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Abstract 

This article tests the performance of optimized technical trading rules for the SPDR S&P 500 

exchange traded fund in the period 2000 to 2016. To avoid data snooping, the optimization is 

performed on simulated time series from three different models. Two technical trading rules 

are optimized in this article: The dual moving average crossover and the Relative Strength 

Index (RSI). For both trading rules, the performance of four different trading strategies are 

evaluated. To measure the performance of the strategies we use the Sharpe ratio as assessment 

criteria. A brute-force optimization algorithm is used since the Sharpe ratio is a function of non-

continues parameters. After finding optimal parameters for each strategy based on the simulated 

price series, these strategies are back-tested on historical data. The results for the moving 

average crossover rule are mixed. Some of the trading strategies provide a higher Sharpe ratio 

and higher returns than a buy-and-hold strategy, but these returns are not significantly greater 

than the buy-and-hold returns. For the RSI rule the optimized strategies generate few trading 

signals on historical data, and several of the strategies do not generate any signal during the 

whole trading period. Some of the strategies obtain a higher Sharpe ratio compared to the buy-

and-hold, but this is caused by holding a risk-free position during the trading period. No strategy 

provides positive excess returns, and for the strategies generating negative excess returns, they 

are not significantly different from zero. Our results are consistent with the weak form market 

efficiency for the S&P 500 index during the time period 2000 to 2016. 
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Sammendrag 

I denne artikkelen testes optimerte tekniske handelsstrategier på det børshandlede fondet SPDR 

S&P 500 i perioden 2000-2016. For å unngå problemet med «data-snooping» er de tekniske 

handelsstrategiene optimert på simulerte tidsserier fra tre ulike prosesser. Vi vil i denne 

artikkelen optimere handelsstrategier basert på to ulike handelsregler: Glidende Gjennomsnitt 

og Relativ Styrkeindeks (RSI). Risikojustert avkastning, målt ved Sharpe ratio, brukes for å 

evaluere handelsstrategiene. For å finne de optimale parameterne for en enkel handelsstrategi 

bruker vi en «brute force» optimeringsalgoritme. En av årsakene til at denne optimerings-

metoden brukes er at Sharpe ratio er en funksjon av ikke kontinuerlige parametere. For begge 

handelsreglene er fire ulike handelsstrategier optimert. Etter å ha funnet optimale parametere 

tester vi de optimerte handelsstrategiene på historiske data. Resultatene fra de optimerte 

handelsstrategiene basert på glidende gjennomsnitt gir blandede resultater på historiske data. 

Noen av de optimerte strategiene har høyere Sharpe ratio og oppnår meravkastning utover en 

kjøp-og-hold strategi i indeksen i perioden, men denne meravkastningen er ikke funnet 

signifikant. De optimerte handelsstrategiene basert på RSI regelen genererer få signaler på 

historiske data, og noen av strategiene genererer ikke signaler i det hele tatt. Noen av strategiene 

oppnår svært god risikojustert avkastning, men dette skyldes at de i lengre perioder er ute av 

markedet og gir en risikofri avkastning. Ingen av strategiene basert på RSI gir meravkastning 

utover en kjøp-hold strategi. I følge våre resultater er S&P 500 effisient på svak form i perioden 

2000-2016. 
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1. Introduction 

The proposition of efficient financial markets has had a central position in financial literature 

since the 1950´s. Notable work by Eugene Fama has been important in the development of the 

«Efficient Market Hypothesis» (EMH). According to Fama (1970), “in an efficient capital 

market, stock prices will fully reflect all available information”. However, Fama (1970) 

considered three different types of information subsets stock prices could reflect. In the weak 

form market efficiency stock prices reflect all historical information, in the semi-strong form 

they will in addition reflect all publicly available information, and price adjustments associated 

with public information happen quickly. The strong form market efficiency applies when stock 

prices also reflect «insider» information. According to Fama (1970) the following conditions 

are sufficient, but not necessary, to assure efficient capital markets: there are no transaction 

costs when trading securities, all available information is available for free to all market 

participants and all market participators agree on the implications of current information for the 

current price and distribution of future prices for each security. 

Most of the previous studies on the EMH operate with the following market equilibrium 

expression for the expected price of security 𝑗 at time 𝑡 + 1: 

𝐸 𝑝',)*+ Φ) = 1 + 𝐸 𝑟',)*+ Φ) 𝑝',)	, 

where Φ)	is the information set at time 𝑡, 𝑝',) is the price of security 𝑗 at time 𝑡 and 𝐸 𝑟',)*+ Φ)  

is the expected return for security 𝑗 at time 𝑡 + 1 given the information set at time 𝑡. Fama 

(1970) refers to the equilibrium as the «fair game» model based on the assumptions that i) “the 

conditions of market equilibrium can be stated in terms of expected returns”, and (ii) “the 

information Φ is fully utilized by the market in forming equilibrium expected returns and thus 

current prices”. The last assumption prevents technical trading rules from generating excess 

returns over equilibrium expected returns by exploiting the set of information at a given time 

(Φ)). According to the EMH, technical trading rules should not in expectation provide greater 

returns than buying-and-holding the security. 

Other studies discussing the EMH, like Alexander (1961), consider stock prices to follow a 

random walk process. Fama (1970) regarded the random walk model for stock prices as an 

extension of the fair game model. Cootner (1964) stated that “the conditional expectation of 

tomorrow’s price, given today’s price, is today’s price”. If stock prices follow a random walk, 

any new information arriving tomorrow is independent of the price today, and “period-to-

period price changes of a stock should be random movements, statistically independent of one 



	 2	

another” (Cootner, 1964). Even if there is statistically significant evidence for dependence in 

series of price changes, studies, such as Alexander (1961) and Fama and Blume (1966), show 

that it cannot be used to make profitable predictions of the future. These studies concluded that 

technical trading rules can result in excess return over a buy-and-hold strategy, but even 

minimal transaction costs would cause the excess returns to disappear. Technical analysis is 

built on the assumption that prices move in trends, which are established from changing 

attitudes of traders towards economic, political and psychological factors (Murphy, 1999). 

Technical analysis is therefore often regarded as a study of human psychology, and the reactions 

of investors to changing market conditions (Murphy, 1999). Another assumption, 

supplementing the first one, is the fact that «history repeats itself». Chart patterns, identified in 

the past, reveal the bullish or bearish psychology of the market. Since certain patterns have 

worked in the past, it is reasonable to assume they will continue to work in the future. The 

patterns are based on the study of human psychology, which does not tend to change (Murphy, 

1999). Following mentioned assumptions, technical trading is implemented by first identifying 

a trend, and then follow it until it shows signs of reversing. While others, for instance 

Timmermann and Granger (2004) argue that investors constantly searching for predictable 

patterns, affect prices in their attempt to exploit trading opportunities. In their view, forecasting 

patterns are unlikely to persist, because of the self-destructive effect occurring when investors 

apply these patterns. 

Many within the academic community remain sceptical towards the usefulness of technical 

analysis, despite its widespread acceptance and adoption by the financial industry. A common 

argument against technical analysis is that there is no economic theory backing the methods 

applied by technical analysts. Menkhoff (2010) investigated how extensive the use of technical 

analysis is in the fund managing industry. The study included 692 fund managers from the 

following countries: China, Italy, the US, Germany and Thailand. Menkhoff (2010) found that 

87 % of the survey’s respondents used technical analysis to some extent as an information 

source, and 18 % preferred technical analysis compared to fundamental. For short-term horizon, 

the study shows that technical analysis is the most preferred investment tool. 

Previous research by Brock et. al. (1992), Bessembinder and Chan (1995) and Metghalchi et. 

al. (2012) find positive results for the profitability and the forecasting power of technical trading 

rules. In these studies, the returns are not risk-adjusted. According to Neely (2003), judging 

trading rules only in the terms of excess raw returns over equilibrium expected returns is not 

sufficient to conclude whether they violate the EMH or not. Jensen (1978) emphasizes that the 
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correct interpretation of the EMH must be expressed in terms of the potential risk-adjusted 

excess returns. Based on information reflected in the stock prices, the risk-adjusted excess 

returns should not exceed the transaction costs of trading on that information. Risk adjustment 

is important, because some trading strategies might be out of the market and are therefore less 

risky than the buy-and-hold-strategy. 

The motivation behind this paper is to test the performance of popular technical trading rules 

on the S&P 500 index, and implicitly test if the index is weak form efficient. Our research 

differs from other studies by using an ETF instead of the raw index (except for instance 

Metghalchi et. al., 2012), applying more than one or two trading strategies (Brock et. al., 1992; 

Bessembinder and Chan, 1995; Metghalchi et. al., 2012) and testing optimized rather than 

common rules. Our paper aims at determining optimal trading strategies, performed on two of 

the most popular technical trading rules: the moving average crossover and the Relative 

Strength Index (RSI), using the Sharpe ratio as assessment criteria. We use a «brute-force» 

optimization algorithm, meaning going through all possible solutions within some constraints, 

and thereby locating the optimal solution. The advantage of using «brute-force» over a genetic 

algorithm is that we are sure we find the global optimum when there is more than one local 

optimum. To get a more realistic approach, we use the SPDR S&P 500 Exchange Traded Fund 

Trust, which tracks the S&P 500 index. The ETF provides an opportunity to trade in the 

underlying index as if it had been a stock. 

To identify optimal trading strategies, it is not sufficient to use one or view historical price 

paths, but rather simulate many possible price paths, based on the already observed daily 

closing prices of the SPDR S&P 500 during years 2000-2016. Since not knowing the stochastic 

process for the S&P 500 returns, we estimate three different time series models to simulate 

index returns. In our study we use Random Walk, AR (1) and exponential GARCH (EGARCH) 

model. The same kind of models are used in the previous studies (Brock et. al., 1992; Kwon 

and Kish, 2002; Marshall and Cahan, 2005). Based on the simulated returns, we obtain 

simulated index prices, which are used for the trading purpose. 

For each model, we simulate 5000 paths, each with a horizon of 2000 daily returns to make 

results robust. Assuming 250 trading days in a year, each simulated path has a length of 8 years. 

We apply 4 trading strategies, based on the moving average crossover rule with and without a 

1 % band and the Relative Strength Index (RSI). In the case of the moving average crossover 

rule, we optimize lengths of short and long moving average lag. When it comes to the RSI rule, 
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optimization parameters are number of days in a look-back period and values of horizontal 

decision bands. Our approach is to find a solution with the highest Sharpe ratio across 5000 

simulations for each trading strategy. The optimal solution will be evaluated by comparing its 

Sharpe ratio with the Sharpe ratio obtained from a buy-and-hold strategy on the same set of 

simulated price series. Optimized solutions will also be back-tested on the original price series, 

and adjusted for transaction costs. 

The paper is organized as follows. The next section describes technical analysis, focusing 

especially on the moving average and the RSI rules. Section 3 provides a brief review of the 

previous studies, dividing them into early and modern studies. In Section 4 we present the data 

and methodology. The results are presented in Section 5, followed by summary and ideas for 

further research in the final section. 
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2. Technical Analysis 

Murphy (1999) describes technical analysis as the study of market action, primarily using charts 

to forecast future price trends. In general case, the trend can be defined as the direction of the 

market. Murphy (1999) emphasizes that markets will usually not move in a straight line in any 

direction. Instead market moves are often represented in terms of «zigzags» series with obvious 

tops and bottoms. Murphy (1999) underlines that it is the direction of those tops and bottoms 

that defines market trend. An ascending pattern of tops and bottoms represents an uptrend, 

while a descending pattern indicates a downtrend. The market is defined as trendless if there 

are horizontal tops and bottoms. Murphy (1999) introduces support and resistance levels, 

defined as previous lows and highs. For an uptrend to continue each support and resistance 

level must be higher than the one preceding it, and the opposite when it comes to a downtrend. 

The resistance levels in an uptrend operate as «pauses» in that uptrend. If a horizontal trend in 

support or resistance levels appears, it is an early warning about a trend reversal, or at least the 

shift to a sideways trend. When a trend reversal occurs, support and resistance levels switch 

their roles and become the opposite of each other. Murphy (1999) warns that technical analysis 

is «designed» for trending markets, rather than markets without a trend. When the market 

moves sideways, the best decision is staying out of the market, while an uptrend or a downtrend 

can provide profitable trading returns. 

Park and Irwin (2007) argue that a possible theoretical explanation behind technical trading 

profits can be stated by the «Noisy Rational Expectations Model». Two strong assumptions are 

taken when it comes to the standard model of market efficiency: participants are rational, and 

they have homogeneous beliefs when interpreting information. The current price does not fully 

reveal all available information under the Noisy Rational Expectations Model. Prices adjust 

slowly to a set of new information, because of the «noise» in the current equilibrium price, due 

to heterogeneous beliefs regarding this information. Thus, profitable opportunities might occur 

when using technical trading. Murphy (1999) has the opposite angle when he approaches 

technical trading, pointing out that the technical analysis is based on the following condition: 

all the aspects that can possibly affect the price are reflected in the market price. The statement 

is very close to the EMH. Murphy (1999) states that “if the fundamentals are reflected in the 

market price, then the study of those fundamentals becomes unnecessary”. Technical analysis 

is indirectly about studying fundamental analysis, which is the underlying force of supply and 

demand of stocks. What investors should do is to study the price action, reflecting shifts in 

supply and demand (Murphy, 1999). The charts themselves do not cause bull and bear markets, 
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and only if the mentioned condition about the market price is fulfilled it makes sense to study 

price charts (Murphy, 1999). Both technical and fundamental analysis attempt to solve the same 

problem: determination of the direction for stock prices. Fundamental analysis studies the cause 

of market movements, while technical analysis studies the effect. This is also the reason why 

these investment approaches often conflict with each other, but despite the differences there is 

also a lot of overlap. Technical analyst uses a wide variety of tools to look for profitable 

investment opportunities. Different kinds of the indicators are used to identify trends or to 

evaluate if a stock is overbought or oversold. In this paper, we focus on two of these indicators: 

the moving average crossover and the Relative Strength Index (RSI). 

2.1. The Moving Average 

The purpose of moving average rules is to identify a trend, and then track it until a new trend 

is revealed. Since moving average rules are used as a trend following device, they do not predict 

the appearance of a trend. They will rather reveal a trend only after its arrival, implicitly 

meaning that a moving average trend line does not work in terms of forecasting market prices 

(Murphy, 1999). 

The most used moving average is the «simple moving average» (SMA). A stock or stock index 

𝑁-day simple moving average is calculated by taking an equally weighted arithmetic mean of 

the stock’s 𝑁 last prices at a given time (𝑡). A security’s SMA can mathematically be expressed 

as follows: 

𝑆𝑀𝐴) =
1
𝑁 𝑃)56

75+

689

 

To ensure that a heavier weighting is given to more recent prices, some analysts use the 

«exponential moving average» (EMA), calculated as follows: 

𝐸𝑀𝐴) = 𝛼 ∙ (𝑃) − 𝐸𝑀𝐴)5+) + 𝐸𝑀𝐴)5+	, 

where 𝛼 is the weight value between 0 and 1, while the initial exponential moving average 

(𝐸𝑀𝐴+) is the n-day simple average of stock prices. 

The moving average rule, called the «double crossover method», is applied by creating two 

moving averages of different lengths. When the short moving average crosses above the long 

one, the underlying investment is assumed to be in an upward trend. If the short moving average 

moves below the long one, the stock is assumed to be in a downward trend, and is expected to 

decrease further. According to Brock et. al. (1992), the idea behind the moving average 
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crossover rule is to smooth out volatile price series. The length of the moving average represents 

the time lag in prices. The shorter a moving average is, the more sensitive it is to the current 

price (Murphy, 1999). The use of a very sensitive moving average will generate more trades 

and thus higher transaction costs. In addition, there is a greater risk of false signals, because of 

the short-term price movement, which causes «noise». The advantage of using the shorter 

moving average is that the trend signal appears earlier, because of increased sensitivity 

(Murphy, 1999). 

Another moving average trading rule, that aims to utilize trends in the stock market is the 

«Moving Average Convergence Divergence» (MACD). Two exponential moving averages are 

used, and the MACD is calculated by subtracting the long moving average from the short 

moving average. If the MACD increases above zero from below an uptrend signal is generated, 

while the cross from above means the beginning of a downtrend period. The MACD differs 

from the crossover method, because it is based on the «oscillator» technique, which is an 

alternative to the trend-following approaches. The oscillator is represented by a flat horizontal 

band, in the case of the MACD the oscillator is a zero line. The advantage of using the oscillator 

technique is that it works on trendless markets, which is not the case for most of trend-following 

systems (Murphy, 1999). The oscillator is also useful when it comes to trending markets, by 

alerting about short term market extremes, and warning when a trend is losing the «momentum» 

before it is confirmed by the price itself (Murphy, 1999). The momentum for a security is 

generally defined as price difference for a fixed time interval: 

𝑀 = 𝑃) − 𝑃)5?	, 

where 𝑃) is the closing price today, and 𝑃)5? is the closing price 𝑛 days ago. If prices are rising, 

and the momentum line is above the oscillator, it means that uptrend is under acceleration. The 

momentum line is always ahead of the movement in prices, providing forecast power for market 

prices (Murphy, 1999). In case of the MACD the momentum line is presented as a subtraction 

of the long exponential moving average from the short one. 

2.2. The Relative Strength Index 

The Relative Strength Index (RSI), based on the oscillator technique, attempts to decide if a 

stock is overbought or oversold. The RSI, developed and presented by J. Welles Wilder, Jr. in 

1978, is built on the momentum concept. The purpose behind the development of the RSI is to 

overcome some major problems associated with the momentum approach (Wilder, 1978). The 

first problem is erratic movement within momentum line configuration, caused by major shifts 
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in the closing price 𝑛 days ago (Wilder, 1978). For instance, if using a 10-day momentum, the 

changes in a momentum line can be erroneously big, though the price «today» is close to the 

«yesterday’s». The reason is large rise or fall in a 10-day lagged price. According to Wilder 

(1978) some «smoothing» must be provided to overcome this issue. The second problem is that 

a momentum does not have a constant range, making it difficult for comparison purposes 

(Wilder, 1978). The solution to these problems is the development of the standardized indicator, 

the RSI, calculated as follows: 

𝑅𝑆𝐼) = 100 −
100

1 + 𝑅𝑆)
	, 

where 𝑅𝑆 is the average of last 𝑛 day’s absolute gains divided by the average of last 𝑛 day’s 

absolute losses. In the RSI, the way it was originally made by Wilder (1978), the number of 

days (𝑛) in a look-back period is set to 14. Wilder (1978) emphasizes that the first averages of 

gains and losses are calculated as simple 𝑛-day average. Thereafter average gain and loss are 

computed with a modified moving average, using the following formula: 

𝐺𝑎𝚤𝑛) =
𝐺𝑎𝚤𝑛)5+ ∙ 𝑛 − 1 + 𝐺𝑎𝑖𝑛)

𝑛  

		𝐿𝑜𝑠𝑠) =
𝐿𝑜𝑠𝑠)5+ ∙ 𝑛 − 1 + 𝐿𝑜𝑠𝑠)

𝑛 	, 

where 𝑅𝑆) =
KLM?N
	OPQQN

. 

