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Abstract— This paper presents a reactive collision avoidance
algorithm for vehicles with unicycle-type nonholonomic con-
straints. Static and dynamic obstacles are avoided by keeping
a constant avoidance angle to the obstacle. The algorithm
compensates for the obstacle velocity, which can be time-
varying. Conditions are derived under which successful col-
lision avoidance is mathematically proved, and the theoretical
results are supported by simulations. The proposed algorithm
makes only limited sensing requirements of the vehicle. It is
intuitive, has a low computational complexity and is suitable
also for vehicles with a limited speed envelope or heavy linear
acceleration constraints. This is demonstrated by applying the
algorithm to a vehicle with a constant forward speed.

I. INTRODUCTION

Autonomous vehicles are increasingly used in both sci-
entific and commercial applications. During autonomous or
semi-autonomous operations, the capability to avoid static
and dynamic obstacles without human intervention is crucial
for mission success and vehicle safety. The development and
analysis of collision avoidance (CA) algorithms is thus an
important and vital field in robotics research.

Reviews of different CA approaches are given in [1]
and [2]. The different approaches can generally be divided
into two groups [3]; motion planning algorithms and reac-
tive algorithms. The general motion planning problem with
bounded velocities and multiple obstacles has been shown to
be NP-hard [4]. It is possible to bound the problem to make it
more tractable [5], but it might still be unfeasible for vehicles
with limited processing power to apply real time motion
planning. This is particularly the case in uncertain and
dynamic environments, which can require a high replanning
frequency. Such vehicles should therefore employ reactive
algorithms.

A much used reactive approach is to use artificial potential
fields to create control inputs for obstacle avoidance [6]. The
method has some stability issues [7], which the vector field
histogram [8] seeks to counter by choosing a safe direction
from a polar histogram of merged sensor measurements.
Another potential field approach is the navigation vector field
[9], where local minima are avoided by directly creating a
gradient field with this in mind.
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The potential field methods consider only static obstacles,
and the performance of vehicles with nonholonomic con-
straints is rarely analyzed. The dynamic window algorithm
[10], [11] incorporates such constraints by searching through
a set of valid vehicle trajectories to find a safe control input.
Again, only static obstacles are considered.

The velocity obstacle [12] and collision cone [13] ap-
proaches deal with moving obstacles. However, they do not
consider vehicles with nonholonomic kinematic constraints.
The generalized velocity obstacle [14] compensates for non-
holonomic kinematics by defining the velocity obstacle in
terms of safe control inputs to the vehicle. A sampling-based
approach has to be used to find a safe control, making the
algorithm computationally expensive.

The acceleration-velocity obstacle approach [15] intro-
duces acceleration constraints into the velocity obstacle, and
can be applied to nonholonomic vehicles moving at nonzero
speed. The algorithm proposed by [16] removes the non-
holonomic constraints by using input-output linearization.
However, both these methods become very restrictive when
the linear acceleration bound is much more strict than the
bound on angular acceleration, which can be the case for
vehicles such as fixed-wing aircraft.

A local, range-only-based CA algorithm for nonholonomic
vehicles is proposed in [17], which considers moving ob-
stacles of arbitrary and time-varying shapes. The sensing
requirements on a vehicle using the algorithm in [17] is very
limited, however the algorithm places heavy restrictions on
the obstacle velocities.

The algorithm presented in [18] resembles the vector field
histogram [8], and uses sensor measurements directly to
obtain obstacle-free directions ahead of the vehicle. It is
proved that the algorithm makes a nonholonomic vehicle
safely traverse a complex environment with multiple moving
obstacles. The algorithm does not, however, make use of
the obstacle velocity, something which can give overly con-
servative restrictions to obstacle movement in cases where
obstacle velocity measurements are available. Such measure-
ments are indeed not always available, but can be obtained
for example by using a lidar or sonar able to measure Doppler
shift. In this paper, the obstacle velocity is assumed to be
available, and the algorithm we propose make use of it.

Another reactive algorithm for nonholonomic vehicles
is presented in [19], where a constant avoidance angle is
maintained between the vehicle heading and the tangent from
the vehicle to the obstacle. The algorithm makes use of the
obstacle velocity, has a low computational complexity and
limited vehicle sensing requirements. It is mathematically
proved that the vehicle avoids obstacles moving with constant



velocity, however the analysis does not consider time-varying
obstacle velocity.

