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Abstract

In this article we propose two simple a posteriori error estimators for solving second order elliptic problems using
adaptive isogeometric analysis. The idea is based on a Serendipity1 pairing of discrete approximation spaces Sp,kh (M)-

Sp+1,k+1
h (M), where the space Sp+1,k+1

h (M) is considered as an enrichment of the original basis of Sp,kh (M) by means

of the k-refinement, a typical unique feature available in isogeometric analysis. The space Sp+1,k+1
h (M) is used to

obtain a higher order accurate isogeometric finite element approximation and using this approximation we propose
two simple a posteriori error estimators. The proposed a posteriori error based adaptive h-refinement methodology
using LR B-splines are tested on classical elliptic benchmark problems. The numerical tests illustrate the optimal
convergence rates obtained for the unknown, as well as the effectiveness of the proposed error estimators.

Keywords: Isogeometric analysis, B-splines, NURBS, LR B-splines, A posteriori error estimation, Local
h-refinements, hpk-refinement, Adaptivity, Asymptotic exactness.

1. Introduction

1.1. Background

Isogeometric analysis (IGA) has been introduced in [24] as an innovative numerical methodology for the dis-
cretization of Partial Differential Equations (PDEs), the main idea was to improve the interoperability between CAD
and PDE solvers, and to achieve this authors in [24] proposed to use CAD mathematical primitives, i.e. splines
and NURBS, also to represent PDE unknowns. Isogeometric methods have been used and tested on a variety of
problems of engineering interests, see [15, 24] and references therein. The development on mathematical front start
with h-approximation properties of NURBS in [7], and further studies for hpk-refinements in [9] and for anisotropic
approximation in [11]. The recently published article in Acta Numerica [10] provides a complete overview in this
direction. Non-uniform rational B-splines (NURBS) are the dominant geometric representation format for CAD. The
construction of NURBS are based on a tensor product structure and, as a consequence, knot insertion is a global
operation. To remedy this a local refinement can be achieved by breaking the global tensor product structure of
multivariate splines and NURBS. In the current literature there are three different ways to achieve local refinements:
T-splines [37, 8, 17, 35], LR splines [16, 12, 27] and hierarchical splines [19, 23, 35, 29, 20, 40]. Recently, there has
been much progress on the topic of the generalization of splines construction which allow for local refinement but an
automatic reliable and efficient adaptive refinement routine is still one of the key issues in isogeometric analysis. To
achieve a fully automatic refinement routine to solve PDEs problem in adaptive isogeometric analysis the a posteriori
error estimator is required. This is the subject of current work.

The use of a posteriori error estimator in isogeometric analysis is still in its infancy. To the best of our knowledge
only few work has been done in this direction, see [13, 17, 28, 36, 38, 40, 41, 42, 43]. The authors in [17] used the idea

1According to Wikipedia: Serendipity means a “fortunate happenstance” or “pleasant surprise”. It was coined by Horace Walpole in
1754. One aspect of Walpole’s original definition of Serendipity is the need for an individual to be “sagacious” enough to link together
apparently innocuous facts in order to come to a valuable conclusion. We feel that this applies for the present discovery, but it is of course
up to the readers to judge.
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of hierarchical bases with bubble functions approach of Bank and Smith [5] to design a posteriori error estimator for
T-splines, which was also considered in [13, 40]. Another simple idea of explicit residual based error estimator has
been explored in [14, 26, 38, 41, 42, 43]. They require the computation of constants in Clement-type interpolation
operators. Such constant are mesh (element) dependent and often incomputable for general element shape. A global
constant can overestimate the local constants, and thus the exact error. Recently, a functional-type a posteriori error
estimate for isogeometric discretization is presented in [28]. These type of error estimate, which was originally intro-
duced in [32, 33] on functional grounds (including integral identity and functional analysis arguments) are applicable
for any conforming and non-conforming discretizations and known to provide a guaranteed and computable error
bounds. But the hindrance in their popularity is due to high cost of computations which are based on solving a
global minimization problem (Majorant minimization problem) in H(div) spaces. In [28], authors made an attempt
to reduce the cost of computations for tensorial spline spaces but the same idea of cost reduction need further study
in adaptive isogeometric analysis. To the best of authors knowledge, in the above mentioned work on the use of a
posteriori error estimators in isogeometric analysis the role of error estimator has been limited to either just as an
indicator to perform adaptive refinement steps or the error estimation computation is given on tensorial mesh. A
complete study about the performance of error estimators in adaptive analysis which makes them a suitable candi-
date for both the error estimation and adaptivity has not been considered so far. Recently, the present authors have
presented a recovery based approach for establishing efficient error estimator in adaptive isogeometric analysis [30].
The approach is based on Superconvergent Patch Recovery (SPR) procedure (original idea of Zienkiewicz-Zhu [44])
that is enhanced to be applicable within isogeometric analysis. The enhancement includes procedure for numerically
computing the location of true superconvergent points. Extensive numerical tests have been performed on elliptic
benchmark problems to show the efficiency of the develop SPR approach.