The RSI solves earlier mentioned problems by providing necessary smoothing, and creating a 

constant range between 0 and 100. Although Wilder (1978) used 14 days as the look-back 

period, analysts also operate with 5, 7, 9, 21 and 28 days. The shorter period, the more sensitive 

the RSI becomes, and the wider its amplitude (Murphy, 1999). When applying the original RSI, 

there are two oscillators, the upper and the lower horizontal bands. Wilder (1978) operates with 

70 as the upper band, and 30 as the lower one. If a stock has an RSI above 70, it is assumed that 

the stock is overbought, whilst an RSI below 30 indicates that a stock is oversold. 
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3. Literature Overview 

3.1. Early Studies 

A wide variety of technical trading rules were investigated in the early literature. Alexander 

(1961 & 1964), Fama and Blume (1966) and Sweeney (1986) all investigated the profitability 

of different «filter» rules. A buy signal occurs when the price rises above a given percent from 

the most recent high, while a sell signal is generated when the closing price falls a given percent 

from its most recent low. One of the most known studies on filter rules is by Fama and Blume 

(1966). They tested Alexander’s filter rules on daily closing prices of 30 individual securities 

listed on the Dow Jones Industrial Average (DJIA). Their study showed that only some small 

filters generated higher profits than the buy-and-hold strategy. After transaction costs were 

accounted for, none of the Alexander’s filter rules would have been profitable. Early studies on 

moving average trading rules, such as Van Horne and Parker (1967 & 1968), James (1968), and 

studies applying the RSI like Jensen and Benington (1970) conclude that these rules are not 

profitable in stock markets. 

While many of the earlier studies find that technical trading rules are not able to predict price 

movements in stock markets, technical trading rules applied to foreign exchange markets and 

future markets can earn net profits (Park and Irwin, 2007). For instance, Leuthold (1972) 

showed that filter rules would give a profit after considering transaction costs. Sweeney (1986) 

found that long positions based on small filter rules would give net transaction cost profits in 

all the 10 foreign exchanges tested. 

There are a couple of factors that cast doubt over the findings of earlier research. Common for 

the early studies is that they only investigate a small number of technical trading rules. Most of 

the studies do not apply statistical tests for the returns obtained from the trading rules. Many of 

the studies also do not include the aspect of riskiness in trading strategies. A strategy can 

provide excess return over a benchmark, but the excess return might be a result from taking on 

more risk, rather than a breach on the market efficiency hypothesis (Park and Irwin, 2007). Bias 

from data snooping is also a flaw that can affect the reliability of some of the earlier studies. 

Profitable trading rules might be identified, but could just as well be a result of luck, rather than 

having predictive power (Jensen, 1967). 
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3.2. Modern Studies 

Lukac et al. (1988) is one of the first modern studies, in which 12 technical trading systems 

have been optimized on price series from 12 futures markets over 1975-1984. The method used 

is a 3-year re-optimization method. Trading rules were optimized during a three-year in-sample 

period, while a year after this period was considered as an out-of-sample period. Parameters 

generating the largest profit over a three-year period were used for the following year’s trading. 

Then a new three-year in-sample period, including the previous out-of-sample year, was used 

to find optimal trading rules. These parameters were again tested on a new one-year out-of-

sample period, and so on. Based on the assumption that the Capital Asset Prising Model 

(CAPM) holds, Jensen’s 𝛼 is used as an approach to determine the significance of risk-adjusted 

returns. The findings in this study show that four out of twelve trading systems generated 

significant positive net transaction costs risk-adjusted return. This study concludes that some 

futures markets might have been inefficient during the sample period.  

The study by Brock et. al. (1992) is considered as one of the most important works on technical 

trading (Park and Irwin, 2007). The reason is the finding of strongly consistent, positive results 

about the forecasting power of technical trading rules over a long period of time. Two simple 

and popular trading rules, the moving average crossover and the «Trading Range Break-Out» 

(TRB) were tested on daily Dow Jones Index data from 1897 to 1986. Several variations of the 

moving average crossover rule were used by Brock et. al. (1992): 1-50, 1-150, 5-150, 1-200 

and 2-200. When it comes to the TRB rule, a buy signal is provided when the price goes above 

the resistance level, and a sell signal when the price goes below the support level. Brock et. al. 

(1992) found that the mean index return on buy days was higher than the mean index return on 

sell days for both trading rules. The mean index return on sell days was in addition negative. 

Furthermore, index returns on buy days were less volatile than on sell days. Brock et. al. (1992) 

was the first paper to applicate the model-based bootstrap method, since t-ratios are assumed to 

build on the normal, stationary and time independent, but doubtfully realistic, distribution of 

stock returns. The returns from Dow series were simulated, and the same set of trading rules 

was applied to the simulated series. Then, the trading returns obtained from the simulated series 

were compared with the actual trading returns. Various models were used to simulate returns: 

Random Walk, AR (1), GARCH-M and EGARCH. Brock et. al. (1992) found that actual 

trading profits were not consistent with any of the processes lying behind the models used for 

simulation. 
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Bessembinder and Chan (1995) examined whether technical analysis could predict stock price 

movements in Asian markets by using the same trading rules as Brock et. al. (1992). They found 

that trading rules had more explanatory power in emerging Asian markets, such as Malaysia, 

Thailand and Taiwan, than in the more developed markets of Hong Kong, Japan and Korea. 

Bessembinder and Chan (1995) argued that even if technical trading rules provided higher 

returns than a buy-and-hold strategy, a stock market can still be efficient. One explanation 

behind the surplus return is transaction costs. These costs are higher in the case of technical 

trading rather when keeping a long position in the stock market. Two cases were considered: in 

the first case, it was assumed that an investor reacted the same day a trading signal appeared, 

while in the other case a one-day trading lag was included. The last case is due that investors 

require time to react to the signal, and because of the nonsynchronous trading bias. Break even 

transaction costs, which would eliminate gains from technical trading, were estimated to be 

1,57 % for the first case, and 1,34 % for the other one. These costs were less than the actual 

transaction costs in Hong Kong, Japan and Korea, while higher than those in Malaysia, Thailand 

and Taiwan. Profits from technical trading were unlikely to appear in developed markets, while 

seemed possible in emerging markets. However, Bessembinder and Chan (1995) did not control 

for the relative riskiness of the technical trading strategies tested. To evaluate the forecast power 

of trading rules, indices return means and variances on buy and sell days were compared. The 

results were similar to those, obtained by Brock et. al. (1992). The mean index return 

conditional on buy signals exceeded the mean index return conditional on sell signals for 53 of 

60 cases. The variance for index returns on sell days was in addition higher than on buy days 

for the «variable-length moving average» (VMA) rule, meaning no constraints when it comes 

to the length of a holding period, in Hong Kong, Japan, Korea and Malaysia. 

Allen and Karjalainen (1999) implemented a genetic algorithm in their attempt to find a 

technical trading rule giving excess return over a simple buy-and-hold strategy. In their study, 

daily prices of the S&P 500 index from 1928 to 1995 were used. The strategy consisted of either 

being long in the market or out of the market earning a risk-free rate of return. They estimated 

trading rules in ten different time periods, each with a length of 6 years, using the strategy’s 

ability to create excess return over the buy-and-hold strategy as the fitness criteria. They thereby 

tested the performance of the strategy on the remaining historical data, which was not used in 

the estimation procedure. Only one estimation period provided trading rules, which generated 

net cost profits out-of-sample. The profits obtained in their study were not adjusted for risk. 

Their study supports market efficiency for the S&P 500. 
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The research by Neely (2003), built on the study of Allen and Karjalainen (1999), concluded 

that most technical trading rules would not result in the risk-adjusted net cost excess return for 

the S&P 500, in the period 1929 to 1995. The period was divided into ten sub samples, where 

each in-sample period was 5 years and each out-of-sample period was 2 years. Neely (2003) 

stated that the most optimal trading rule based on genetic programming should be used rather 

than common rules. In only two of the ten periods the optimal trading rule gained excess return, 

with no evidence of significant results, over the buy-and-hold strategy when tested in the out-

of-sample period. Whilst in the other periods, the optimal trading rule produced results roughly 

equal to the buy-and-hold strategy using the Sharpe ratio as the assessment criteria. Their study 

also supports market efficiency for the S&P 500. 

Metghalchi et. al. (2012) tested the profitability of two trading strategies across several types 

of moving average rules on 16 different European ETF stock indices. The strategies were 

applied across following rules: the simple moving average crossover, the «increasing moving 

average» (IMA) and the «Arnold and Rahfeldt’s autoregressive moving average» (ARMA). 

When it comes to the IMA rule, the only difference from the simple moving average crossover 

rule is that the long moving average must, as an additional requirement, have a positive slope 

to provide a buy signal. The ARMA rule generates a buy signal if the current price is above 

both long and short moving averages, and a sell signal if the price is below them. Following the 

simple moving average crossover rule, a one day moving average was used as a proxy for the 

short moving average, which corresponds to the raw price of the index. As for the long moving 

average the following number of days were approached: 20, 50, 100 and 200 days. Metghalchi 

et. al. (2012) concluded that all three moving average rules provided significant excess returns 

over the buy-and-hold strategy, even after considering data snooping effects and transaction 

costs. Most profitable was the increasing moving average rule, which obtained significant 

excess returns in all the 16 stock indices tested. The simple moving average crossover and the 

Arnold and Rahfeldt’s moving average rules provided significant excess returns in 10 and 11 

of the European stock indices tested, respectively. 
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4. Data and Methodology 

4.1. Data 

To optimize trading strategies, we use simulated price series based on the closing prices of the 

SPDR S&P 500 ETF Trust, listed on NYSE Arca. Our sample consists of 4435 daily returns 

from Datastream for the price level of the Trust ranging from the beginning of 2000 to the end 

of 2016. First issued in 1993 by the State Street Global Advisors, the SPDR S&P 500 ETF Trust 

is the oldest of the exchange-traded funds tracking the S&P 500. The index consists of five 

hundred selected U.S. stocks from twenty-five separate industry groups.  

Figure 1. Prices SPDR S&P 500 

In the years following 2000 the S&P 500 experienced a sharp decline largely caused by the 

«dot.com bubble». The overvaluation of many stocks in the IT-sector caused the index to fall 

greatly. During the financial crisis in 2008 the S&P 500 also decreased greatly until its bottom 

in March 2009. In the years following the financial crisis the index increased without any major 

drawbacks. After Standard & Poor´s decreased the credit rating of the US in late 2011, the U.S. 

stock market fell, but recovered quite quickly. The low oil prices in the beginning of 2016 

caused the S&P 500 to fall, but it recovered quickly as well, and all in all the index rose in 2016. 

Table 1. Descriptive statistics SPDR S&P 500 Prices 2000-2016 

Descriptive Statistics for Prices of SPDR S&P 500 

Mean Std. Dev. Skewness Excess 

Kurtosis 

Min. Max. Median Obs. Jarque 

Bera 

137,77 36,038 0,7645 -0,2871 68,11 277,76 129,61 4435 447,30 
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Figure 2. Returns SPDR S&P 500 

From Figure 2 we can see increased volatility for returns in periods where there was great 

uncertainty in the financial markets. The most apparent case of volatility clustering occurred 

late in 2008, during the financial crises. 

Table 2. Descriptive statistics SPDR S&P 500 Returns 2000-2016 

The return series is computed by taking the natural logarithm of the current price level divided 

by the previous price level (ln	( TN
TNUV

)). The time series of returns has a mean of approximately 

zero, it is also negatively skewed and fat tailed. The Jarque Bera statistic concludes that returns 

are not normally distributed since the tests statistic exceeds the critical value of 5,99. 

4.2. Return Series Modelling 

To optimize trading strategies for a given trading rule we use prices obtained from simulated 

return series, rather than historical SPDR S&P 500 prices. Optimizing on historical data will 

certainly provide profitable trading strategies in-sample, but they are unlikely to be robust when 

testing them out-of-sample. Three different simulation models, Random Walk, AR (1) and 

EGARCH, are estimated on historical returns. For each model, we simulate 5000 time series, 

each with a horizon of 2000 returns. 

Descriptive Statistics for Returns of SPDR S&P 500 

Mean Std. Dev. Skewness Excess 

Kurtosis 

Min. Max. Median Obs. Jarque 

Bera 

9,6933∙ 𝟏𝟎5𝟓 0,0123 -0,0194 10,479 -0,1036 0,1356 0,000263 4434 20286 
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Despite usage of same models, as in studies by Brock et. al. (1992), Kwon and Kish (2002) and 

Marshall and Cahan (2005), the approach in our paper differs. In mentioned studies trading 

returns obtained from the original series are compared to trading returns obtained from the 

simulated return series. Our approach is to evaluate each trading strategy by comparing risk-

adjusted trading returns, obtained from simulated series, with risk-adjusted buy-and-hold 

returns, obtained from the same set of simulated series. 

The mentioned previous studies apply a bootstrap methodology. Residuals in simulation models 

are obtained from observed series and then randomly re-sampled. This is done to overcome the 

weaknesses of t-tests, because distributions for financial returns often are leptokurtic, 

autocorrelated and heteroscedastic (Park and Irwin, 2007). However, as pointed out by Maddala 

and Li (1996), Ruiz and Pascual (2002), if the observed return series is misspecified in 

bootstrapped simulation model or is highly complex, the use of the model-based bootstrap 

methodology can provide inconsistent estimates. Therefore, we do not apply the model-based 

bootstrap methodology in this paper. In the next sections we present each model, used for 

simulation of index returns. 

4.2.1. Random Walk 

We use the following model for a random walk process: 

ln 𝑃) = ln 𝑃)5+ + 𝜀)	, 

where ln 𝑃) 	is the natural logarithm of the price for the SPDR S&P 500 at time 𝑡, ln 𝑃)5+ 	is 

the natural logarithm of the price at time 𝑡 − 1, while 𝜀) is a shock that represents the impact 

of new information, assumed to follow an i.i.d. process, i.e. 𝜀)	~	𝑖. 𝑖. 𝑑. (0, 𝜎_). 

The equation can be transformed, in terms of returns, as follows: 

ln 𝑃) − ln 𝑃)5+ = 𝜀) 

ln
𝑃)
𝑃)5+

= 𝜀)	, 

where the left side in the equation is the return for the SPDR S&P 500 at time 𝑡. A random walk 

process is not stationary because it contains a unit root. An augmented Dickey-Fuller test shows 

that the random walk process is stationary in first differences, the returns series for the SPDR 

S&P 500 are therefore stationary. The results for the Dickey-Fuller tests can be found in 

Appendix 1.1. A model for a random walk process can be viewed as a special case of an ARIMA 
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model, specified as an ARIMA (0,1,0) model without a constant where ln 𝑃)  is the dependent 

variable. 

4.2.2. AR (1) 

Based on estimated parameters in Table 3, the following AR (1) model is used to simulate 5000 

different return series: 

𝑟) = 0,00011 − 0,06586 ∙ 𝑟)5+ + 𝜀)	, 

where 𝜀)	is assumed to follow a Gaussian distribution. 

Table 3. Estimated parameters in the AR (1) model 

The null hypothesis of no autocorrelation in the residuals from the AR (1) model is rejected by 

performing a Ljung-Box test as shown in Appendix 2.1. Time varying volatility in the residuals 

can be detected by performing a Ljung-Box test on the squared residuals from the 

autoregressive model. As shown in Appendix 2.1 the residuals from the AR (1) model are 

heteroscedastic. Since the residuals are correlated and have time varying volatility we use 

robust standard errors corrected for both autocorrelation and heteroscedasticity (Newey and 

West, 1987). Table 4 provides estimated parameters in AR (1) model, but now with robust 

standard errors corrected for both autocorrelation and heteroscedasticity (HAC-SE). Although 

the robust standard error for coefficient 𝑟)5+ is greater than the standard error from the ordinary 

least squares estimation, the coefficient is still significant. 

Table 4. Estimated parameters in the AR (1) model with robust standard errors 

4.2.3. EGARCH 

The EGARCH is an extension of the original GARCH model, allowing for asymmetric effects 

on the conditional volatility from positive and negative shocks (Nelson, 1991). The EGARCH 

specification can capture the negative correlation between current returns and future volatility, 

which is present in the return series for many stocks, contrary to Bollerslev´s original GARCH 

specification. This is known as the «leverage effect», first introduced by Fisher Black in 1976. 

Nelson (1991) proposed the following specification to model the conditional variance: 

 Coefficient Std. Error t-value Probability 

𝒓𝒕5𝟏 -0,06586 0,01497 -4,40 0,00 

Constant 0,00011 0,000184 0,611 0,541 

 Coefficient HAC-SE t-value (HAC-SE) 

𝒓𝒕5𝟏 -0,06586 0,020285 -3,1579 

Constant 0,00011 0,000169 0,6642 
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	, 

where 𝜀) = 𝜎)𝑧) and 𝑧)~𝑖. 𝑖. 𝑑	(0,1). 

Estimating the conditional volatility on a log-linear form ensures that the estimated value of the 

conditional volatility is positive. This allows the estimated coefficients to be negative contrary 

to the original formulation of the GARCH model. The coefficients 𝛾+, 𝛾_. . . 𝛾i make up the sign 

effect, and are therefore typically negative, while the coefficients 𝛼+, 𝛼_ …𝛼i determine the 

size effect and are typically positive. 

