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Summary 

A one-component Lennard-Jones/spline fluid at equilibrium was perturbed by a sudden change of the 

temperature at one of the system’s boundaries. The system’s response was determined by non-

equilibrium molecular dynamics (NEMD). The results show that heat was transported by two 

mechanisms: (1) Heat diffusion and conduction, and (2) energy dissipation associated with the 

propagation of a pressure (shock) wave. These two processes occur at different time scales, which 

makes it possible to separate them in one single NEMD run. The system was studied in gas, liquid, and 

supercritical states with various forms and strengths of the thermal perturbation. Near the heat 

source, heat was transported according to the transient heat equation. In addition, there was a much 

faster heat transport, correlated with a pressure wave. This second mechanism was similar to the 

thermo-mechanical “piston effect” in near-critical fluids and could not be explained by the Joule-

Thomson effect. For strong perturbations, the pressure wave travelled faster than the speed of sound, 

turning it into a shock wave. The system’s local measurable heat flux was found to be consistent with 

Fourier’s law near the heat source, but not in the wake of the shock. The NEMD results were, however, 

consistent with the Cattaneo-Vernotte model. The system was found to be in local equilibrium in the 

transient phase, even with very strong perturbations, except for a low-density gas. For dense systems, 

we did not find that the local equilibrium assumption used in classical irreversible thermodynamics is 

inconsistent with the Cattaneo-Vernotte model. 

Keywords: Transient heat flow; Molecular dynamics; Joule-Thomson effect; Fluids; Shock waves; 

Piston effect 
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1. Introduction 

Approximately two decades after Alder and Wainwright had published their pioneering work on 

molecular dynamics simulations [1], Hoover and co-workers explored the applications of this new 

scientific tool to strongly non-equilibrium processes [2]. The reason for shear thinning in viscous flow, 

the thickness of a shock wave in dense fluids, and the limits of linear flow theories were open 

questions at the time. This initiated a new line of computer simulation applications that proved to be 

very important in the understanding of fluid flow. 

Explosions, collisions of solid bodies, rapid phase transitions, volcanic eruptions, supersonic shocks, 

and sudden local heating are examples of processes that generate shock waves. Some examples of 

rapid phase transitions are contact between molten metal and water in the metallurgical industry [3], 

steam explosions in nuclear reactors [4], and spills of liquefied natural gas on soil or water [5]. Such 

accidents may cause shockwaves of concern with respect to safety. Shock compression has for 

decades been used to study the kinetics of rapid chemical reactions [6] and material properties and 

fracturing of solids [7]. There is a vast literature on the topic, including the excellent books by Landau 

and Lifshitz [8], Hirschfelder et. al. [9], and Hoover and Hoover [10], and there are conference series 

devoted to shock waves.   

Naturally, most of the literature on shock waves relate to gases. Analyses are based on hydrodynamics 

and numerical solution of the Navier-Stokes equations. On the other hand, the simulation work of 

Hoover [2] and subsequent work [11, 12, 13, 14] have explored the properties of liquids and solids. 

Brad Lee Holian, another pioneer in the field, wrote an interesting and quite personal review on 

computer simulations of shock waves in 1993 [15]. A few recent examples that illustrate some of the 

current topics of interest, are the studies of local equilibrium properties (or rather the lack of 

equilibrium) in an ideal-gas shock wave [16], shock wave compression and its relation to the Joule-

Thomson effect [14], and phonon transport at very short time scales [17]. 



3 

In most of the reported atomistic simulations of shock waves, the shock is generated by a piston on 

one side of the system. The coordinate system is chosen to move with the shock front, making the 

shock wave stationary in these coordinates [18]. The properties of the shock wave is typically analysed 

in terms of the Rankine-Hugoniot conditions in a Lagrangian framework [19, 20]. 

A shock wave is a highly non-equilibrium phenomenon. It has been clearly demonstrated that local 

fluid properties, such as the temperature and pressure, deviate from the equilibrium properties in the 

shock wave, especially for two-dimensional systems at low density [16]. This is illustrated by e.g. a 

non-isotropic kinetic temperature in a control volume of size corresponding to a fluid particle mean 

free path. 

In compressible fluids, and especially in near-critical fluids, it has been shown that thermal 

equilibration in a locally heated fluid occurs faster than expected from diffusion of heat as described 

by the heat equation, 

𝜕𝑇

𝜕𝑡
= 𝛼∇2𝑇 (1) 

 

where 𝑇 is temperature, 𝑡 is time, 𝛼 is the thermal diffusivity, i. e. the thermal conductivity divided by 

density and constant-pressure heat capacity, and ∇2 is the Laplace operator. This fast heating is the 

so-called “critical speeding-up” or “piston effect” [21] , [22]. The phenomenon of critical speeding-up 

was not fully understood until Onuki et. al. [23] explained it in terms of the connection between 

entropy-, pressure-, and thermal changes in the fluid. Whereas heat diffusion in a closed container 

has a characteristic time 𝜏D = 𝐿2 𝛼⁄ , where 𝐿 is the length of the container, a typical time scale for 

the piston effect is 𝜏PE = 𝜏D (𝛾 − 1)2⁄ , where 𝛾 is the ratio between the heat capacity at constant 

pressure and constant volume. The divergence of 𝛾 in the near-critical region of the phase diagram 

gives the “critical speeding-up” of thermal equilibration. Even though the thermodynamic states 

considered in this paper are not “near critical”, the closest case show as an example   𝜏D
∗ ~17 000 and 

𝜏PE
∗ ~3 000  , i. e. a factor roughly 3 between the two time constants. 



4 

The questions discussed in this paper are limited to observations of heat diffusion and the piston effect 

on an atomistic scale. The pressure- and temperature waves were generated with a local heat source 

acting by rescaling the particles’ kinetic energy. The heat was suddenly turned on in an equilibrated 

fluid system. Although the results are in qualitative agreement with the hydrodynamics literature, a 

more detailed analysis in terms of the theory behind the piston effect and the system’s entropy 

production is deferred to a later paper because we are lacking information about the system’s 

viscosity. 

This work differs from previously reported simulations in that the perturbation was isotropic rather 

than a directed pulse. The system’s response was studied in an Eulerian framework with boundary-

driven non-equilibrium molecular dynamics simulations (NEMD) as described by Ikeshoji and Hafskjold 

[24]. The following questions were addressed: 

(1) When the heat source is suddenly switched on, it generates a pressure increase near the heat 

source (like an explosion), a pressure (shock) wave, a local gas compression, and a local heating 

effect accompanying the pressure wave. What is the relation between the pressure wave and the 

heat wave? 

