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Abstract. Detection of highlights is a prominent issue in computer vi-
sion, graphics and image processing. Applications which require object
properties measurement or rendering are affected by specular reflection
since the models assume matte diffusing surfaces most of the time. Hence,
detection, and sometimes removal, of specular reflection (highlights) in
an image may be critical. Several methods are proposed for addressing
this issue. In this paper, we present a review and analysis of these tech-
niques in color and spectral images.

Keywords: image analysis, highlights detection, specular reflection, dif-
fuse reflection, spectral imaging.

1 Introduction

The process of extracting information from an image, and its transformation
into a useful representation, enables the description of intrinsic characteristics of
objects in the scene. Barrow et al. [1] introduced the term ”intrinsic images” and
suggested that the function of the human visual system at its earlier stage is to
determine the orientation of the illumination and the surface being observed. The
authors describe such details of scenes in term of shading and reflectance images,
which are collectively denoted as intrinsic images. There are other intrinsic prop-
erties as well, including shading, reflectance, diffuse reflection components and
specular reflection components. Diffuse reflection is caused by scattering of light
in all directions after hitting the surface, while specular reflection occurs when
incident light is reflected in a single direction. Lee et al. [2] presented a neutral
interface reflection model by examining the light reflection problem through the
use of bidirectional spectral-reflectance distribution function (BSRDF) for spec-
ifying both incident and reflected beam geometry. They proposed that specular
reflection is identical to scene illuminant in color while diffuse reflection contains
the intrinsic properties of the surface. There can be significant variations in ap-
pearance of a surface in presence of specular reflection, and they appear as an
additional surface property which is not intrinsic [3][4].

We are interested in the detection of specular reflection in images. Several
computer vision applications such as 3D reconstruction, object detection, recog-
nition, target tracking, and dichromatic editing use the intrinsic information and
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are mostly based on the assumption of the surfaces having perfect diffusion. In
most of such algorithms, specular reflections and highlights are termed as outliers
[5]. However, the presence of specular reflection is unavoidable in most of the real
world scenes since the materials and surfaces not only possess diffuse reflection
but also show specular reflections, which is explained in the Dichromatic Illumi-
nation Model (DIM) [6]. Hence, the assumption of absence of specular reflection
for such algorithms introduce constraints and reduce their robustness. There is
a loss of details in case of specular reflection, for example texture and color of
surface being observed. Highlight removal is often considered as an inpainting
problem [7–10]. This methodology is implemented after identification of high-
lights. In this paper, we discuss the methods for highlight detection. Discussion
about removal of specular highlights is out of scope of this paper.

As an example, Figure 1 shows an image of a printed circuit board. The
information about connectivity of the circuit is totally washed out in the area
which is under direct specular reflection. In addition, there are highlight spots
on the metallic surfaces of diodes and resistors. Such spots follow the DIM and
create ambiguity concerning the intrinsic characteristics of the object surface.
It may thus be desirable to remove the effect of highlights from the image for
recovery of information.

Highlight detection algorithms can be classified into various categories on the
basis of data being used for input. For color images, we propose two major cat-
egories, namely the single-image and multi-images based techniques, presented
in Section 2 and 3, respectively. Furthermore, a relatively recent development
in imaging technology is spectral imaging. The problem of specular highlights
occurs also in spectral images, therefore we have included it in this review as
another category (Section 4). However, this review focuses only on close range

Fig. 1. Image of printed circuit board with transistors, resistors and diodes. Specular
highlights can be observed in the highly saturated areas, where it washes out the
information. In addition, specular spots are also observed on the metallic parts and
resistors.
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spectral imaging and does not address remote sensing images. In Section 5, we
discuss and compare key features of the presented algorithms, before concluding.

2 Single color image based techniques

We have defined two major categories of algorithms to detect and remove spec-
ularities in a single color image. Those categories use either the color space
analysis, or spatial information analysis.

The techniques based on color space analysis treat an image pixel by pixel.
Klinker et al. [11] classified color pixels in the categories of diffuse, highlight
and saturated pixels. A diffuse pixel is defined as a pixel containing only the
body reflectance (although the color of body is influenced by scene illuminant),
a highlight pixel contain both body and specular reflections while a saturated
pixel is created when a highlight pixel exceeds the maximum measurable light
intensity of camera sensor. Klinker et al. [11] analyzed the color histogram and
observed that the specular and diffuse components from a uniform surface form a
skewed T shape. To separate these components, convex polygon fitting technique
is used in their work. Linking color space with DIM [6] is also proposed [12][13].
This color information is used to separate reflection components by fitting it into
a dichromatic plane.