4.2.3.1. Estimation of the EGARCH Model 

To estimate the most appropriate EGARCH model we will first specify the ARMA model with 

the best fit for the historical return series. Plausible candidates for simulating returns are AR 

(1), AR (2), ARMA (1,1) or MA (1). All these models provide significant parameters when 

estimated with maximum likelihood. Although the condition of serially uncorrelated residuals 

and constant variance are breached, as discussed below, these issues can be solved by 

estimating the conditional variance. Table 5 shows the Log Likelihood, Schwarz-, Hannan-

Quinn- and Akaike information criteria for the mentioned models of the conditional mean. The 

information criteria are described in Appendix 3.1. 

Table 5. Log Likelihood and information criteria for ARMA models 

All three information criteria select the ARMA (1,1) as the best model. Performing a Ljung-

Box test on the squared residuals from the ARMA (1,1) model, as shown in Appendix 3.2, 

indicates Arch effects amongst the residuals. Since the squared residuals are not heteroscedastic 

we will also model the conditional variance. By fitting different EGARCH variations we find 

that EGARCH (1,1) and EGARCH (1,2) provide significant parameters in the equation for the 

conditional variance. The standard errors are assumed to be normally distributed. Table 6 shows 

the Log Likelihood and information criteria for these two EGARCH models. 

 

 

Model Log Likelihood Schwarz IC Hannan-Quinn IC Akaike IC 

AR (1) 13228,205 -5,9610 -5,9638 -5,9654 

AR (2) 13235,985 -5,9626 -5,9664 -5,9684 

ARMA (1,1) 13239,095 -5,9641 -5,9678 -5,9698 

MA (1) 13229,420 -5,9616 -5,9644 -5,9659 
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Model Log Likelihood Schwarz IC Hannan-Quinn IC Akaike IC 

EGARCH (1,1) 14343 -6,4544 -6,4619 -6,4660 

EGARCH (1,2) 14363 -6,4595 -6,4689 -6,4740 

Table 6. Log Likelihood and information criteria for EGARCH models 

All three information criteria select the EGARCH (1,2) model as the preferred model as shown 

in Table 6. First, we estimate the ARMA (1,1) - EGARCH (1,2) model since it has the highest 

Log Likelihood and each information criteria prefers this model. The EGARCH (1,2) provides 

the following equation for the conditional variance: 

𝑙𝑜𝑔	𝜎_ = −0,1706 + 0,9823 ∙ log 𝜎)5+_ − 0,0915 ∙
𝜀)5+
𝜎)5+

+ 0,2127 ∙
𝜀)5_
𝜎)5_

− 0,2705 ∙
𝜀)5+
𝜎)5+

+ 0,1302 ∙
𝜀)5_
𝜎)5_

 

Since the coefficient for the first Arch lag and the coefficient for the second leverage lag have 

opposite signs than expected we rather estimate the conditional volatility with an EGARCH 

(1,1) model. 

By plotting the quantiles of the standardized residuals against the standardized normal 

distribution we can see if the standardized residuals are normally distributed or not. Figure 3 

shows that the residuals are negatively skewed and it is a thicker tail than implied by the normal 

distribution. The standardized residuals have a skewness of -0,5127 and an excess kurtosis of 

1,6835. We therefore assume that 𝑧) is drawn from a t-distribution to assess the problem with 

fat tails. 

 
Figure 3. Quantiles of the standardized residuals versus the standard normal quantiles 
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Model Log Likelihood Schwarz IC Hannan-Quinn IC Akaike IC 

EGARCH (1,1) 

(t-innovations) 

14424 -6,4892 -6,4976 -6,5022 

Table 7. Log Likelihood and information criteria for the EGARCH (1,1) with t-innovations 

A likelihood ratio test, described in Appendix 3.3, concludes that the EGARCH model with t-

innovations has the best fit for our data. We will therefore use the following EGARCH model: 

𝑟) = 0,000639948 − 0,753901 ∙ 𝑟)5+ + 	0.734934 ∙ 𝜀)5+ + 𝜀) 

𝑙𝑜𝑔	𝜎_ = −0,153869 + 0,984037 ∙ log 𝜎)5+_ + 0,104674 ∙
𝜀)5+
𝜎)5+

− 0,158091 ∙
𝜀)5+
𝜎)5+

	, 

where 𝜀) = 𝜎)𝑧)	and 𝑧) is t-distributed with 6,8369 degrees of freedom. Figure 4 shows the 

distribution of the residuals from the EGARCH model compared to a theoretical t-distribution 

with 6,83 degrees of freedom. From figure 4 we can see that there are less residuals in the right 

tail than implied by the t-distribution. Ideally the residuals should have followed a skewed t-

distribution, but MATLAB does not include this distribution. 

 
Figure 4. Quantiles of the standardized residuals following the t-distribution versus quantiles of a t-distribution 

with 6,8369 degrees of freedom 

In GARCH models we test the standardized residuals for autocorrelation rather than the raw 

residuals. Ljung-Box test in Appendix 3.4 barely accepts the null hypothesis of no serial 

correlation amongst the standardized residuals. A Ljung-Box test on the squared standardized 

residuals concludes with no remaining Arch effects amongst the residuals. The test statistic is 

shown in Appendix 3.4. 

4.3. Description of Trading Procedures and Return Computations 

To form the simulated price series, simulated returns from the models in Section 4.2 are raised 

to Euler’s number and multiplied by the previous price level, assuming 100 as the initial value 

of the index. Based on obtained 5000 index price series for each model, we apply 4 trading 
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strategies, performed on the moving average crossover rule with and without a 1 % band, and 

the RSI rule. It is important to distinguish the definition of a «trading rule» and a «trading 

strategy». The first one provides a trading signal, «buy» or «sell», while a trading strategy 

defines the position an investor takes for a given signal. Days following a buy (sell) signal are 

classified as buy (sell). 

Following the moving average crossover rule, a buy signal is emitted when the short simple 

moving average breaks the long one from below, while a sell signal appears when the short 

simple moving average breaks the long one from above. The occurrence of a signal can be 

expressed as follows: 

𝑆𝑀𝐴) 𝑠 > 𝑆𝑀𝐴) 𝑙 	𝑎𝑛𝑑	𝑆𝑀𝐴)5+ 𝑠 < 𝑆𝑀𝐴)5+ 𝑙 = «𝑏𝑢𝑦» 

𝑆𝑀𝐴) 𝑠 < 𝑆𝑀𝐴) 𝑙 	𝑎𝑛𝑑	𝑆𝑀𝐴)5+ 𝑠 > 𝑆𝑀𝐴)5+ 𝑙 = «𝑠𝑒𝑙𝑙» 

Considering earlier research (Brock et. al., 1992; Bessembinder and Chan, 1995; Fifield et. al., 

2005; Metghalchi et. al., 2012) we will examine the moving average crossover rule both with 

and without a 1 % band. For a rule with a band a buy (sell) signal is emitted when the short 

moving average exceeds (is less than) the long moving average by 1 %. The occurrence of a 

signal can be expressed as below: 

𝑀𝐴) 𝑠 > 1,01 ∙ 𝑀𝐴) 𝑙 	𝑎𝑛𝑑	𝑀𝐴)5+ 𝑠 < 1,01 ∙ 𝑀𝐴)5+ 𝑙 = «𝑏𝑢𝑦» 

𝑀𝐴) 𝑠 < 0,99 ∙ 𝑀𝐴) 𝑙 	𝑎𝑛𝑑	𝑀𝐴)5+ 𝑠 > 0,99 ∙ 𝑀𝐴)5+ 𝑙 = «𝑠𝑒𝑙𝑙» 

According to Brock et. al. (1992), the introduction of a band will lead to reduced number of 

buy and sell signals. That way one will eliminate «whiplash» signals that may occur when the 

values of the short and long moving averages are similar. With a band of zero all days will be 

classified as either buys or sells (Bessembinder and Chan, 1995). The only exception might be 

the days in the beginning of a trading period, because of the requirement that a buy (sell) signal 

first occurs when the short moving average breaks the long from below (above). For a rule with 

a band, not all days will be classified as buy or sell days, in addition to those in the beginning 

of a trading period. When the two following conditions are met, neither a buy nor sell signal 

applies: 

𝑀𝐴) 𝑠 < 𝑀𝐴)(𝑙) ∙ 1,01 

𝑀𝐴) 𝑠 > 𝑀𝐴|(𝑙) ∙ 0,99 

When it comes to the RSI rule, upper and lower horizontal bands are oscillators, providing buy 

and sell signals. According to Wilder (1978) and Murphy (1999) a move below the lower band 

warns of an oversold market condition for a given security, while a move above the upper band 
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indicates an overbought condition. Among various approaches of the RSI rule (Wong et. al., 

2003), we operate with the simplest form. A buy signal is emitted when the RSI crosses the 

lower oscillator from above, while a sell signal appears when the RSI crosses the upper 

oscillator from below. The occurrence of a signal is expressed as follows: 

𝑅𝑆𝐼) < 𝑙𝑜𝑤𝑒𝑟	𝑏𝑎𝑛𝑑	𝑎𝑛𝑑	𝑅𝑆𝐼)5+ ≥ 𝑙𝑜𝑤𝑒𝑟	𝑏𝑎𝑛𝑑 = «𝑏𝑢𝑦» 

𝑅𝑆𝐼) > 𝑢𝑝𝑝𝑒𝑟	𝑏𝑎𝑛𝑑	𝑎𝑛𝑑	𝑅𝑆𝐼)5+ ≤ 𝑢𝑝𝑝𝑒𝑟	𝑏𝑎𝑛𝑑 = «𝑠𝑒𝑙𝑙» 

As the case with the moving average crossover rule, all days are considered as buy or sell, 

except the days before the first trading signal is provided. 

Below, we present trading strategies applying for both rules used in this paper. Some 

assumptions are taken, applicable for each strategy. An investor holds a long position in the 

index when trading period days are neither buy nor sell days, as it provides a better comparison 

with a buy-and-hold strategy. The second assumption is that the borrowing and lending rates 

are the same (Brock et. al., 1992). As a proxy for the risk-free interest rate we use the 3 month 

US T-BILL security market rate. Daily observations of the annualized rate have been collected 

from Datastream and then transformed to daily rates with the following formula: 

1 + 𝑟)
+
��9 − 1 

In the optimization and back-testing procedures, the average of daily interest rates is used as a 

proxy for the risk-free interest rate. The last assumption is that an investor trades the same day 

a signal is emitted, by observing the prices a few minutes prior to the day’s closing and makes 

the trading order at approximately the closing index price (Neely, 2003; Metghalchi et. al., 

2012). 

The first strategy is «Leverage Money», and is the same strategy used by Brock et. al. (1992), 

Bessembinder and Chan (1995) and Metghalchi et. al. (2012). Upon a buy signal, an investor 

borrows in the money market to double the investment in the index. Upon a sell signal, the 

strategy requires closing of the buy position in the index and investing in a risk-free asset. 

Following Bessembinder and Chan (1995) a pre-transaction cost trading return is computed as 

below: 

													𝑇𝑅) = 2 ∙ 𝑅) − 𝑟) 

𝑇𝑅) = 𝑟)	, 

where 𝑇𝑅) is the trading return on day 𝑡 given a buy signal, 𝑅) is the index return on day 𝑡 and 

𝑟) is the mean daily interest rate on day 𝑡 given a sell signal. 
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The second strategy, «Long Money», has been applied by Neely (2003) and Metghalchi et. al. 

(2012). Following this strategy, an investor takes a long position in the index when the trading 

rule emits a buy signal, while goes long in the money market upon a sell signal earning the risk-

free rate of return. The returns, obtained from the strategy, are computed as follows: 

𝑇𝑅) = 𝑅) 

𝑇𝑅) = 𝑟) 

The third strategy, «Long Short», is based on the idea, that an investor is always in the stock 

market, taking either a long or short position in the index, obtaining 𝑅) on buy days and −𝑅) 

on sell days. The fourth strategy, «Money Short», is the opposite of the Long Money strategy, 

meaning investment in a risk-free asset upon buy signals, and taking a short position in the 

index upon sell signals. The strategy provides 𝑟) upon buy days and −𝑅) upon sell days. 

Each strategy will be evaluated in terms of profit by first taking obtained trading returns (𝑇𝑅)) 

and creating a value index as follows: 

𝑉) = 𝑉)5+ ∙ 𝑒��N 

with a start value (𝑉9) of 100 on the first day of a trading period. The total return for a trading 

period is computed as below: 

𝑇𝑅7 =
𝑉7 − 𝑉9
𝑉9

	, 

where 𝑁 stands for the length of a trading period, while 𝑉7 is the index value on the last day of 

the trading period. As mentioned by Neely (2003), a strategy with large total raw returns might 

also be the riskiest strategy, therefore we use risk-adjusted trading returns to evaluate trading 

strategies. For the strategies which are out of the market on specific signals, the volatility of 

trading returns might be less than the volatility of returns for the buy-and-hold strategy. A 

common measure on risk-adjusted returns is the Sharpe ratio (Sharpe, 1966). It has been used 

by Neely (2003) as assessment criteria in terms of risk-adjusted profitability for trading 

strategies. The ex-ante Sharpe ratio will be measured as follows: 

𝑆ℎ𝑎𝑟𝑝𝑒	𝑟𝑎𝑡𝑖𝑜 =
Ε 𝑇𝑅7
𝜎���

	, 

where Ε 𝑇𝑅7  is the expected total return for the value index and 𝜎��� is the standard deviation 

of the value index’s total returns. Although Sharpe (1966) originally subtracted the risk-free 

rate from the expected return, in this paper the Sharpe ratio will be calculated as stated above. 
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The transaction costs will not be accounted for in the optimization procedure. When the 

optimized strategies are back-tested on historical SPDR S&P 500 data we assume a one-way 

transaction cost of 0,30 %, which equals the transaction cost using Deutsche Bank as a broker 

(Deutsche Bank AG, 2017). We assume, as Neely (2003), that the transaction costs are the same 

for the whole trading period. (Deutsche Bank AG, 2017). 

4.4. Pseudo Codes 

In this section we present pseudo codes, linked to programming codes in MATLAB. The 

pseudo codes show the process behind the moving average crossover without a band and the 

RSI rules, in addition to establishment and evaluation of trading strategies based on those rules. 

For the moving average crossover rule, the first 199 days in each simulated price series are not 

traded on, that is to assure that the short and long moving averages are compared on the equal 

basis. For the RSI rule, there are no trades for the first 34 days in each simulated price series. 

4.4.1. Pseudo Code Moving Average Crossover Rule 
1. The long and short moving averages 
LOAD ‘simulated prices’ 
long moving average = calculate simple moving average [simulated prices, length of moving average (𝑺𝑴𝑨𝑳)] 
short moving average = calculate simple moving average [simulated prices, length of moving average (𝑺𝑴𝑨𝑺)] 
2. Trading signals 
IF 𝑠ℎ𝑜𝑟𝑡	𝑚𝑜𝑣𝑖𝑛𝑔	𝑎𝑣𝑒𝑟𝑎𝑔𝑒) > 𝑙𝑜𝑛𝑔	𝑚𝑜𝑣𝑖𝑛𝑔	𝑎𝑣𝑒𝑟𝑎𝑔𝑒) AND 
    𝑠ℎ𝑜𝑟𝑡	𝑚𝑜𝑣𝑖𝑛𝑔	𝑎𝑣𝑒𝑟𝑎𝑔𝑒)5+ < 𝑙𝑜𝑛𝑔	𝑚𝑜𝑣𝑖𝑛𝑔	𝑎𝑣𝑒𝑟𝑎𝑔𝑒)5+ 
  TRUE: 𝑠𝑖𝑔𝑛𝑎𝑙) = 1 
IF 𝑠ℎ𝑜𝑟𝑡	𝑚𝑜𝑣𝑖𝑛𝑔	𝑎𝑣𝑒𝑟𝑎𝑔𝑒) < 𝑙𝑜𝑛𝑔	𝑚𝑜𝑣𝑖𝑛𝑔	𝑎𝑣𝑒𝑟𝑎𝑔𝑒) 
    𝑠ℎ𝑜𝑟𝑡	𝑚𝑜𝑣𝑖𝑛𝑔	𝑎𝑣𝑒𝑟𝑎𝑔𝑒)5+ > 𝑙𝑜𝑛𝑔	𝑚𝑜𝑣𝑖𝑛𝑔	𝑎𝑣𝑒𝑟𝑎𝑔𝑒)5+ 
  TRUE:	𝑠𝑖𝑔𝑛𝑎𝑙) = -1 
3. Buy and sell days 
FOR trading days 200 to 2000 
FOR all 5000 simulated price paths 
            IF 𝑠𝑖𝑔𝑛𝑎𝑙) = 1 AND 𝑠𝑖𝑔𝑛𝑎𝑙)*+ = 0 
  TRUE: 𝑠𝑖𝑔𝑛𝑎𝑙)*+ = 1 
            IF 𝑠𝑖𝑔𝑛𝑎𝑙) = -1 AND 𝑠𝑖𝑔𝑛𝑎𝑙)*+ = 0 
  TRUE: 𝑠𝑖𝑔𝑛𝑎𝑙)*+ = -1 
DELETE last signal since it is not used for trading 
4. Trading strategy returns 
LOAD ‘simulated index returns’ 
FOR trading days 200 to 2000 
FOR all 5000 simulated price paths 

IF 𝑠𝑖𝑔𝑛𝑎𝑙) = 1 
  TRUE: 𝑡𝑟𝑎𝑑𝑖𝑛𝑔	𝑟𝑒𝑡𝑢𝑟𝑛𝑠) = buy day returns for a given trading strategy  

IF 𝑠𝑖𝑔𝑛𝑎𝑙) = -1 
  TRUE: 𝑡𝑟𝑎𝑑𝑖𝑛𝑔	𝑟𝑒𝑡𝑢𝑟𝑛𝑠) = sell day returns for a given trading strategy  

IF 𝑠𝑖𝑔𝑛𝑎𝑙) = 0 
  TRUE: 𝑡𝑟𝑎𝑑𝑖𝑛𝑔	𝑟𝑒𝑡𝑢𝑟𝑛𝑠) = simulated index returns 
5. Evaluation of trading strategy 
The initial investment is 100 for all 5000 simulations 

value index = cumulative product [initial investment;	𝑒)�L�6?�	��)��?QN] 
total returns = final return for each simulation 
mean final return = mean [total returns] 
standard deviation = Std. Dev. [total returns] 
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Sharpe ratio = ��L?	�6?L|	��)��?
Q)L?�L��	���6L)6P?

