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Abstract

This paper addresses the problem of multiple model adaptive estimation (MMAE) for discrete-time linear parameter varying
(LPV) systems that are affected by parametric uncertainty. The MMAE system relies on a finite number of local observers,
each designed using a selected model (SM) from the set of possible plant models. Each local observer is an LPV Kalman filter,
obtained as a linear combination of linear time invariant (LTI) Kalman filters. It is shown that if some suitable distinguishability
conditions are fulfilled, the MMAE will identify the SM corresponding to the local observer with smallest output prediction
error energy. The convergence of the unknown parameter estimation, and its relation with the varying parameters, are discussed.
Simulation results illustrate the application of the proposed method.

I. INTRODUCTION

The design of state observers is an important control problem, due to its importance in feedback control and process
monitoring systems. However, the uncertainty coming from the mismatch between the model and the real plant impedes an
accurate estimation of the state variables, which is often a fundamental requirement in many applications [1]. In these cases,
the design of a conventional state estimator that converges to the real state value cannot be realized [2].

For this reason, a problem that has been investigated with attention in recent years is to provide alternatives for estimating
the state in uncertain systems. In this sense, a proposed solution is to construct an observer that estimates the set of admissible
values for the state at each instant of time, i.e. an interval observer [3]–[5]. Another proposed solution is to use adaptive
estimation algorithms [6]–[8], which perform an adaptation w.r.t. the uncertainty in the plant parameters. Among these
algorithms, the multiple model adaptive estimation (MMAE) has demonstrated to be a powerful approach, which has been
employed successfully in several occasions [9]–[13]. In this approach, a set of models is selected/designed to represent the
possible system behavior patterns, and the overall estimate is obtained by combining the estimates from the filters running
in parallel, based on the individual models that match these patterns [14].

With the aim of developing simple and yet efficient solutions to the analysis and control of nonlinear systems, linear
parameter varying (LPV) methodologies have been applied successfully by extending linear time invariant (LTI) techniques
[15]. LPV models are linear state space models whose matrices depend on time-varying parameters [16]. The LPV framework
is suitable to deal with nonlinear systems, since they can be brought to the so-called quasi-LPV form, in which the
parameters are functions of endogenous signals such as states, inputs and outputs [17]–[20]. Nowadays, LPV methodologies
are theoretically well founded and find applications in several fields, such as aviation [21], robotics [22] and automotive
[23].

In this work, we develop an LPV MMAE for estimating the state and the value of the unknown parameters in discrete time
uncertain LPV plants. The proposed LPV MMAE comprises a collection of local observers, each of which provides the state
estimation which would correspond to a predefined value of the unknown parameters. We show that under some suitable
condition, the identified unknown parameters will correspond to the observer that exhibits the smallest output prediction error
energy. The convergence of the unknown parameter estimation, and its relation with the varying parameters, are discussed
thoroughly, and the concept of undecidable sets is introduced as well.

The structure of the paper is as follows. Section II introduces the LPV MMAE, and Section III summarizes its relevant
properties. Section IV provides a discussion of the convergence of the parameter estimation. Section V illustrates the proposed
technique using simulations. Finally, Section VI summarizes the main conclusions.

II. LPV MULTIPLE MODEL ADAPTIVE ESTIMATOR

We consider discrete time multiple input multiple output (MIMO) linear parameter varying (LPV) models of the form:

x(t +1) = A(κ(t),θ(t))x(t)+B(κ(t),θ(t))u(t) (1)
+G(κ(t),θ(t))w(t)

y(t) =C (κ(t),θ(t))x(t)+ v(t) (2)
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where x ∈ Rn denotes the state vector, u ∈ Rm is the control input, w ∈ Rr is a disturbance that cannot be measured, and
y ∈Rq is the measured output, which is affected by the measurement noise v ∈Rq. The initial condition x(0) is assumed to
be unknown, while the signals w(t), v(t) are uncorrelated and described as white noises with power spectral density (PSD)
Sw and Sv, respectively. The matrix functions A(·), B(·), C (·) and G(·) depend on both an unknown parameter κ(t) and a
known varying parameter vector θ(t) ∈ Θ ⊂ Rs. In order to ease the notation, Aκ(θ(t)), Bκ(θ(t)), Cκ(θ(t)), Gκ(θ(t)) will
be used alternatively to denote the matrix functions appearing in (1)-(2).