In this article we present another possibility to design a posteriori error estimators in adaptive isogeometric
analysis. The employed technique is based on solving the original problem with two discretization schemes of
different accuracy and using the difference in the approximations as an estimate of the error, see [21] and Chapter 5
in [2]. Consider the elliptic model problems of Section 5.1 and suppose that the numerical approximation uh in Finite
Element (FE) subspace Vh is known. Then in classical Finite Element Methods (FEM), the enhanced space V ∗h may,
for example, be constructed by either global h-refinement or p-refinement of the mesh use to construct the original
FE subspace Vh, see [2, 4, 5, 6, 18]. Suppose u∗h ∈ V ∗h is the another FE approximation to the original problem
then after using the triangle inequality on the energy error (the energy norm is induced by the bilinear form of the
underlying self adjoint elliptic problem as given by Eq. (35)) can be written as

‖e‖E = ‖u− uh‖E ≤ ‖u∗h − uh‖E︸ ︷︷ ︸
Computable

+ ‖u− u∗h‖E︸ ︷︷ ︸
Non−Computable

. (1)

If we assume that the approximation u∗h ∈ V ∗h is superior to the original approximation uh, then

‖e‖E ≈ ‖u∗h − uh‖E = η∗h (Computable error estimate). (2)

The enhanced subspace V ∗h based on global h- or p-refinement of the element of original subspace Vh clearly satisfies
Vh ⊂ V ∗h . From a priori error estimation results in classical FEM, for a sufficiently smooth solution u it has been
observed that ‖u − u∗h‖E ≤ Cθ‖u − uh‖E , where Cθ ∈ [0, 1) for h-refined subspace V ∗h and Cθ = O(h) for p-refined
subspace V ∗h . It is seen in literature that the adaptive simulations based on the error estimator η∗h also provide the
asymptotic exactness result on refined meshes, see [2, 4, 5, 6, 18]. The attractiveness of such ideas stems from their
applicability to quite general classes of problems combined with simplicity and ease of implementation.

In isogeometric analysis, there are several possibilities to obtain a higher order approximation u∗h from the space
V ∗h . In comparison to the h- and p-refinement available in classical FEA, isogeometric analysis offers a new possibility

of k-refinement in which the global continuity and degree are increased together. Suppose Sp,kh (M) is the given
isogeometric FE subspace of degree p, continuity k with size of elements h on the mesh M. Then the following
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approximation spaces can be obtained under these operations:

Sp,kh (M)
h-refinement−−−−−−−−−−→ Sp,kh/2(M̄) (3)

Sp,kh (M)
p-refinement−−−−−−−−−−→ Sp+1,k

h (M) (4)

Sp,kh (M)
k-refinement−−−−−−−−−−→ Sp+1,k+1

h (M) (5)

where Sp,kh/2(M̄), Sp+1,k
h (M), and Sp+1,k+1

h (M) represents the isogeometric FE subspaces obtained after performing

the uniform h-, p-, and k-refinement on the subspace Sp,kh (M), respectively. It should be noted that for p- and
k-refinement the integration mesh M will remain the same, whereas the continuity of the basis functions across the
element boundaries will increase by one for the case with k-refinement. For the case of h-refinement we obtain a new
mesh M̄ that is a uniform h-refinement of the original mesh M, i.e. all the elements are halved.

1.2. Outline of the article

In Section 2 we first discuss the general behavior of some different approaches available in isogeometric analysis
to refine a given discrete approximation space Vh into V ∗h in order to obtain a more accurate approximation u∗h
compared to uh. Based on our arguments given in this section we advocate the use of enrichment of the original basis
of Sp,kh (M) by means of k-refinement to construct the approximation space V ∗h . The definitions of B-splines, NURBS
and LR B-splines which is necessary to build an approximation space in isogeometric analysis is briefly introduced in
Section 3. For adaptive isogeometric analysis, we present in Section 4 the construction of discrete pair of isogeometric
k-refined approximation spaces Sp,kh (M)-Sp+1,k+1

h (M) using LR B-splines technology of [27]. In case of adaptive LR
meshes, we observe that

dimSp+1,k+1
h (M) ≈ dimSp,kh (M) (6)

i.e. the dimension of the k-refined space is approximately equal to the unrefined space. Furthermore, the integration
LR meshes are the same for this two spaces at each adaptive refinement level. Using the serendipity pairing of discrete
approximation spaces Sp,kh (M) and Sp+1,k+1

h (M) we propose two simple a posteriori error estimators η∗h and ηRESh

for solving second order elliptic problems using adaptive isogeometric analysis in Section 5. The first error estimator
η∗h represents the computable part of Eq. (1) while the second error estimator ηRESh in addition try to estimate the
non-computable part of the error from (1). In Section 6 we investigate the numerical performance of the two a
posteriori error estimators on a smooth and non-smooth elliptic benchmark problems. We present results obtained
regarding the convergence rate for the unknown uh as well as the effectivity index of the different error estimators.
Furthermore, we briefly report results obtained by an even more cost efficient approach where we consider a coarser
mesh but higher order k-refined spaces Sp+m,k+m

mh ,m = 1, 2, 4. We end this article in Section 7 with some concluding
remarks and future prospectives.

2. Enrichment approaches to obtain a more accurate approximation

In this section we present the general behavior of different approaches to obtain a more accurate approximation u∗h
compared to uh in isogeometric analysis by means of enrichment of the original basis of Sp,kh (M). We mainly focus on
the dimension ratio, accuracy per degree of freedom, and cost involved in obtaining a more accurate approximation.
We fix the notation by considering Vh := Sp,kh (M) and V ∗h the respective approximation spaces obtained from the h-,
p- and k-refinement of Vh.