(2) Do the temperature gradients near the heat source and around the pressure wave give rise to a 

heat flux that may be described by Fourier’s law? 

(3) The Cattaneo-Vernotte model for heat transfer [25, 26] introduces the concept of a 

thermodynamic relaxation time and may be considered as a generalization of Fourier’s law [27]. 

How well does this model apply to the transient situation?  

(4) Is local equilibrium, in the sense that local thermodynamic properties in the irreversible process 

are given by the (equilibrium) equation of state, fulfilled with this method for heat- and pressure 

shock wave generation? 

In Section 2, we give a brief account on the details of the simulations. We should emphasize here that 

the thermodynamic states used in this work are supercritical, but not near critical in the usual sense; 



5 

the temperatures are more than 10 % above the system’s critical temperature. The results are 

presented and discussed in Section 3. The somewhat surprising results in light of most of the previous 

NEMD studies are briefly discussed in Section 4, and tentative conclusions are given in Section 5. 

 

2. Simulations and basis for data analysis 

The system of concern in this work is a one-component, 3D Lennard-Jones/spline (LJ/s) model defined 

by the pair potential [28] 

𝑢(𝑟) = 

 

4𝜀 [(
𝜎

𝑟
)

12

− (
𝜎

𝑟
)

6

] for 𝑟 ≤ 𝑟𝑠  

𝑎(𝑟 − 𝑟𝑐)2 + 𝑏(𝑟 − 𝑟𝑐)3 for 𝑟𝑠 ≤ 𝑟 ≤ 𝑟𝑐 (2) 

0 for 𝑟 ≥ 𝑟𝑐  

The parameters 𝜀 and 𝜎 are the usual LJ parameters. The parameters 𝑟𝑠, 𝑟𝑐, 𝑎, and 𝑏 are determined 

so that the potential and its derivative (the force) are continuous at 𝑟 = 𝑟𝑠 (the inflection point of the 

LJ potential) and 𝑟 = 𝑟𝑐 (the cut-off distance). This leads to 

𝑟𝑠 = (
26

7
)

1/6

𝜎 ≈ 1.24𝜎 (3a) 

𝑟𝑐 =
67

48
𝑟𝑠 ≈ 1.74𝜎 (3b) 

𝑎 = −
24192

3211

𝜀

𝑟𝑠
2 (3c) 

and 

𝑏 = −
387072

61009

𝜀

𝑟𝑠
3 (3d) 

This definition of the spline makes the potential convenient to work with because (1) it is unambiguous 

(no additional need to specify cut-off, shift, or smoothing function), (2) no correction for long-range 

tail is necessary1, and (3) the potential is of shorter range than typical LJ potentials, which has cut-off 

                                                           
1 This means that the model does not pretend to be the full LJ model, it is just a convenient alternative. 
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typically at 𝑟𝑐 𝜎⁄ = 2.5 − 3.5. The last feature makes the MD code run about twice as fast as with the 

LJ potential. The LJ/s potential contains essentially the same physics as the LJ potential. In particular, 

the fluid structure, which is dominated by the repulsive forces, is essentially the same as for the full LJ 

potential, whereas the thermodynamic properties are significantly different. For instance, the critical 

temperature of the LJ model is 𝑇c
∗ ≅ 1.33 [29], whereas the LJ/s model has 𝑇c

∗ ≈ 0.9 [unpublished 

data]. 

Throughout this paper, numerical values are reported in the usual LJ units when the symbols are 

marked with an asterisk. The definitions of the reduced variables are shown in Table I. 

Table I. Definitions of reduced variables used in this work. 

Property Definition 

Temperature 𝑇∗ =
𝑘B𝑇

𝜀
 

Density 𝑛∗ =
𝑁𝜎3

𝑉
 

Pressure 𝑃∗ =
𝑃𝜎3

𝜀
 

Time 𝑡∗ =
𝑡

𝜎
(

𝜀

𝑚
)

1/2

 

Length 𝑥∗ =
𝑥

𝜎
 

Velocity 𝑣∗ = 𝑣 (
𝑚

𝜀
)

1/2

 

Mass flux 𝐽m
∗ = 𝐽m

𝜎3

𝑚
(

𝑚

𝜀
)

1/2

 

Energy flux 𝐽energy
∗ = 𝐽energy

𝜎3

𝑚
(

𝑚

𝜀
)

1/2

 

Measurable heat flux 𝐽q
∗ = 𝐽q

𝜎3

𝑚
(

𝑚

𝜀
)

1/2

 

 

A boundary-driven NEMD method as described by Ikeshoji and Hafskjold [24] and by Hafskjold et. al. 

[30] was used, except that the HEX algorithm was replaced by thermostats in the layers used for supply 

and withdrawal of kinetic energy.  
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A sketch of the NEMD cell layout is shown in Figure 1. The cell was non-cubic with an aspect ratio 

𝐿𝑥: 𝐿𝑦 = 𝐿𝑥: 𝐿𝑧 = 32 with periodic boundary conditions in all three directions. The cell was divided 

into 128 layers of equal thickness perpendicular to the x-direction (the direction of the transport 

processes). One layer at each end was thermostatted to a temperature 𝑇H and the two layers in the 

center of the cell were thermostatted to a temperature 𝑇L. The thermostats used a simple velocity 

rescaling algorithm with local momentum control, 

𝐯𝑖
new = 𝑎𝐯𝑖

old + 𝛃 (4) 

where 𝐯𝑖
old and 𝐯𝑖

new are the velocity of particle i before and after the scaling, respectively. Details of 

the thermostatting algorithm are presented in Appendix A. The thermostat in the hot layers was 

independently applied to the x-, y-, and z-components of the velocities. Otherwise, the temperature 

in the hot layers developed a non-isotropic profile due to energy loss in the x-direction. 

The Velocity Verlet algorithm was used to integrate the equations of motion.  

The regions marked “System” in Figure 1, not including the thermostatted layers, was used for 

acquiring thermodynamic properties and transport data. The mirror symmetry of the system was used 

to pool data from the left and right sides of the cold layers. 

The transient simulations were done with 𝑁 = 128,000 particles, so each layer contained 1000 

particles on average, except that the dilute-gas case was done with 𝑁 = 432,000. Further details of 

the simulations are given in Table II. 