The algorithm proposed by [19] varies the vehicle speed
as it circles around the obstacle, and can in some cases make
the vehicle almost stop. This can be unfortunate for vehicles
with a limited speed envelope, such as fixed-wing aircraft.
Other vehicles, such as many marine vehicles, have a very
large inertia which restricts the linear acceleration. For such
vehicles, it is preferable to apply CA algorithms that maintain
a constant forward speed. Reactive CA algorithms that main-
tain a constant forward speed for cooperating nonholonomic
vehicles are given in [20]–[22]. However, in a real world
scenario the obstacles may not always be other cooperating
agents. There is thus a need for an algorithm that lifts this
assumption.

The main contribution of this paper is a reactive CA
algorithm for nonholonomic vehicles. The algorithm builds
on the work in [19], making the vehicle maintain a constant
avoidance angle to the obstacle. However, the algorithm
we propose only steers the heading of the vehicle, and
is decoupled from vehicle speed, allowing the vehicle to
maintain a constant forward speed. It is thus more suitable
for vehicles with a limited speed envelope or heavy linear
acceleration constraints. To show the applicability to such
vehicles, we apply the algorithm to a vehicle that is restricted
to keep a constant forward speed. The algorithm can also be
used on vehicles without such restrictions, which will then
give a large amount of flexibility in designing the desired
speed trajectory. Since the proposed algorithm only uses
measurements that can be obtained more or less directly from
the sensor, and uses few calculations to obtain the desired
heading, it has a low computational complexity.

Unlike the works presented in [20]–[22], which assume
cooperating obstacles, and the analysis in [19], which only
considers obstacles moving at constant speed, we make very
few assumptions on the overall obstacle behavior. Indeed,
the obstacle might even be actively pursuing the vehicle.
The only assumption made on the obstacle velocity is
that its maximum speed is less than the vehicle speed. A
mathematical analysis is applied to derive a lower bound
on the maximum vehicle turning rate required to guarantee
avoidance of a circular obstacle with time-varying velocity.
The implementation of the algorithm does not, however,
require knowledge of the obstacle shape. Only the angles
from the vehicle to the outermost edges of the obstacle are
required in addition to the obstacle velocity.

Another contribution of the paper is the introduction of
an extended vision cone, which defines the sets of safe and
unsafe directions at the current vehicle speed and is used
to define the criterion for transition between guidance mode
and CA mode.

The remainder of this paper is organized as follows.
Section II describes the vehicle and obstacle models, the
sensing model and the control objective of the system. Sec-
tion III states the heading controller and the target reaching
guidance law employed when the vehicle is not in CA mode.
Section IV describes the CA algorithm, and the CA property

of the system is mathematically proved in Section V. The
analysis is supported by simulations in Section VI. Finally,
concluding remarks are given in Section VII.

II. SYSTEM DESCRIPTION

A. Vehicle model

The vehicle is modeled as a unicycle-type vehicle,

ẋ(t) = u cos(ψ(t)), x(0) = x0, (1a)
ẏ(t) = u sin(ψ(t)), y(0) = y0, (1b)

ψ̇(t) = r(t), ψ(0) = ψ0, (1c)

where x(t) and y(t) are the vehicle’s Cartesian coordinates, u
is the forward speed, and ψ(t) and r(t) are the heading and
heading rate, respectively. The vehicle position is denoted
p(t) , [x(t), y(t)]T .

Assumption 1: The vehicle forward speed u > 0 is con-
stant.

Assumption 2: The heading rate r(t) is directly con-
trolled, and bounded by

r(t) ∈ [−rmax, rmax], (2)

where rmax > 0 is a constant vehicle parameter.