In order to estimate the state, a finite set of candidate parameter values {κ1, . . . ,κN} indexed by i∈ {1, . . . ,N} is considered.
It is worth remarking that, contrarily to the case of switched systems [24], it is not requested that the parameter κ(t) varies
within the set {κ1, . . . ,κN}. It is assumed that for each candidate parameter value κi, i∈ {1, . . . ,N}, the corresponding matrix
functions Aκi (θ(t)), Bκi (θ(t)), Cκi (θ(t)) and Gκi (θ(t)) are polytopic [25], i.e. they can be described as the convex sum of
L constant matrices denoted as vertex matrices:(

Aκi (θ(t)) Bκi (θ(t))
Cκi (θ(t)) Gκi (θ(t))

)
=

L

∑
j=1

h( j)
i (θ(t))

(
A( j)

κi B( j)
κi

C( j)
κi G( j)

κi

)
(3)

where, for a given i, the coefficients h( j)
i (θ(t)) satisfy the following property:

L

∑
j=1

h( j)
i (θ) = 1, h( j)

i (θ) ∈ [0,1] ∀θ ∈Θ (4)

Hence, inspired by the LTI multiple model adaptive estimator (MMAE) described in [26], the following LPV MMAE is
proposed:

x̂(t) =
N

∑
i=1

pi(t)x̂(t|κi) (5)

ŷ(t) =
N

∑
i=1

pi(t)ŷ(t|κi) (6)

κ̂(t) =κi∗(t), i∗(t) = arg max
i∈{1,...,N}

pi(t) (7)

where x̂(t), ŷ(t) and κ̂(t) are the estimates of the state x(t), the output y(t), and the unknown parameter vector κ, respectively,
and pi(t) are dynamic weights, that will be defined in the following. In (5)-(6), each x̂(t|κi), ŷ(t|κi) correspond to a local
state estimation, obtained through the following LPV Kalman filter [27]:

x̂(t|κi) =
L

∑
j=1

x̂ j (t|κi) (8)

ŷ(t|κi) =Cκi (θ(t)) x̂(t|κi) (9)

where x̂ j(t|κi), j ∈ {1, . . . ,L} are obtained as follows:

x̂ j(t|κi) =
[
I−K( j)

κi C( j)
κi

]
x̂−j (t|κi)+K( j)

κi h( j)
i (θ(t))y(t) (10)

x̂−j (t +1|κi) = A( j)
κi x̂ j(t|κi)+h( j)

i (θ(t))B( j)
κi u(t) (11)

with:

K( j)
κi = P( j)

κi

(
C( j)

κi

)T
[
C( j)

κi P( j)
κi

(
C( j)

κi

)T
+Sv

]−1

(12)

where P( j)
κi is the solution of the discrete Riccati equation:

P( j)
κi = A( j)

κi

[
P( j)

κi −K( j)
κi C( j)

κi P( j)
κi

](
A( j)

κi

)T
+G( j)

κi Sw

(
G( j)

κi

)T
(13)

and the superscript − indicates that the quantity is calculated before the measurement is taken into account.
According to [27], some properties would hold for the LPV Kalman filter (8)-(13) applied to the LPV system (1)-(2)

when κ = κi (i.e. when the real value of the unknown parameter κ equals the i-th candidate parameter value κi), among
which the fact that x̂(t|κi) would be an unbiased estimation of x(t).

Remark: The choice of the set of candidate parameter values {κ1, . . . ,κN} plays an important role in the quality of the
estimation κ̂(t). In general, it is desirable to consider a dense gridding of the possible values of κ(t), i.e. a large number
of candidate parameter values, in order to obtain an estimation κ̂(t) which is as close as possible to the real value κ(t).
However, in practice, the benefits of increasing the density of such gridding are limited by the presence of disturbances and
noise, which could cause models corresponding to different (but close) values of κ(t) to be indistinguishable.



