 3D models of the FTC available. Physically the sensor appears as
a cylinder with rounded edges. Using measurements from [76] both visual and
collision objects have been added by means of a URDF cylinder.

The MoveIt! configuration package defines 4 move groups. There are one
each for the two KR16, one for the gantry crane and attached KR16, and one
for both KR16’s and gantry crane. IKFast from OpenRAVE was used to generate
analytic kinematic solvers for both KR 16 move groups. These solvers can be used
by frameworks like MoveIt! and Descartes during path planning. As the MoveIt!
IKFast generation step currently only supports 7 DOF, KDL is still used for the
other move groups[77]. Further inquiries into an analytic solver for all 9 DOF on
the gantry robot should be made.

5.8 Centralized code and documentation reposi-

tory

All official ROS and ROS-I packages is hosted on GitHub. To ease integration
of this code with necessary changes to use it in our laboratory, we need to
maintain forked versions of some repositories, like the kuka_rsi_hw_interface.
Rather than spread these repositories on numerous private accounts, a GitHub
organization was created to host them. KRL files and custom configuration for
the robots are placed in a separate git repository in this organization. This will
allow us to track and document changes to the configuration over time. To make
this organization a "one-stop service", the documentation for the laboratory was
moved into a GitHub wiki.

To represent the 9 DOF available to the gantry robot, the laboratory was

66 CHAPTER 5. DEVELOPMENT AND EXPERIMENTAL WORK

named after Þrívaldi, a 9 headed jötunn from Norse mythology. The GitHub
organization uses the anglicized version of the name, and is located at https:
//github.com/itk-thrivaldi

5.9 Example packages

The thrivaldi_examples1 git repository is intended to collect various example
packages for using the laboratory with ROS. It currently houses some simple
MoveIt! examples, and work is started on a package using Descartes for motion
planning. These packages are intended to serve as a starting point that new users
can turn to after completing the official ROS and ROS-I tutorials.

1https://github.com/itk-thrivaldi/thrivaldi_examples

https://github.com/itk-thrivaldi
https://github.com/itk-thrivaldi
https://github.com/itk-thrivaldi/thrivaldi_examples

Chapter 6

Conclusion and future work

Access time and movement latency for KVP with a C++ and Java library have
been investigated. The findings from this investigation show a mean access time
that is lower than the 12ms IPOC. This makes KVP a viable control method for
the robots, and shows that a KRC 2 2005ed has comparable performance with the
results on a KRC 4 from [63].

Using ST_PATHCORR to adjust TCP position along with external axes position,
we have enabled the use of mathematically coupled external axes with RSI. This
has allowed us to set up workspace monitoring, significantly improving lab safety.

With KVP as a control interface to the robot, we are able to increase safety by
utilizing functions from the KRC, like velocity limits. That gives us the opportunity
to allow bachelor and master students use the laboratory for learning and research
where precise trajectory control is not needed. At the same time, we have the
possibility to use RSI for research that requires precise trajectory control, or
hard-realtime robot control.

Both the force-torque sensor and the tool change have been integrated with
ROS, with visual and collision models added to the URDF model. By only allowing
release of the tool when the toolchanger is near the tool holder we have prevented
accidental release of the tool.

Areas identified for further work are

• Expand the KVP driver to use a ringbuffer on the KRC

• Analytic solver for 9 DOF

67

68 CHAPTER 6. CONCLUSION AND FUTURE WORK

• Cartesian path planner with 9 DOF

• Expand documentation based on usage experiences

• Add visual and collision objects of toolholders to URDF

• Add force torque sensor to Gazebo model

• Create Gazebo world representing the laboratory. Could possibly be based
on data from a 3D camera

With the rare setup of a 9 DOF robot hovering over the workspace of a 6 DOF
robot, and in the hopes that it meets a better fate than Þrívaldi, who was slain by
Thor, the laboratory is ready to tackle unique challenges.

References

[1] A. A. Transet, H. Schumann-Olsen, A. Røyrøy, and M. Galassi, in. Society
of Petroleum Engineers, 2013, ch. Robotics for the Petroleum Industry -
Challenges and Opportunities.