B. Obstacle model

The obstacle is modeled as a nonholonomic vehicle,

ẋo(t) = uo(t) cos(ψo(t)), xo(0) = xo,0, (3a)
ẏo(t) = uo(t) sin(ψo(t)), yo(0) = yo,0, (3b)

ψ̇o(t) = ro(t), ψo(0) = ψo,0, (3c)
u̇o(t) = ao(t), uo(0) = uo,0, (3d)

where xo(t) and yo(t) are the Cartesian coordinates of
the obstacle, uo(t) and ao(t) are the forward speed and
acceleration, and ψo(t) and ro(t) are the obstacle heading
and heading rate. The obstacle velocity vector is defined as
vo(t) , [ẋo(t), ẏo(t)]

T .
Assumption 3: The obstacle is modeled as a moving circu-

lar domain Do(t) of radius Ro with center at [xo(t), yo(t)]
T .

Remark 1: The CA algorithm presented in this paper can
also be applied to non-circular obstacles, as shown in the last
simulation scenario in Section VI.

Assumption 4: The obstacle forward speed uo(t) is
bounded by

0 ≤ uo(t) ≤ uo,max < u. (4)

Assumption 5: The obstacle forward acceleration ao(t) is
bounded by

ao(t) ∈ [−ao,max, ao,max] , (5)

where ao,max > 0 is a constant parameter.
Assumption 6: The obstacle heading rate ro(t) is bounded

by
ro(t) ∈ [−ro,max, ro,max] , (6)

where ro,max > 0 is a constant parameter.
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Fig. 1. The vision cone from the vehicle to the obstacle

C. Sensing model
This section describes the obstacle measurements needed

to implement the CA algorithm. The minimum distance do(t)
between the vehicle and the obstacle at time t is defined as

do(t) := min
pD∈Do(t)

||pD − p(t)||, (7)

where || · || denotes the Euclidean norm. The vehicle is able
to measure both do(t) and ḋo(t) when the obstacle is within
a sensing range dsense > 0. Furthermore, the vehicle is able
to measure the angles α(1)(t) and α(2)(t) between the x-
axis and the sides of the vision cone from the vehicle to the
obstacle, as shown in Figure 1. Finally, the vehicle is able
to measure the obstacle velocity vo(t) = [ẋo(t), ẏo(t)]

T .

D. Control objective
The objective of the control system and the CA algorithm

is to make the vehicle reach a target position pt = [xt, yt]
T

at some unspecified time tf ∈ [0,∞):

p(tf ) = pt. (8)

This goal should be achieved while keeping at least a
minimum safety distance dsafe to the obstacle:

do(t) ≥ dsafe > 0 ∀t ∈ [0, tf ]. (9)

III. CONTROL SYSTEM

The control system has two modes; guidance mode and
CA mode. In guidance mode, the guidance law given in
Section III-B makes the vehicle move straight towards the
target. If the obstacle comes within range and the desired
heading from the guidance law is unsafe, the control system
enters CA mode. This switch is described in Section IV-C.
The desired heading is then given by the CA law presented
in Section IV.

A. Heading controller
To make the vehicle reach the target heading as fast as

possible, it is made to turn towards the desired heading ψd
at the maximum turning rate:

r(ψd) ,


0 ψ̃ = 0

rmax ψ̃ ∈ (−π, 0)
−rmax ψ̃ ∈ (0, π].

(10)

The heading error variable ψ̃ , ψ − ψd is chosen to belong
to the interval ψ̃ ∈ (−π, π], to ensure that the vehicle always
makes the shortest turn towards ψd.

B. Guidance law

When the control system is in guidance mode, the heading
is guided by a pure pursuit guidance law [23]:

ψdg(t) , atan2 (yt − y(t), xt − x(t)) , (11)

where ψdg ∈ [0, 2π) is the desired heading. The pure pursuit
law directs the vehicle straight towards the target position pt,
and has the nice property that the heading reference will not
change once ψ(t) = ψdg(t), which simplifies the analysis of
the system in Section V.

IV. COLLISION AVOIDANCE ALGORITHM

In this section we propose a CA algorithm that makes the
vehicle maintain a constant avoidance angle αo ∈ (0, π2 ) to
one of the tangent lines between the vehicle and the obstacle.
The vehicle keeps a constant forward speed while maintain-
ing the avoidance angle, and the algorithm compensates for
obstacle velocity.