Figure 1. NEMD cell layout. See text for explanation. 
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The phase diagram of the 3D LJ/s system shows gas, liquid, and solid phases with a critical temperature 

𝑇c
∗ ≈ 0.9 in reduced LJ units, a critical number density 𝑛𝑐

∗ ≈ 0.4, and a triple-point temperature 𝑇tp
∗ ≈

0.5. Four transient states were studied in this work, at overall densities 𝑛∗ = 0.001 (dilute gas), 0.02 

(dense gas), 0.4 (supercritical), and 0.8 (liquid). 

Prior to the transient simulations, the system was equilibrated at a uniform (supercritical) 

temperature 𝑇∗ = 1.0. At time zero, the thermostat set point in the hot layers was suddenly set to 

𝑇H
∗ = 10.0 and maintained at that value as shown in Figure 2, while the cold layers were kept at 𝑇L

∗ =

1.0. The system’s response was monitored from then on. The system in all the other layers was free 

to adjust its properties according to the impact from the hot layers.  

In one case, the thermostats were set 𝑇H
∗ = 10.0 and 𝑇L

∗ = 3.0, starting from equilibrium at 𝑇∗ = 3.0 

and 𝑛∗ = 0.4 in order to examine the cause of the observed heat wave (see Section 3.2). A pulsed 

heat source was also used (run 4) without giving significantly different results from those reported 

here, as shown in Section 3.2.  

In order to estimate the magnitude of random errors in the transient phase, 20 runs were started from 

different equilibrium configurations, generated by initial Monte Carlo sequences of different lengths 

at 𝑇∗ = 10.0, then cooled down at constant density to 𝑇∗ = 1.0 and allowed to equilibrate with 

equilibrium MD. The MD time step was in all cases 𝛿𝑡∗ = 0.002. A summary of the simulation 

conditions are listed in Table II. 

Figure 2. Generation of transient states by suddenly 
increasing the temperature in the hot layers. 
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Instantaneous values for the properties of interest were acquired for each layer every 20 time step 

and accumulated for computation of averages over time intervals ∆𝑡∗ to obtain local properties. The 

values of ∆𝑡∗ are given in Table II. 

Table II. Summary of simulation conditions. In all cases, 𝑇𝐻
∗ = 10.0 

Run 
no. 

𝑛overall
∗  𝑇L

∗ 𝑡run
∗  ∆𝑡∗ 𝑃eq

∗  𝑍 =
𝑃𝑉

𝑁𝑘B𝑇
 Comment 

1 0.8 1.0 400 8.0 2.36±0.02 2.95±0.02  
2 0.8 1.0 20 0.4 2.36±0.06 2.95±0.02  
3 0.4 1.0 100 2.0 0.169±0.008 0.42±0.02  
4 0.4 1.0 100 2.0 0.169±0.008 0.42±0.02 (1) 
5 0.4 1.0 10 0.2 0.17±0.02 0.43±0.05 (2) 
6 0.4 1.0 10 0.2 0.17±0.04 0.4±0.1 (2,3) 
7 0.4 1.0 5 0.1 0.17±0.02 0.43±0.05 (2) 
8 0.4 3.0 100 2.0 1.86±0.03 1.55±0.03 (4) 
9 0.02 1.0 400 4.0 0.0189±0.0003 0.95±0.02  

10 0.001 1.0 600 4.0, 2.0 9.98×10-4±7×10-6 1.000±0.007 (5) 

(1) Pulsed heat source, length of pulse was 4 in LJ units 
(2) Started from run 3 at 𝑡∗ = 60. 

(3) With layer thickness ∆𝑥∗ = 1.35 
(4) Test of Joule-Thomson effect on heat pulse 

(5) ∆𝑡∗ = 4.0 until 𝑡∗ = 400, ∆𝑡∗ = 2.0 thereafter  
 

Some characteristic geometric data for the simulation cell are given in Table III. For comparison, the 

mean free path 𝜆∗ as computed from elementary kinetic theory is also given in the table. 

Table III. Parameters used for computation of local averages in space. The mean free path  
𝜆∗ as computed from elementary kinetic theory is included for comparison with the layer thickness 

∆𝑥∗. The thermal diffusivity, 𝛼∗, was determined as described in Section 3.2. See also footnotes 
to Table II. 

Case 𝑛overall
∗  ∆𝑥∗ 𝐿𝑥

∗  𝐿𝑦
∗ , 𝐿𝑧

∗  𝜆∗ 𝛼∗ 

Liquid 0.8 4.28 545.2 17.04 0.28 3.5 

Supercritical 0.4 5.39 686.6 21.46 0.56 6.9 

Dense gas 0.02 14.62 1862 58.20 11.25 56 

Dilute gas 0.001 59.53 7620 238.1 225.1 - 

 

The instantaneous, local kinetic temperature in a control volume (layer) CV was computed as 
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𝑇CV =
𝑚

3𝑁CV𝑘B
∑(𝐯𝑖 − 𝐯cm)2

𝑖ϵCV

 (5) 

where 𝑚 is the mass of each particle, 𝑁CV is the instantaneous number of particles in the control 

volume,2 𝐯𝑖 is the instantaneous velocity of particle 𝑖, and 𝑘B is Boltzmann’s constant. Note that 𝐯cm 

is the local centre-of-mass velocity averaged over the time interval ∆𝑡. The velocities refer to the MD 

cell frame of reference. Assuming small relative fluctuations in 𝑁CV, the average kinetic temperature 

may be expressed as 

𝑇CV
̅̅ ̅̅̅ =

1

3𝑘𝐵
[2𝑘𝑒̅̅ ̅ −

1

𝑚
(

𝐽𝑚̅̅̅

𝑛̅
)

2

] (6) 

where 𝑘𝑒 is the kinetic energy per particle and 𝐽𝑚 is the mass flux in the MD cell frame of reference, 

𝐽𝑚 =
𝑚

𝑉CV
∑ 𝐯𝑖

𝑖ϵCV

 (7) 

where 𝑉CV is the size of the control volume.  The bars in Eq. (6) denote time averages over the interval 

∆𝑡. The computation of the kinetic temperature was done during post-processing of the raw MD data 

because 𝐯cm was not computed on the run. 