2.1. Dimension ratio between Sp,kh (M) and its h-, p-, and k-refinement counterparts

On tensorial meshes in the parametric domain Ω := [0, 1]2, suppose dimSp,kh (M) = ndim×ndim then its uniformly
refined counterparts will have the following dimensions:

dimSp,kh/2(M̄) = (2ndim − k − 1)× (2ndim − k − 1), (7)

dimSp+1,k
h (M) = (ndim +

1

h
)× (ndim +

1

h
), (8)

dimSp+1,k+1
h (M) = (ndim + 1)× (ndim + 1). (9)
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For a large systems, i.e, 1
h >> p > k the relation between the dimension of original spline space Sp,kh (M) and its

uniformly refined counterparts in 1D, 2D and 3D are also presented in Table 1. It can be observed from Table 1
that the dimension of Sp,kh/2(M̄) and Sp+1,k

h (M) are four times the dimension of Sp,kh (M), while the k-refined space

Sp+1,k+1
h (M) has almost equal dimension as the space Sp,kh (M).

Table 1: Dimension ratio between Sp,kh (M) and its h-, p-, and k-refined counterparts.

Degree Continuity h-refinement p-refinement k-refinement

p k rh =
dimSp,k

h/2

dimSp,kh
rp =

dimSp+1,k
h

dimSp,kh
rk =

dimSp+1,k+1
h

dimSp,kh
1D 2D 3D 1D 2D 3D 1D 2D 3D

4 3 2 4 8 2 4 8 1 1 1
2 2 4 8 1.5 2.25 3.38 1 1 1
1 2 4 8 1.33 1.77 2.35 1 1 1
0 2 4 8 1.25 1.56 1.95 1 1 1

2.2. Accuracy per degree of freedom

On the tensorial meshes the h- and p-refined spaces of Sp,kh clearly satisfies Sp,kh ⊂ Sp,kh/2 and Sp,kh ⊂ Sp+1,k
h ,

respectively. This property makes these spaces a natural candidate to obtained more accurate approximations. In
Figure 1, we compare the energy norm errors obtained by solving the two dimensional self-adjoint elliptic problem
denoted Sinus problem given in Example 1 of Section 6 using different enhanced approximation spaces for Vh := Sp,kh
of degree p = 2. The comparison for the energy norm errors given in Figure 1 shows that an increase in approximation
accuracy is achieved for h- and p-refined spaces, but with a significant increase in number of degrees of freedom.
In contrary, for the k-refined space we have that Sp,kh 6⊃ Sp+1,k+1

h and Sp,kh 6⊂ Sp+1,k+1
h . However, an increase in

approximation order is still achieved, but now with minimal increase in number of degrees of freedom. Here we have
considered an example of the elliptic problem with smooth solution, whereas we in Section 6 show results obtained
for a non-smooth benchmark problem.

Figure 1: Sinus problem: Energy errors with uniform h-refinements of S2,1
h and its h-, p- and k-refined spaces.

2.3. Computational cost comparison

Another important aspect to be taken into account before choosing enrichment strategy is the computational
costs involved. We have therefore investigated the computational effort used for the h-, p- and k-refinement com-
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pared to the computational cost for finding the original solution uh. We have chosen to split the the total costs into
two categories: (i) Assembly of the linear equation system (including formation of the element matrices) and (ii)
Solving the linear equation system. We have again addressed the smooth problem given in Example 1 of Section 6
and Table 2 shows the obtained cost ratios for each level in a sequence of uniform mesh refinement. We see from
the columns presenting the assembly cost ratio and total time ratio that the approximation u∗h obtained from the
h-refined approximation space is four times more costly than the original approximation uh itself. While the total
cost involved for the p- and k-refined approximations are almost equal and approximately twice to the cost of original
approximation uh. However, notice that the solving time ratio for p-refinement is more than four times compared to
the solving time for the the original approximation uh, whereas for k-refinement the ratio is slightly above one.

From the results of Table 2 it is clear that for all cases the assembly time are greater than the solving time. So
even though the k-refined space has less number of degrees of freedom than the p-refined space the total solution
time is similar as they have the same number of elements which is of greatest importance for the assembly time.
The high cost related to assembly is a well known drawback for isogeometric analysis compared to classical low order
Lagrange finite elements. This has sparked a renewed research interest into development of more efficient numerical
quadrature for splines. Some developments in constructing selective and reduced integration rules for isogeometric
analysis based on B-splines/NURBS elements are given in [1],[3],[22], [34], [25]. A more recent variationally con-
sistent domain integration approach of [22] allows a significant reduction in the number of quadrature points while
maintaining the stability, accuracy, and optimal convergence properties as high order quadrature rules. For example,
in case of quadratic C1 and cubic C2 splines one Gauss points per internal element and p points per element where
repeated knot exists, has been proposed. The present authors expect that in near future (after some more research)
these kind of approaches will become well proven methods for isogeometric analysis such that the assembly cost will
be less than the corresponding solving time for realistic scientific and industrial applications. Hence, the k-refinement
will eventually be less costly than the p-refinement.

The above arguments about the dimension ratio, accuracy per degree of freedom, and computational cost involved
in obtaining a more accurate approximation clearly show that the p-refined space Sp+1,k

h and k-refined space Sp+1,k+1
h

are a preferred choice over the h-refined space Sp,kh/2. Furthermore, notice that the p- and k-refinement achieve a higher

order approximation, whereas the h-refinement does not (h-refinement results in more accurate solution but with
same convergence order, see Figure 1).