For clarity of exposition, a static obstacle is considered
first. The algorithm is then extended to include a moving
obstacle. The rule for switching between nominal guidance
and CA is defined in Section IV-C, while Section IV-D gives
a criterion for moving in a clockwise or counter-clockwise
direction around the obstacle.

A. Static obstacle

To obtain headings keeping the avoidance angle αo to the
tangents from the vehicle to the obstacle, the vision cone is
extended by αo as shown in Figure 2. The direction of the
sides of the extended vision cone are denoted β(1) and β(2).
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y
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β(2)
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Fig. 2. The extended vision cone from the vehicle to the obstacle

Two velocity vectors vβ(1) and vβ(2) are defined along the
sides of the extended vision cone as

vβ(j)(t) := uβ(j)(t)
[
cos(β(j)(t)), sin(β(j)(t))

]
, (12)

where j = {1, 2}. In order to make the vehicle keep the
constant forward speed, uβ(j)(t) , u. The candidates for the
desired heading in order to avoid collision are thus

ψ
(j)
dca(t) = β(j)(t), j = {1, 2}. (13)

In Section IV-D we present a criterion for choosing between
these two candidates.



Note that, when the obstacle is considered static, the
proposed CA law and the one presented in [19] both reduce
to the same form.

B. Moving obstacle

To avoid a moving obstacle, the proposed CA algorithm
will make the vehicle keep the velocity vβ(j)(t), given in
(12), in a non-rotating coordinate frame moving with the ob-
stacle velocity vo(t). In order to achieve this, a compensated
vision cone Vo(t) is defined by compensating the extended
vision cone for the obstacle velocity vo(t), as illustrated in
Figure 3. The velocity vectors defining the sides of Vo are

x

y β(2)

vca
γca

vβ(2) γvo
(2)

(2)

(2)

v

vca
(1)

vβ(1)

vo

vo

Fig. 3. The desired velocity vector candidates v(1)
ca and v

(2)
ca , which defines

the compensated vision cone Vo.

then given by

v(j)
ca (t) , vβ(j)(t) + vo(t). (14)

These are the candidates for the desired velocity of the vehi-
cle in CA. Since the vehicle keeps a constant forward speed
u, the length of the velocity vector is set to ||v(j)

ca (t)|| , u.
From Figure 3, the angle γ(j)vo (t) between vβ(j)(t) and vo(t)
can be seen to be

γ(j)vo
(t) = π − (ψo(t)− β(j)(t)), j = {1, 2}, (15)

where ψo(t) is the direction of vo(t) as defined in (3). The
sine rule can then be used to find the angle γ(j)ca (t) between
vβ(j)(t) and v

(j)
ca (t):

γ(j)ca (t) = sin−1

(
uo(t) sin(γ

(j)
vo (t))

u

)
, j = {1, 2}. (16)

The CA law for avoiding a moving obstacle is then given by
(17):

ψ
(j)
dca(t) = β(j)(t) + γ(j)ca (t), j = {1, 2}. (17)

Compared to the CA law given in (13) for avoiding a static
obstacle, the desired heading compensates for vo(t) by the
addition of γ(j)ca (t).

Remark 2: The term γ
(j)
ca (t) is bounded by

± sin−1 (uo,max/u). This bound can be used in (17)
if the obstacle velocity is not available. It is then also
possible to use a CA algorithm designed to not include
obstacle velocity, like the one presented in [18].

C. Switching rule

We define that the vehicle enters CA mode at a time t1 if
the obstacle is closer than or equal to a chosen range, dswitch,
and the heading ψdg(t1) from the nominal heading guidance
law in (11) is within the compensated vision cone Vo(t1):

ψdg(t1) ∈ Vo(t1), (18)
do(t1) ≤ dswitch ∈ (dsafe, dsense]. (19)

Nominal guidance towards the target will resume at a time
t2 when ψdg(t2) moves outside Vo(t2), i.e. when ψdg(t2) can
be considered safe:

ψdg(t2) /∈ Vo(t2). (20)

D. Turning direction

The proposed CA algorithm (17) provides two alternative
candidates for the desired heading in order to avoid collision.
We will use this flexibility to make the vehicle seek to move
behind the obstacle. In particular, we choose the following
direction parameter j when the vehicle enters CA mode:

j =

{
argmaxj=1,2 |ψo(t)− ψ(j)

dca(t)|, do(t) = dswitch,

argminj=1,2 |ψ(t)− ψ(j)
dca(t)|, do(t) < dswitch.