[2] E. Kyrkjebø, P. Liljebäck, and A. A. Transeth, “A robotic concept for remote
inspection and maintenance on oil platforms,” in ASME 2009 28th Inter-
national Conference on Ocean, Offshore and Arctic Engineering, American
Society of Mechanical Engineers, 2009, pp. 667–674.

[3] M. Bjerkeng, A. A. Transeth, K. Y. Pettersen, E. Kyrkjebø, and S. A. Fjerdin-
gen, “Active camera control with obstacle avoidance for remote operations
with industrial manipulators: Implementation and experimental results,”
in 2011 IEEE/RSJ International Conference on Intelligent Robots and Systems,
Sep. 2011, pp. 247–254.

[4] I. Eriksen, “Setup and interfacing a kuka robotics lab with ros,” graduate
project, Department of Engineering Cybernetics, Norwegian University of
Science and Technology, 2016.

[5] A. Montaqim. (2015). Top 14 industrial robot companies and how many
robots they have around the world, roboticsandautomationnews.com, [On-
line]. Available: https://roboticsandautomationnews.com/2015/07/
21/top-8-industrial-robot-companies-and-how-many-robots-

they-have-around-the-world/812/ (visited on 12/07/2017).

[6] History | kuka ag, KUKA Aktiengesellschaft, [Online]. Available: https:
//www.kuka.com/en-us/about-kuka/history (visited on 10/19/2017).

69

https://roboticsandautomationnews.com/2015/07/21/top-8-industrial-robot-companies-and-how-many-robots-they-have-around-the-world/812/
https://roboticsandautomationnews.com/2015/07/21/top-8-industrial-robot-companies-and-how-many-robots-they-have-around-the-world/812/
https://roboticsandautomationnews.com/2015/07/21/top-8-industrial-robot-companies-and-how-many-robots-they-have-around-the-world/812/
https://www.kuka.com/en-us/about-kuka/history
https://www.kuka.com/en-us/about-kuka/history

70 REFERENCES

[7] Kr c2 edition 05, operating instructions, version V3.3 11.07.2007 KRC-AD-
KRC2ed05-BA en, KUKA Robot Group, Jul. 2007.

[8] Spez kr 6, kr 16, kr 16 l6 de/en/fr, version 06.2003.09, KUKA Roboter GmBH.

[9] Technical data kr 16, KUKA Roboter GmbH, Mar. 2004.

[10] Kr c..., operator control, kuka system software (kss), version 03, KUKA Robot
GmbH, Jul. 2003.

[11] J. Heilala, “Open real-time robotics control-pc hardware, windows/vxworks
operating systems and communication,” 2001.

[12] “Real-time windows - 30,000 robots can’t be wrong!” In Industrial Network-
ing and Open Control, vol. 9, Magpye Publishing Ltd., 2003.

[13] Vxwin sales brochure, KUKA Controls GmbH, 2005.

[14] Kuka system software 5.2, 5.3, 5.4, version 0.3, KUKA Robot Group, Feb.
2007.

[15] KR C2 / KR C3 Expert Programming, version ProgExperteBHR5.2 09.03.00
en, KUKA Roboter GmbH, Sep. 2003.

[16] Kr c submit interpreter operation and programming, version 01, KUKARoboter
GmbH, May 2005.

[17] Kr c2 edition2005 specification, version Spez KR C2 ed05 V5 en, KUKA
Roboter GmBH, Oct. 2010.

[18] Kr c2 / kr c3 configuration kuka system software (kss) release 5.2, version 02,
KUKA Roboter GmbH, Aug. 2005.

[19] External Axes For KUKA System Software 5.5, version KSS 5.5 Zusatzachsen
V1 en, KUKA Roboter GmbH, Dec. 2008.

[20] KUKA.RobotSensorInterface 2.3, version KST RSI 2.3 V1 en, KUKA Roboter
GmbH, May 2009.

[21] KUKA.Ethernet RSI XML 1.1, version KST Ethernet RSI XML 1.1 V1 en,
KUKA Robot Group, Dec. 2007.