In our analysis of the pressure- and heat waves, we shall also need the heat flux. The heat flux that is 

readily obtained in boundary-driven-NEMD is the energy flux, also called the total heat flux [31]. The 

energy flux 𝐽energy
MD  is given in the MD cell frame of reference as [32] 

𝐽energy
MD =

1

𝑉CV
∑ [𝑒𝑖𝐯𝑖 −

1

2
∑[𝐯𝑖 ∙ 𝐅𝑖𝑗]

𝑁

𝑗=1

𝐫𝑖𝑗]

𝑖ϵCV

 (8) 

 

where 𝑒𝑖 is the sum of potential and kinetic energy of particle 𝑖, 𝐅𝑖𝑗 is the force acting on 𝑖 due to 𝑗, 

and 𝐫𝑖𝑗 is the vector from the position of 𝑖 to the position of 𝑗. The heat flux related to Fourier’s law is 

                                                           

2 In reduced units 𝑉CV
∗ = ∆𝑥∗𝐿𝑦

∗𝐿𝑧
∗, where ∆𝑥∗ is the thickness of each layer as listed in Table III. 
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the measurable heat flux, which excludes the transported heat due to the fluid flow (or center-of-

mass velocity). The measurable heat flux is [32] 

𝐽q =
1

𝑉
∑ [𝑒𝑖(𝐯𝑖 − 𝐯cm) −

1

2
∑[(𝐯𝑖 − 𝐯cm) ∙ 𝐅𝑖𝑗]

𝑁

𝑗=1

𝐫𝑖𝑗]

𝑖ϵCV

 (9) 

 

It is not straightforward to compute the transient heat flux in boundary-driven NEMD from this 

expression because the center-of-mass velocity is unknown at the time of the computation. The 

computation of 𝐽q is therefore done in the postprocessing, like for the kinetic temperature. The 

measurable heat flux is independent of the frame of reference and may be expressed as 

𝐽q = 𝐽energy
MD − 𝐽𝑚𝐻 (10) 

where 𝐻 is the local enthalpy [31]. Both fluxes on the rhs of Eq. (10) relate to the MD cell frame of 

reference, and 𝐻 is a property of the fluid.3 Eq. (10) provides a convenient way to compute the 

measurable heat flux in NEMD. 

 

3. Results 

3.1 The shock wave 

The sudden increase in the hot-layer temperature generated a pressure wave in the system. Run no. 

1 was chosen long enough so that the wave could move until it hit the wave coming from the opposite 

end of the MD cell, was reflected and moved back and forth until the system eventually reached a 

state close to steady state with a more uniform pressure. The illustration in Figure 3 is for the liquid 

case. This behaviour is consistent with what has been found from numerical solution of the governing 

                                                           
3 The enthalpy has an ideal-gas contribution that depends on the temperature. The kinetic temperature given 
by Eq. (6), corrected for the center-of-mass velocity, must be used here. The correction has nothing to do with 
the frame of reference, but is a consequence of the definition of the kinetic temperature. 
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balance equations with a finite elements method or numerical inversion of their Laplace transforms 

for compressible fluids, see e. g. refs. [33] and [34]. 

The length of runs 2 – 10 was chosen so that the shock wave just reached the centre of the MD cell at 

the end of the run. Disturbance from the reflected wave was thus avoided and the system behaved 

Figure 3. Results from run 1 showing pressure waves moving back and forth in the MD cell. The 
distance from the hot end of the MD cell is 𝑥∗ (in LJ units). The arrows indicate the direction of 
the wave motion. The system had not yet reached stationary state at the end of the run (𝑡∗ =
400). The shock front is artificially wide because it is smoothed by the large time interval used for 
computing averages, ∆𝑡∗ = 8, in this case. During this time, the wave had moved a distance 
approximately 70 in LJ units. 

Figure 4. Pressure profile for run 4 at time 𝑡∗ = 50 after the heat was turned on with 𝑇𝐻
∗ = 10.0. 

The uncertainties are shown as three standard deviations of the mean of 20 independent runs with 
different initial configurations. The four large circles are equilibrium values, see Section 3.4. The red 
line is a model fit used to determine the peak of the pressure wave. 
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like a semi-infinite system during this time. The low-temperature thermostat actually had no effect 

for these runs. Shorter time intervals were used in these cases, see Table II. As an example, Figure 4 

shows the pressure profile in the supercritical fluid some time after the heat is turned on in run 3, at 

𝑡∗ = 50. As the wave progresses, it loses energy, slows down (see Figure 6) and its amplitude is 

damped. 

The corresponding temperature profile shown in Figure 5 also shows a shock-wave behaviour in 

addition to the expected diffusion of heat near the hot layer (at 𝑥∗ = 0). The thermal diffusivity of the 

fluid was determined from the temporal evolution of the temperature profile near the hot layer (insert 

in the Figure 5), see Section 3.2. 

The pressure- and temperature waves travelled with an almost constant speed. Figure 6 shows the 

position of the pressure peak as function of time for run 3. The position of the peak was determined 

from a fit of the function 

𝑓(𝑥) = 𝑎 + 𝑏
1 + 𝑐 (

𝑥
𝑥0

)
𝑑

1 + (
𝑥
𝑥0

)
𝑒  (11) 

Figure 5. Temperature profile at the same condition as shown in Figure 4. 
The insert shows the temperature profile near the hot source. Comparing 
Figs. 4 and 5 shows that the temperature wave is syncronous with the 
pressure wave. 
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where 𝑎 − 𝑒 and 𝑥0 are adjustable parameters determined with a least-squares method. An example 

of the fit is shown in Figure 4. This function does not have a physical meaning, is was just used as a 

convenient model to determine the peak position by setting 𝑓′(𝑥) = 0. 

The thickness of the shock wave can be estimated from the data shown in Figure 4. An approximate 

value is 15 LJ units. This is larger than the distance travelled by the wave during the time ∆𝑡∗ used for 

time averages, so the effect of smoothing shown in Figure 3 is reduced or eliminated. In order to 

further check the smoothing effect of averaging in time and space, three additional runs, no. 5, 6, and 

7 were made with finer resolutions, see Table II. A comparison between data from runs 3 and 7 for 

Figure 6. Position of the pressure peak as function of time for the 
supercritical state. The slope is the travelling speed of the shock. 

Figure 7. Details of the shock wave for two time resolutions. Data 
from runs 3 and 7 for 𝑡∗ = 64. 
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𝑡∗ = 64 is shown in Figure 7. For the values of ∆𝑡∗ used here, there is no effect of the time resolution, 

and the observed thickness of the pressure wave must be interpreted as representing the nature of 

the wave. The thickness of the wave front was found to be approximately 15 LJ units for the 

supercritical case. 