(21)
When do(t) = dswitch this maximizes the difference between
the obstacle heading and the CA direction. However, if the
obstacle is closer than dswitch when the vehicle enters CA
mode, the vehicle will make the shortest turn towards a safe
direction. This can for instance happen if a nearby obstacle
turns so that the current vehicle heading becomes unsafe.

Remark 3: The algorithm avoids collisions regardless of
the method used to choose j when do(t) = dswitch.

V. MATHEMATICAL ANALYSIS

This section presents a mathematical analysis of the
closed-loop control system (1), (10), including the switching
between guidance mode where ψd in (10) is given by (11),
and CA mode where ψd is given by (17), according to the
switching rule in Section IV-C. In particular, for a static
obstacle we will show, as stated in the following lemma,
that a vehicle maintaining vβ(j)(t) (12) will converge to
a circle around the obstacle. Lemma 2 gives a bound on
the angular velocity of ψ(j)

dca given by (17) when avoiding a
moving obstacle. These lemmas are then used in the proof
of Theorem 1, which states that the control objectives (8)
and (9) are met for a vehicle (1) controlled by the controller
(10), guidance law (11) and CA law (17), in the presence of
an obstacle with time-varying velocity.

Lemma 1: If the obstacle is static and αo ∈ (0, π2 ), then
a vehicle described by (1) maintaining the velocity vβ(j)(t)
(12) with forward speed uβ(j)(t) > 0 converges to a circle
C with center at the obstacle center and radius Ro

cos(αo)
.

Furthermore, if the vehicle starts outside C, then

do(t) ≥ dmin ,
Ro

cos(αo)
−Ro, ∀t ≥ 0 (22)

Proof: A vehicle moving with velocity vβ(j)(t) main-
tains the avoidance angle αo to one of the tangent lines from
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the vehicle to the obstacle, as shown in Figure 2. The distance
between the vehicle and the obstacle thus evolves as

ḋo(t) = −uβ(j)(t) cos(γt(t) + αo), (23)

where uβ(j)(t) is the length of vβ(j)(t) given by (12), and
γt(t) > 0 is the angle from the line connecting the vehicle
and the center of the obstacle to the tangent line as seen in
Figure 4. It follows that ḋo(t) < 0 when γt(t) + αo <

π
2 ,

which occurs when do(t) > dmin. Furthermore, ḋo(t) > 0
when do(t) < dmin, and ḋo(t) = 0 when do(t) = dmin.
Hence, the vehicle will converge to C, and if the vehicle
starts outside C then do(t) ≥ dmin ∀t ≥ 0.

It follows from Lemma 1 that if the avoidance angle αo
is chosen to satisfy

αo ≥ cos−1
(

Ro

Ro + dsafe

)
(24)

then, under the conditions that the obstacle static, the vehicle
starts outside C and keeps the velocity vβ(j)(t) from (12),

do(t) ≥ dsafe ∀t ≥ 0. (25)

To ensure that the vehicle is able to follow ψ
(j)
dca(t) (17),

it is required that rmax ≥ |ψ̇(j)
dca(t)| during the CA maneuver.

The following lemma gives a bound on |ψ̇(j)
dca(t)| that holds

both for static and dynamic obstacles:
Lemma 2: Consider the vehicle described by (1), and an

obstacle modeled by (3). If Assumptions 1 and 3-5 hold,
then, for ψ(j)

dca(t) given by (17), ψ̇(j)
dca(t) is bounded by

|ψ̇(j)
dca(t)| < ψ̇dca,sup ,

ao,max√
u2 − u2o,max

+
uo,max

u
ro,max +

(u+ uo,max)
2

u
√
(Ro + dsafe)2 −R2

o

.