[22] Kr c... error messages / troubleshooting, version 01, KUKA Roboter GmbH,
Oct. 2004.

REFERENCES 71

[23] D. Caro, Automation Network Selection: A Reference Manual. International
Society of Automation, 2009.

[24] The new hire: How a new generation of robots is transformingmanufacturing,
PricewaterhouseCoopers LLP, 2014.

[25] T. Foote, Ros community metrics report, http://download.ros.org/
downloads/metrics/metrics-report-2016-07.pdf, Jul. 2016.

[26] M. Quigley, K. Conley, B. Gerkey, J. Faust, T. Foote, J. Leibs, R. Wheeler, and
A. Y. Ng, “Ros: An open-source robot operating system,” in ICRA workshop
on open source software, vol. 3, 2009, p. 5.

[27] Topics - ROS Wiki, [Online]. Available: http://wiki.ros.org/Topics
(visited on 12/15/2016).

[28] actionlib - ROS Wiki, [Online]. Available: http : / / wiki . ros . org /
actionlib (visited on 12/15/2016).

[29] ros_control - ROS Wiki, [Online]. Available: http://wiki.ros.org/ros_
control (visited on 12/15/2016).

[30] I. A. Sucan and S. Chitta. Moveit! [Online]. Available: http://moveit.ros.
org (visited on 12/15/2016).

[31] Rqt - ros wiki, [Online]. Available: http://wiki.ros.org/rqt (visited on
10/23/2017).

[32] Rviz/displaytypes - ros wiki, [Online]. Available: http://wiki.ros.org/
rviz/DisplayTypes (visited on 10/23/2017).

[33] Diagnostics - ros wiki, [Online]. Available: http : / / wiki . ros . org /
diagnostics (visited on 10/23/2017).

[34] Why ros 2.0? [Online]. Available: http://design.ros2.org/articles/
why_ros2.html (visited on 11/06/2017).

[35] Changes between ros 1 and ros 2, [Online]. Available: http://design.
ros2.org/articles/changes.html (visited on 11/06/2017).

[36] Dds and ros middleware implementations, [Online]. Available: https://
github.com/ros2/ros2/wiki/DDS-and-ROS-middleware-implementations

(visited on 11/06/2017).

http://download.ros.org/downloads/metrics/metrics-report-2016-07.pdf
http://download.ros.org/downloads/metrics/metrics-report-2016-07.pdf
http://wiki.ros.org/Topics
http://wiki.ros.org/actionlib
http://wiki.ros.org/actionlib
http://wiki.ros.org/ros_control
http://wiki.ros.org/ros_control
http://moveit.ros.org
http://moveit.ros.org
http://wiki.ros.org/rqt
http://wiki.ros.org/rviz/DisplayTypes
http://wiki.ros.org/rviz/DisplayTypes
http://wiki.ros.org/diagnostics
http://wiki.ros.org/diagnostics
http://design.ros2.org/articles/why_ros2.html
http://design.ros2.org/articles/why_ros2.html
http://design.ros2.org/articles/changes.html
http://design.ros2.org/articles/changes.html
https://github.com/ros2/ros2/wiki/DDS-and-ROS-middleware-implementations
https://github.com/ros2/ros2/wiki/DDS-and-ROS-middleware-implementations

72 REFERENCES

[37] Security - fast rtps 1.5.0 documentation, [Online]. Available: http://docs.
eprosima.com/en/latest/security.html (visited on 11/06/2017).

[38] Releases · ros2/ros2 wiki, [Online]. Available: https://github.com/ros2/
ros2/wiki/Releases (visited on 12/12/2017).

[39] Description - ROS-Industrial, [Online]. Available: http://rosindustrial.
org/about/description/ (visited on 12/15/2016).

[40] Robotic blending milestone 4 technology demonstration at wolf robotics
— ros-industrial, [Online]. Available: http://rosindustrial.org/news/
2017/9/7/robotic-blending-milestone-4-technology-demonstration-

at-wolf-robotics (visited on 10/24/2017).