Results for the liquid and dense gas cases show qualitatively the same shock-wave behaviour, but the 

ideal-gas case was different (see Section 3.4). 

The slope of the curve in Figure 6 decreases slightly with time, but the average over the range shown 

is 𝜕𝑥∗ 𝜕𝑡∗⁄ ≈ 3.1 for the supercritical case. This should compare with the speed of sound, given by 

𝑣𝑠
2 =

𝐶𝑃

𝐶𝑉
(

𝜕𝑃

𝜕𝑛
)

𝑇
 (12) 

The properties on the rhs of Eq. (12) were computed from equilibrium MD simulations, see Appendix 

B for details. For the case shown in Figure 4, the value was found to be 𝑣𝑠
∗ ≈ 1.5 in front of the shock 

wave, i.e. the shock wave travelled with a Mach number approximately equal to 2. Similar results were 

found for the other dense cases, but the shock-like behaviour was softened as the density was 

reduced. 

 

3.2 Local heating 

The temperature profile shown in Figure 5 has two distinct features; (1) heat diffusion near the heat 

source and (2) a heat wave travelling syncronously with the pressure wave. The heat diffuses in the 

range between the heat source and the pressure wave. Using the case shown in Figure 5 as an 

example, this range is approximately 0 < 𝑥∗ < 100 (see the figure insert). This range may be 

considered semi-infinite for 0 < 𝑡∗ < 50. With initial conditions 𝑇(𝑥, 0) = 𝑇𝑖 and boundary 

conditions 𝑇(0, 𝑡) = 𝑇H, 𝑡 > 0, and 𝑇(𝑥 → ∞, 𝑡) = 𝑇𝑖, the solution of the heat equation, 

𝜕𝑇(𝑥, 𝑡)

𝑑𝑡
= 𝛼

𝜕2𝑇(𝑥, 𝑡)

𝜕𝑥2
 

(12.1
0) 

 

(13) 
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where 𝛼 is the thermal diffusivity, is 

𝑇(𝑥, 𝑡) = 𝑇𝑖 + (𝑇H − 𝑇𝑖) 𝑒𝑟𝑓𝑐 (
𝑥

2√𝛼𝑡
)  (14) 

Note that the initial condition is 𝑇𝑖 = 𝑇L, but the temperature does not fall back to 𝑇L behind the heat 

wave. Therefore, the model, Eq. (14), was fitted to the NEMD data with the least squares method, 

using 𝑇𝑖 as well as 𝛼 as adjustable parameters, giving the fit shown in Figure 8. Estimates for 𝛼∗ are 

included in Table III, except that a reliable value was not found for the dilute-gas case. The 

estimates may be used to check the consistency with the shock-wave properties as discussed in 

Section 3.3. 

Although the NEMD data for 𝑇(𝑥, 𝑡) over a range of 𝑡 allow for a more extensive analysis in terms of 

the heat equation, we shall leave this analysis by just noting that the model, Eq. (14), fits the NEMD 

data well with a constant thermal diffusivity over a very wide temperature range. 

Turning to the region of the pressure- and heat waves, it should first be pointed out that the present 

simulation setup is quite different from most other MD studies. In this work, the pressure pulse is 

generated by increasing the particles’ velocities in all directions, not only in the wave’s travelling 

direction. Secondly, the particles’ Maxwellian velocity distribution prior to the heating is retained in 

Figure 8. Comparison of NEMD data (black circles) and 
model (line) for the case shown in Figure 5 (𝑡∗ = 50). The 
model is a fit of Eq. (14) to the NEMD data. 
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the velocity scaling. Third, we use an Eulerian description in which the pressure pulse moves in the 

MD cell frame of reference, whereas most other NEMD simulations of shock waves use a Lagrangian 

description in which the coordinate system moves with the shock [11], [35]. 

It is often assumed that a pressure wave is adiabatic. This raises the question of to what extent the 

thermal wave is a consequence of the pressure wave and a Joule-Thomson effect. Turning back to 

figures 4 and 5, we can quantify the ratio between the peak values of the pressure- and temperature 

waves relative to the equilibrium values in front of the wave as function of time (as the waves 

progress). The result is shown in Figure 9. The plot also includes the ratio ∆𝑇∗/∆𝑃∗, which in this case 

is of the order 0.4 – 0.6. The Joule-Thomson coefficient for three selected states near the wave front 

was computed from a series of equilibrium simulations, similarly to the speed-of-sound calculation 

and based on the expression 

𝜇 =
1

𝐶𝑃
[(

𝜕𝑉

𝜕𝑇
)

𝑃
𝑇 − 𝑉] (15) 

The following values were obtained: 𝜇∗ = 0.8, 0.2, and 0.0 for the (equilibrium) state in front of the 

shock, in the steepest front of the pressure wave, and at the pressure peak, respectively. The Joule-

Thomson coefficient can be positive or negative, depending on the thermodynamic state of the 

system. For a given temperature, the coefficient decreases and becomes negative with increasing 

Figure 9. Increase in temperature and pressure from equilibrium to 
peak values and the ratio between them. The framed points are from 
the same cases as shown in Figures 4 and 5. 
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pressure. We therefore did a simulation for the supercritical case (run 8), starting with equilibrium at 

𝑇∗ = 3.0 with a higher equilibrium pressure, for which the Joule-Thomson coefficient is expected to 

be negative.4 The results are shown in Figure 10. Also in this case, there is a local heating, whereas the 

Joule-Thomson effect would have given a local cooling if it were the dominant effect. The conclusion 

is that the Joule-Thomson effect contributes little or nothing to the heat wave. 

To examine the effect of pulsed vs. steady heat source, we did one simulation for the supercritical 

case with a pulsed source (run 4). The heat was turned on with the thermostat set point at 𝑇H
∗ = 10.0 

and turned off at 𝑡∗ = 4 and the system was then allowed to relax. The results for the pressure and 

temperature are shown in Figure 11. The first observation from a comparison between Figures 4 and 

11 is that the pressure wave travels with about the same speed in both cases. Secondly, like with the 

steady heat source, both the pressure and temperature stay at values higher than the equilibrium 

values in the region 75 < 𝑥∗ < 125, where the heat diffusion from the source has not yet reached at 

this time. The energy pumped into the system by the heat pulse is clearly dissipated by two quite 

different mechanisms; diffusion near the heat source and dissipation of the energy in the pressure 

wave. 