 
 
SAVE Program ‘The moving average crossover rule:  

Leverage Money/ Long Money/ Long Short/ Money Short strategy 
Random Walk/ AR (1)/ EGARCH model’ 

4.4.2. Pseudo Code RSI Rule 
1. Daily gain and loss 
LOAD ‘simulated prices’ 
FOR days 1 to 2000 
FOR all 5000 simulated price paths 
 IF 𝑠𝑖𝑚𝑢𝑙𝑎𝑡𝑒𝑑	𝑝𝑟𝑖𝑐𝑒𝑠) > 𝑠𝑖𝑚𝑢𝑙𝑎𝑡𝑒𝑑	𝑝𝑟𝑖𝑐𝑒𝑠)5+ 
  TRUE: 𝐺𝑎𝑖𝑛) = 𝑠𝑖𝑚𝑢𝑙𝑎𝑡𝑒𝑑	𝑝𝑟𝑖𝑐𝑒𝑠) – 𝑠𝑖𝑚𝑢𝑙𝑎𝑡𝑒𝑑	𝑝𝑟𝑖𝑐𝑒𝑠)5+ 
 IF 𝑠𝑖𝑚𝑢𝑙𝑎𝑡𝑒𝑑	𝑝𝑟𝑖𝑐𝑒𝑠) < 𝑠𝑖𝑚𝑢𝑙𝑎𝑡𝑒𝑑	𝑝𝑟𝑖𝑐𝑒𝑠)5+ 
  TRUE: 𝐿𝑜𝑠𝑠) = 𝑠𝑖𝑚𝑢𝑙𝑎𝑡𝑒𝑑	𝑝𝑟𝑖𝑐𝑒𝑠)5+ – 𝑠𝑖𝑚𝑢𝑙𝑎𝑡𝑒𝑑	𝑝𝑟𝑖𝑐𝑒𝑠) 
2. Computing the RSI 
𝐺𝑎𝑖𝑛) = modified moving average of gains for a given look-back period (𝑴𝑴𝑨) 
𝐿𝑜𝑠𝑠) = modified moving average of losses for a given look-back period (𝑴𝑴𝑨) 
FOR trading days 35 to 2000 
FOR all 5000 simulated price paths 
 𝑅𝑆𝐼) = 100 – (100 / (1 + (𝐺𝑎𝑖𝑛) / 𝐿𝑜𝑠𝑠)))) 
3. Trading signals 
FOR trading days 35 to 2000 
FOR all 5000 simulated price paths 
 IF 𝑅𝑆𝐼) < lower band (𝒍𝒃) AND 𝑅𝑆𝐼)5+ >= lower band (𝒍𝒃) 
  TRUE: 𝑆𝑖𝑔𝑛𝑎𝑙) = 1 
 IF 𝑅𝑆𝐼) > upper band (𝒖𝒃)	AND 𝑅𝑆𝐼)5+ <= upper band (𝒖𝒃) 
  TRUE: 𝑆𝑖𝑔𝑛𝑎𝑙) = -1 
4. Buy and sell days 
FOR trading days 35 to 1999 
FOR all 5000 simulated price paths 
 IF 𝑆𝑖𝑔𝑛𝑎𝑙) = 1 AND 𝑆𝑖𝑔𝑛𝑎𝑙)*+ = 0 
  TRUE: 𝑆𝑖𝑔𝑛𝑎𝑙)*+ = 1 
 IF 𝑆𝑖𝑔𝑛𝑎𝑙) = -1 AND 𝑆𝑖𝑔𝑛𝑎𝑙)*+ = 0 
  TRUE: 𝑆𝑖𝑔𝑛𝑎𝑙)*+ = -1 
5. Trading strategy returns 
LOAD ‘simulated index returns’ 
FOR trading days 35 to 2000 
FOR all 5000 simulated price paths 

IF 𝑆𝑖𝑔𝑛𝑎𝑙) = 1 
  TRUE: 𝑡𝑟𝑎𝑑𝑖𝑛𝑔	𝑟𝑒𝑡𝑢𝑟𝑛𝑠) = buy day returns for a given trading strategy 

IF 𝑆𝑖𝑔𝑛𝑎𝑙) = -1 
  TRUE: 𝑡𝑟𝑎𝑑𝑖𝑛𝑔	𝑟𝑒𝑡𝑢𝑟𝑛𝑠) = sell day returns for a given trading strategy 

IF 𝑆𝑖𝑔𝑛𝑎𝑙) = 0 
  TRUE: 𝑡𝑟𝑎𝑑𝑖𝑛𝑔	𝑟𝑒𝑡𝑢𝑟𝑛𝑠) = simulated index returns 
6. Evaluation of trading strategy 
The initial investment is 100 for all 5000 simulations 

value index = cumulative product [initial investment;	𝑒)�L�6?�	��)��?QN] 
total returns = final return for each simulation 
mean final return = mean [total returns] 
standard deviation = Std. Dev. [total returns] 
Sharpe ratio = ��L?	�6?L|	��)��?

Q)L?�L��	���6L)6P?
 

 
SAVE Program ‘The RSI rule:  

Leverage Money/ Long Money/ Long Short/ Money Short strategy 
Random Walk/ AR (1)/ EGARCH model’ 
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4.5. Brute-force Optimization 

The aim of the optimization algorithm is to find the parameters for a given trading rule that 

maximizes the mean final risk-adjusted return across 5000 simulations, dependent on the 

trading strategy. Therefore, we test all possible combinations of parameters within some pre-

specified restrictions for both rules. By performing a brute force optimization, we obtain the 

Sharpe ratio for each combination of parameters for a given trading rule. This is done because 

we, before executing the optimization algorithm, have no prior knowledge of which 

combinations are likely to provide best solutions. 

For the moving average crossover rule, the final risk-adjusted return is a function of number of 

days in the long moving average	(SMA�) and the number of days in the short moving average 

(SMA�) as shown in Section 4.4.1. The optimization problem for the moving average crossover 

rule is as follows: 

					max
𝑇𝑅7(SMA�, SMA�)
𝜎���(SMA�, SMA�)

 

subject to the constraints:                        41 ≤ SMA� ≤ 200 

																													1 ≤ SMA� ≤ 𝑆𝑀𝐴O − 40 

For the trading strategies based on the moving average crossover rule we have imposed the 

following constraints. The number of days in the longer of the two moving averages ranges 

from 41 to 200 in steps of one. For each length of the long moving average a series of short 

moving averages are computed with lengths ranging from 1 day to 40 days less than the length 

of the corresponding long moving average. 

For the Relative Strength Index, the final risk-adjusted return is a function of the number of 

days the modified moving average is calculated over (MMA) and the values of lower (lb) and 

upper ub  bands as shown in Section 4.4.1. The optimization problem for the RSI rule is 

expressed as follows: 

max
𝑇𝑅7(MMA, lb, ub)
𝜎���(MMA, lb, ub)

 

subject to the constraints:                     5 ≤ 𝑀𝑀𝐴 ≤ 35 

																																			20 ≤ 𝑙𝑏 ≤ 40 for each value of MMA 

                       																																					40 ≤ 𝑢𝑏 ≤ 60 for each combination of MMA and 𝑙𝑏 

For the RSI, the number of days in a look-back period, for which the modified moving 

average is calculated for, ranges from 5 to 35. For each length of the modified moving 
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average the value of the lower band varies from 20 to 40, while the value of the upper band is 

between 60 and 80. 

The optimization problems above are non-linear, because the Sharpe ratio is not a linear 

function of decision variables (𝑆𝑀𝐴O, 𝑆𝑀𝐴¥,𝑀𝑀𝐴, 𝑙𝑏, 𝑢𝑏). The optimization problems are also 

non-differentiable, since the decision variables consist of only integer values and are therefore 

not continuous variables. Gradient-based optimization methods can therefore not be applied. 

Figure 5 illustrates the problem of finding the local optimum among Sharpe ratios in for 

instance the Leverage Money strategy, based on the moving average crossover rule and 

simulations from the Random Walk model. The number of days in the long moving average is 

kept constant at 200, while the length of the short moving average varies from 1 to 160 days. 

Figure 5 shows that the Sharpe ratio is non-monotonic function of mentioned decision variables. 

An optimization based on a genetic algorithm might therefore find a local rather than the global 

maximum. 

 
Figure 5. Sharpe Ratios for the Leverage Money strategy with 200 days in the long moving average and various 
lengths of the short moving average 

4.5.1. Brute-force Optimization Algorithm for the Moving Average Crossover Rule 

For the moving average crossover rule, the optimization algorithm provides the results for a 

total of 12880 different combinations. The optimization algorithm used in MATLAB can be 

expressed in terms of a pseudo code as follows: 
counter = 0 
FOR length of the long moving average = 41 to 200 days with a step of 1 
FOR length of the short moving average = 1 to 40 days less than the long moving average with a step of 1 
 counter = counter + 1 

LOAD Program ‘The moving average crossover rule:  
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Leverage Money/ Long Money/ Long Short/ Money Short strategy 
Random Walk/ AR (1)/ EGARCH model’ 

For a given combination of short and long moving average: 
 mean final return (counter) 
 standard deviation (counter) 
 Sharpe ratio (counter) 

4.5.2. Brute-force Optimization Algorithm for the RSI Rule 

For the RSI rule, 13671 different combinations are obtained from the optimization process. A 

pseudo code linked to the optimization algorithm is expressed below: 
counter = 0 
FOR number of days in a look-back period = 5 to 35 days with a step of 1 
FOR value of the lower band = for 20 to 40 
FOR value of the upper band = for 60 to 80 
 counter = counter + 1 

LOAD Program ‘The RSI rule:  
Leverage Money/ Long Money/ Long Short/ Money Short strategy 
Random Walk/ AR (1)/ EGARCH model’ 

For a given combination of look-back period, lower and upper band: 
 mean final return (counter) 
 standard deviation (counter) 
 Sharpe ratio (counter) 
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5. Results 

In this section, we present the optimized solutions for the moving average crossover and the 

RSI rules, based on the 4 different trading strategies: «Leverage Money», «Long Money», 

«Long Short» and «Money Short». We also present the results obtained from the back-testing 

the optimized strategies on historical SPDR S&P 500 data, considering transaction costs and 

applying statistical tests. The result section is divided in terms of trading rules, where we first 

introduce the optimized strategies and the back-testing for the moving average crossover rule, 

and afterwards for the RSI. For both rule, the optimized strategies are presented for each of the 

simulation models. 

5.1. The Moving Average Crossover Rule 

5.1.1. Optimized Trading Strategies 

Optimal 
Combi- 
nation 

(𝑴𝑨𝑺,𝑴𝑨𝑳) 
 

Total 
Return 

Annual 
Return 

Excess 
Return 
(over 
B&H) 

Annual 
Excess 
Return 

Std. Dev. 
(Total 

Return) 

Annual 
Std. Dev. 

Sharpe 
ratio 

Annual 
Sharpe 

ratio 

Optimized strategies for the Random Walk model: 
Lev. Money 
(3,43) 

30,90% 3,81% 17,52% 2,26% 117,37% 43,72% 0,2633 0,0871 

Lev. Money 
b. (2,43) 

27,65% 3,44% 14,27% 1,87% 107,35% 39,98% 0,2576 0,0862 

Long Money 
(1,41) 

10,98% 1,46% -2,4% -0,34% 42,84% 15,96% 0,2562 0,0912 

Long Money 
b. (3,47) 

12,01% 1,59% -1,37% -0,19% 47,68% 17,76% 0,2519 0,0893 

Long Short 
(65,107) 

14,94% 1,95% 1,56% 0,21% 61,68% 22,97% 0,2422 0,0849 

Long Short 
b. (3,47) 

15,67% 2,04% 2,29% 0,32% 63,81% 23,77% 0,2456 0,0859 

Money Short 
(1,41) 

12,28% 1,62% -1,10% -0,15% 43,90% 16,35% 0,2797 0,0991 

Money Short 
b. (1,49) 

13,53% 1,78% 0,15% 0,021% 47,36% 17,64% 0,2857 0,1007 

Buy-and-
Hold (B&H) 

13,38% 1,76% - - 63,08% 23,50% 0,2121 0,0748 

Optimized strategies for the AR (1) model: 
Lev. Money 
(91,131) 

60,55% 6,79% 23,74% 2,99% 146,99% 54,75% 0,4119 0,1240 

Lev. Money 
b. (159,200) 

54,93% 6,26% 18,13% 2,34% 135,05% 50,30% 0,4068 0,1245 

Long Money 
(160,200) 

25,17% 3,16% -11,64% -1,70% 51,85% 19,31% 0,4854 0,1638 

Long Money 
b. (140,183) 

29,74% 3,68% -7,07% -1,01% 59,56% 22,18% 0,4992 0,1658 

Long Short 
(160,200) 

17,16% 2,22% -19,65% -2,99% 61,46% 22,89% 0,2792 0,0970 

Long Short 
b. (160,200) 

25,62% 3,21% -11,19% -1,63% 66,05% 24,60% 0,3878 0,1307 
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Table 8. The performance of optimized strategies based on simulated time series from three different models. The 
optimal combination of lengths for the short and long moving averages are shown in parenthesis in Column 1. 
The total return in Column 2 stands for the final mean return across simulated price series, without accounting 
for transaction costs. Since we operate with 1802 trading days, and assume 250 trading days a year, the trading 
period spans over 7,208 years. The annual return in Column 3 is therefore computed as follows: 

(1 + 𝑇𝑜𝑡𝑎𝑙	𝑅𝑒𝑡𝑢𝑟𝑛)
V

¦,§¨© − 1. The excess return in Column 4 is the difference between the total return from 
Column 2 and the total buy-and-hold return for the specific simulation model. The annual excess return is 
presented in Column 5, by using the same formula as for the annual return. The standard deviation in Column 6 
is calculated on basis of total returns across 5000 simulations, and annualized by multiplying the standard 
deviation with 7,20859,ª,  presented in Column 7. The Sharpe ratio and the annual Sharpe ratio are shown in 
Columns 8 and 9. 

In Table 8, we summarize the performance, in terms of both raw and risk-adjusted returns for 

each optimized trading strategy. Table 8 is divided into three parts, providing the results for the 

Random Walk, the AR (1) and the EGARCH models. All optimized trading strategies from the 

Random Walk model obtain higher risk-adjusted returns than a buy-and-hold strategy for the 

same set of simulations. Although three of the strategies generate negative excess return, their 

standard deviation is lower than the standard deviation for the buy-and-hold strategy, which is 

always in the market. Some of the trading strategies are out of the market on buy or sell days, 

earning the risk-free return, which will lower their standard deviation. In contrast to the results 

obtained from the Random Walk model, none of the optimized trading strategies based on the 

AR (1) model obtain higher risk-adjusted returns than a buy-and-hold strategy on the same set 

of simulations. Although the Leverage Money strategies generate positive excess return, they 

also contain more risk than the buy-and-hold strategy, and therefore have less risk-adjusted 

returns. For the optimized strategies obtained from the EGARCH model, the Leverage Money 

Money Short 
(160,200) 

3,15% 0,43% -33,65% -5,53% 37,97% 14,14% 0,0831 0,0305 

Money Short 
b. (154,194) 

16,42% 2,13% -20,38% -3,11% 47,87% 17,83% 0,3431 0,1196 

Buy-and-
Hold (B&H) 

36,81% 4,44% - - 69,50% 25,89% 0,5296 0,1717 

Optimized strategies for the EGARCH model: 
Lev. Money 
(2,42) 

174,68% 15,05% 62,68% 6,98% 157,51% 58,67% 1,1089 0,2565 

Lev. Money 
b. (4,44) 

166,33% 14,56% 54,34% 6,21% 142,05% 52,91% 1,1709 0,2751 

Long Money 
(2,69) 

70,85% 7,71% -41,14% -7,09% 49,71% 18,52% 1,4253 0,4166 

Long Money 
b. (2,45) 

78,14% 8,34% -33,86% -5,57% 55,25% 20,58% 1,4143 0,4053 

Long Short 
(159,200) 

63,55% 7,06% -48,44% -8,78% 82,26% 30,64% 0,7725 0,2305 

Long Short 
b. (160,200) 

89,36% 9,26% -22,64% -3,50% 87,70% 32,66% 1,0189 0,2835 

Money Short 
(109,200) 

10,38% 1,38% -101,61% - 54,79% 20,41% 0,1895 0,0676 

Money Short 
b. (160,200) 

36,52% 4,41% -75,48% -17,72% 49,89% 18,58% 0,7319 0,2375 

Buy-and-
Hold (B&H) 

111,99% 10,99% - - 82,61% 30,77% 1,3557 0,3571 
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strategies are the only strategies generating positive excess return, but they do not obtain a 

higher Sharpe ratio than the buy-and-hold strategy for the same set of simulations. The Long 

Money strategies are the only strategies with a higher Sharpe ratio than the buy-and-hold for 

time series simulated by the EGARCH model. 

The optimal lengths of the moving averages are all small for trading strategies obtained from 

simulations based on the Random Walk model, except for one strategy. For the AR (1) model 

the optimal lengths for the short and long moving averages are both long. Several of the 

strategies choose the longest combination (160, 200) tested. The lengths of the moving averages 

vary from small to large for the simulations based on the EGARCH model. 