The p-refined space is of significant larger dimension than the original space Sp,kh which implies a larger data
set to handle by the computer and increased solving time (as shown in Table 2). On the other hand for globally

tensorial meshes an enhanced higher order approximation is obtained with the embedding property Sp,kh ⊂ Sp+1,k
h .

However, in an adaptive setting one needs to design a local refinement algorithm which satisfies this property at each
level of the adaptive process, and that is in general non-trivial. To the contrary, the k-refined spaces do not satisfy
the embedding property, i.e. Sp,kh 6⊃ Sp+1,k+1

h and Sp,kh 6⊂ Sp+1,k+1
h , but an increase in approximation order is still

achieved and now with minimal increase in the number of degrees of freedom. Furthermore, k-refinement is easier to
realize in an adaptive setting since we don’t have the “embedding property to fulfill”.

Based on the fact that the selective and reduced integration rules will be available in near future for isogeometric
analysis we advocate to use the k-refined approximation spaces in obtaining higher order approximation u∗h. We will
herein use u∗h (obtained by means of k-refinement) to design some a posteriori error estimators for solving elliptic
problems in adaptive isogeometric analysis. Although the present authors prefer to use the same integration meshes
for Vh and V ∗h in adaptive analysis, we also propose in Section 6 some cost efficient k-refinement approaches where

we use higher order but coarse grid to obtain spaces V ∗mh := Sp+m,k+m
mh ,m = 1, 2, 4. This unique setting of involving

higher order combined with coarse meshes k-refined spaces can reduce the computational cost ratio compared to
solving uh to less than 0.5.
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Table 2: Sinus problem:Degrees of freedoms and timings, Case: Vh = S2,1
h (M) with different spaces V ∗

h .

k-refinement: Vh = S2,1
h (M) and V ∗h = S3,2

h (M)

Mesh size Degrees of freedom Assembling time Solving time Total

Ndof = dim(Vh) N∗dof = dim(V ∗h )
N∗
dof

Ndof

FE(u∗h)

FE(uh)

FE(u∗h)

FE(uh)

FE(u∗h)

FE(uh)

4× 4 36 49 1.36 1.12 1.07 1.12
8× 8 100 121 1.21 1.36 1.38 1.36

16× 16 324 361 1.11 1.51 1.98 1.52
32× 32 1156 1225 1.06 1.61 2.03 1.62
64× 64 4356 4489 1.03 1.66 2.00 1.66

128× 128 16900 17161 1.01 1.70 2.11 1.70

h-refinement: Vh = S2,1
h (M) and V ∗h = S2,1

h/2(M̃)

Mesh size Degrees of freedom Assembling time Solving time Total

Ndof = dim(Vh) N∗dof = dim(V ∗h )
N∗
dof

Ndof

FE(u∗h)

FE(uh)

FE(u∗h)

FE(uh)

FE(u∗h)

FE(uh)

4× 4 36 100 2.78 0.68 0.70 0.68
8× 8 100 324 3.24 2.89 16.61 2.91

16× 16 324 1156 3.57 3.26 5.91 3.28
32× 32 1156 4356 3.77 3.61 4.92 3.62
64× 64 4356 16900 3.88 3.77 4.70 3.78

128× 128 16900 66564 3.93 3.91 4.88 3.93

p-refinement: Vh = S2,1
h (M) and V ∗h = S3,1

h (M)

Mesh size Degrees of freedom Assembling time Solving time Total

Ndof = dim(Vh) N∗dof = dim(V ∗h )
N∗
dof

Ndof

FE(u∗h)

FE(uh)

FE(u∗h)

FE(uh)

FE(u∗h)

FE(uh)

4× 4 36 100 2.78 1.01 1.44 1.01
8× 8 100 324 3.24 1.32 1.38 1.33

16× 16 324 1156 3.57 1.44 5.62 1.46
32× 32 1156 4356 3.77 1.54 4.28 1.57
64× 64 4356 16900 3.88 1.60 4.41 1.64

128× 128 16900 66564 3.93 1.67 4.86 1.73
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3. Approximation spaces in isogeometric analysis

In order to properly introduce the notation and to give a brief overview of how to construct the approximation
spaces in isogeometric analysis, we recall the definition and some aspects of isogeometric analysis using B-splines,
NURBS and LR B-splines basis functions and their geometry mappings in this section.

3.1. B-splines and NURBS

Given two positive integer p and n, we introduce the (ordered) knot vector

Ξ := {ξ1, ξ2, . . . , ξn+p+1} with ξi ≤ ξi+1 ∀i, (10)

where p is the degree of the B-spline and n is the number of basis functions (and control points) necessary to describe
it. Here we allow repetition of knots, that is, ξi ≤ ξi+1 ∀i. The maximum multiplicity we allow is p + 1. In the
following we will only work with open knot vectors, which means that first and last knots in Ξ have multiplicity
p+ 1. Given a knot vector Ξ, univariate B-spline basis functions Bi,p(ξ), i = 1, . . . , n, are defined recursively by the
well known Cox-de Boor recursion formula:

Bi,0(ξ) =

{
1 if ξi ≤ ξ < ξi+1,

0 otherwise.
(11)

Bi,p(ξ) =
ξ − ξi
ξi+p − ξi

Bi,p−1(ξ) +
ξi+p+1 − ξ
ξi+p+1 − ξi+1

Bi+1,p−1(ξ) if ξi ≤ ξ < ξi+1, (12)

where in (12), we adopt the convention 0/0 = 0.