A. Dynamic weighting signal generator (DWSG)

The dynamic weights pi(t) are generated as follows:

pi(t +1) =
pi(t)βi(t))e−ωi(t)

N
∑
j=1

p j(t)β j(t)e−ω j(t)
(14)

where βi(t) is a positive weighting matrix function and ωi(t) is the error measuring function, which maps the measurable
signals and the state of the Kalman filter (8)-(13) to a nonnegative real value. The initial conditions pi(0) should be chosen
such that pi(0)> 0, i = 1, . . . ,N.

In the following, with the aim of scaling the energy of the estimation error sequences making them comparable, we will
use:

ωi(t) =
1
2
‖y(t)− ŷ(t|κi)‖2

Sκi (θ(t))
−1 (15)

βi(t) =
1√
|Sκi(θ(t))|

(16)

where Si (θ(t)) is a positive definite weighting matrix, and ‖x‖S =
√

xT Sx.
In [26], it was suggested that a suitable choice for Sκi would be the innovation covariance matrix of the Kalman filter. In

order to perform a similar choice, Sκi (θ(t)) is selected as:

Sκi (θ(t)) =
L

∑
j=1

h( j)
i (θ(t))S( j)

κi (17)

with:
S( j)

κi =C( j)
κi P( j)

κi

(
C( j)

κi

)T
+Sv (18)

III. PROPERTIES OF THE LPV MMAE

This section summarizes the relevant properties of the proposed LPV MMAE. The following proposition shows positiveness
and boundedness of the dynamic weights pi(t).

Proposition 1: Assume that pi(0) > 0 ∀i ∈ {1, . . . ,N}. Then, all the signals pi(t) generated by the DWSG (14) are
nonnegative, uniformly bounded and contained in [0,1], with:

∑
N
i=1 pi(t) = 1 ∀t > 0 (19)

Proof: Taking into account (14), let us compute the evolution of P(t) = ∑
N
i=1 pi(t):

P(t +1) =
∑

N
i=1 pi(t)βi(t)e−ωi(t)

∑
N
j=1 p j(t)β j(t)e−ω j(t)

(20)

which shows that (19) holds. On the other hand, if pi(0) > 0, then pi(t) calculated from (14) cannot be negative. Hence,
pi(t) ∈ [0,1] ∀i ∈ {1, . . . ,N} follows necessarily. �

On the other hand, the following theorem shows that the dynamic weights pi(t) exhibit convergence if some conditions
are fulfilled.

Theorem 1: Let i∗ ∈{1, . . . ,N} be an index for the set of candidate parameter values {κ1, . . . ,κN}, and let I = {1, . . . ,N}\i∗
be an index set. If there exist positive constants n1, t1,ε and ε1 such that the following conditions hold for all t ≥ t1 and
n≥ n1:

1
n

t+n−1

∑
τ=t

(ωi∗(τ)+ ε)<
1
n

t+n−1

∑
τ=t

min
j∈I

ω j(τ) (21)

ln β̄(t)− lnβi∗(t)< ε1 < ε (22)

where:
β̄(t) = max

j∈I
β j(t) (23)

then pi∗(t) calculated as in (14) satisfies pi∗(t)→ 1 as t→ ∞. Proof: Define:

L j(t) =
p j(t)
pi∗(t)

j ∈ I (24)



From (14), we have:

pi(t) = pi(0)
t−1

∏
τ=0

βi(τ)e−ωi(τ)

∑
N
j=1 p j(τ)β j(τ)e−ω j(τ)

(25)

from which the following is obtained:

L j(t +n) =

[
t+n−1

∏
τ=t

β j(τ)e−ω j(τ)

βi∗(τ)e−ωi∗ (τ)

]
L j(t) (26)

Then, taking logarithm of both sides leads to:

ln
L j(t +n)

L j(t)
=

t+n−1

∑
τ=t

ln
(

β j(τ)e−ω j(τ)
)
−

t+n−1

∑
τ=t

ln
(

βi∗(τ)e−ωi∗ (τ)
)

≤
t+n−1

∑
τ=t

ln
(

β̄(τ)e−ω j(τ)
)
−

t+n−1

∑
τ=t

ln
(

βi∗(τ)e−ωi∗ (τ)
)

=
t+n−1

∑
τ=t

(
ln β̄(τ)− lnβi∗(τ)