5.1.2. Predictive Power on Historical SPDR S&P 500 Data 

Optimal 
Combi- 
nation 

(𝑴𝑨𝑺,𝑴𝑨𝑳) 

Number 
of Buy 

and Sell 
Days 

Mean 
Return 

Buy Days 
 

Std. 
Dev. 
(Buy 
Days) 

Mean 
Return 

Sell Days 

Std. Dev. 
(Sell 

Days) 

Buy>0 Sell>0 Buy-Sell 

Back-testing of the optimized strategies for the Random Walk model: 
Lev. Money 
(3,43) 

2595 buy 
1621 sell 

0,0029% 
(-0,3208) 

0,8361% 0,0231% 
(0,2705) 

1,6525% 0,5129 0,5219 -0,0202% 
(-0,4569) 

Lev. Money 
b. (2,43) 

2039 buy 
1199 sell 

0,0066% 
(-0,1658) 

0,8094% 0,0248% 
(0,2473) 

1,8312% 0,5110 0,5196 -0,0182% 
(-0,3255) 

Long Money 
(1,41) 

2604 buy 
1614 sell 

-0,0007% 
(-0,4634) 

0,8412% 0,0288% 
(0,3974) 

1,6507% 0,5131 0,5217 -0,0295% 
(-0,6665) 

Long Money 
b. (3,47)  

2065 buy 
1207 sell 

0,0114% 
(0,0222) 

0,8167% 0,0148% 
(0,070) 

1,8287% 0,5119 0,5145 -0,0033% 
(-0,06) 

Long Short 
(65,107) 

2614 buy 
1612 sell 

0,0188% 
(0,3167) 

0,8474% -0,0011% 
(-0,2659) 

1,6479% 0,5249 0,5037 0,0199% 
(0,4499) 

Money Short 
(1,41) 

2604 buy 
1614 sell 

-0,0007% 
(-0,4634) 

0,8412% 0,0288% 
(0,3974) 

1,6507% 0,5131 0,5217 -0,0295% 
(-0,6665) 

Money Short 
b. (1,49) 

2116 buy 
1232 sell 

0,0037% 
(-0,2798) 

0,8134% 0,0261% 
(0,2795) 

1,8017% 0,5123 0,5170 -0,0072% 
(-0,4140) 

Back-testing of the optimized strategies for the AR (1) model: 
Lev. Money 
(91,131) 

2624 buy 
1582 sell 

0,0222% 
(0,4441) 

0,8825% -0,0060% 
(-0,3755) 

1,6245% 0,5225 0,5070 0,0282% 
(0,6356) 

Lev. Money 
b. (159,200) 

1472 buy 
803 sell 

0,0127% 
(0,0593) 

0,9053% -0,0316% 
(-0,6405) 

1,7999% 0,5353 0,4956 0,0442% 
(0,6523) 

Long Money 
(160,200)  

2716 buy 
1481 sell 

0,0226% 
(0,4620) 

0,8845% -0,0065% 
(-0,3698) 

1,6592% 0,5269 0,4990 0,0291% 
(0,6272) 

Long Money 
b. (140,183) 

1561 buy 
847 sell 

0,0152% 
(0,1488) 

0,8672% -0,0240% 
(-0,5439) 

1,7816% 0,5272 0,4888 0,0043% 
(0,6014) 

Long Short 
b. (160,200)  

1439 buy 
776 sell 

0,0193% 
(0,2763) 

0,9058% -0,0321% 
(-0,6326) 

1,8190% 0,5379 0,4961 0,0514% 
(0,7387) 

Money Short 
b. (154,194) 

1459 buy 
802 sell 

0,0122% 
(0,0427) 

0,9059% -0,0269% 
(-0,5784) 

1,7690% 0,5326 0,4938 0,0390% 
(0,5838) 

Back-testing of the optimized strategies for the EGARCH model: 
Lev. Money 
(2,42) 

2608 buy 
1609 sell 

0,0068% 
(-0,1629) 

0,8350% 0,0169% 
(0,1337) 

1,6579% 0,5153 0,5183 -0,0101% 
(-0,2277) 

Lev. Money 
b. (4,44) 

2016 buy 
1189 sell 

0,0112% 
(0,0138) 

0,8209% 0,0245% 
(0,2440) 

1,8174% 0,5104 0,5231 -0,0133% 
(-0,2382) 
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Long Money 
(2,69) 

2641 buy 
1517 sell 

0,0124% 
(0,0636) 

0,8132% 0,0111% 
(0,0055) 

1,6923% 0,5146 0,5221 0,0013% 
(0,0281) 

Long Money 
b. (2,45) 

2059 buy 
1212 sell 

0,0067% 
(-0,1604) 

0,8090% 0,0333% 
(0,4047) 

1,8176% 0,5109 0,5190 -0,0266% 
(-0,4820) 

Long Short 
(159,200) 

2723 buy 
1474 sell 

0,0208% 
(0,3932) 

0,8839% -0,0034% 
(-0,3029) 

1,6627% 0,5259 0,5007 0,0242% 
(0,5209) 

Money Short 
(109,200) 

2681 buy 
1516 sell 

0,0230% 
(0,4813) 

0,8714% -0,0066% 
(-0,3760) 

1,6578% 0,5256 0,5020 0,0296% 
(0,6467) 

 Daily 
Return 

Daily Std. 
Dev. 

 

Buy-and-
Hold (B&H) 

0,0109% 1,2191% 

Table 9. Standard test results for the predictive power of the optimized moving average combinations for the 
different trading strategies back-tested on historical SPDR S&P 500 data. The trading period ranges from 2000 
to 2016 and consists of 4236 days. Strategies with the same combination of short and long moving averages are 
not presented repeatedly, because they give the same results. The number of buy and sell days during the sample 
are presented in Column 2. Column 3 shows the mean daily return for the SPDR S&P 500 on buy days, while 
Column 5 shows the mean daily index return on sell days. The mean returns do not necessary equal the returns 
from the trading strategies, but rather the index return conditional on signals. The values in parenthesis, in 
Columns 3 and 5, are t-values for a two-tailed T-test. Columns 4 and 6 provide the standard deviation for the 
index returns on days, where a buy (sell) signal is given. Columns 7 and 8 present the fraction of positive index 
returns on buy (sell) days. Last column provides the difference in mean daily index return on buy and sell days, 
where the value in parenthesis is the t-value for a two-tailed T-test testing if the difference is significantly different 
from zero. T-values in the table are calculated as shown in appendix 4.1. 

Table 9 shows the predictive power of each optimal combination of moving averages on 

historical SPDR S&P 500 data. According to Brock et. al. (1992) technical trading rules have 

predictive power if the mean daily index return on buy (sell) days differ from the mean daily 

index return for the whole sample. The mean daily index return should also be positive 

(negative) for days’ conditional on buy (sell) signal. The reason is that an investor for most of 

the trading strategies, besides the Money Short in our case, will take a long position in the index 

on buy days, and a short position or stay out of the market on sell days. If a technical trading 

rule has predictive power, the mean daily index return on buy days will differ from the mean 

daily index return on sell days, obtaining a positive difference. Predictive power is also due to 

the fraction of positive index returns higher for buy than sell days. If a technical trading rule 

does not provide predictive power, the fraction of positive index returns will be the same for 

both buy and sell days. Brock et. al. (1992) found that several popular combinations of moving 

averages had significant predictive power on the Dow Jones index. The similar results were 

obtained by Bessembinder and Chan (1995) concluding with predictive power of moving 

average crossover rule in emerging Asian markets. Metghalchi et. al. (2012) concluded with 

predictive power for the same rule on several European ETF stock indices. 

After back-testing the optimal combinations of the moving averages on historical SPDR S&P 

500 data, our results conclude that the moving average crossover rule does not have predictive 

power on the index. None of the combinations provide signals that give significantly different 
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mean daily index return on buy (sell) days from the mean daily index return for the whole 

trading period. In addition, mean daily index return on buy days is not significantly different 

from the mean daily index return on sell days for all optimized combinations. Although not 

providing significant results, the optimal combinations obtained from the AR (1) model has the 

best predictive power on historical data by obtaining positive (negative) mean daily index return 

on buy (sell) days and providing the lowest fraction of positive index returns on sell days 

applicable to all combinations. The negative mean daily index return on sell days are especially 

noteworthy. As stated by Brock et. al. (1992), the predictive power on sell days will either 

reflect changes resulting from an equilibrium model or market inefficiency. However, as 

pointed out by Brock et. al. (1992), it is difficult to imagine that an equilibrium model will 

provide negative returns for a long time period. 

The optimal combinations obtained from the Random Walk model have the least predictive 

power, since only one combination provides negative mean daily index return on sell days. In 

addition, two combinations give negative mean daily index return on buy days, and in none of 

the cases a fraction of positive index returns on sell days is lower than 0,50. The results obtained 

from the EGARCH model are mixed, 4 out of 8 optimal combinations provide negative mean 

daily index return on sell days. For the same combinations, the fraction of positive index returns 

is 0,50 or lower on sell days. 

Combinations of moving averages with a 1 % band obtain as expected fewer buy and sell days, 

since days that neither are buy nor sell may occur during the trading period after the first signal 

has occurred. Brock et. al. (1992) found that the introduction of a band increased the difference 

between mean daily index return on buy and sell days when using the same combinations of 

moving averages for the Dow Jones index. In our paper, it is more difficult to compare results 

with and without a band, since combinations with a band differ from the combinations without 

a band. Only the combination of 160 days for the short moving average and 200 days for the 

long moving average is chosen both with and without a band in the brute-force optimization 

process. The spread between mean daily index return on buy and sell days is greater by 

including a band. In 6 out of 12 cases the introduction of a band provides more positive 

difference between the mean daily index return on buy and sell days for strategies with a band. 

 

Our results support findings in earlier studies as Brock et. al. (1992), Bessembinder and Chan 

(1995) and Metghalchi et. al. (2012) when it comes to the variance of index returns on buy and 

sell days. Mentioned studies reported greater standard deviation for index returns on sell days 



	 33	

than for index returns on buy days for the indices studied. Our paper provides similar results, 

the standard deviation for index returns is higher on sell days than on buy days for all optimized 

combinations. 

5.1.3. Back-tested Results for Optimized Trading Strategies 

Optimal 
Combi-
nation 

(𝑴𝑨𝑺,𝑴𝑨𝑳) 
 

Total 
Return 

Annual 
Return 

Excess 
Return 
(over 
B&H) 

 

Annual 
Excess 
Return 

Mean 
Daily 

Return 

Std. Dev. 
(Daily 

Returns) 

Annual 
Std. Dev. 

Annual 
Sharpe 

ratio 

Back-testing of the optimized strategies for the Random Walk model: 
Lev. Money 
(3,43) 

12,50% 0,70% -45,97% -3,57% 0,0028% 1,3138% 20,7735% 0,0336 

Lev. Money 
b. (2,43) 

29,74% 1,55% -28,73% -1,98% 0,0061% 1,2180% 19,2576% 0,0804 

Long Money 
(1,41) 

6,90% 0,394% -51,56% -4,19% 0,0016% 0,6694% 10,5836% 0,0373 

Long Money 
b. (3,47) 

39,85% 1,99% -18,62% -1,21% 0,0079% 0,7306% 11,5533% 0,1730 

Long Short 
(65,107) 

64,33% 2,98% 5,87% 0,34% 0,0117% 1,2191% 19,2762% 0,1543 

Long Short 
b. (3,47) 

10,90% 0,61% -47,56% -3,74% 0,0024% 1,2192% 19,2770% 0,0318 

Money Short 
(1,41) 

-28,57% -1,97% -87,03% -11,36% -0,0079% 1,0254% 16,2124% -0,1213 

Money Short 
b. (1,49) 

-15,43% -0,98% -73,89% -7,62% -0,0040% 1,0751% 16,9996% -0,0579 

Back-testing of the optimized strategies for the AR (1) model: 
Lev. Money 
(91,131) 

197,75% 6,65% 139,29% 5,28% 0,0258% 1,3958% 22,070% 0,3014 

Lev. Money 
b. (159,200) 

138,81% 5,27% 80,35% 3,54% 0,0206% 1,3140% 20,7755% 0,2537 

Long Money 
(160,200) 

86,36% 3,74% 27,90% 1,46% 0,0147% 0,7238% 11,4440% 0,3270 

Long Money 
b. (140,183) 

101,55% 4,22% 43,09% 2,14% 0,0166% 0,9230% 14,5977% 0,2894 

Long Short 
(160,200) 

92,22% 3,93% 33,76% 1,73% 0,0154% 1,2191% 19,2755% 0,2040 

Long Short 
b. (160,200) 

160,92% 5,82% 102,45% 4,25% 0,0226% 1,219% 19,2737% 0,3021 

Money Short 
(160,200) 

17,51% 0,96% -40,95% -3,06% 0,0038% 0,9922% 15,6877% 0,0610 

Money Short 
b. (154,194) 

117,84% 4,70% 59,38% 2,79% 0,0184% 1,0970% 17,3454% 0,2711 

Back-testing of the optimized strategies for the EGARCH model: 
Lev. Money 
(2,42) 

37,90% 1,91% -20,56% -1,35% 0,0076% 1,3155% 20,7995% 0,0921 

Lev. Money 
b. (4,44) 

43,12% 2,14% -15,34% -0,98% 0,0085% 1,2335% 19,5038% 0,1096 

Long Money 
(2,69) 

43,15% 2,14% -15,32% -0,98% 0,0085% 0,6789% 10,7345% 0,1993 

Long Money 
b. (2,45) 

11,64% 0,65% -46,82% -3,66% 0,0026% 0,7357% 11,6317% 0,0561 

Long Short 
(159,200) 

75,32% 3,37% 16,85% 0,92% 0,0132% 1,2191% 19,2759% 0,1748 
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Money Short 
(109,200) 

17,79% 0,97% -40,68% -3,03% 0,0039% 1,0027% 15,8548% 0,0612 

Money Short 
b. (160,200) 

110,78% 4,50% 52,32% 2,51% 0,0176% 1,0988% 17,3734% 0,2590 

Buy-and-
Hold (B&H) 

58,46% 2,75% - - 0,0109% 1,2191% 19,2763% 0,1429 

Table 10. The performance of optimized strategies, back-tested on historical SPDR S&P 500 data during the 
trading period of 4236 days in years 2000-2016. The Long Short band strategy has the same combination of 
moving averages for the simulations based on the AR (1) and EGARCH model, and is therefore only reported once 
in the table. 

In Table 10, we present the performance of optimized trading strategies, obtained from 

simulation models, on historical SPDR S&P 500 data. To evaluate the risk for a trading strategy 

we find the standard deviation for daily trading returns. For optimized trading strategies, 

provided by the Random Walk model, only two strategies obtain a higher annual Sharpe ratio 

than the buy-and-hold strategy. These strategies are the Long Money band and the Long Short. 

Though the Long Money band strategy generates a negative annual excess return (-1,21 %) 

compared to the buy-and-hold, it is the best strategy in terms of annual risk-adjusted returns. 

The Long Short is the only strategy that generates positive annual excess return (0,34 %). Since 

the Long Short and the buy-and-hold strategies are always in the market, their volatility will be 

almost the same. Strategies that are out of the market on either buy or sell signals will have a 

lower volatility than the buy-and-hold strategy. As expected, the Long Money and the Money 

Short are the least risky strategies. The riskiest strategies are the Leverage Money strategies. 

Though they spend time out of the market on sell days, a double long position on buy days 

makes these strategies the riskiest. The introduction of a band makes the Leverage Money 

strategy less risky, obtaining the standard deviation close to the standard deviation for the buy-

and-hold. For the strategies obtained from the Random Walk model the inclusion of a band 

provides a higher risk-adjusted return compared to the strategies without a band, besides the 

Long Short strategy. 

Seven out of eight optimized strategies provided by the AR (1) model obtain positive excess 

return and a higher Sharpe ratio than the buy-and-hold. The best strategy is the Long Money, 

providing an annual Sharpe ratio of 0,3270, which is also the highest Sharpe ratio obtained on 

historical data by any trading strategy in the sample. The Leverage Money strategy provides 

the highest annual excess return (5,28 %) across all the strategies provided by simulation 

models, but it is also the riskiest, obtaining the highest annual standard deviation (22,07 %). As 

Neely (2003) pointed out, although a technical trading rule can achieve greater returns than the 

buy-and-hold strategy, the Efficient Market Hypothesis is not violated if the strategy has less 

risk adjusted returns than the buy-and-hold strategy. The Leverage Money and the Long Money 
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strategies become worse when a band is included. Four out of eight strategies, provided by the 

EGARCH model, have a better Sharpe ratio than the buy-and-hold. The best strategy is the 

Long Short band, providing a Sharpe ratio of 0,3021, which is in fact the second-best across all 

the strategies in the sample. The combination of moving averages for this strategy is the same 

as for the AR (1) model. Only the Long Money strategy becomes worse when including a band 

in the strategies obtained from simulations based on the EGARCH model. Only the Money 

Short strategy is better applying a band for all three cases across simulation models. 

When comparing the strategies’ back-tested performance with the performance obtained in the 

optimization procedure, the differences are noticeable. For the simulations based on the 

Random Walk model, all the strategies beat the Sharpe ratio for the buy-and-hold in the 

optimization, while in the back-testing only two of the strategies do the same. The results are 

opposite for the AR (1) model, none of the optimized strategies provided a better Sharpe ratio 

than the buy-and-hold in the optimization, while seven out of eight strategies do it in the back-

testing. For the EGARCH model the performance of the optimal strategies in the optimization 

and the back-testing procedures are more coordinated. Two strategies beat the risk-adjusted 

returns for the buy-and-hold in the optimization, while four strategies do the same when back-

tested. Therefore, simulated returns based on the EGARCH model seem to approach actual 

SPDR S&P 500 returns better than the case for the other two models. Nevertheless, it shows 

the difficulty of modeling stock returns. Another issue is that the Sharpe ratios for different 

combinations of moving averages are similar in value, which makes it hard to distinguish 

between them and get stable results in terms of an optimal solution. The optimal combination 

for the lengths of the moving averages might change if optimized on a new set of simulated 

data. 
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Optimal Combination 
(𝑴𝑨𝑺,𝑴𝑨𝑳) 

 
 
 

Number 
of Buy 
Signals 

Number 
of Sell 
Signals 

Total 
Return 

Excess 
Return 
(over 
B&H) 

Annual 
Excess 
Return 

Annual 
Sharpe 

Back-testing of the optimized strategies for the Random Walk model: (after transaction costs) 
Lev. Money (3,43) 107 106 -40,44% -98,91% -23,39% -0,1450 
Lev. Money b. (2,43) 139 98 -68,93% -127,39% - -0,3477 
Long Money (1,41) 175 174 -62,37% -120,83% - -0,5296 
Long Money b. (3,47) 103 78 -13,43% -71,89% -7,22% -0,0743 
Long Short (65,107) 18 18 33,21% -25,25% -1,70% 0,0885 
Long Short b. (3,47) 103 78 -57,01% -115,47% - -0,2532 
Money Short (1,41) 175 174 -74,85% -133,32% - -0,4826 
Money Short b. (1,49) 178 130 -93,35% -151,81% - -0,8744 
Back-testing of the optimized strategies for the AR (1) model: (after transaction costs) 
Lev. Money (91,131) 15 15 172,94% 114,48% 4,61% 0,2766 
Lev. Money b. (159,200) 15 7 109,28% 50,81% 2,45% 0,2144 
Long Money (160,200) 12 12 73,94% 15,48% 0,85% 0,2902 
Long Money b. (140,183) 15 8 92,11% 33,64% 1,73% 0,2692 
Long Short (160,200) 12 12 67,44% 8,98% 0,51% 0,1602 
Long Short b. (160,200) 15 6 142,79% 84,33% 3,68% 0,2789 
Money Short (160,200) 12 12 9,67% -48,79% -3,87% 0,0348 
Money Short b. (154,194) 15 8 80,87% 22,41% 1,20% 0,2052 
Back-testing of the optimized strategies for the EGARCH model: (after transaction costs) 
Lev. Money (2,42) 126 125 -34,86% -93,32% -14,76% -0,1201 
Lev. Money b. (4,44) 94 72 -47,59% -106,05% - -0,1926 
Long Money (2,69) 94 93 -18,07% -76,53% -8,20% -0,1089 
Long Money b. (2,45) 131 98 -38,60% -97,06% -18,80% -0,2470 
Long Short (159,200) 10 10 56,43% -2,03% -0,12% 0,1388 
Money Short (109,200) 8 8 12,60% -45,86% -3,56% 0,0443 
Money Short b. (160,200) 15 6 79,26% 20,80% 1,12% 0,2017 
Buy-and-Hold (B&H) - - 58,46% - - 0,1429 

Table 11. The net cost performance of optimized strategies, back-tested on historical SPDR S&P 500 data during 
the trading period of 4236 days in years 2000-2016. The Long Short band strategy has the same combination of 
moving averages for the simulations based on the AR (1) and EGARCH model, and is therefore only reported once 
in the table. 