(26)

Proof: Without loss of generality, j = 2 in the
following analysis. Furthermore, the dependency on time will
be omitted in the notation. Equation (17) gives

ψ̇
(2)
dca = β̇(2) + γ̇(2)ca (27)

Figure 4 shows that β(2) = γo + γt + αo, and hence

β̇(2) = γ̇o + γ̇t. (28)

The angular velocity of γo can be found geometrically as

γ̇o =
1

Ro + do
(uo sin(ψo − γo)− u sin(ψ − γo)) . (29)

The tangent angle γt is

γt = sin−1(
Ro

Ro + do
), (30)

which gives

γ̇t = −ḋo
Ro

(Ro + do)
√

(Ro + do)2 −R2
o

. (31)

The time derivative of do is found geometrically as

ḋo = uo cos(ψo − γo)− u cos(ψ − γo). (32)

Combining (29) - (32), applying Assumptions 1 and 4 and
maximizing with respect to ψ and ψo give the following
bound:

|β̇(2)| = |γ̇o + γ̇t| ≤
u+ uo,max√

(Ro + dsafe)2 −R2
o

. (33)

The time derivative of γ(2)ca is found by using (16),

γ̇(2)ca =
u̇o sin(γ

(2)
vo ) + uo cos(γ

(2)
vo )γ̇

(2)
vo√

u2 − u2o sin2(γ
(2)
vo )

, (34)

where γ̇(2)vo is found from (15) as

γ̇(2)vo
= ro + β̇(2). (35)

Using Assumptions 1 and 4 - 6, γ̇(2)ca is bounded by

|γ̇(2)ca | <
ao,max√

u2 − u2o,max

+
uo,max

u
ro,max+

uo,max

u
|β̇(2)|. (36)

Inserting (33) and (36) into (27) gives

|ψ̇(2)
dca | <

ao,max√
u2 − u2o,max

+
uo,max

u
ro,max

+
(u+ uo,max)

2

u
√

(Ro + dsafe)2 −R2
o

=: ψ̇dca,sup,

(37)

which concludes the proof.
Remark 4: The bound (26) on |ψ̇(j)

dca(t)|, agrees with in-
tuition. In particular, note that the bound increases as the
maximum forward velocity uo,max, acceleration ao,max and
turning rate ro,max of the obstacle increase.

Before we state the main theorem, we need to make the
following assumption to ensure that the target is outside the
circle of convergence around the obstacle:

Assumption 7: The distance do,t(t) from the obstacle to
the target position pt satisfies

do,t(t) >
Ro

cos(αo)
−Ro ∀t ≥ 0, (38)

where do,t(t) is defined as

do,t(t) , min
pD∈Do(t)

||pD − pt||. (39)

Remark 5: Vehicle safety is guaranteed even if this as-
sumption is not met, however it is then not ensured that the
target will be reached.



In addition, the vehicle should be able to start safely:
Assumption 8: The initial distance between the vehicle

and the obstacle satisfies

do(0) > dswitch. (40)
The main theorem is now ready to be stated.
Theorem 1: If Assumptions 1-8 hold, the avoidance angle

satisfies
αo ∈

[
cos−1

(
Ro

Ro+dsafe

)
, π2

)
, (41)

the maximum vehicle turning rate satisfies

rmax ≥ ψ̇dca,sup, (42)

and the switching distance satisfies

dswitch ≥
2u+ πuo,max

rmax
+ dsafe, (43)

then a vehicle described by (1), controlled by the controller
(10), guidance law (11) and CA law (17), will maneuver
to pt in the presence of an obstacle described by (3) while
ensuring that

do(t) ≥ dsafe > 0 ∀t ∈ [0, tf ], (44)

where tf is the time of arrival at pt.
Proof: The proof follows along the lines of the proof

used in [19], which argues that as long as the vehicle is
able to follow the desired heading reference from the CA
algorithm, it will successfully avoid the obstacle. To achieve
this we use the bound on ψ̇