[41] Descartes - roswiki, [Online]. Available: http://wiki.ros.org/descartes
(visited on 12/02/2017).

[42] Integration of descartes for cartesian path planning · issue #467 · ros-
planning/moveit, [Online]. Available: https://github.com/ros-planning/
moveit/issues/467 (visited on 12/02/2017).

[43] Industrial/supported_hardware - ros wiki, [Online]. Available: http://
wiki.ros.org/Industrial/supported_hardware (visited on 12/02/2017).

[44] N. Koenig and A. Howard, “Design and use paradigms for gazebo, an open-
source multi-robot simulator,” in Intelligent Robots and Systems, 2004.(IROS
2004). Proceedings. 2004 IEEE/RSJ International Conference on, IEEE, vol. 3,
pp. 2149–2154.

[45] Gazebo, [Online]. Available: http://gazebosim.org (visited on 11/07/2017).

[46] History | the orocos project, [Online]. Available: http://orocos.org/
content/history (visited on 10/25/2017).

[47] Releases · orocos/orocos_kinematics_dynamics, [Online]. Available: https:
//github.com/orocos/orocos_kinematics_dynamics/releases (vis-
ited on 10/25/2017).

[48] Releases · orocos-toolchain/rtt, [Online]. Available: https://github.com/
orocos-toolchain/rtt/releases (visited on 10/25/2017).

http://docs.eprosima.com/en/latest/security.html
http://docs.eprosima.com/en/latest/security.html
https://github.com/ros2/ros2/wiki/Releases
https://github.com/ros2/ros2/wiki/Releases
http://rosindustrial.org/about/description/
http://rosindustrial.org/about/description/
http://rosindustrial.org/news/2017/9/7/robotic-blending-milestone-4-technology-demonstration-at-wolf-robotics
http://rosindustrial.org/news/2017/9/7/robotic-blending-milestone-4-technology-demonstration-at-wolf-robotics
http://rosindustrial.org/news/2017/9/7/robotic-blending-milestone-4-technology-demonstration-at-wolf-robotics
http://wiki.ros.org/descartes
https://github.com/ros-planning/moveit/issues/467
https://github.com/ros-planning/moveit/issues/467
http://wiki.ros.org/Industrial/supported_hardware
http://wiki.ros.org/Industrial/supported_hardware
http://gazebosim.org
http://orocos.org/content/history
http://orocos.org/content/history
https://github.com/orocos/orocos_kinematics_dynamics/releases
https://github.com/orocos/orocos_kinematics_dynamics/releases
https://github.com/orocos-toolchain/rtt/releases
https://github.com/orocos-toolchain/rtt/releases

REFERENCES 73

[49] Bfl moved to github | the orocos project, [Online]. Available: http://
orocos.org/orocos/bfl-moved-github (visited on 10/25/2017).

[50] K. Gadeyne. (2001). Bfl: Bayesian Filtering Library, [Online]. Available:
http://www.orocos.org/bfl (visited on 10/25/2017).

[51] Add documentation for eigen matrix library · issue #6 · toeklk/orocos-
bayesian-filtering, [Online]. Available: https://github.com/toeklk/
orocos-bayesian-filtering/issues/6 (visited on 10/25/2017).

[52] User manual | the orocos project, [Online]. Available: http://orocos.
org/kdl/user-manual (visited on 10/25/2017).

[53] Orocos_kdl - ros wiki, [Online]. Available: http : / / wiki . ros . org /
orocos_kdl (visited on 10/25/2017).

[54] The orocos real-time toolkit | the orocos project, [Online]. Available: http:
//orocos.org/rtt (visited on 10/25/2017).

[55] The orocos component builderś manual, [Online]. Available: http://www.
orocos.org/stable/documentation/rtt/v2.x/doc-xml/orocos-

components-manual.html (visited on 10/25/2017).

[56] Code generator for components and type handling in rock - the robot
construction kit - and the orocos toolchain, [Online]. Available: https:
//github.com/orocos-toolchain/orogen (visited on 10/25/2017).