                                                           
4 A more detailed analysis of the Joule-Thomson coefficient for the LJ/spline system will be presented in a 
forthcoming paper. 

Figure 10. Pressure- (white) and temperature (black) plots for a case 
where the Joule-Thomson coefficient is negative. Like for the other 
cases, the pressure wave causes a local heating. 
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In order to further examine the nature of the heat wave, we computed the local enthalpy in the 

system. Using the same supercritical snapshot at 𝑡∗ = 50 as an example, the situation is shown in 

Figure 12. Each layer is an open system that exchanges kinetic energy and enthalpy with the 

neighboring layers. In fact, at the peak of 𝐽𝑞
∗ (see Figure 13), the numerical values of the first and 

second term on the rhs of Eq. (10) are 0.71 and 0.44, respectively. The prerequisite for an analysis in 

terms of the Joule-Thomson effect does not exist. This does not exclude that a Joule-Thomson effect 

contributes to the heat wave, but it is clearly not the only reason for it. 

 

Figure 12. Enthalpy per particle (black symbols) and enthalpy density (white circles) for the 
same case as shown in Figure 4. The four larger circles are equilibrium values, see Section 3.4. 

Figure 11. Temperature- and pressure profiles at the same conditions as in Figure 3, the 
supercritical case and at time 𝑡∗ = 50 after the heat was turned on. Also in this case  𝑇𝐻

∗ =
10.0, but the heat source was switched off at 𝑡∗ = 4. 𝑇𝐿

∗ was kept at 1.0. The uncertainties are 
shown as three standard deviations of the mean, based on 20 parallel runs. 
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3.3. Fourier’s law and the shock wave 

We now turn to the question of the validity of Fourier’s law in the shock wave. As already shown by 

the analysis of the heat dissipation near the heat source in terms of the heat equation, which implies 

Fourier’s law, describes the situation well. On the other hand, Figure 5 shows a region, 100 < 𝑥∗ <

170, where the temperature gradient is slightly positive. The corresponding heat flux shown in Figure 

13 is positive everywhere (or zero in the equilibrium region in front of the wave), indicating a violation 

of Fourier’s law.  

 The structure of the parabolic heat equation, Eq. (13) does not describe the wave. A thorough review 

of various models with hyperbolic equations was given by Joseph and Preziosi [27] and a comparison 

of results from the two types of equations was given by Vick and Özisik [36]. A particularly popular 

model for a hyperbolic heat equation that allows for a heat wave is the Cattaneo-Vernotte model [25] 

[26]. This model introduces the concept of a thermodynamic (or heat) relaxation time 𝜏 and 

reformulates the conservation law for heat as 

𝐽q(𝑥, 𝑡) + 𝜏
𝜕𝐽q(𝑥, 𝑡)

𝜕𝑡
= −𝑘∇𝑇(𝑥, 𝑡) (16) 

Figure 13. Heat flux corresponding to the temperature profile in Figure 5. 
Note that the heat flux is positive behind the shock wave, a region where 
the temperature gradient is also positive. 
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where 𝑘 is the thermal conductivity. The idea is that the heat flux 𝐽𝑞 is delayed a certain time 𝜏 in 

response to the force ∇𝑇 at time 𝑡 and so it has a “memory” of the pulse. The NEMD simulations give 

us both the heat flux and the temperature gradient as function of 𝑥 and 𝑡. The temperature gradient 

was computed with a five-point numerical differentiation of the temperature data, except neat the 

shock front, where a three-point method was used. The supercritical case is shown in Figure 14 as 

function of time for the “window” at  𝑥∗ = 90. We note that the heat flux after passage of the 

temperature front (the negative peak in ∇𝑇) behaves as a typical relaxation. Approximating ∇𝑇 with a 

Dirac delta function, 𝐽q is expected to show an exponential decay after passage of the peak [27], 

𝐽q(𝑡) =
𝑘

𝜏
exp (−

𝑡

𝜏
) (17) 

 This leads to the Cattaneo-Vernotte model, Eq. (16). Inspection of Figure 14 shows that 𝐽q does not 

relax to zero after the peak, so the model was modified to 

𝐽q(𝑡) = 𝐽∞ +
𝑘

𝜏
exp (−

𝑡 − 𝑡0

𝜏
) (18) 

where 𝐽∞ is the level of the heat flux after a long time and 𝑡0 is the time when the peak passes the 

“window”. Using  𝐽∞, 𝑘/𝜏, and  𝜏 as adjustable parameters in a least-squares regression gave the black 

Figure 14. Heat flux and temperature gradient as function of time for 𝑥∗ = 90. 
The black line is the fit of Eq. (18) to the NEMD data for 𝐽𝑞

∗. The gradient in 𝑇∗ was 

calculated from a five-point numerical differentiation, except in the wave front 
and peak, where we used a three-point method. 
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line in Figure 14 with estimates 𝐽∞
∗ = 0.026, 𝑘∗ 𝜏∗⁄ = 0.44, and  𝜏∗ = 6.6. The value of 𝑡0

∗ was fixed at 

19 as read from Figure 14. Although the quality of the data does not allow for an accurate estimate 

for the thermal conductivity, the value deducted from the fit was 𝑘∗ ≈ 2.9. An independent estimate 

for 𝑘 was obtained from a stationary-state NEMD run with 𝑛∗ = 0.5 (approximate density at the peak), 

𝑇H
∗ = 1.6, 𝑇L

∗ = 1.4, and a temperature gradient ∇𝑇∗ = −0.0125, which gave  𝑘∗ = 2.96 ± 0.04. The 

good correspondence is probably by chance, but at least the two estimates for 𝑘 are consistent. A 

better analysis will be required to resolve this.  

 We conclude that the Cattaneo-Vernotte model does describe the observed transient heat flux quite 

well under the conditions in the present case. 

3.4. Local equilibrium 

The last question we have addressed in this work, is that of local equilibrium. Based on our previous 

work [37], we have chosen to consider two indicators: (1) isotropy of the kinetic temperature and (2) 

the values of local thermodynamic properties in relation to the equilibrium equation-of-state values. 

The idea is that if one or both of these conditions are violated, local equilibrium is not fulfilled. The 

opposite case is a strong indication that local equilibrium is indeed fulfilled. 