Let Bi,p for i = 1, . . . , n and Bj,q for j = 1, . . . ,m are the B-spline basis functions of degree p and q defined by open
knot vector Ξ = {ξ1, ξ2 . . . , ξn+p+1} and Ψ = {ψ1, ψ2, . . . , ψm+q+1}, respectively. Then by means of tensor products,
a multi-dimensional B-spline can be constructed as Bp,q

i,j (ξ,Ψ) = Bi,p(ξ) · Bj,q(ψ). In general, a rational B-spline

in Rd is the projection onto d-dimensional physical space of a polynomial B-spline defined in (d − 1)-dimensional
homogeneous co-ordinate space. Let Cij ∈ R2 be the control points and wij = (Cwij)3 are the positive weights given

by projective control points Cwij ∈ R3. Then NURBS basis function on two dimensional parametric space Ω̂ = [0, 1]2

are defined as

Ri,j(ξ, ψ) =
Bi,p(ξ)Bj,q(ψ)wij

n∑
î=1

m∑
ĵ=1

Bî,p(ξ)Bĵ,q(ψ)wîĵ

(13)

Observe that the continuity and support of NURBS basis function are the same as for B-splines. Furthermore,
B-splines can be seen as a special case of NURBS with all weights being equal to one.

3.2. Local h-refinement using LR B-splines

In the following, we present briefly a class of Locally Refined (LR) B-splines space. For a more detailed presen-
tation of of the present class of LR B-splines we refer to the original contribution [27].

Local knot vectors

We have seen that a univariate spline basis function is constructed using a recursive formula of (11) and (12) with
the global knot vector Ξ. However the support of a B-spline function, Bi,p, is contained in [ξi, ξi+p+1] and these knots
{ξi, ξi+1 . . . , ξi+p+1} only contribute to the definition of Bi,p. Thus we do not need the global knot vector Ξ to define
Bi,p, instead we can consider a local knot vector

Ξi = {ξi+j}p+1
j=0, for i = 1, . . . , n, (14)

and use it in conjunction with (11) and (12) to define Bi,p, without altering the result. We have illustrated the basis
functions given by local knots vectors Ξis from Ξ = [0, 0, 0, 1, 2, 3, 3, 4, 4, 4] in Figure 2.
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Figure 2: All quadratic basis functions generated by the knot Ξ = [0, 0, 0, 1, 2, 3, 3, 4, 4, 4]. Each individual basis function Bi,2 (represented
by different colors) can be described using a local knot vector Ξi of length 4 described in (14).

Knot insertion

For local h-refinement, we again turn to existing spline theory. Tensor product B-splines form a subset of the LR
B-splines and they obey the same core refinement ideas. From the tensor product B-spline theory we know that one
might insert extra knots to enrich the basis without changing the geometric description. This comes from the fact
that we have the available relation between B-splines in the old coarse spline space and in the new enriched spline
space. For instance if we want to insert the knot ξ̂ into the knot vector Ξ between the knots ξi−1 and ξi, then the
relation is defined by

BΞ(ξ) = α1BΞ1(ξ) + α2BΞ2(ξ), (15)

where

α1 =

{
1, ξp+1 ≤ ξ̂ ≤ ξp+2

ξ̂−ξ1
ξp+1−ξ1 , ξ1 ≤ ξ̂ ≤ ξp+1

(16)

α2 =

{
ξp+2−ξ̂
ξp+2−ξ2 , ξ2 ≤ ξ̂ ≤ ξp+2

1, ξ1 ≤ ξ̂ ≤ ξ2

(17)

and the knot vectors are Ξ1 = [ξ1, ξ2, ...ξi−1, ξ̂, ξi, ...ξp+1] and Ξ2 = [ξ2, ...ξi−1, ξ̂, ξi, ...ξp+1, ξp+2].

To refine the bivariate B-spline basis function BΞ,Ψ(ξ, ψ) = BΞ(ξ) ·BΨ(ψ) we consider the refinement of the basis
function in one parametric direction at a time. By using the splitting algorithm of (15), when splitting in ξ-direction,
we obtain

BΞ,Ψ(ξ, ψ) = BΞ(ξ) ·BΨ(ψ)

= (α1BΞ1(ξ) + α2BΞ2(ξ)) ·BΨ(ψ)

= α1BΞ1,Ψ(ξ, ψ) + α2BΞ2,Ψ(ξ, ψ).

Similarly, the splitting in another direction can be performed.

Now we define a weighted B-spline Bγ
Ξ,Ψ(ξ, ψ) := γBΞ,Ψ(ξ, ψ), where the weight factor γ ∈ (0, 1]. This is to ensure

that LR B-splines maintain the partition of unity property, and it is noted that the weight factor γ is different from
the rational weight w which is common in NURB representation. Refining a bivariate weighted B-splines becomes

Bγ
Ξ,Ψ(ξ, ψ) = γBΞ,Ψ(ξ, ψ) (18)

= γα1BΞ1,Ψ(ξ, ψ) + γα2BΞ2,Ψ(ξ, ψ)) (19)

= Bγ1
Ξ1,Ψ

(ξ, ψ) +Bγ2
Ξ2,Ψ

(ξ, ψ), (20)
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where Bγ1
Ξ1,Ψ

and Bγ2
Ξ2,Ψ

are new weighted B-spline basis functions with weights γ1 = γα1 and γ2 = γα2, respectively.