In Table 11, we present the back-tested performance of same optimized strategies, but now 

adjusted for transaction costs. As pointed out by Bessembinder and Chan (1995), technical 

trading rules providing higher returns than the buy-and-hold strategy is not necessary consistent 

with an inefficient stock market. Frequent trading with high transaction costs might justify 

surplus return provided by technical analysis. Jensen (1978) emphasized that the Efficient 

Market Hypothesis is violated if risk-adjusted surplus returns exceed the transaction costs of 

trading. 

For optimized strategies, obtained from the Random Walk model, only the Long Short strategy 

provides a positive Sharpe ratio, but it is not higher than for the buy-and-hold. The annual 

excess return turns from positive to negative (-1,70 %) when transaction costs are accounted 

for. The Long Short was in fact the only strategy that earned positive annual pre-cost excess 

return. The Long Money band strategy, which was the best strategy before adjusting for 
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transaction costs now provides a negative net cost Sharpe ratio (-0,0743). The performances of 

optimized strategies, obtained from the AR (1) model are like before transaction costs. All 

strategies, besides the Money Short strategy, provide positive annual excess returns and a higher 

Sharpe ratio than the buy-and-hold strategy. The Long Money strategy is the best strategy 

obtained from the AR (1) model, and the best across all the strategies in the sample, in terms of 

risk-adjusted returns providing a Sharpe ratio of 0,2902. The strategy was also the best in the 

sample before accounting for transaction costs. For optimal strategies, based on the EGARCH 

model, only the Long Short band and the Money Short band provide positive annual after-cost 

excess returns. These strategies also obtain a better Sharpe ratio than the buy-and-hold. The 

Long Short band, obtained from the EGARCH model, is in fact the second-best strategy for the 

whole sample as it was before accounting for transaction costs, providing a Sharpe ratio of 

0,2789. 

In total, 8 strategies across the whole sample obtain positive annual excess net returns and 

Sharpe ratios higher than the buy-and-hold. Common to these strategies is that they all have 

few trading signals and thus lower transaction costs. This is not surprising, since optimal 

combinations of moving averages consist of long moving averages. As pointed by Murphy 

(1999), the use of very sensitive (short) moving averages generates more trades and thus higher 

transaction costs. 

Optimal Combination 
(𝑴𝑨𝑺,𝑴𝑨𝑳) 

 

Mean daily excess return Std. Dev. (daily excess return) 

Back-testing of the optimized strategies for the Random Walk model: 
Lev. Money (3,43) -0,0231% (-1,2270) 1,2254% 
Lev. Money b. (2,43) -0,0385% (-2,1829) * 1,1468% 
Long Money (1,41) -0,0156% (-0,9941) 1,0195% 
Long Money b. (3,47) -0,0143% (-0,9393) 0,9888% 
Long Short (65,107) -0,0041% (-0,1312) 2,0339% 
Long Short b. (3,47) -0,0308% (-1,0185) 1,9678% 
Money Short (1,41) -0,0435% (-1,3148) 2,1512% 
Money Short b. (1,49) -0,0749% (-2,3740) * 2,0518% 
Back-testing of the optimized strategies for the AR (1) model: 
Lev. Money (91,131) 0,0128% (0,6891) 1,2123% 
Lev. Money b. (159,200) 0,0066% (0,4501) 0,9495% 
Long Money (160,200) 0,0022% (0,1459) 0,9811% 
Long Money b. (140,183) 0,0045% (0,3714) 0,7966% 
Long Short (160,200) 0,0013% (0,0432) 1,9621% 
Long Short b. (160,200)  0,0101% (0,4211) 1,5569% 
Money Short (160,200) -0,0087% (-0,2710) 2,0861% 
Money Short b. (154,194) 0,0031% (0,1247) 1,6302% 
Back-testing of the optimized strategies for the EGARCH model: 
Lev. Money (2,42) -0,0210% (-1,1117) 1,2287% 
Lev. Money b. (4,44) -0,0261% (-1,5023) 1,1316% 
Long Money (2,69) -0,0156% (-0,9941) 1,0195% 
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Long Money b. (2,45) -0,0224% (-1,4753) 0,9874% 
Long Short (159,200) -0,0003% (-0,0101) 1,9615% 
Money Short (109,200) -0,0081% (-0,2498) 2,1011% 
Money Short b. (160,200) 0,0270% (0,1152) 1,6440% 

Table 12. Standard test results for the excess return obtained from historical SPDR S&P 500 data during the back-
testing period of 4236 days in years 2000-2016. Test statistics (t-values) are shown in parenthesis, * denotes 
significance at the 5 % level for a two-tailed test. The Long Short Band strategy has the same combination of 
moving averages in the simulations based on the AR (1) and the EGARCH models, therefore it is only reported 
once in Table 12. T-values are calculated as shown in appendix 4.2. 

For all the optimized strategies in the sample we test if the excess returns are significantly 

different from zero. In Table 12, we present the results for statistical tests of significance for 

mean daily excess return. We find that only two optimized trading strategies, both obtained 

from the Random Walk model and providing negative excess returns, have the mean daily 

excess return different from zero. For all other optimized strategies, we cannot reject the null 

hypothesis that the mean daily excess return is zero. Positive excess returns, provided by 8 

optimized strategies, are therefore not significant. 

5.2. The RSI Rule 

5.2.1. Optimized Trading Strategies 

The results for the RSI rule can be found in Section 5 of the Appendix. All the optimized trading 

strategies based on the Random Walk model obtain a higher risk-adjusted return than a buy-

and-hold strategy on the same simulated time series, although only the Long Short strategy 

provides positive excess returns. All optimized strategies obtained from the Random Walk 

model, except the Long Short, have substantially less standard deviation than the buy-and-hold 

strategy. 

For the simulations based on the AR (1) model, all optimized strategies have a greater Sharpe 

ratio than the buy-and-hold, except the Long Short strategy, which has the same Sharpe ratio. 

All the strategies provide lower total returns than the buy-and-hold strategy for the simulated 

time series. Optimization performed on simulations, obtained from the AR (1) model, provides 

the same optimal combinations as the Random Walk model for the Leverage Money and the 

Money Short strategies. 

Only the Long Money strategy has a higher Sharpe ratio than the buy-and-hold strategy for the 

simulations based on the EGARCH model. All the optimized trading strategies have negative 

excess returns and a risk close to the risk for the buy-and-hold. The performance of optimized 

trading strategies on simulated data can be found in Table 16 in Appendix 5. 
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5.2.2. Back-tested Results for Optimized Trading Strategies 

When back-testing the optimized trading strategies on historical data, we find that not all 

strategies generate buy or sell signals during the trading period. The strategies that provide 

trading signals only generate either buy or sell signals. Strategies that generate neither a buy 

nor sell signal will always hold a long position, and are therefore equal to the buy-and-hold 

strategy. None of the strategies that provide buy or sell signals have significant different mean 

daily index return on buy and sell days from the mean daily index return for the sample period. 

The results are shown in Table 17 in Appendix 5. 

Back-testing of the optimized trading strategies, based on the Random Walk model, shows that 

no strategy obtains positive excess returns. Although, three optimized strategies obtain a higher 

Sharpe ratio than the buy-and-hold, while the Long Short strategy has the same Sharpe ratio as 

the buy-and-hold. The Money Short is the best strategy in terms of risk-adjusted returns across 

all simulated models, but as shown in Table 17 it only provides buy signals. Since an investor 

earns the risk-free return on buy days, the high Sharpe ratio is caused by a low standard 

deviation rather than large returns. The results for the optimized strategies, based on the AR (1) 

model, are similar as for the Random Walk model. Three optimized strategies provide a Sharpe 

ratio higher than for the buy-and-hold, while the Long Short obtains the same Sharpe ratio, but 

the excess return for all strategies is negative. For the optimized strategies, based on the 

EGARCH model, all obtain the same Sharpe ratio as for the buy-and-hold, with zero annual 

excess return. The optimized strategies for all models are not adjusted for transaction costs. 

This is because the strategies maintain either a buy or sell signal for the whole trading period 

or no signal at all, and transaction costs are therefor negligible. The performance of optimized 

strategies on historical data are presented in Table 18 in Appendix 5. Negative excess returns, 

provided by all back-tested optimized trading strategies, are not significantly different from 

zero, as shown in Table 19 in Appendix 5. 
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6. Summary and Further Ideas 

In this article, we optimized and back-tested four different strategies, based on two technical 

trading rules: the moving average crossover and the RSI. For the moving average crossover rule 

the lengths of the short and long moving averages were found to maximize the Sharpe ratio. 

For the RSI rule the number of days in the look-back period, and values for the lower and upper 

bands were used as optimization parameters. The trading strategies were optimized on the 

simulated series of SPDR S&P 500 ETF, using Random Walk, AR (1) and EGARCH models, 

and then back-tested on historical data, where the trading period was extended and transaction 

costs were accounted for. 

As Brock et. al. (1992), Bessembinder and Chan (1995) and Metghalchi et. al. (2012) we found 

the volatility of index returns for days’ conditional on a sell signal to be higher than for days’ 

conditional on a buy signal when back-testing the optimized strategies based on the moving 

average crossover rule. We also found that the mean daily index return on buy (sell) days was 

not significantly different from the mean daily index return for the whole trading period. 

Furthermore, the difference between means on buy and sell days was not significantly different 

from zero. Though optimized strategies, obtained from the AR (1) model, provided positive 

mean daily index return on buy days and negative mean daily index return on sell days, pointing 

in the direction of predictive power on historical data, none of the means were significantly 

different from the mean daily index return for the whole trading period. 

After adjusting for transaction costs, 8 optimized strategies for the moving average rule 

provided higher annual return and a greater Sharpe ratio than the buy-and-hold strategy when 

back-tested. Common for these strategies is that the optimal combinations consisted of two long 

moving averages, generating fewer signals and lower transaction costs. Statistical tests on 

excess returns, provided by these strategies, showed that the surplus returns were not 

significantly different from zero. The same apply for negative excess returns, provided by 

remaining trading strategies. Therefore, we conclude with weak form efficiency for the S&P 

500 index in the years 2000-2016. Our findings are consistent with Allen and Karjalainen 

(1999), who concluded that technical trading rules did not outperform the buy-and-hold strategy 

for the S&P 500 index in the period 1928-1995. 

Optimized strategies for the RSI rule provided no trading signal at all or only either buy or sell 

signals when back-tested. None of the back-tested optimized strategies generated positive 

excess returns, though all the strategies obtained either the same or higher Sharpe ratio as the 
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buy-and-hold strategy. For instance, one trading strategy had abnormally high Sharpe ratio, 

because only buy signals were generated during the whole period of trading, providing a risk-

free return. Negative excess returns, provided by the strategies, were not significantly different 

from zero. 

An issue encountered in this paper is that a trading strategy might achieve a greater Sharpe ratio 

than the buy-and-hold position, but this can be caused by taking a risk-free position for long 

time periods. The excess return for the strategy will be negative at the end of the trading period. 

Based solely on the risk-adjusted returns, represented by Sharpe ratio, a strategy might 

outperform the buy-and-hold, but not necessary in terms of the raw returns. Trading strategies 

could have been optimized by using the excess return over the buy-and-hold strategy as 

assessment criteria. Although this would have solved the issue of strategies taking risk-free 

positions for long time periods and outperforming the buy-and-hold, another issue could have 

arisen: the optimized strategies might be much riskier than the buy-and-hold strategy. Another 

flaw with using a Sharpe ratio as a measure of risk is that standard deviation can be misleading 

when the returns are not normally distributed. Negatively skewed return distributions will have 

a greater probability for high losses than normal distributions, which make returns riskier then 

implied by their standard deviation. The Sortino ratio and the Value at Risk measure the 

downside risk for a strategy, and could have been estimated to supplement the Sharpe ratio 

when optimizing and evaluating strategies. 

Transaction costs could have been included when optimizing trading strategies. The optimal 

parameters might no longer be optimal after adjusting for transaction costs. From our results, 

we see that the strategies with combinations consisting of two short moving averages create 

more signals, and therefore have higher transaction costs. By including a cost of trading the 

optimized parameters would have created fewer trading signals and thus lower transaction 

costs. Technical trading rules might also have better predictive power in less developed stock 

markets than for the S&P 500 index. Bessembinder and Chan (1995) found that technical 

trading rules would not be profitable in developed Asian markets like Hong Kong, Japan and 

Korea, but could be profitable in emerging markets of Malaysia, Thailand and Taiwan.  

In this paper, trading strategies were built on the moving average crossover rule both with and 

without a 1 % band. The results for the strategies with a band compared to the corresponding 

strategies without a band were mixed. By including a band half of the strategies have improved. 

In further research the size of the band could have been optimized instead of using the given 



	 42	

size of 1 %. Optimizing the size of a band, in addition to the number of days in the moving 

averages, requires substantial computing power, which we did not have access to until late in 

the work of this paper. Furthermore, other technical trading rules could be investigated and 

optimized. Although our results are consistent with the market efficiency for the S&P 500 

index, we have only tested two rules. 
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Appendix 

1. Random Walk 

Random Walk model  

Number of observations 4434 

Mean 9,693	∙ 105ª 

Standard Deviation 0,01228 

Residual Sum of squares 0,66822 

Table 13. Random Walk model summary 

1.1. Tests for Stationarity 

A time series is assumed to be weakly stationary if its mean, variance and covariance are all 

time independent. Mathematically the conditions can be expressed as follows: 

𝐸[𝑦)] = 𝐸[𝑦)5Q] = 𝜇 

𝐸 𝑦) − 𝜇 _	 = 𝐸 𝑦)5Q − 𝜇 _ = 𝜎®_ 

𝐸 𝑦) − 𝜇 𝑦)5Q − 𝜇 = 𝐸 𝑦)5' − 𝜇 𝑦)5'5Q − 𝜇 = 𝛾Q 

A breach of the stationary restrictions will cause statistical inference measures to be invalid. 

An augmented Dickey-Fuller test can be used to test if a time series is stationary or contains a 

unit root (Dickey and Fuller, 1979). The equation below can be used to test if a time series 

without a constant and trend is stationary: 

∆𝑦) = 𝛾𝑦)5+ + 𝛽6Δ𝑦)56 + 𝜀)

h

68+

 

The following Dickey-Fuller regression is used to test if log prices are stationary. Two lags of 

∆𝑦) are included to ensure no serial correlation in the error terms. 

∆ ln 𝑃) = 𝛾 ln 𝑃)5+ + 𝛽+∆ ln 𝑃)5+ + 𝛽_∆ ln 𝑃)5_  

Under the null hypothesis 𝛾 equals zero and the time series contains a unit root, while under the 

alternative hypothesis 𝛾 is less than zero, which implies stationarity. Formally this can be 

expressed as: 

𝐻9:		𝛾 = 0 

                                                                   𝐻+	:		𝛾 < 0 

The null hypothesis is not rejected because the t-value for 𝛾 is 0,6103 while the critical value 

is -2,57 with a significance level of 1 %. 
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Stationarity in first differences has been confirmed by performing the following Dickey-Fuller 

regression: 

∆∆ ln 𝑃) = 	𝛾∆ ln 𝑃)5+ + 𝛽+∆∆ ln 𝑃)5+ + 𝛽_∆∆ ln 𝑃)5_  

This regression gives a t-value of -41,47 for 𝛾. The return series is therefore stationary, since 

the critical value is -2,57 with a significance level of 1 %. 

1.2. Log Normal Distribution 

Although the distribution of stock returns often has positive excess kurtosis and are skewed, we 

will assume stock returns are normally distributed when simulating returns with the Random 

Walk model. The model is estimated on basis of continuously compounded returns. The same 

also apply for the other two models used in this paper. The price at a given time will be 

computed by multiplying the previous price by Euler’s number raised to the returns in the 

current period. Euler’s number raised to a normally distributed variable will follow a log-

normal distribution.  Even though a variable is normally distributed with a mean of zero, the 

same variable will have a positive drift when Euler’s number is raised to the variable. The 

expected value of a log-distributed variable (𝑋) with zero mean is 𝐸 𝑋 = 𝑒
V
§	∙	´

§
, where 𝜎_ is 

the variance of the normally distributed variable. The buy-and-hold for the simulated returns 

from the Random Walk model will therefore increase during the period. 

2. AR (1) 

We assume the error term is normally distributed with a mean of zero, constant variance and 

uncorrelated with each other: 

𝐸 𝜀) = 𝐸 𝜀)5+ = 0 

𝑉𝑎𝑟𝑖𝑎𝑛𝑐𝑒(𝜀)) = 𝐸 𝜀)_ = 𝐸 𝜀)5+_ = 𝜎_ 

𝐶𝑜𝑣𝑎𝑟𝑖𝑎𝑛𝑐𝑒 𝜀), 𝜀)5Q = 𝑐𝑜𝑣 𝜀, 𝜀)5'5Q = 0	𝑓𝑜𝑟	𝑎𝑙𝑙	𝑗	𝑎𝑛𝑑	𝑠. 