[57] G. Metta, P. Fitzpatrick, and L. Natale, “Yarp: Yet another robot platform,”
International Journal of Advanced Robotic Systems, vol. 3, no. 1, p. 8, 2006.

[58] P. Fitzpatrick, E. Ceseracciu, D. E. Domenichelli, A. Paikan, G. Metta, and
L. Natale, “A middle way for robotics middleware,” Journal of Software
Engineering for Robotics, vol. 5, no. 2, pp. 42–49, 2014.

[59] R. Diankov and J. Kuffner, “Openrave: A planning architecture for au-
tonomous robotics,” Robotics Institute, Pittsburgh, PA, Tech. Rep. CMU-RI-
TR-08-34, vol. 79, 2008.

http://orocos.org/orocos/bfl-moved-github
http://orocos.org/orocos/bfl-moved-github
http://www.orocos.org/bfl
https://github.com/toeklk/orocos-bayesian-filtering/issues/6
https://github.com/toeklk/orocos-bayesian-filtering/issues/6
http://orocos.org/kdl/user-manual
http://orocos.org/kdl/user-manual
http://wiki.ros.org/orocos_kdl
http://wiki.ros.org/orocos_kdl
http://orocos.org/rtt
http://orocos.org/rtt
http://www.orocos.org/stable/documentation/rtt/v2.x/doc-xml/orocos-components-manual.html
http://www.orocos.org/stable/documentation/rtt/v2.x/doc-xml/orocos-components-manual.html
http://www.orocos.org/stable/documentation/rtt/v2.x/doc-xml/orocos-components-manual.html
https://github.com/orocos-toolchain/orogen
https://github.com/orocos-toolchain/orogen

74 REFERENCES

[60] R. Diankov, “Automated construction of robotic manipulation programs,”
PhD thesis, Carnegie Mellon University, Robotics Institute, Aug. 2010. [On-
line]. Available: http://www.programmingvision.com/rosen_diankov_
thesis.pdf.

[61] Simulator for industrial robots and offline programming - robodk, [Online].
Available: https://robodk.com/ (visited on 10/24/2017).

[62] Flexgui 4.0 - welcome, [Online]. Available: https : / / www . ppm . no /
flexgui4-Home (visited on 10/24/2017).

[63] F. Sanfilippo, L. I. Hatledal, H. Zhang, M. Fago, and K. Pettersen, “Jopen-
showvar: An open-source cross-platform communication interface to kuka
robots,” in Proc. of the IEEE International Conference on Information and
Automation (ICIA), Hailar, China, 2014, pp. 1154–1159.

[64] E. B. Njåstad, “Robotsveising med korreksjon fra 3d-kamera,” Master’s
thesis, Department of Production and Quality Engineering, Norwegian
University of Science and Technology, 2015.

[65] S. H. Bredvold, “Robotic welding of tubes with correction from 3d vision
and force control,” Master’s thesis, Department of Production and Quality
Engineering, Norwegian University of Science and Technology, 2016.

[66] Kuka robots - robodk documentation, [Online]. Available: https://robodk.
com/doc/en/Robots-KUKA.html (visited on 12/07/2017).

[67] E. Idsø and Ø. M. Jakobsen, “Objekt-og informasjonssikkerhet, metode for
risiko og sårbarhetsanalyse,” Institutt for produksjonsteknikk og kvalitet-
steknikk. Norges teknisk-naturvitenskapelige universitet, 2000.

[68] H. Bruyninckx, “Open robot control software: The orocos project,” in
Robotics and Automation, 2001. Proceedings 2001 ICRA. IEEE International
Conference on, IEEE, vol. 3, 2001, pp. 2523–2528.

[69] The need for robotics standards | the construct, [Online]. Available: http:
//www.theconstructsim.com/need-robotics-standards/ (visited on
11/06/2017).