Figure 15. Local temperature tensor components at 𝑡∗ = 50 
for the supercritical case. 
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The kinetic temperature computed from Eq. (5) is a tensor. If the components of the tensor are equal, 

the temperature may be considered to be isotropic. Figure 15 shows that this is the case, which is not 

consistent with previous studies of shock waves, except the work by Guo et. al. [38]. We also found 

that the pressure is isotropic even in the shock wave (not shown here), another indication of local 

equilibrium. The dense gas case showed a slight difference between the temperature components, 

whereas the difference in the dilue gas was more pronounced as shown in Figure 16.  

The other check on local equilibrium was based on comparing the local equation of state in the 

transient case with results from equilibrium simulations. Four state point were chosen from the non-

equilibrium simulation. As an example, the supercritical case at 𝑡∗ = 50 is included here. Equilibrium 

𝑁𝑉𝑇-simulations were done with 𝑁 = 4096, the selected densities and temperatures as input, and 

the corresponding pressure and enthalpy were computed. The comparison is shown as the four large, 

white circles in Figure 4 for the pressure and Figure 12 for the enthalpy. These comparisons also show 

that the local equilibrium condition is not violated. Equally close similarity between non-equilibrium 

and equilibrium results were found also in the liquid and dense gas cases. 

 

  

Figure 16. Local temperature tensor components at 𝑡∗ = 400 from the non-equilibrium 
simulation in the ideal-gas case, run 10 (𝑛∗ = 0.001). For this state, the system obeys the ideal-
gas law, 𝑍 = 1.0. The total number of particles was 432,000 in this case (see also Table II). Note 
the lack of isotropy in the range 1000 < 𝑥∗ < 2000. 
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4. Discussion 

The results presented here answer some of the questions raised in the introduction, but leave some 

others unsolved. The heat wave associated with the pressure wave may have a contribution from the 

Joule-Thomson effect, but the effect must be small in the case examined in detail here. Runs 3 and 8 

represent equilibrium states with opposite signs for the Joule-Thomson coefficient, yet the pressure 

wave heats up the system with about the same ratio ∆𝑇∗ ∆𝑃∗⁄ ~0.5 in both cases at 𝑡∗ = 50. The 

work presented here is (by chance) very similar to the work by Guo et. al. [38], which has not received 

much attention in the literature. Guo et. al. used a pulsed heat source in an otherwise very similar set-

up compared with what we have used. They also found propagating waves of pressure and 

temperature. However, they found that the pressure and temperature resumed the equilibrium 

values after the wave had passed. For such a reversible, adiabatic process the Joule-Thomson effect 

should be responsible for the coupling between the pressure and the temperature, a conjecture we 

cannot confirm.  Guo et. al. point at an apparent disagreement with some previous NEMD simulations 

for a 2D system on liquid argon [39]. It seems that ref [39] reports a temperature wave in agreement 

with the CV model whereas ref [38]  does not. 

Another approach is to follow arguments of Boukari et. al. [40], leading to the relation 

𝑑𝑇

𝑑𝑃
=

1

𝛽
(𝛼𝑇 −

𝑑 ln 𝑛

𝑑𝑃
) (19) 

where 𝛼𝑇 is the isothermal compressibility and 𝛽 is the volume expansion coefficient. This gives 

∆𝑇∗ ∆𝑃∗⁄ ~1 for run 3 at 𝑡∗ = 50, which is not in agreement with the observed effect. The estimates 

based on the Joule-Thomson effect and Eq. (19) do not take into account viscous dissipation of the 

energy or heat diffusion caused by the temperature gradients near the shock front. Figure 13 shows a 

strong heat flux in the shock front, leading energy away from the pressure peak and so reducing the 

temperature. This effect is not taken into account in the effects discussed above. Another effect which 

is omitted in the analysis is the viscous dissipation of energy due to the bulk viscosity. There is no shear 
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in the system, but the compression of the fluid by the pressure wave will lead to viscous forces. This 

effect, and the role of the entropy production in the shock wave, including the thermoacoustic effect 

discussed by Onuki [41] will be topic of a forthcoming paper. 

It seems clear that the heat diffusion near the heat source is consistent with the heat equation, which 

implies Fourier’s law. It is somewhat surprising that a constant value of the thermal diffusivity works 

over such a wide range of temperature and density as shown here, although this has also been 

observed in our previous works [30], [37] . On the other hand, Fourier’s law does not seem to work in 

(and behind) the shock wave, where we found that the Cattaneo-Vernotte model describes the heat 

conservation quite well. However, the estimated value for the thermodynamic relaxation time does 

not completely remove the apparent disagreement between the positive gradients in both  𝐽q and ∇𝑇 

behind the shock wave when the term 𝜏 𝜕𝐽q 𝜕𝑡⁄  is added in the Cattaneo-Vernotte model, but this 

question will also require a more robust analysis of the data, especially of the numerical differentiation 

methods used here. 

Very surprisingly, there are strong indications that the system is in local equilibrium in the shock wave. 

This is quite controversial, as all previous NEMD studies (except Guo et. al. [38]) have shown that this 

is not the case. The exception found in the present work was for the dilute gas, where the temperature 

was found to be slightly non-isotropic, but not at all the same anisotropy as found in previous studies. 

This is not a question of density as previous studies have also included liquids. It may be a consequence 

of the way the shock wave was generated, because the traditional virtual piston creates a velocity 

distribution that is highly non-isotropic. 

Our results do not support the idea that the success of the Cattaneo-Vernotte model is in conflict with 

the local-equilibrium assumption in classical irreversible thermodynamics and the need to go to 

extended irreversible thermodynamics [42]. On the contrary, our results are consistent with local 

equilibrium in the shock wave as well as the Cattaneo - Vernotte model giving a reasonably good 
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description of the heat flux associated with the shock wave. This supports the arguments by Glavatsky 

that the heat transport may well be analyzed in terms of the local equilibrium assumption [43].  

Another disagreement with previous studies is the thickness of the shock wave. We find that the 

thickness is of the order 15 𝜎 both in the supercritical and liquid cases, whereas it was previously 

found to be 2 – 3 𝜎 [35]. This discrepancy may also be related to how the shock wave was generated 

and the velocity distribution in the shock front. 

 

5. Conclusions 

The main conclusion from the present work is that the Fourier’s law is violated in a thermal shock 

wave associated with a pressure shock caused by a sudden thermal explosion. The heat wave is not 

due to the Joule-Thomson effect, at least not exclusively, as seen from the fact that the fluid heats up 

in a state where the Joule-Thomson effect should lead to cooling down. We found that the Cattaneo-

Vernotte model describes the heat flux behind the shock wave quite well and gives consistent values 

for the thermal conductivity. The indicators for local equilibrium used here show that the system is in 

local equilibrium, even in the shock wave, except in the ideal-gas case. This allows the data to be 

analysed in terms of irreversible thermodynamics. 
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Appendix A. The thermostat. 