AR	(1)	model	 	
	𝑹𝟐	 0,00435 

Adjusted 𝑹𝟐 0,00412 

Number of observations 4434 

Mean 0,00011 

Standard Deviation 0,01224 

F (1, 4431) [p-value] 19,35 [0.000] 

Residual sum of squares 0,66370 

Table 14. AR (1) model summary 
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Descriptive Statistics 

Residuals AR (1) 

       

Mean Standard 

Deviation 

Skewness Excess 

Kurtosis 

Minimum Maximum Median Obs. Jarque 

Bera 

0,00 0,01224 -0,09553 10,396 -0,10473 0,13385 0,00034 4433 19971 

Table 15. Descriptive statistics for the residuals from the AR (1) model 

Descriptive statistics for the residuals from the AR (1) model, as presented in Table 15, shows 

that the residuals are negatively skewed and have heavier tails than implied by the normal 

distribution. A perfectly normally distributed variable will have a skewness and excess kurtosis 

of zero. A Jarque Bera test can be used to conclude if the skewness and excess kurtosis for a 

sample exceeds what is implied by a standard normal distribution. The Jarque Bera test statistic 

is Chi-squared distributed with two degrees of freedom and is computed as follows: 

𝐽𝐵 =
𝑇
6 (𝑆𝑘𝑒𝑤

_ +
𝐸𝐾𝑢𝑟𝑡𝑜𝑠𝑖𝑠

4

_

) 

The Jarque Bera concludes that the residuals are not normally distributed, since the test statistic 

exceeds the critical value of 5,99. 

 
Figure 6. Distribution of the residuals from the AR (1) model 

2.1. Tests for Autocorrelation and Heteroscedasticity 

Autocorrelation and heteroscedasticity will not cause bias in the estimation of the regression 

coefficients in the AR (1) model, but might cause the coefficients’ standard errors to be over- 

or underestimated, which make T-tests and F-tests invalid. 
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Autocorrelation in the residuals can be detected by performing a Ljung-Box test on the 

residuals. The Ljung-Box test statistic is calculated as follows: 

𝐿𝐵 𝑠 = 𝑇(𝑇 + 2)
𝑟'_

𝑇 − 𝑗

Q

'8+

		, 

where 𝑇 is the number of observations, 𝑟'_ is the squared autocorrelation and 𝑠	is the number of 

autocorrelation coefficients included. Under the null hypothesis, the test statistic is Chi-squared 

distributed with 𝑠 − 𝑝 degrees of freedom where 𝑝 is the order of the AR model estimated. 

Conducting a Ljung-Box test with 20 lags of the residuals from the AR (1) model provides a 

test statistic of 58,25. The 5 % critical value with 19 degrees of freedom is 30,14. The null 

hypothesis of no autocorrelation in the residuals is therefore rejected. 

A Ljung-Box test on the squared residuals rejects the null hypothesis of homoscedastic error 

terms. The test statistic is 5136,4, while the 5 % critical value with 19 degrees of freedom is 

30,14. 

3. EGARCH 

3.1. Information Criteria 

Information criteria can be used to compare the fit of different ARMA models. The model with 

the lowest information criteria fits the sample best. The information criteria used in this paper 

are the Akaike, Schwarz and Hannan-Quinn. The difference between information criteria is the 

degree of penalization from estimated parameters. By estimating more parameters, the fit of the 

model will increase, but the information criteria will be penalized. The Schwarz information 

criteria penalizes the most for extra estimation of parameters, and will therefore prefer more 

parsimonious models, while the AIC penalizes the least for the number of estimated parameters. 

The information criteria are estimated as follows: 

𝐴𝐼𝐶 =
−2	𝐿𝑜𝑔	𝐿𝑖𝑘𝑒𝑙𝑖ℎ𝑜𝑜𝑑 + 2 ∙ 𝑘

𝑇  

										𝑆𝐵𝐶 =
−2	𝐿𝑜𝑔	𝐿𝑖𝑘𝑒𝑙𝑖ℎ𝑜𝑜𝑑 + 𝑘 ∙ log	(𝑇)

𝑇  

																				𝐻𝑄 =
−2	𝐿𝑜𝑔	𝐿𝑖𝑘𝑒𝑙𝑖ℎ𝑜𝑜𝑑 + 2 ∙ 𝑘 ∙ log log(𝑇)

𝑇 	, 

where 𝑘 is the number of parameters, including the dependent variable, and 𝑇 is the sample 

size. 
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3.2. Autocorrelation for Squared Residuals ARMA (1,1) 

 
Figure 7. ACF and PACF for the squared residuals from the ARMA (1,1) model 

The autocorrelation function for the squared residuals from the ARMA (1,1) model, as shown 

in Figure 7, indicates Arch effects in the residuals. Performing a Ljung-Box test with 20 lags 

gives a test statistic of 5630,6, while the critical value with 18 degrees of freedom is 28,86. We 

can therefore reject the null hypothesis of no serial correlation amongst the squared residuals. 

3.3. Log Likelihood Test 

A likelihood ratio test can be used to determine if the model with Gaussian or t-distributed 

residuals fits our data best. The model with t-innovations has one more parameter than the 

model with Gaussian innovations, and is therefore an unrestricted version of the model with 

Gaussian innovations. Model with more parameters will have equal or greater Log Likelihood 

compared to model with less parameters. Under the null hypothesis, the Log Likelihood from 

two models are equal, while the alternative hypothesis states that the model with the most 

parameters has the highest Log Likelihood. The test statistic is Chi-squared distributed with a 

degree of freedom equal to the difference in number of estimated parameters in the models 

compared. The test statistic (D) is calculated as follows: 

𝐷 = 2 ∙ (log 𝐿¿� − log 𝐿�) 

Performing a likelihood ratio test gives a test statistic of 162,71, while the 5 % critical value is 

3,84, meaning that the null hypothesis is rejected. 
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3.4. ACP and PACF for Residuals and Squared Residuals from the ARMA-EGARCH 
Model 

Figure 8. ACF and PACF for standardized residuals from the ARMA (1,1)-EGARCH (1,1) model 

Plotting the autocorrelation and partial autocorrelation functions for the standardized residuals, 

as shown in Figure 8, provide few significant spikes. Performing a Ljung-Box test with 20 lags 

gives a test statistic of 28,6843 with a corresponding p-value of	0,0524. The null hypothesis 

about no serial correlation is therefore barely not rejected. 

Figure 9. ACF and PACF for squared standardized residuals from the ARMA (1,1)-EGARCH (1,1) model 

Plotting the autocorrelation and partial autocorrelation functions for the squared standardized 

residuals, as presented in Figure 9, shows if there are any remaining ARCH effects that the 

model does not capture. Performing a Ljung-Box test with 20 lags gives a test statistic 27,0023 

and a corresponding p-value of 0,0790. We can therefore conclude that an EGARCH (1,1) is 

sufficient to capture the Arch effects in the residuals. 



	 52	

4. Statistical Tests for Back-testing of Trading Strategies 

4.1. T-tests for Predictive Power 

When testing if the mean daily index return on buy days differs from the mean daily index 

return for the whole sample, the following test statistic is used: 

𝑡 =
𝜇À − 𝜇

𝑉𝑎𝑟 𝑅À
𝑁À − 1

+ 𝑉𝑎𝑟(𝑅)𝑁 − 1

	, 

where 𝜇À is the mean daily index return on buy days, 𝜇 is the mean daily index return for the 

whole sample, 𝑉𝑎𝑟 𝑅À  is the variance of index returns on buy days, 𝑉𝑎𝑟(𝑅) is the variance 

of index returns on all days, 𝑁À	is the number of buy days and 𝑁 is the total number of days in 

the back-testing trading period. When testing if the mean daily index return on sell days differs 

from the mean daily index return for the whole sample, the mean daily index return on sell days 

and the variance of index returns on sell days are substituted in the equation above. 

To test if the mean daily index return on buy days differs from the mean daily index return on 

sell days the following test statistic is used: 

𝑡 =
𝜇À − 𝜇¥

𝑉𝑎𝑟 𝑅À
𝑁À − 1

+ 𝑉𝑎𝑟(𝑅¥)𝑁¥ − 1

	, 

where 𝜇¥	is the mean daily index return on sell days,	𝑉𝑎𝑟(𝑅¥) is the variance of index returns 

on sell days, 𝑁¥ is the number of sell days. The other variables are defined as in the first test 

statistic formula. 

4.2. T-tests for Excess Return  

To test if the mean daily excess return is significantly different from zero the following t-

statistic is applied: 

𝑡 =
𝑋�Á

𝑉𝑎𝑟(𝑋�Á)/(𝑁 − 1)
	, 

where 𝑋�Á is the mean daily excess return, while 𝑁 is the total number of returns obtained in 

the trading period. The null hypothesis is that the mean daily excess return is zero, while the 

alternative hypothesis is that the mean daily excess return is different from zero. The critical 

value for a two-tailed T-test with a significance level of 5 % is 1,96. 
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5. Results for the RSI Rule 

Table 16. The performance of the optimized strategies, based on simulated time series from the different models, 
for the trading period of 1967 days. The optimal combination of lengths for a look-back period, lower and upper 
bands are shown in parenthesis in Column 1. 

 

 

 

 

 

 

 

Optimal 
Combination 

(𝑴𝑴𝑨, 𝒍𝒃, 𝒖𝒃) 
 

Total 
Return 

Annual 
Return 

Excess 
Return 
(over 
B&H) 

Annual 
Excess 
Return 

Std. Dev. 
(Total 

Return) 

Annual 
Std. 
Dev. 

Sharpe 
ratio 

Annual 
Sharpe 

ratio 

Optimized strategies for the Random Walk model: 
Lev. Money 
(24;20,60) 

7,16% 0,88% -7,47% -0,98% 11,65% 4,15% 0,6148 0,2126 

Long Money 
(22;20,60) 

7,18% 0,88% -7,46% -0,98% 10,33% 3,68% 0,6949 0,2403 

Long Short 
(26;20,79) 

15,19% 1,81% 0,56% 0,07% 67,13% 23,93% 0,2263 0,0758 

Money Short 
(21;40,80) 

10,13% 1,23% -4,50% -0,58% 12,91% 4,60% 0,7851 0,2682 

Buy-and-Hold 
(B&H) 

14,64% 1,75% - - 66,87% 23,84% 0,2189 0,0735 

Optimized strategies for the AR (1) model: 
Lev. Money 
(24;20,60) 

8,16% 1% -32,51% -4,87% 9,23% 3,29% 0,8837 0,3044 

Long Money 
(19;20,60) 

7,73% 0,95% -32,94% -4,95% 8,27% 2,95% 0,9351 0,3226 

Long Short 
(35;40,80) 

40,50% 4,42% -0,17% -0,02% 75,30% 26,84% 0,5379 0,1645 

Money Short 
(21;40,80) 

10,67% 1,30% -30% -4,43% 13,02% 4,64% 0,8194 0,2793 

Buy-and-Hold 
(B&H) 

40,67% 4,43% - - 75,58% 26,94% 0,5381 0,1645 

Optimized strategies for the EGARCH model: 
Lev. Money 
(35;20,80) 

125,15% 10,87% -1,56% -0,20% 95,31% 33,98% 1,3130 0,3198 

Long Money 
(31;40,80) 

124,87% 10,85% -1,84% -0,24% 91,27% 32,54% 1,3682 0,3334 

Long Short 
(33;40,80) 

124,06% 10,80% -2,65% -0,34% 91,69% 32,69% 1,3531 0,3303 

Money Short 
(35;20,80) 

118,82% 10,46% -7,89% -1,04% 94,44% 33,67% 1,2582 0,3108 

Buy-and-Hold 
(B&H) 

126,71% 10,96% - - 92,62% 33,02% 1,3681 0,3320 
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Optimal 
Combination 

(𝑴𝑴𝑨, 𝒍𝒃, 𝒖𝒃) 

Number 
of 

Buy 
(Sell) 
Days 

 

Mean 
Return 

Buy Days 
 

Std. Dev. 
Buy 
Days 

Mean 
Return 

Sell Days 

Std. Dev. 
Sell 

Days 

Buy>0 Sell>0 Buy
-

Sell 

Back-testing of the optimized strategies for the Random Walk model: 
Lev. Money 
(24;20,60)  

0 buy 
4377 sell 

- - 0,0091% 
(-0,0889) 

1,2106% - 0,5154 - 

Long Money 
(22;20,60) 

0 buy 
4379 sell 

- - 0,0096% 
(-0,0694) 

1,2105% - 0,5156 - 

Long Short 
(26;20,79) 

0 buy 
0 sell 

- - - - - - - 

Money Short 
(21;40,80)  

4397 buy 
0 sell 

0,0112% 
(-0,0077) 

1,2227% - - 0,5156 - - 

Back-testing of the optimized strategies for the AR (1) model: 
Long Money 
(19;20,60) 

0 buy 
4341 sell 

- - 0,0075% 
(-0,1498) 

1,2053% - 0,5160 - 

Long Short 
(35;40,80) 

0 buy 
3546 sell 

- - 0,0240% 
(0,4704) 

1,1567% - 0,5257 - 

Back-testing of the optimized strategies for the EGARCH model: 
Lev. Money 
(35;20,80)  

0 buy 
0 sell 

- - - - - - - 

Long Money 
(31;40,80) 

4234 buy 
0 sell 

0,0111% 
(-0,0136) 

1,2192% - - 0,4960 - - 

Long Short 
(33;40,80) 

4234 buy 
0 sell 

0,0111% 
(-0,0136) 

1,2192% - - 0,5165 - - 

 Daily 
Return 

Daily Std. 
Dev. 

 

Buy-and-Hold 
(B&H) 

0,011% 1,2224% 

Table 17. Standard test results for the predictive power of the optimized solutions for the RSI rule on historical 

data. The trading period ranges from 2000 to 2016 and consists of 4401 days. Test statistics (t-values) are shown 

in parenthesis. Strategies with the same combination of the look-back period, lower and upper bands are not 

presented repeatedly, because of the same results. 
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Optimal 
Combination 

(𝑴𝑴𝑨, 𝒍𝒃, 𝒖𝒃) 

Total 
Return 

Annual 
Return 

Excess 
Return 
(over 
B&H) 

 

Annual 
Excess 
Return 

Mean 
Daily 

Return 

Std. Dev. 
(Daily 

Return) 

Annual 
Std. Dev. 

Annua
l 

Sharpe 

Back-testing of the optimized strategies for the Random Walk model: 
Lev. Money 
(24;20,60)  

34,66% 1,71% -30,53% -2,05% 0,0068% 0,1177% 1,8607% 0,9163 

Long Money 
(22;20,60) 

31,70% 1,58% -33,49% -2,29% 0,0063% 0,1148% 1,8146% 0,8689 

Long Short 
(26;20,79) 

65,20% 2,89% 0% 0% 0,0114% 1,2224% 19,3274% 0,1497 

Money Short 
(21;40,80)  

22,63% 1,17% -42,56% -3,10% 0,0046% 0,0181% 0,2855% 4,0829 

Back-testing of the optimized strategies for the AR (1) model: 
Long Money 
(19;20,60) 

44,48% 2,11% -20,71% -1,31% 0,0084% 0,1743% 2,7558% 0,7665 

Long Short 
(35;40,80) 

65,20% 2,89% 0% 0% 0,0114% 1,2224% 19,3274% 0,1497 

Back-testing of the optimized strategies for the EGARCH model: 
Lev. Money 
(35;20,80) 

65,20% 2,89% 0% 0% 0,0114% 1,2224% 19,3274% 0,1497 

Long Money 
(31;40,80) 

65,20% 2,89% 0% 0% 0,0114% 1,2224% 19,3274% 0,1497 

Long Short 
(33;40,80) 

65,20% 2,89% 0% 0% 0,0114% 1,2224% 19,3274% 0,1497 

Money Short 
(35;20,80) 

65,20% 2,89% 0% 0% 0,0114% 1,2224% 19,3274% 0,1497 

Buy-and-Hold 
(B&H) 

65,20% 2,89% - - 0,0114% 1,2224% 19,3274% 0,1497 

Table 18. The performance of the optimized strategies, approached on historical SPDR S&P 500 data during the 
back-testing period of 4401 days. Same combinations are provided for the Leverage Money and the Money Short 
strategies obtained from the Random Walk and the AR (1) models, therefore the results for these strategies are not 
presented twice. 

 

  

Optimal Combination 
(𝑴𝑴𝑨, 𝒍𝒃, 𝒖𝒃) 

 

Mean daily excess return Std. Dev. (daily excess return) 

Back-testing of the optimized strategies for the Random Walk model: 
Lev. Money (24;20,60) -0,0046% 

(-0,2484) 
1,2167% 

Long Money (22;20,60) -0,0051% 
(-0,2753) 

1,2170% 

Money Short (21;40,80) -0,0068% 
(-0,3605) 

1,2222% 

Back-testing of the optimized strategies for the AR (1) model: 
Long Money (19;20,60) -0,0030% 

(-0,1637) 
1,2099% 

Table 19. Standard test results for the excess return obtained from the historical SPDR S&P 500 data during the 
back-testing period of 4401 days. Test statistics (t-values) are shown in parenthesis. 
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6. MATLAB Codes 

In this section we show the most important codes used in this paper. The optimized Long 
Short strategy, based on simulated returns from the Random Walk model will be used as an 
example. 
 