Transformation into other color spaces for detection of specularities is also
a technique where the characteristics of an adequate color space are exploited.
Schlüns and Teschner [14][15] transformed the image from RGB to Y’U’V’ color
space. Bajcsy et al. [16] proposed S-space for analysis of variation in color of
objects. There are three orthogonal basis functions in S space named S0, S1 and
S2. The S0 basis function corresponds to specular reflection in S space. A data-
driven color space called SUV color space was introduced by Mallick et al. [17].
Yang et al. [18] proposed Ch-CV space. This color space is spanned by maximum
chromaticity (Ch) and the coefficient of variation (CV) in RGB. Yang et al. [19]
proposed separation of specular and diffuse components in HSI color space as
further improvement in their already proposed Ch-CV space. Recently, Akashia
and Okatani [20] proposed an optimization technique for sparse non-negative
matrix factorization for the identification of specular reflections in an image.

In spatial information based techniques, detection of specularities is per-
formed through the use of local information in an image. Tan et al. [21] in-
troduced Maximum Chromaticity-Intensity Space to differentiate between the
maximum intensity and maximum chromaticity in an image. A pseudo-diffuse
component image is created, which is later utilized for separation of specular
reflection from the image. The ratio of intensities and colors amongst neigh-
bouring pixels is preserved in the pseudo-diffuse image and is called the specular
free image. The specular free image is obtained by Yoon et al. [22] through sub-
tracting the minimum value for each channel from the input image. Shen and
Cai [23] introduced a modified specular free image by adding an offset to the
subtraction method provided in [22]. This offset can either be constant for the
whole image [24] or can be varying for each pixel [23]. In [4], intensity logarith-
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mic differentiation is used on both the specular-free and the input image for
determination of diffuse pixels. Using this method, performance of the technique
of creation of specularity free image is improved for highly textured surfaces.
However, the position of highlights should be known for applying this method.
Liu et al. [25] proposed the preservation of surface color saturation by initially
producing a specular free image and then increasing the achromatic component
of diffuse chromaticity. It is important to note that in all the specularity free im-
age creation techniques, the input image is normalized for illuminant. Hence, the
illuminant should either be known or should be estimated first before applying
those techniques.

Yang et al. [26] [27] treat the specular pixels as noise and use a bilateral
filter for smoothing the maximum fraction of color components. In this way, the
noise caused by specular pixels is eliminated. Kim et al. [28] observed that a
diffuse pixel has low intensity in, at least, one channel. They called it the ”dark
channel” and proposed that the dark channel of an image contains no specular
reflection. Their technique uses a maximum a-posteriori formulation that helps
in the recovery of specular reflection and chromaticity. An et al. [29] proposed the
pure diffuse pixel distribution model. This model is built on the assumption that
there is at-least one purely diffuse pixel for each material in the scene. Shen and
Zheng [30] assumed that some area of a surface contain only the diffuse reflection.
They define the range value for an image as maximum minus minimum intensity
for a surface and observed that the intensity ratio between maximum value of a
pixel and range value is independent of the geometry of the surface. With the
assumption for certain pixels to be diffuse, specular components from remaining
pixels are computed through their proposed model.

Highlight detection techniques based on a single color image are practical
as they do not require any additional hardware and data. However a problem
associated with such algorithms is that they rely on image statistics and are
based on strong prior assumptions. Therefore, such methods are not robust for
change in imaging environment but works reasonably well when the required
conditions are fulfilled.

3 Multiple images based techniques

The use of multiple images for separation of reflectance components from the
scene is proposed in a number of studies. Since highlights are not intrinsic prop-
erties of an image, they can occur at any point and are dependant on the viewing
angle. The direction of illumination also has its impact on the location of high-
light spots. A surface area of an image which is affected by highlight in one image
can appear as a diffuse surface if the viewing angle, or the illumination direction
is changed. Based on this phenomenon, multiple images based highlight removal
techniques are proposed in the literature, which require a number of images,
captured using different imaging conditions.