)
+

t+n−1

∑
τ=t

ωi∗(τ)−
t+n−1

∑
τ=t

ω j(τ) (27)

If (21)-(22) hold, then from (27) it follows that there exists γ > 0 such that:

ln
L j(t +n)

L j(t)
≤−nγ (28)

that means:
L j(t +n)≤ e−nγL j(t) (29)

Since L j(t)→ 0 as t→+∞ ∀ j ∈ I , then pi∗(t)→ 1 as t→+∞ due to (19), which completes the proof. �
The following corollary provides additional information about the parameter estimate κ̂(t) given by (7).
Corollary 1: Assume that the conditions of Theorem 1 hold, and let ωi(t) be defined as in (15). Then, the parameter

estimate κ̂i(t) converges to the closest to κ as t→ ∞ in the following sense:

lim
t→∞

κ̂(t) = κi∗ (30)

i∗ = arg min
i∈{1,...,N}

lim
n→∞

1
n

t+n−1

∑
τ=t

ωi(τ) ∀t ≥ 0 (31)

Proof: Using the fact that pi∗(t)→ 1 and that, according to (21):

ε <
1
n

t+n−1

∑
τ=t

min
j∈I

ω j(τ) (32)

for any positive integer n≥ n1 and for all t ≥ t1, we can conclude that (30)-(31) hold. �

IV. CONVERGENCE OF THE PARAMETER ESTIMATION

Corollary 1 has shown that as long as the conditions of Theorem 1 hold, the parameter estimate κ̂ will converge to κ∗i (see
(30)-(31)). In some way, it can be said that the true value of κ is closer to κ∗i than to any other κi, i∈ I. In the LTI framework
considered by [26], this fact has led to the definition of Equivalently Identified Plants (EIPs), as the subsets in the uncertain
parameter space which have the property that if the uncertain parameter belongs to that subset, then the parameter estimate
κ̂(t) will converge to a well defined κ∗i . In particular, [26] has also shown that the EIPs can be determined by comparing
the power spectral densities (PSDs) of appropriate signals, which are calculated using the equivalent transfer matrices of the
local state observers that provide x̂(t|κi).

However, the extension of this concept to the LPV case considered in this paper is challenging from a mathematical point
of view. In fact, in the LPV case, the idea of transfer matrices as equivalent frequency characterizations of the input-output
behavior of a given system, does not hold anymore. Also, it can be expected that in many cases the convergence of the
parameter estimate κ̂ to one or another κi, thus whether the true value of κ belongs to one or another EIP, will depend on
the particular trajectory of the varying parameter vector θ(t).

Nonetheless, it is possible to obtain a necessary condition in terms of PSDs and parametric transfer matrices [28] that
will allow determining undecidable sets, i.e. subsets of the parameter space in which we know for sure that the convergence
of κ̂ to a particular κi will depend on the trajectory of θ(t). These necessary conditions will be obtained by analysing the
particular case of constant trajectories, i.e. θ(t) = θ ∈Θ.

Theorem 2: Let the input signal η(t) = [w(t),v(t),v(t +1),u(t)]T be a bounded-spectral sequence with PSD Ψη(ω), and
let Ω be the set of the N-tuples ω(t) of signals ωi(t), i = 1, . . . ,N obtained from (1)-(2) and (5)-(11) with the input signal



η considering all the admissible trajectories of θ(t) in Θ. Then, given the index i∗ ∈ {1, . . . ,N} for the set of candidate
parameter values {κ1, . . . ,κN}, if ∀ω(t) ∈Ω there exist n1, t1,ε and ε1 such that (21)-(22) hold, then ∀θ ∈Θ (compare with
[26]):

ϒκi∗ ,κ(θ)< ϒκi,κ(θ) ∀i ∈ I = {1, . . . ,N}\i∗ (33)

with:

ϒκi ,κ(θ) = tr

 1
2π

π∫
−π

Hi
(
e jω,θ

)
Ψη(ω)Hi

(
e jω,θ

)H
Sκi (θ)

−1dω

 (34)

where Hi(z,θ) is the parametric transfer matrix defined by:

Hi(z,θ) = Ci (θ)(zI−Ai(θ))
−1Bi(θ)+D (35)

with:

Ai(θ) =

(
Aκ(θ) 0
Ãi(θ) Âi(θ)

)
(36)

Bi(θ) =

(
Gκ(θ) 0 0 Bκ(θ)
G̃i(θ) 0 K̃i(θ) B̃i(θ)

)
(37)

Ci(θ) =
(

Cκ (θ) −Cκi (θ)
)

(38)

D=
(

0 I 0
)

(39)

where Ãi(θ), Âi(θ), G̃i(θ), K̃i(θ) and B̃i(θ) are defined as follows:

Ãi(θ) =
L

∑
j=1

h( j)
i (θ)K( j)

κi Cκ(θ)Aκ(θ)

Âi(θ) =
L

∑
j=1

h( j)
i (θ)

[
I−K( j)

κi C( j)
κi

]
A( j)

κi

G̃i(θ) =
L

∑
j=1

h( j)
i (θ)K( j)

κi Cκ(θ)Gκ(θ)

K̃i(θ) =
L

∑
j=1

h( j)
i (θ)K( j)

κi

B̃i(θ) =
L

∑
j=1

h( j)
i (θ)

{
K( j)

κi Cκ(θ)Bκ(θ)+
[
I−K( j)

κi C( j)
κi

]
B( j)

κi

}
Proof: If ∀ω(t) ∈Ω there exist n1, t1,ε and ε1 such that (21)-(22) hold, this should hold true also ∀ω(t) ∈ Ω̄⊆Ω, where

Ω̄ denotes the set of N-tuples ω(t) obtained from (1)-(2) and (5)-(11) with the input signal η(t) considering all admissible
constant trajectories θ(t) = θ ∈Θ.

Defining ỹ(t|κi) = y(t)− ŷ(t|κi), when θ(t) = θ, we obtain the following from (1)-(2) and (8)-(11):

(
x(t +1)

x̂(t +1|κi)

)
= Ai(θ)

(
x(t)

x̂(t|κi)

)
+Bi(θ)


w(t)
v(t)

v(t +1)
u(t)



ỹ(t|κi) = Ci(θ)

(
x(t)

x̂(t|κi)

)
+D


w(t)
v(t)

v(t +1)
u(t)


where Ai(θ), Bi(θ), Ci(θ) and D are given by (36)-(39).

The PSD of the signal ỹ(t|κi) is given by:

Ψỹ(t|κi)(ω) =Hi
(
e jω,θ

)
Ψη(ω)Hi

(
e jω,θ

)H
(40)

Using Parseval’s theorem [29] and recalling (15), it can be concluded that (30) with:

i∗ = arg min
i∈{1,...,N}

{ϒκ1,κ(θ), . . . ,ϒκN ,κ(θ)} (41)



and ϒκi,κ(θ) defined as in (34), is equivalent to (30)-(32), which relate to (21)-(22) through Corollary 1.
Hence, a necessary condition for the existence of n1, t1,ε and ε1 such that (21)-(22) hold ∀ω(t) ∈ Ω̄⊆Ω is that the index

i∗ in (41) does not depend on the value of θ, which corresponds to condition (33). �
Definition 1: Given a bounded-spectral input signal η(t) = [w(t),v(t),v(t +1),u(t)]T with PSD Ψη(ω) and θ ∈Θ, the set

of θ-undecidable values Uθ is the set of parameter values κ̄ for which there exist (at least) two indices i∗ 6= i∗∗ ∈ {1, . . . ,N}
such that:

ϒκi∗ ,κ̄(θ) = ϒκi∗∗ ,κ̄(θ)≤ ϒκi,κ̄(θ) ∀i ∈ I = {1, ...,N}\{i∗, i∗∗}
Roughly speaking, if κ̄ ∈Uθ for a given η and θ ∈ Θ, then it is not possible to decide whether the closest model to the

true one is the model i∗ or the model i∗∗. Based on this definition, we can state the following corollary of Theorem 3, which
gives a necessary condition for the existence of uniformly decidable sets, i.e. sets of parameter values for which there would
be convergence to a single optimal index i∗, notwithstanding the time-varying parameter θ(t).