6.1. Moving Average Crossover Rule: Long Short Strategy Random Walk 
 
load('SimReturnsRW') % load 5000 saved simulated series of daily returns 
with a time horizon of 2000 days 
  
% Obtaining simulated prices 
SimRet=exp(SimReturnsRW); % simulated returns are raised to Euler’s number 
A=100*ones(1,5000); % create matrix consisting of hundreds with dimension 
1X5000 
Y=[A;SimRet]; % matrix consisting of hundreds in the first row and  returns 
raised to Euler’s number  
SimPricesRW=cumprod(Y); % obtaining prices by multiplying simulated returns 
raised to Euler’s number with the previous price level assuming 100 as the 
initial value 
  
% Moving average calculation 
MA_long=tsmovavg(SimPricesRW,'s',m,1); % m = length of the long moving 
average 
MA_short=tsmovavg(SimPricesRW,'s',n,1); % n = length of the short moving 
average 
  
% Trading signals 
S=size(MA_long); % define the size of the "Signal" matrix 
Signal=zeros(S);  
for i=1:S(1) 
    for j=1:S(2) 
        if MA_short(i,j)>MA_long(i,j) && MA_short(i-1,j)<MA_long(i-1,j) 
            Signal(i,j)=1; % if the short moving average cuts the long 
moving average from below, a buy signal(=1) is given 
        end 
        if MA_short(i,j)<MA_long(i,j) && MA_short(i-1,j)>MA_long(i-1,j) 
            Signal(i,j)=-1; % if the short moving average cuts the long 
moving average from above, a sell signal(=-1) is given 
        end 
    end 
end 
  
for i=200:2000 % the first 199 days are not considered as trading days 
    for j=1:5000 
        if Signal(i,j)==1 && Signal(i+1,j)==0 
            Signal(i+1,j)=1; % if a buy signal occurs, days following after 
the signal are defined as buy days until appearance of a sell signal 
        end 
        if Signal(i,j)==-1 && Signal(i+1,j)==0 
            Signal(i+1,j)=-1; % if a sell signal occurs, days following 
after the signal are defined as sell days until appearance of a buy signal 
        end 
    end 
end 
  
Signal(2001,:)=[]; % cut the last signal, since it is not used for trading 
purpose 
  
% Trading returns based on the Long Short strategy 
T=size(Signal); % define the size of the "Trading returns" matrix 
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tradingreturns=zeros(T);  
for i=1:T(1) 
    for j=1:T(2) 
        if Signal(i,j)==1 
            tradingreturns(i,j)=SimReturnsRW(i,j); % holding long position 
in the index on buy days 
        end                                          
        if Signal(i,j)==-1 
            tradingreturns(i,j)=-1*SimReturnsRW(i,j); % holding short 
position in the index on sell days 
        end 
        if Signal(i,j)==0 
            tradingreturns(i,j)=SimReturnsRW(i,j); % holding long position 
in the index for days before the first signal has occured 
        end 
    end 
end 
  
tradingreturns=tradingreturns(200:2000,:); % cut trading returns for the 
first 199 days 
  
% Evaluation Long Short strategy  
value=cumprod([100*ones(1,5000);exp(tradingreturns)]); % create Value index 
with initial investment of 100 and calculate the value for each day by 
multilplying the previous day’s value with trading returns raised to Euler’s 
number 
average=mean(value,2); % compute mean value of the index across 5000 
simulations for each day 
lastaverage=average(1802,1); % find the mean value of the index across 5000 
simulations at the end of trading period 
  
totalret=(value(1802,:)-100)/100; % compute the final return for each 
simulation 
stdev=std(totalret); % compute the standard deviation of total returns for 
5000 simulations 
  
finalret=(lastaverage-100)/100; % compute the mean total return across 5000 
simulations 
sharpe=finalret/stdev; % compute mean Sharpe ratio across 5000 simulations 
 
 
6.2. RSI Rule: Long Short Strategy Random Walk 
  
% Computing daily gain and loss 
load('SimReturnsRW')% load simulated returns 
load('SimPricesRW') % load prices obtained from simulated returns 
  
RWUps=zeros(2000,5000);  
RWDowns=zeros(2000,5000);  
for i=1:2000 
    for j=1:5000 
        if SimPricesRW(i+1,j)>SimPricesRW(i,j) 
            RWUps(i,j)=SimPricesRW(i+1,j)-SimPricesRW(i,j); % calculate 
daily gain 
        end 
        if SimPricesRW(i+1,j)<SimPricesRW(i,j) 
            RWDowns(i,j)=SimPricesRW(i,j)-SimPricesRW(i+1,j); % calculate 
daily loss 
        end 
    end 
end 
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% Modified moving average 
averageUPS=tsmovavg(RWUps,'m',n,1); % n = length of the modified moving 
average 
averageDOWNS=tsmovavg(RWDowns,'m',n,1); 
  
% RSI 
RSI=zeros(2000,5000); 
for i=1:2000 
    for j=1:5000 
        RSI(i,j)=100-(100/(1+(averageUPS(i,j)/averageDOWNS(i,j))));  
% calculate the RSI value for each day 
    end 
end 
  
% Signal 
Signal=zeros(2000,5000); 
for i=1:2000 
    for j=1:5000 
        if RSI(i,j)<b && RSI(i-1,j)>=b % b = value of the lower band 
            Signal(i,j)=1; % 1 = buy signal 
        end 
        if RSI(i,j)>s && RSI(i-1,j)<=s % s = value of the upper band 
            Signal(i,j)=-1; % -1 = sell signal 
        end 
    end 
end 
  
for i=35:1999 % the first 34 days are not traded on, and the last signal is 
not used 
    for j=1:5000 
        if Signal(i,j)==1 && Signal(i+1,j)==0 
            Signal(i+1,j)=1; 
        end 
        if Signal(i,j)==-1 && Signal(i+1,j)==0 
            Signal(i+1,j)=-1; 
        end 
    end 
end 
  
% Returns Long Short strategy 
T=size(Signal); 
tradingreturns=zeros(T); 
for i=1:T(1) 
    for j=1:T(2) 
        if Signal(i,j)==1 
            tradingreturns(i,j)=SimReturnsRW(i,j); 
        end                                          
        if Signal(i,j)==-1 
            tradingreturns(i,j)=-1*SimReturnsRW(i,j); 
        end 
        if Signal(i,j)==0 
            tradingreturns(i,j)=SimReturnsRW(i,j); 
        end 
    end 
end 
  
tradingreturns=tradingreturns(35:2000,:); % cut trading returns for the 
first 34 days 
  
% Evaluation Long Short strategy 
value=cumprod([100*ones(1,5000);exp(tradingreturns)]); 
average=mean(value,2); 
lastaverage=average(1967,1); 
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totalret=(value(1967,:)-100)/100; 
stdev=std(totalret); 
  
finalret=(lastaverage-100)/100; 
sharpe=finalret/stdev; 
 
6.3. Moving Average Crossover Rule: Brute-force Optimization Algorithm  
  
counter=0; 
  
for m=40:1:200      % constraints for the long moving average  
     for n=1:1:m-40 % constraints for the short moving average 
 
         
            counter=counter+1; 
            LongShortRW; 
            LASTAVERAGE(counter)=lastaverage; 
            FINALRET(counter)=finalret; 
            STDEV(counter)=stdev; 
            SHARPE(counter)=sharpe; 
            M(counter)=m; 
            N(counter)=n; 
            RESULTS=[N;M;LASTAVERAGE;FINALRET;STDEV;SHARPE]; 
       end 
end 
 
	
6.4. RSI Rule: Brute-force Optimization Algorithm  
  
counter=0; 
  
for n=5:1:35 
       for b=20:1:40 
           for s=60:1:80 
           
            counter=counter+1; 
            RSILongShortRW; 
            LASTAVERAGE(counter)=lastaverage; 
            FINALRET(counter)=finalret; 
            STDEV(counter)=stdev; 
            SHARPE(counter)=sharpe; 
            N(counter)=n; 
            B(counter)=b; 
            S(counter)=s; 
            RESULTS=[N;B;S;LASTAVERAGE;FINALRET;STDEV;SHARPE]; 
       end 
       end 
end 
 
6.5. Moving Average Crossover Rule: Predictive Power on Historical Data 
 
load('SPDRPrices'); % load historical data for the SPDR S&P 500 from 2000-
2016  
returnsSPDR=xlsread('SPDRReturns'); % load historical returns for the SPDR 
S&P 500 
  
MA_long=tsmovavg(SPDRPrices,'s',107,1); % number of days in the long moving 
average 
  
MA_short=tsmovavg(SPDRPrices,'s',65,1); % number of days in the short 
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moving average 
  
S=size(MA_long); 
Signal=zeros(4435,1); 
  
% this for loop shows when buy and sell signals occur 
for i=1:4435 
    for j=1 
        if MA_short(i,j)>MA_long(i,j) && MA_short(i-1,j)<MA_long(i-1,j) 
            Signal(i,j)=1; 
        end 
        if MA_short(i,j)<MA_long(i,j) && MA_short(i-1,j)>MA_long(i-1,j) 
            Signal(i,j)=-1; 
        end 
    end 
end 
  
% this for loop shows for how long positions are held 
for i=200:4434    % trading starts at day 200 
    for j=1 
        if Signal(i,j)==1 && Signal(i+1,j)==0 
            Signal(i+1,j)=1; 
        end 
        if Signal(i,j)==-1 && Signal(i+1,j)==0 
            Signal(i+1,j)=-1; 
        end 
    end 
end 
  
Signal(4435)=[]; % the last signal is redundant 
 
% this for loop shows the returns from the Long Short strategy  
for i=1:4434  
    for j=1 
        if Signal(i,j)==1 
            tradingreturns(i,j)=returnsSPDR(i,j);   
        end                                          
        if Signal(i,j)==-1 
            tradingreturns(i,j)=-1*returnsSPDR(i,j); 
        end 
        if Signal(i,j)==0 
            tradingreturns(i,j)=returnsSPDR(i,j); 
        end 
    end 
end 
  
% number of buys and sells 
Signal2=Signal(200:4434,1); 
  
for i=1:4235 
    for j=1 
        if Signal2(i,j)==1 
            Numberbuy(i,j)=1; 
        end 
        if Signal2(i,j)==-1 
            Numbersell(i,j)=1; 
        end 
    end 
end 
  
Nbuy=sum(Numberbuy) 
Nsell=sum(Numbersell) 
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Neutraldays=4235-nnz(Signal2) 
  
returnsSPDR2=returnsSPDR(200:4434,1) 
  
% t-tests 
% this for loop calculates the index returns on buy and sell days 
for i=1:4235 
    for j=1 
        if Signal2(i,j)==1 
            returnsbuydays(i,j)=returnsSPDR2(i,j); 
        end 
        if Signal2(i,j)==-1 
            returnsselldays(i,j)=returnsSPDR2(i,j); 
        end 
    end 
end 
  
totalreturnsbuydays=sum(returnsbuydays); 
  
totalreturnselldays=sum(returnsselldays); 
sizebuydays=size(returnsbuydays) 
  
averagereturnbuydays=totalreturnsbuydays/Nbuy; 
  
averagereturnselldays=totalreturnselldays/Nsell; 
sizeselldays=size(returnsselldays) 
  
% this for loop finds the squared deviation from the mean for buy and sell 
days 
for i=1:sizebuydays(1) 
    for j=1 
        if Signal2(i,j)==1 
            Squareddeviationbuydays(i,j)=(returnsbuydays(i,j)-
averagereturnbuydays)^2; 
        end 
    end  
end 
  
for i=1:sizeselldays(1) 
    for j=1 
         if Signal2(i,j)==-1 
            Squareddeviationselldays(i,j)=(returnsselldays(i,j)-
averagereturnselldays)^2; 
        end 
    end 
end 
  
returnsBuyandHold2=returnsSPDR(200:4434,1); % returns from the buy-and-hold 
strategy 
meanreturnBH=mean(returnsBuyandHold2); % mean daily return buy-and-hold 
standarddeviationBuyandHold=std(returnsBuyandHold2); % standard deviation 
for the buy-and-hold returns 
  
varianceBuyandHold=standarddeviationBuyandHold^2; % variance for the buy-
and-hold returns 
  
% variance and standard deviation for index returns on buy days 
sumsquaresbuydays=sum(Squareddeviationbuydays); 
variancebuydays=sumsquaresbuydays/(Nbuy-1); 
standarddeviationbuydays=sqrt(variancebuydays); 
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% variance and standard deviation for index returns on sell days 
sumsquaresselldays=sum(Squareddeviationselldays); 
varianceselldays=sumsquaresselldays/(Nsell-1); 
standarddeviationselldays=sqrt(varianceselldays); 
  
% comparing mean index return on buy days to mean buy-and-hold day return 
meanbuyMinusMeanBuyandHold=averagereturnbuydays-meanreturnBH; % numerator 
pooledvarianceBuyandBuyandHold=sqrt((variancebuydays/(Nbuy-   
1)+varianceBuyandHold/(4235-1)));                             % denominator 
TvaluemeanBuymeanBuyandHold=meanbuyMinusMeanBuyandHold/pooledvarianceBuyand
BuyandHold 
 
% comparing mean index return on sell days to mean buy-and-hold day return 
meansellminusmeanBuyandHold=averagereturnselldays-meanreturnBH; 
pooledvarianceSelldaysandbuyandHolddays=sqrt((varianceselldays/(Nsell-
1)+varianceBuyandHold/(4235-1))); 
TvalueMeanSellmeanbuyandHold=meansellminusmeanBuyandHold/pooledvarianceSell
daysandbuyandHolddays 
  
% comparing mean index return on buy days to mean index return on sell days 
meanBuyminusmeanSell=averagereturnbuydays-averagereturnselldays; 
pooledvarianceBuyminusSell=sqrt(variancebuydays/(Nbuy-
1)+varianceselldays/(Nsell-1)); 
TvalueBuyminussell=meanBuyminusmeanSell/pooledvarianceBuyminusSell 
  
% fraction of positive index returns on buy and sell days 
for i=1:4235 
    j=1; 
    if Signal2(i,j)==1 && returnsSPDR2(i,j)>0 
        buyDaysGreaterThanZero(i,j)=1; 
    end 
end 
  
numberBuyhits=sum(buyDaysGreaterThanZero) 
fractionBuydaysGreaterThanZero=sum(buyDaysGreaterThanZero)/Nbuy 
  
for i=1:4235 
    for j=1; 
        if Signal2(i,j)==-1 && returnsSPDR2(i,j)>0 
            sellDaysGreaterThanZero(i,j)=1; 
        end 
    end 
end 
numbersellhits=sum(sellDaysGreaterThanZero) 
fractionSelldaysGreaterThanZero=sum(sellDaysGreaterThanZero)/Nsell  
 
6.6. Moving Average Crossover Rule: Net Cost Performance on Historical Data 
 
load('SPDRPrices'); 
returnsSPDR=xlsread('SPDRReturns'); 
  
MA_long=tsmovavg(SPDRPrices,'s',200,1); % number of days in the long moving 
average 
  
MA_short=tsmovavg(SPDRPrices,'s',159,1); % number of days in the short 
moving average 
  
S=size(MA_long); 
Signal=zeros(4435,1); 
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% this for loop shows when buy and sell signals occur 
for i=1:4435 
    for j=1 
        if MA_short(i,j)>MA_long(i,j) && MA_short(i-1,j)<MA_long(i-1,j) 
            Signal(i,j)=1; 
        end 
        if MA_short(i,j)<MA_long(i,j) && MA_short(i-1,j)>MA_long(i-1,j) 
            Signal(i,j)=-1; 
        end 
    end 
end 
 
% shows how many buy and sell signals have been generated 
numberbuysell=Signal(200:4434,:); 
numberbuysell1=unique(numberbuysell) 
numberbuysell2=[numberbuysell1,histc(numberbuysell(:),numberbuysell1)]  
 
% this for loop shows for how long positions are held 
for i=200:4434    % trading starts at day 200 
    for j=1 
        if Signal(i,j)==1 && Signal(i+1,j)==0 
            Signal(i+1,j)=1; 
        end 
        if Signal(i,j)==-1 && Signal(i+1,j)==0 
            Signal(i+1,j)=-1; 
        end 
    end 
end 
  
Signal(4435)=[]; % the last signal is redundant  
Signal2=Signal(200:4434,1); 
  
transactioncost=zeros(4235,1) 
% since going from a long to a short position in the index requires closing 
the current and taking the new postion, transactions costs are doubled 
for i=1:4234 
   for j=1 
    if Signal2(i,j)==1 && Signal2(i+1,j)==-1  
        transactioncost(i,j)=-0.006; 
    end 
    if Signal2(i,j)==-1 && Signal2(i+1,j)==1 
        transactioncost(i,j)=-0.006; 
    end 
   end 
end 
  
for i=1:4434   
    for j=1 
        if Signal(i,j)==1 
            tradingreturns(i,j)=returnsSPDR(i,j);   
        end                                          
        if Signal(i,j)==-1 
            tradingreturns(i,j)=-1*returnsSPDR(i,j); 
        end 
        if Signal(i,j)==0 
            tradingreturns(i,j)=returnsSPDR(i,j); 
        end 
    end 
end 
  
 
% evaluation of trading strategy  
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tradingreturns=tradingreturns(200:4434,:); 
tradingreturnsaftertransactionscosts=tradingreturns+transactioncost 
  
value=cumprod([100;exp(tradingreturnsaftertransactionscosts)]); % shows how 
the investment would have evolved with transactions costs 
  
totalreturnstrading=(value(4236,:)-100)/100; % trading returns after 
transaction costs 
  
stdevtradingreturns=std(tradingreturns); 
  
annualizedreturntrading=(1+totalreturnstrading)^(250/4236)-1;  
  
annualizedstandarddeviation=stdevtradingreturns*sqrt(250);  
  
annualizedsharpe=annualizedreturntrading/annualizedstandarddeviation; 
  
% Buy-and-hold 
finalreturnBuyandHold=(SPDRPrices(4435,1)-
SPDRPrices(200,1))/SPDRPrices(200,1) 
  
% excess returns 
excessreturns=totalreturnstrading-finalreturnBuyandHold % shows the excess 
return from the Long Short strategy compared to the buy-and-hold strategy 
  
annualizedexcessreturns=(1+excessreturns)^(250/4236)-1 % calculates the 
annualized excess return 
  
% t-tests for difference in returns from trading and buy-and-hold returns 
  
returnsSPDR2=returnsSPDR(200:4434,1) 
  
dailyExcessreturn=tradingreturnsaftertransactionscosts-returnsSPDR2 % daily 
excess returns for the Long Short strategy 
  
standarddeviationDailyExcessreturn=std(dailyExcessreturn)  
  
varianceDailyexcessreturn=std(dailyExcessreturn)^2 
  
averageDailyExcessreturn=mean(dailyExcessreturn) 
  
denominator=((varianceDailyexcessreturn)/(4235-1))^0.5 
  
Tvalue=averageDailyExcessreturn/denominator % t-statistic concluding if the 
excess return is different from zero 
 
 
 