Local refinement algorithm

We now have the main ingredients to formulate the LR B-spline refinement rules. This will be implemented by
keeping track of the mesh M` at level ` and the spline space S`. For each B-spline basis Bγk

Ξk,Ψk
, where k is a single

running global index, we store the following information:

• Ξk, Ψk-local knot vectors in each parametric directions

• γk-scaling weights and Ck-control points.

Throughout the refinement we aim at keeping the partition of unity and leaving the geometric mapping un-

changed, i.e.
∑
∀k
Bγ

Ξk,Ψk
(ξ, ψ) = 1 and F(ξ, ψ) =

∑
∀k
Bγ

Ξk,Ψk
(ξ, ψ)Ck at all levels of refinements.

Assuming a meshline E is inserted, the refinement process is characterized by two steps.

• Step 1: Split any B-spline which support is completely traversed by the new meshline - update the weights
and control points

• Step 2: For all new B-splines, check if their support is completely traversed by any existing meshline.

On the basis of that the above characterization is fulfilled at each refinement level a local refinement algorithm
(Algorithm 1) to construct the LR B-spline space is proposed in [27]. The ”Update control points and weight” step
is described when a parent basis function Bi split into two newly created B-spline functions B1 amd B2 results of
splitting by Eq.(18). If B1 is not present in LR B-spline list then we add it to the list and set its weight and control
points equal to its parent function, i.e. γnew1 = α1γi and Cnew1 = Ci. While if the newly created function is already
exits in our spline space then we just update its control points and weight such as Cnew1 := (C1γ1+Ciγiα1)/(γ1+γiα1)
and γnew1 := γ1 + γiα1. Finally we remove the old basis functions from the spline space.

Algorithm 1 Local refinement algorithm

1: Input parameters: Spline space (S), LR mesh(M), Meshline (E)
2: for every B-spline Bi ∈ S do
3: if E traverse support of Bi then
4: refine Bi according to Eq. (18)
5: Update control points C and weights γ

6: end if
7: end for
8: Update S to Snew and M to Mnew

9: for every existing Bi ∈ Snew do
10: for every edges Ei ∈Mnew do
11: if Ei traverse support of Bi then
12: refine Bi according to Eq. (18)
13: Update control points C and weights γ
14: (These steps may enlarge Snew space further)

15: end if
16: end for
17: end for

We now define an LR spline as an application of the local refinement algorithm Algorithm 1.

Definition 3.1 (LR spline). An LR spline L consist of (M,S), where M is an LR mesh and S is a set of LR
B-splines defined on M, and
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(a) Full span - split all functions on one
element, here only two of all the nine func-
tions with support on this element is de-
picted

(b) Structured Mesh - split all knot spans
on one B-spline, notice that no bad aspect
ratio elements are created

Figure 3: The ideas behind the different refinement strategies, here illustrated on a quadratic tensor product mesh. Notice the fundamental
difference in that 3(a) is refining an element, while 3(b) is refining a B-spline.

• At each refinement level, M`+1 :=M` ∪ E`, where E` is a new meshline extension.

• S` := {BΞk,Ψk(ξ, ψ)}mk=1 is a set of all LR B-splines on M` as a results of Algorithm 1.

In [27] , the authors have illustrated two main isotropic h-refinement strategies as shown in Figure 3. A full span
refinement strategy split an element with a knotline insertion which transverse through the support of every B-splines
on the marked elements is shown in Figure 3(a). The idea of refining elements is a legacy from the finite element
method where every inserted vertex would correspond to an additional degree of freedom. With LR B-splines this
is not the case as the required length of the inserted meshlines may vary from element to element. Another way
of refining LR B-splines is to identify the B-spline which should be refined instead of identifying which element. A
strategy based on this approach denoted structured mesh refinement is shown in Figure 3(b) and the resulting mesh
obtained through the use of structured mesh refinement strategy is said to be a Structured LR Mesh of degree (p, q).

On the structured mesh of LR splines the following property holds:

Proposition 3.1. A structured LR mesh of degree (p, q) is also a structured mesh of all degrees (p̂, q̂), where p̂ ≤ p
and q̂ ≤ q.

Proof. We here note that the definition of structured LR mesh is linked to the polynomial degree of the basis
constructed on it. For tensor products, we have that every lower order function is completely contained in the
support of a function of larger polynomial degree; in both directions. Due to Algorithm 1, when a larger B-spline
split, we note that the lower order functions is split. Any B-spline of bi-degree (p, q) is thus guaranteed to contain
enough functions of lower degree to span it’s own support.

The above property will be useful in constructing the Serendipity pairing of discrete approximation spaces
Sp,kh (M)-Sp+1,k+1

h (M) using locally refined LR B-splines methodology of [27] in Section 4.