(j)
dca from Lemma 2, along with

the switching rule we proposed in Section IV-C.
The switching distance dswitch given in (43) ensures that

the vehicle is able to turn 180 ◦ before the obstacle can be
within distance dsafe of the vehicle’s turning circle. There is
then a time t1 when d(t1) >= dsafe and ψ(t1) = ψdca(t1).
Applying Lemma 2 gives |ψ̇(j)

dca(t)| < ψ̇dca,sup. Hence rmax ≥
|ψ̇(j)

dca(t)| ∀t > 0, and the vehicle is able to follow (17),

ψ(t) = ψdca(t),∀t ∈ [t1, t2], (45)

where t2 is the time when the vehicle will exit CA.
In a coordinate frame moving with velocity vo, the vehicle

moves with velocity vβ(j)(t). Hence, the CA algorithm for
dynamic obstacles (17) reduces to the one for static obstacles
(13), but with varying relative vehicle forward speed uβ(j)(t).
From Figure 3, it can be seen that uβ(j)(t) achieves minimum
when γ(j)vo = 0, for which

ujβ,min = u− uo(t). (46)

Since uo(t) < u by Assumption 4, ujβ,min > 0. Lemma 1
then implies that the vehicle will converge towards a circle C,
which moves with velocity vo. The circle has radius Ro

cos(αo)
,

and the bound on αo given in (41) makes

do(t) ≥ dsafe ∀t ∈ [t1, t2], (47)

which satisfies control objective (9).
Since the vehicle circles around the obstacle, Assump-

tion 7 ensures that there will be a time t2 when the line
of sight to the target pt will be outside of Vo. The vehicle

will then exit CA mode and proceed towards the target. It
follows from Lemma 1 that any direction outside of the cone
Vo ensures that do > dsafe, and hence the direction towards
pt is safe.

The obstacle may turn so that the line of sight to pt
comes within Vo before do > dswitch, making the vehicle
enter CA again. However, since v

(1)
ca and v

(2)
ca are first order

differentiable with angular velocity less than ψ̇dca,sup, and
ψdca is then chosen to be the closest of v

(1)
ca and v

(2)
ca by

(21), the vehicle is immediately able to follow ψdca to avoid
the obstacle again.

Finally, since u > uo,max, the vehicle will eventually be
able to escape the obstacle and reach the target. This satisfies
control objective (8) and concludes the proof.

Remark 6: If the heading rate r(t) is not set instanta-
neously as assumed in Assumption 2, but rather controlled
by a globally exponentially stable controller, the vehicle will
still be able to follow the heading reference trajectory from
the CA law. The lower bound on the switching distance
(43) must then be increased to account for the heading
convergence time.

VI. SIMULATIONS

This section presents numerical simulations of three sce-
narios using the proposed CA algorithm. The first two
scenarios contain a circular obstacle of radius R = 3m. The
third scenario demonstrates the use of the CA algorithm on
a convex obstacle. The vehicle speed in all scenarios is set
to u = 1m/s and the maximum vehicle turning rate is set
to rmax = 1 rad/s. The safety distance is set to dsafe = 1m.

The speed of the circular obstacle is set to uo =
uo,max = 0.7m/s, while the maximum obstacle acceleration
and turning rate are set to ao,max = 0 and ro,max = 0.15 rad/s.
From these parameters (43) gives a minimum switching dis-
tance dswitch,min = 5.2m. By Lemma 2, ψ̇dca,sup = 0.98 s−1

for the circular obstacle, and thus rmax > ψ̇dca,sup, satisfying
(42). Using (24), the minimum offset angle for the circular
obstacle is found as αo,min = 41.4 ◦. We choose αo = αo,min
and dswitch = dswitch,min.

In the first scenario, shown in Figure 5, the vehicle and
the obstacle are initially on a head-on collision course where
the obstacle moves along a straight trajectory towards the
vehicle. At time t1 = 6.96 s the distance to the obstacle
satisfies d(t1) ≤ dswitch, and the vehicle enters CA mode.
Since the vehicle and the obstacle meets head on, the choice
of direction parameter j becomes random. In this particular
case j = 2 and the vehicle turns to the right.