The velocity scaling was applied to the particles in the thermostatted layers by setting 

𝐯𝑖
new = 𝑎𝐯𝑖

old + 𝛃 (A1) 

where 𝐯𝑖
old and 𝐯𝑖

new are the velocity of particle i before and after scaling, respectively, 𝑎 is a scaling 

factor, and 𝛃 is a vector that adjusts the particles’ momenta. Suppose the total momentum of the 

particles in layer 𝑙 after scaling is 

𝐏new = 𝑚 ∑ 𝐯𝑖
new

𝑖𝜖𝑙

 (A2) 

and likewise for 𝐏old. The change in momentum with the scaling, and the conservation of 

momentum gives 

∆𝐏 = 𝐏new − 𝐏old = 0 

 

(A3) 

Momentum for the particles in the non-thermostated layers is conserved by the equations of 

motion. 

Inserting Eq. (A1) into (A2) and using (A3) gives 

𝛃 =
1 − 𝑎

𝑁𝑙
∑ 𝐯𝑖

old

𝑖𝜖𝑙

 (A4) 

The kinetic energy in layer 𝑙 after scaling is 

𝑒kinetic
new =

𝑚

2
∑(𝐯𝑖

new)2

𝑖𝜖𝑙

 (A5) 

Inserting Eq. (A1) into (A4) and expressing the new kinetic energy in terms of the thermostat set 

point 𝑇set gives 

3

2
𝑁𝑙𝑘B𝑇set = 𝑒kinetic

new =
𝑚

2
[𝑎2 ∑(𝐯𝑖

old)
2

𝑖𝜖𝑙

+ 2𝑎 ∑ 𝛃 ∙ 𝐯𝑖
old

𝑖𝜖𝑙

+ 𝑁𝑙𝛃2] (A6) 

Eq. (A6) is a quadratic equation in 𝑎. The solution is then used with Eq. (A4) to update the velocities. 
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This algorithm is in principle the same as the HEX algorithm [24], but whereas we here specify 𝑇set, 

the HEX algorithm is based on specifying the change in kinetic energy, 𝑒kinetic
new − 𝑒kinetic

old . 

The quadratic equation in 𝑎 does not always have a real solution, in which case the thermostatting 

attempt is skipped and the old velocities are used without change. 
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Appendix B. Computation of the speed of sound 

The speed of sound at zero frequency, 𝑣𝑠, in a fluid is given by [9] 

𝑣𝑠
2 = (

𝜕𝑃

𝜕𝜌
)

𝑆

= 𝛾 (
𝜕𝑃

𝜕𝜌
)

𝑇

 (B1) 

where 𝛾 is the heat capacity ratio, 𝛾 = 𝐶𝑃 𝐶𝑉⁄ . 

The inverse isothermal compressibility was computed as follows: For each of the investigated states 

(gas, supercritical, and liquid), a series of four equilibrium 𝑁𝑉𝑇-simulations were made at the 

equilibrium temperature (in front of the shock wave) and four different densities. In each case, 𝑁 =

8000. The same NEMD code with the same thermostatting method that was used in the non-

equilibrium simulations was also used here, except that the MD-cell aspect ratio was 2:1 and divided 

into 64 layers. The thermostat set points were equal to the equilibrium temperature of interest. 

Each run was started from an fcc-configuration and 1,000,000 Monte Carlo steps to equilibrate the 

system, followed by 4,000,000 MD steps where the last 2,000,000 steps were used to get the 

equilibrium data. Only the non-thermostatted layers in the MD cell were used for acquisition of 

thermodynamic properties. The four runs were carried out with slightly different number densities, 

and the slope was determined from a linear fit to the data for 𝑃∗ vs. 𝑛∗.  

The heat capacity at constant volume was determined from a series of four equilibrium runs, similar 

to the determination of the isothermal compressibility, except that the temperature was varied 

instead of the volume. 

The heat capacity at constant pressure could have been determined in a similar way from a 𝑁𝑃𝑇-

simulation. Instead, we did a series of four non-equilibrium runs, making use of the observation that 

local equilibrium is well achieved in a non-equilibrium simulation [37]. This means that if the 

pressure is uniform across the system, equilibrium properties at constant pressure may be 

computed from a single NEMD run. This procedure has a minor cost. In the NEMD simulation, only 

the overall density and the thermostat set points are fixed. The local values are a priori 
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undetermined and known only when the simulation is finished. This means that if the 

thermodynamic state of interest is given by e.g. the temperature and density, a series of NEMD runs 

that cover the range of interest must be made. 

Results from these simulations are shown in Table BI for the supercritical state. From these data, the 

speed of sound can be calculated as  

𝑣𝑠
∗ = √

𝐶𝑃
∗

𝐶𝑉
∗ (

𝜕𝑃∗

𝜕𝑛∗
)

𝑇∗
= √

14.22

2.56
× 0.39 = 1.47 (B2) 

 

Table BI. Results for the computation of the speed of sound in the supercritical state. 

 

 

 

 

 

 

 

 

  

𝑛overall
∗  𝑇∗ 𝑃∗ 𝑛∗ (

𝜕𝑃∗

𝜕𝑛∗
)

𝑇∗
 

0.36 1.00 0.155 0.36 

0.390 

0.38 1.00 0.161 0.38 

 1.00 0.163 0.40 

0.42 1.00 0.177 0.42 

0.44 1.00 0.186 0.44 

𝑛overall
∗  𝑇∗ 𝑃∗ 𝑛∗ 𝑢∗ =

𝑈

𝑁𝜀
 𝐶𝑉

∗  

0.4 0.980 0.153 0.400 -0.683 

2.56 

0.4 0.990 0.159 0.400 -0.659 

 0.991 0.163 0.400 -0.653 

0.4 1.01 0.177 0.400 -0.606 

0.4 1.02 0.185 0.400 -0.581 

𝑇H
∗  𝑇L

∗ 𝑛∗ 𝑃∗ 𝐶𝑃
∗ 

1.01 0.95 0.4 0.151 15.41 

1.02 0.96 0.4 0.161 14.36 

  0.4 0.163 14.22 

1.04 0.98 0.4 0.177 12.91 

1.05 0.99 0.4 0.185 12.05 
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