3.3. Geometry mappings

In particular, a single patch domain Ω is a NURBS region associated with the control points Cij , and we introduce
the geometrical map F : Ω̂→ Ω̄ given by

F(ξ, ψ) =
n∑
i=1

m∑
j=1

CijRi,j(ξ, ψ). (21)

The above equation gives a B-spline region in a special case with all weights being equal to one. For our purpose
we assume that the geometry mapping is continuous and bijective which are natural assumption for CAD applications.
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Following the isoparametric approach, the space of B-splines and NURBS vector fields on the patch Ω is defined,
component by component as the span of the push-forward of their respective basis function, e.g., in case of NURBS

Vh = span{Ri,j ◦ F−1, with i = 1, . . . , n; j = 1, . . . ,m} (22)

For LR B-splines, these will instead be defined over a single running global index k using the local knot vectors Ξk
and Ψk (defined by a subsequences of global knot vectors Ξ and Ψ, respectively) by

F(ξ, ψ) =

Ndim∑
k=1

γkCkBΞk,Ψk(ξ, ψ), (23)

where the local knot vectors based spline basis functions are defined by BΞk,Ψk(ξ, ψ) = BΞk(ξ) · BΨk(ψ) and γk is a
weighting factor needed to obtained partition of unity, as discussed in Section 2.2. The isoparametric approach gives
the space of LR B-splines vector fields on Ω by

Vh = span{BΞk,Ψk(ξ, ψ) ◦ F−1, with k = 1, . . . , Ndim}. (24)

4. Serendipity pairing of discrete approximation spaces Sp,k
h (M)-Sp+1,k+1

h (M)

In this section we explain and discuss the construction of Serendipity pairing of discrete isogeometric FE approx-
imation spaces Sp,kh (M)-Sp+1,k+1

h (M) using locally refined LR B-splines methodology of [27]. We first explain the
basic differences in h-, p-, and k-refinements available in isogeometric analysis.

4.1. Basics about h-, p- and k-refinement

A univariate B-spline of degree p = 1 with knot vector Ξ = {0, 0, 1
3 ,

2
3 , 1, 1} is shown in Figure 4(a). It consists

of three elements and four C0 linear basis functions, i.e. the discrete FE space S1,0
h (M), which may be refined (or

enriched) by three different approaches: h-, p- and k-refinement shown in Figure 4(b), (c), and (d), respectively.

The corresponding discrete isogeometric FE spaces are Sp,kh/2(M̄), Sp+1,k
h (M), and Sp+1,k+1

h (M), respectively. Thus,

by doing h-refinement we obtain seven C0 linear basis functions with halved element size (therefore h/2 and M̄ in

Sp,kh/2(M̄)), whereas we for p-refinement obtain six C0 quadratic splines without changing the mesh. Both the h-

and p-refinement shown here is identical to what is done using classical C0 Lagrange finite elements, but in iso-
geometric analysis we have one more option to play with and that is the interelement regularity. Thus, we might
combine order elevation with increasing the regularity accordingly, i.e increase p→ p+1 and k → k+1 simultanously,
and this is denoted k-refinement. In Figure 4(d) we see that by doing k-refinement we obtain five C1 quadratic splines.

To illustrate k-refinement for 2D we show in first row of Figure 5 a set of bi-variate tensorial meshes. Let Ξ1 =
Ξ2 = {0, 0, 0, 1/8, 1/4, 3/8, 1/2, 5/8, 3/4, 7/8, 1, 1, 1} be two given knot vectors and Sp,kh with h = 1/8, p = 2, k = 1 be
the quadratic spline space generated by these knot vectors as shown in Figure 5(a). The tensorial meshes displayed
in the right is the mesh obtained by k-refinement of the mesh to the left. Thus, the first row of Figure 5 shows
Serendipity pairings of isogeometric FE approximation spaces S2,1

h -S3,2
h on given mesh M0. The basis functions

generated on these meshes are illustrated by means of the location of the Greville abscissa points defined by an
average of internal local knot vectors with respect to each basis functions. A more detailed information about these
types of refinements available in isogeometric analysis can be obtained from [15].
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(a) Knot vector Ξ = {0, 0, 1
3
, 2
3
, 1, 1} and p = 1 (b) Knot vector Ξ = {0, 0, 1

6
, 1
3
, 1
2
, 2
3
, 5
6
, 1, 1} and p =

1

(c) Knot vector Ξ = {0, 0, 0, 1
3
, 1
3
, 2
3
, 2
3
, 1, 1, 1} and

p = 2
(d) Knot vector Ξ = {0, 0, 0, 1

3
, 2
3
, 1, 1, 1} and p =

2

Figure 4: Different types of refinements in IGA : (a) Linear splines obtain from knot vector Ξ = {0, 0, 1
3
, 2
3
, 1, 1} (corresponding

space denoted S1,0
h (M), (b) h-refinement (S1,0

h/2(M̄)) , (c) p-refinement (Sp+1,k
h (M)), (d) k-refinement (Sp+1,k+1

h (M)).

4.2. Algorithm for Serendipity pairing using k-refinement in an adaptive setting

To construct the Serendipity paring of isogeometric FE approximation spaces Sp,kh (M)-Sp+1,k+1
h (M) in an adap-

tive setting, we consider the structured mesh refinement strategy of LR B-splines [27] as shown in Figure 3(b). In
our adaptive isogeometric analysis, we start the refinement procedure from a tensorial mesh and then the mesh is
adapted using the structured mesh refinement strategy of [27]. To decide which basis functions to refine we make
use of a posteriori error estimators that is typically computed on each element. We transfer this information from
elements to basis functions by adding the element errors for all elements in the support of each basis function.