Figure 6 shows that |ψ̇(2)
dca | < ψ̇dca,sup during the simula-

tion. Hence, since ψ̇dca,sup < rmax, the vehicle is able to
perfectly follow ψ

(2)
dca after a transition period, which agrees

with rmax ≥ ψ̇dca,sup. The obstacle distance remains greater
than dsafe, as seen in the top half of Figure 6. The simulation
thus supports the theoretical results given by Theorem 1.
At time 13.68 s, the line of sight to the target is outside of
the cone Vo(t), and the vehicle enters guidance mode. The
vehicle then proceeds towards the target in accordance with
the pure pursuit guidance law (11).
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Fig. 5. The first scenario, where the vehicle meets an obstacle head on.
The vehicle is the yellow polygon, with p(t) at the nose tip. The obstacle
is the solid red circle. The vehicle and obstacle trajectories are the dashed
blue and red line, respectively. The dotted magenta circle shows dsafe, while
the dotted black circle shows dswitch. The target is marked by an ’X’.
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Fig. 6. Distance between the vehicle and the obstacle in the first
scenario(top), and the angular velocity of ψ(2)

dca (bottom), which was used
during the CA maneuver.

In the second scenario, shown in Figure 7, the ob-
stacle approaches the vehicle along a circular trajectory
from the left. The turning rate of the obstacle is set to
ro = ro,max = 0.15 rad/s. The vehicle enters CA mode at
time 5.49 s, and moves behind the obstacle in accordance
with (21).

Figure 8 shows that, like in the first scenario, |ψ̇(1)
dca | <

ψ̇dca,sup and d(t) ≥ dsafe during the simulation. Thus,
the second simulation also supports the results given in
Theorem 1.

The third scenario, shown in Figure 9, contains a concave
obstacle moving straight towards the vehicle with speed uo =
uo,max = 0.5m/s. The obstacle consists of two connected
arms with circles of radius 3m at the extremities. The circle
radius was used as input to (24) to obtain αo,min = 41.4 ◦,
while (43) gives dswitch,min = 4.57m, both of which where
used in the simulation. At time 22.02 s the obstacle comes
within switching distance. The vehicle travels along the edge
of the obstacle until time 50.17 s, when the direction to the
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Fig. 7. The second scenario, where the obstacle is moving in a clockwise
circle starting to the left of the vehicle.
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Fig. 8. Distance between the vehicle and the obstacle in the second
scenario(top), and the angular velocity of ψ(1)

dca (bottom), which was used
during the CA maneuver.

target becomes safe and the vehicle continues towards it.
Figure 10 shows that d(t) ≥ dsafe during the simulation.

VII. CONCLUSIONS

This paper has presented a reactive collision avoidance
algorithm for nonholonomic vehicles. The algorithm makes
the vehicle keep a constant avoidance angle to the vision cone
from the vehicle to an obstacle. The algorithm compensates
for the obstacle velocity, which can be time-varying. The
obstacle is not assumed to be cooperating, and might even
be in active pursuit of the vehicle. The proposed algorithm is
intuitive, has low computational complexity and is suitable
for a wide range of vehicles, including vehicles with a limited
speed envelope or heavy linear acceleration constraints. This
has been demonstrated by applying the algorithm to a vehicle
restricted by a constant forward speed.

The main theorem of the paper states the conditions under
which it is mathematically proved that a minimum safety
distance between the vehicle and the obstacle is not violated.
This includes a lower bound on the switching distance and
an upper bound on the required vehicle turning rate. The
analysis is validated through simulations, which in particular
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Fig. 9. The third scenario, with a concave obstacle moving straight towards
the vehicle
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Fig. 10. Distance between the vehicle and the obstacle when avoiding a
convex obstacle.

show that the desired vehicle heading rate does not exceed
the theoretical bound.

While the analysis is concerned with avoidance of a
circular obstacle, implementation of the algorithm does not
require knowledge the obstacle shape. In addition to the
obstacle velocity, only the tangents from the vehicle to the
obstacle are required. Hence, the algorithm can be used on
obstacles of any shape, including concave shapes. Additional
testing and analysis will, however, be required to investigate
the behavior of the algorithm in such cases. As an example of
such a case, a simulation of a successful avoidance maneuver
around a concave obstacle has been presented.

This paper has analyzed a single obstacle scenario. In
the presence of multiple obstacles, the algorithm will treat
obstacles close to each other as one and move towards
the outermost tangent. However, a thorough analysis of
the behavior of the algorithm in a multi-obstacle scenario
is beyond the scope of this paper and is left for future
work. Similarly, the system behavior when the vehicle has
more complex dynamics, like a vehicle with underactuated
dynamics, is the topic of future research.
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