Lee and Bajcsy [31] proposed the use of Lambertian consistency, which states
that the Lambertian reflection does not vary in brightness and spectral contents
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with change in the viewing angle while the specular reflection changes the be-
haviour. They defined the spectral distance as euclidean distance between two
colour points in a three-dimensional space. Minimum spectral distance is calcu-
lated to detect the inconsistency in color among two images of same scene but
with different viewing angle. Sato and Ikeuchi [32] introduced temporal-color
space analysis by using a moving light source. Lin and Shum [33] used different
illuminations for the same scene, and then proposed linear basis functions for
separating diffuse and specular components. Lin et al. [34] used stereo images
for the detection of specularities. Weiss [35] acquired an image sequence with
varying specularities and used maximum likelihood estimation by assuming that
the change in illumination gives rise to sparse filter outputs.

Feris et al. [36] used flash images taken with same point of view but differ-
ent positions of flash for recovering the diffuse component. Agrawal et al. [37]
proposed a method for image enhancement by using two images of a scene. One
is taken with flash and one without flash. Reflection from the flash image is
removed by using a gradient projection scheme.

Chen et al. [38] reconstructed the specular field by using histograms of the
same image but with different intensities. Yang et al. [39] proposed statisti-
cal methods for removal of specularities from stereo images. They assume non-
overlapping highlight regions in their method. Wang et al. [40] used three cam-
eras for taking images of transparent plastic package containing tablets. They
normalized the acquired images and then generated an image consisting of aver-
age intensities of corresponding pixels. In this way, pills are retained with higher
intensity while varying regions of specular reflection are removed. Generation of
specularity map from video sequence is proposed by Prinet et al. [41]. Recently,
Wang et al. [42] proposed the use of light field imaging technology for captur-
ing multiple views of a scene and then used that information for detection of
specularities in the scene.

Nayar et al. [43] noticed that the specular reflection is highly polarized and
proposed the use of polarization filter to separate the diffuse and specular re-
flections. They used a polarization filter by placing it in front of a camera and
observed that by rotating the polarization filter, the brightness of diffuse mate-
rials is not changed, while the specular reflection is changed, since it is highly
polarized, and varies following a cosine function. Polarization based methods are
also proposed by Wolff [44, 45], Kim et al. [46], Atkinson and Hancock [47, 48],
Müller [49], Umeyama and Godin [50], Lamond et al. [51] and Zhang et al. [52].

Although the above mentioned specularity detection techniques are able to
show good performance, the major limitation associated with them is the avail-
ability of multiple images of the same scene with varying illumination direction
or viewing angle. This limitation causes those techniques to become less practical
compared to the approaches which are based on a single image.
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4 Spectral image based techniques

Hyperspectral and multispectral imaging has been used extensively for remote
sensing. Recently, with advancement in sensor technology, spectral imaging is
widely available for imaging of objects at shorter distance. Such imaging comes
with the problem of highlights, the same as in the case of color images. However,
since spectral images contain more data compared to a color image, therefore
highlight detection techniques are not exactly the same.

Bochko and Parkkinen [53] proposed probabilistic principal component anal-
ysis for detection of spectral and diffuse parts in images. Fu et al. [54] proposed
orthogonal subspace projection (OSP) and dichromatic model for specularity-
free representation of hyperspectral images. OSP results in projecting the radi-
ance and illumination spectrum being orthogonal to each other in the subspace.
In this way, the illuminant spectra is removed from mixed spectra and a spec-
tral image without highlights is obtained. It is important to note that prior
information about illuminant is required in this method. Koirala et al. [55] pro-
posed spectral unmixing of end-members for separation of specular and diffuse
components in spectral images. Spectral end-members consist of pure spectra
corresponding to objects in a scene. Spectral unmixing method is widely used in
hyperspectral remote sensing where the end-members correspond of pure spec-
tra of land cover classes. In the method by Koirala et al. [55], Automated target
generation program (ATGP) is employed for selection of end-members. When
the scene illuminant is known, then the initial target detected by ATGP is the
illuminant spectra. In case of unknown illuminant, a pixel with maximum value
along the whole spectra is considered as the initial target. Using constrained
energy minimization, the diffuse part of the image is identified.