Corollary 2: A necessary condition for a parameter κ̄ to belong to a uniformly decidable set, i.e. for κ̂(t) to converge to
a single κi∗ uniformly w.r.t. θ(t) is that:

κ̄ /∈
⋃

θ∈Θ

Uθ (42)

Proof: The proof is fairly simple. The inclusion κ̄ ∈
⋃

θ∈Θ Uθ implies that κ̄ ∈ Uθo for some θo ∈ Θ and hence κ̄ is
θo-undecidable. �
In other words, the fulfillment of (42) is an essential requirement for the existence of an estimate κi∗ that can be regarded
as the closest to the true parameter κ̄, irrespectively of the trajectory of the time-varying parameter θ(t).

V. ILLUSTRATIVE EXAMPLE

Let us consider a discrete time LPV model as in (1)-(2), with:

Aκ (θ(t)) =
(

κ θ1(t)
κθ2(t) 0.3

)
Bκ (θ(t)) =

(
κ

5θ1(t)

)
C =

(
1 0

)
Gκ (θ(t)) =

(
θ1(t)

κ

)
where θ1,θ2 ∈ [−0.5,0.5], and the signals w(t),v(t) have PSD Sw = 0.16 and Sv = 0.04, respectively. In order to estimate
the state, the set of parameter values {κ1,κ2,κ3,κ4} is considered, with κ1 =−0.6, κ2 =−0.2, κ3 = 0.2, κ4 = 0.6. Then, it
can be seen that the representation (3) can be achieved with:

h(1)i (θ(t)) = (0.5−θ1(t))(0.5−θ2(t))

h(2)i (θ(t)) = (0.5−θ1(t))(0.5+θ2(t))

h(3)i (θ(t)) = (0.5+θ1(t))(0.5−θ2(t))

h(4)i (θ(t)) = (0.5+θ1(t))(0.5+θ2(t))

The first simulation (scenario 1) has been performed with κ = −0.2, θ1(k) = 0.5sink and θ2(k) = 0.5cos(k/10). The
second simulation (scenario 2) has been performed with κ = 0.7, θ1(k) = 0.5sin(k/5) and θ2(k) = 0.5cos(k/20). The last
two simulations have been performed with κ = 0 and the varying parameters chosen as θ1(k) = 0.5, θ2(k) = 0.5 (scenario
3), and θ1(k) = −0.5, θ2(k) = −0.5 (scenario 4), respectively. For all simulations, the initial conditions have been chosen
as pi = 0.25, i = 1,2,3,4. Also, the input u(t) has been selected as a gaussian white noise with PSD Su = 0.36.

Fig. 1 shows the response of the error measuring functions in scenario 1. It can be seen that, on average, ω2(t) has
the smallest energy. This is reasonable, since in scenario 1, κ =−0.2, which corresponds exactly to κ2. As a result, p2(t)
converges to 1, and the remaining dynamic weights converge to 0, as shown in Fig. 2.

Fig. 3 shows the error measuring functions obtained in scenario 2. In this case, the function with the smallest energy
is ω4(t). Although κ = 0.7 6= κ4 = 0.6, the proposed LPV MMAE identifies κ4 as the unknown parameter value which
approximates better the real value of κ. Hence, the dynamic weight p4(t) is the one that converges to 1, as shown in Fig. 4.

Finally, Figs. 5-6 show the dynamic weights obtained in scenarios 3 and 4, respectively. In this case, the real value of
κ is between κ2 and κ3. In particular, the simulations have shown that κ = 0 belongs to an undecidable set, as defined in
Section IV. In fact, different values of the varying parameters θ1(t) and θ2(t) correspond to different best models (κ2 in
scenario 3, κ3 in scenario 4).

VI. CONCLUSIONS

This paper has presented an MMAE for LPV MIMO systems subject to parametric uncertainty. If some suitable distin-
guishability conditions hold, then the proposed LPV MMAE will identify the model corresponding to the smallest output
prediction error energy. The convergence of the unknown parameter estimation and the existence of undecidable sets have
been discussed. Finally, simulation results have been used to illustrate the main properties of the proposed method.
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Fig. 1. Error measuring functions in scenario 1.
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Fig. 5. Dynamic weights in scenario 3.
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Fig. 6. Dynamic weights in scenario 4.