[70] T. Foote, Ros community metrics report, http://download.ros.org/
downloads/metrics/metrics-report-2017-07.pdf, Jul. 2017.

http://www.programmingvision.com/rosen_diankov_thesis.pdf
http://www.programmingvision.com/rosen_diankov_thesis.pdf
https://robodk.com/
https://www.ppm.no/flexgui4-Home
https://www.ppm.no/flexgui4-Home
https://robodk.com/doc/en/Robots-KUKA.html
https://robodk.com/doc/en/Robots-KUKA.html
http://www.theconstructsim.com/need-robotics-standards/
http://www.theconstructsim.com/need-robotics-standards/
http://download.ros.org/downloads/metrics/metrics-report-2017-07.pdf
http://download.ros.org/downloads/metrics/metrics-report-2017-07.pdf

REFERENCES 75

[71] Distributions - ros wiki, [Online]. Available: http://wiki.ros.org/
Distributions (visited on 11/10/2017).

[72] Automaticsecurityupdates - community help wiki, [Online]. Available:
https://help.ubuntu.com/community/AutomaticSecurityUpdates

(visited on 11/06/2017).

[73] Ubuntu 16.04 firewall, [Online]. Available: https://help.ubuntu.com/
lts/serverguide/firewall.html (visited on 11/06/2017).

[74] Joint_trajectory_controller - ros wiki, [Online]. Available: http://wiki.
ros.org/joint_trajectory_controller (visited on 12/02/2017).

[75] Concepts | moveit! [Online]. Available: http : / / moveit . ros . org /
documentation/concepts/ (visited on 12/02/2017).

[76] Force-torque sensor type FTC / FTCL assembly and operating manual, ver-
sion 02/FTC/en/2009-12-28/SW, Schunk, 2008.

[77] Generate ikfast plugin tutorial - moveit_tutorials indigo documentation,
[Online]. Available: http://docs.ros.org/kinetic/api/moveit_
tutorials/html/doc/ikfast_tutorial.html (visited on 12/13/2017).

http://wiki.ros.org/Distributions
http://wiki.ros.org/Distributions
https://help.ubuntu.com/community/AutomaticSecurityUpdates
https://help.ubuntu.com/lts/serverguide/firewall.html
https://help.ubuntu.com/lts/serverguide/firewall.html
http://wiki.ros.org/joint_trajectory_controller
http://wiki.ros.org/joint_trajectory_controller
http://moveit.ros.org/documentation/concepts/
http://moveit.ros.org/documentation/concepts/
http://docs.ros.org/kinetic/api/moveit_tutorials/html/doc/ikfast_tutorial.html
http://docs.ros.org/kinetic/api/moveit_tutorials/html/doc/ikfast_tutorial.html

	Abstract
	Sammendrag
	Preface
	Introduction
	KUKA robot system
	KUKA Robot Controller
	Control computer
	KUKA Control Panel
	Power supply
	Servo control
	Braking and deceleration
	Backup batteries
	Safety

	KR 16
	KUKA System Software
	Interpolation Cycle
	Submit Interpreter
	Programming
	Advance run
	Coordinate systems
	Torque mode
	Collision monitoring
	Workspace monitoring

	External axes
	Robot Sensor Interface
	Fieldbus

	Robot software
	Robot Operating System
	ROS 2
	ROS Industrial
	Godel - Robotic blending
	Descartes
	Robot support packages

	Gazebo
	Orocos
	Bayesian Filtering Library
	Kinematics and Dynamics Library
	Real-Time Toolkit

	YARP
	OpenRAVE
	RoboDK
	FlexGUI
	KUKAVARPROXY

	Robot cell setup
	Robot cell hardware
	Selection of middleware
	Safety
	Electric shock and Electrocution
	Crunch and pinch
	Collision
	Ejection of tool during operation

	Security
	Physical access
	Remote access

	Control of mathematically coupled external axes with RSI
	Path planning and robot motion

	Development and experimental work
	Access time for KUKAVARPROXY
	Results
	Discussion

	Movement latency using KUKAVARPROXY
	Results
	Discussion

	ROS with RSI and mathematically coupled external axis
	BoostCrossCom ROS Control interface
	Joint Position Command
	Follow Joint Trajectory

	Force-Torque sensor
	Tool changer
	Updates to ROS support packages
	Centralized code and documentation repository
	Example packages

	Conclusion and future work
	References