5 Analysis of various specularity detection methods

In Table 1, we compare the characteristics of various specularity detection tech-
niques. In these tables, different techniques are divided in general categories. The
concept behind the technique is briefly defined along with the general assump-
tions being made. Use of DIM is common in the specularity detection techniques
but there are some algorithms that do not use this model, so it is also given in
the table. White balancing (WB) and image segmentation (Seg.) is also a con-
straint in such algorithms. We make analysis of various categories of highlight
detection algorithms on the basis of the above expressed factors. Finally, general
remarks about strength of those techniques is provided.



T
a
b
le

1
:

C
o
m

p
a
ri

so
n

o
f

ch
a
ra

ct
er

is
ti

cs
o
f

h
ig

h
li
g
h
t

re
m

ov
a
l

te
ch

n
iq

u
es

C
a
te

g
o
ry

Im
a
g
e
s

C
o
n
c
e
p
t

A
ss
u
m
p
ti
o
n
s

D
IM

u
se

W
B

R
e
q
.
S
e
g
.

R
e
q
.

S
tr
e
n
g
th

C
o
lo

r
H

is
to

g
ra

m
A

n
a
ly

si
s

[1
1
][
1
2
][
1
3
]

S
in

g
le

S
k
ew

ed
T

-s
h
a
p

e
fo

rm
a
ti

o
n

b
et

w
ee

n
sp

ec
u
la

r
a
n
d

d
iff

u
se

co
m

p
o
n
en

ts

L
a
m

b
er

ti
a
n

b
o
d
y

re
fl
ec

ti
o
n
,

In
te

rf
a
ce

re
fl
ec

ti
o
n

is
fu

n
ct

io
n

w
it

h
a

sh
a
rp

p
ea

k
a
ro

u
n
d

th
e

a
n
g
le

o
f

p
er

fe
ct

m
ir

ro
r

re
fl
ec

ti
o
n
.

Y
es

Y
es

Y
es

W
o
rk

s
w

el
l

fo
r

d
ie

le
ct

ri
c

m
a
te

ri
a
ls

b
u
t

n
o
t

fo
r

m
et

a
ls

D
ic

h
ro

m
a
ti

c
Il

lu
m

in
a
ti

o
n

b
a
se

d
M

o
d
el

[6
]

S
in

g
le

D
es

cr
ip

ti
o
n

o
f

re
fl
ec

te
d

li
g
h
t

fr
o
m

a
d
ie

le
ct

ri
c

o
b

je
ct

a
s

li
n
ea

r
co

m
b
in

a
ti

o
n

o
f

o
b

je
ct

co
lo

r
a
n
d

h
ig

h
li
g
h
t

S
in

g
le

Il
lu

m
in

a
ti

o
n
,

ex
is

te
n
ce

o
f

m
a
tt

e
cl

u
st

er
Y

es
Y

es
Y

es
W

o
rk

s
w

el
l

fo
r

d
ie

le
ct

ri
c

m
a
te

ri
a
ls

b
u
t

n
o
t

fo
r

m
et

a
ls

C
o
lo

r
S
p
a
ce

T
ra

n
sf

o
rm

a
ti

o
n

[1
4
][
1
5
][
1
6
]

[1
7
][
1
8
][
1
9
]

S
in

g
le

S
eg

m
en

ta
ti

o
n

o
f

sp
ec

u
la

r
re

g
io

n
s

fo
r

o
b
ta

in
in

g
th

e
m

a
x
.

d
iff

u
se

ch
ro

m
a
ti

ci
ty

in
ea

ch
se

g
m

en
te

d
re

g
io

n

S
in

g
le

Il
lu

m
in

a
ti

o
n
,

ea
ch

se
g
m

en
te

d
cl

u
st

er
h
a
s

u
n
if

o
rm

d
iff

u
se

ch
ro

m
a
ti

ci
ty

Y
es

Y
es

Y
es

It
er

a
ti

v
e

p
ro

ce
ss

ca
n

b
e

ti
m

e
co

n
su

m
in

g
,C

o
lo

rs
a
re

d
is

to
rt

ed
in

so
m

e
a
lg

o
ri

th
m

s.
O

v
er

a
ll

g
o
o
d

re
su

lt
o
n

d
ie

le
ct

ri
c

m
a
te

ri
a
ls

w
it

h
si

n
g
le

il
lu

m
in

a
ti

o
n
.

S
a
tu

ra
ti

o
n

p
re

se
rv

a
ti

o
n

m
o
d
el

[2
5
]

S
in

g
le

C
re

a
ti

o
n

o
f

ov
er

-s
a
tu

ra
te

d
d
iff

u
se

re
fl
ec

ta
n
ce

a
n
d

th
en

p
u
tt

in
g

th
e

a
ch

ro
m

a
ti

c
re

g
io

n
s

b
a
ck

to
th

e
d
iff

u
se

re
fl
ec

ti
o
n
.

P
u
re

w
h
it

e
il
lu

m
in

a
n
t

Y
es

Y
es

N
o

C
o
lo

r
sa

tu
ra

ti
o
n

o
f

su
rf

a
ce

is
p
re

se
rv

ed
in

th
is

m
et

h
o
d
.

S
p
a
rs

e
m

a
tr

ix
fa

ct
o
ri

za
ti

o
n

[2
0
]

S
in

g
le

S
p
a
rs

e
n
o
n
-n

eg
a
ti

v
e

m
a
tr

ix
fa

ct
o
ri

za
ti

o
n

fo
r

se
p
a
ra

ti
o
n

o
f

sp
ec

u
la

r
co

m
p

o
n
en

ts
.

S
in

g
le

il
lu

m
in

a
n
t,

p
re

se
n
ce

o
f

d
iff

u
se

co
m

p
o
n
en

t
fo

r
ev

er
y

su
rf

a
ce

Y
es

Y
es

N
o

N
o

a
ss

u
m

p
ti

o
n

a
b

o
u
t

sp
a
ti

a
l

p
ri

o
rs

.

P
se

u
d
o

d
iff

u
se

im
a
g
e

[3
][
4
][
2
1
]

S
in

g
le

D
a
rk

ch
a
n
n
el

p
ri

o
r.

P
u
re

w
h
it

e
il
lu

m
in

a
n
t

Y
es

Y
es

Y
es

C
o
lo

r
ra

ti
o

a
m

o
n
g

n
ei

g
h
b

o
u
ri

n
g

p
ix

el
s

is
p
re

se
rv

ed
.

In
p
a
in

ti
n
g

te
ch

n
iq

u
e

[7
–
1
0
]

S
in

g
le

R
em

ov
a
l

o
f

h
ig

h
li
g
h
t

p
a
rt

th
ro

u
g
h

u
se

o
f

n
ei

g
h
b

o
u
ri

n
g

p
ix

el
s

in
fo

.
a
n
d

in
p
a
in

ti
n
g

S
in

g
le

il
lu

m
in

a
n
t,

p
re

se
n
ce

o
f

d
iff

u
se

co
m

p
o
n
en

t
fo

r
ev

er
y

su
rf

a
ce

N
o

Y
es

Y
es

P
re

se
rv

a
ti

o
n

o
f

co
lo

r
fo

r
d
ie

le
ct

ri
c

su
rf

a
ce

s.



T
a
b
le

1
–
C
o
n
ti
n
u
ed

fr
o
m

p
re
vi
o
u
s
pa
ge

C
a
te

g
o
ry

Im
a
g
e
s

C
o
n
c
e
p
t

A
ss
u
m
p
ti
o
n
s

D
IM

u
se

W
B

R
e
q
.
S
e
g
.

R
e
q
.

S
tr
e
n
g
th

M
u
lt

ip
le

im
a
g
es

a
cq

u
is

it
io

n
[3

1
–
4
2
]

M
u
lt

ip
le

H
ig

h
li
g
h
ts

b
eh

av
e

d
iff

er
en

t
w

h
en

v
ie

w
in

g
a
n
g
le

o
r

il
lu

m
in

a
ti

o
n

is
ch

a
n
g
ed

P
o
in

ts
w

h
ic

h
sh

ow
sp

ec
u
la

r
re

fl
ec

ti
o
n

in
o
n
e

im
a
g
e

ca
n

b
eh

av
e

p
u
re

ly
d
iff

u
se

in
a
n
o
th

er
im

a
g
e

w
h
en

v
ie

w
in

g
co

n
d
it

io
n

is
ch

a
n
g
ed

Y
es

E
ffi

ci
en

t
d
et

ec
ti

o
n

o
f

h
ig

h
li
g
h
ts

w
h
en

th
e

re
q
u
ir

ed
co

n
d
it

io
n
s

a
n
d

n
o
.

o
f

im
a
g
es

a
re

av
a
il
a
b
le

.

P
o
la

ri
za

ti
o
n

[4
3
–
5
2
]

M
u
lt

ip
le

U
se

o
f

p
o
la

ri
za

ti
o
n

fi
lt

er
d
u
ri

n
g

im
a
g
e

a
cq

u
is

it
io

n
.

S
p

ec
u
la

r
h
ig

h
li
g
h
ts

a
re

p
o
la

ri
ze

d
w

h
il
e

d
iff

u
se

re
fl
ec

ti
o
n
s

a
re

u
n
p

o
la

ri
ze

d
Y

es
N

o
N

o
W

it
h

u
se

o
f

a
d
d
it

io
n
a
l

h
a
rd

w
a
re

(p
o
la

ri
za

ti
o
n

fi
lt

er
),

h
ig

h
li
g
h
ts

ca
n

b
e

d
et

ec
te

d
effi

ci
en

tl
y.

O
rt

h
o
g
o
n
a
l

S
u
b
-

sp
a
ce

P
ro

je
ct

io
n

[5
4
]

S
p

ec
tr

a
l

S
ep

a
ra

ti
o
n

o
f

ra
d
ia

n
ce

a
n
d

il
lu

m
in

a
ti

o
n

sp
ec

tr
u
m

th
ro

u
g
h

o
rt

h
o
g
o
n
a
l

su
b
sp

a
ce

p
ro

je
ct

io
n

S
P

D
o
f

Il
lu

m
in

a
n
t

is
k
n
ow

n
.

Y
es

Y
es

N
o

W
it

h
k
n
ow

le
d
g
e

o
f

a
p
a
rt

ic
u
la

r
il
lu

m
in

a
n
t,

h
ig

h
li
g
h
t

ca
u
se

d
b
y

it
ca

n
b

e
re

m
ov

ed
.

P
C

A
[5

3
]

S
p

ec
tr

a
l

U
se

o
f

p
ro

b
a
b
il
is

ti
c

P
C

A
fo

r
se

p
a
ra

ti
o
n

o
f

sp
ec

u
la

r
a
n
d

d
iff

u
se

co
m

p
o
n
en

ts

C
o
lo

re
d

o
b

je
ct

s
a
lr

ea
d
y

se
g
m

en
te

d
,

C
o
n
st

a
n
t

H
u
e.

Y
es

N
o

Y
es

P
er

fo
rm

s
effi

ci
en

t
h
ig

h
li
g
h
t

re
m

ov
a
l

if
se

g
m

en
ta

ti
o
n

is
a
lr

ea
d
y

p
er

fo
rm

ed
.

S
p

ec
tr

a
l

u
n
m

ix
in

g
[5

5
]

S
p

ec
tr

a
l

S
p

ec
tr

a
l

u
n
m

ix
in

g
m

et
h
o
d

E
n
d
-m

em
b

er
o
f

h
ig

h
li
g
h
t

p
a
rt

is
S
P

D
o
f

il
lu

m
in

a
n
t.

Y
es

N
o

N
o

W
it

h
th

e
u
se

o
f

a
p
ro

p
er

sp
ec

tr
a
l

se
g
m

en
ta

ti
o
n

m
et

h
o
d
,

h
ig

h
li
g
h
ts

ca
n

b
e

re
m

ov
ed

.



6 Conclusion

In this paper, we provide a survey of highlight detection algorithms in color and
spectral images. In most of the literature, results from detection and removal
of highlights is presented qualitatively while comparing with other methods.
Although qualitative analysis provide a general overview, quantitative measure-
ment should also be used to provide a fair comparison.

Generally, strong assumptions and priors are used for highlight detection.
However, the highlight detection is still able to provide much of the useful in-
formation and is therefore a critical issue in image analysis. We also review
state-of-the-art on highlight detection in spectral images. There is less work
done on it and much is yet to be explored. The amount of spectral information
being acquired in spectral imaging can certainly provide benefit for highlight
detection and is still an open area of research.
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