The complete procedure to construct the Serendipity paring of isogeometric FE approximation spaces Sp,kh (M)-

Sp+1,k+1
h (M) in adaptive isogeometric setting is given by the following algorithm:

Algorithm 2 Discrete pair of Sp,kh (M)-Sp+1,k+1
h (M) spaces

Input parameters: Spline spaces Sp,kh (M0), Sp+1,k+1
h (M0), initial tensorial LR mesh(M0)

for each level (`) of refinement steps

Select some percentage of B-spline functions Bi ∈ Sp+1,k+1
h (M`) using given error indicator

Refine selected B-spline functions of using Algorithm 1 to obtain Sp+1,k+1
h (M`+1)

Store the information about Meshline of length p+ 2 in E`
Refine every B-spline Bi ∈ Sp,kh (M`) using the the Meshline E` and Algorithm 1.
end for

To illustrate Algorithm 2 we have in Figure 5 displayed the obtained Serendipity pairings of isogeometric FE
approximation spaces S2,1

h (M`)-S
3,2
h (M`) in adaptive setting by means of local h-refinements using LR B-splines.

The algorithm starts with the tensorial mesh displayed in Figure 5(a) with the corresponding Serendipity paring
of quadratic and cubic LR B-splines spaces as shown in first row of Figure 5(b)-(c). Notice that the integration
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(a) Initial mesh M0 (b) S2,1
h (M0), Degrees of freedom 100 (c) S3,2

h (M0), Degrees of freedom 121

(d) After one refinement step, M1 (e) S2,1
h (M1), Degrees of freedom 219 (f) S3,2

h (M1), Degrees of freedom 238

(g) After two refinement steps, M2 (h) S2,1
h (M2), Degrees of freedom 366 (i) S3,2

h (M2), Degrees of freedom 364

Figure 5: Serendipity pairing of approximation spaces with LR B-splines: Left column represents the LR adaptive mesh obtained
from three step of local h-refinement, Middle column represent the case of quadratic LR isogeometric elements S2,1

h , and right column
represents the cubic LR isogeometric elements S3,2

h which can be seen as k-refined version of quadratic LR spline elements of middle
column.
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Table 3: Dimensions for S2,1
h (M) from Figure 5 and their h-, p-, and k-refined spaces.

h-refinement p-refinement k-refinement

Adaptive steps dimS2,1
h dimS2,1

h/2 rh =
dimS2,1

h/2

dimS2,1h
dimS3,1

h rp =
dimS3,1h
dimS2,1h

dimS3,2
h rk =

dimS3,2h
dimS2,1h

0 100 324 3.24 324 3.24 121 1.21
1 219 1132 5.16 1132 5.16 238 1.08
2 366 1860 5.08 1860 5.08 364 0.99

Table 4: Dimensions for S3,2
h (M) on meshes similar to Figure 5 and their h-, p-, and k-refined spaces.

h-refinement p-refinement k-refinement

Adaptive steps dimS3,2
h dimS3,2

h/2 rh =
dimS3,2

h/2

dimS3,2h
dimS4,2

h rp =
dimS4,2h
dimS3,2h

dimS4,3
h rk =

dimS4,3h
dimS3,2h

0 121 361 2.98 361 2.98 144 1.19
1 292 1483 5.09 1483 5.09 320 1.10
2 502 2377 4.73 2377 4.77 513 1.02

LR mesh for the pair of isogeometric spaces S2,1
h (M`)-S

3,2
h (M`) will be the same. Here we choose to first transfer

the element error information obtained by the given indicator to the basis functions of the space S3,2
h (M`). Then

some percentage of the basis functions of this space are refined using the structured mesh refinement strategy in
Algorithm 1. The information about the new inserted Meshline of length (p + 2) at each steps `s are stored in
E`. Based on these information we then refine the basis functions of S2,1

h (M`). By performing the refinement this

way a Serendipity pairing of spaces S2,1
h (M`)-S

3,2
h (M`) is obtained at each refinement levels. The Meshline of length

(p+2) will make sure that the h-refinement is proper both in the space S2,1
h (M`) along with its k-refined counterparts.

In adaptive isogeometric analysis using LR B-spline we noticed that the dimension of spline space Sp+1,k+1
h (M`)

could be less (equal, or more) than the dimension of spline space Sp,kh (M`), while on tensorial meshes we know for

fact that the dimension of Sp+1,k+1
h (M`) will be always larger than Sp,kh (M`). However, in both cases the dimension

are almost equal and the difference is very small in comparison to their h- and p-refined discrete pair counterpart.
This is illustrated in Tables 3-5 for quadratic C1 LR B-splines, cubic C2 LR B-splines, and quartic C3 LR B-splines
on three adapted LR meshes of Figure 5, respectively.

Remark 4.1. In case of h-refinement and p-refinement the Serendipity pairing of isogeometric approximation spaces
Sp,kh (M)- Sp,kh/2(M̄) and Sp,kh (M)- Sp+1,k

h (M), respectively, satisfy

Sp,kh (M) ⊂ Sp,kh/2(M̄) and Sp,kh (M) ⊂ Sp+1,k
h (M), (25)

while for the k-refined discrete spaces Sp,kh (M)- Sp+1,k+1
h (M) we have

Sp,kh (M) 6⊂ Sp+1,k+1
h (M) and Sp,kh (M) 6⊃ Sp+1,k+1

h (M). (26)

Remark 4.2. The integration LR mesh at each refinement level will be same for both the spaces Sp,kh (M`) and

Sp+1,k+1
h (M`) and at each refinement level they satisfy the following nestedness behavior

Sp,kh (M`) ⊂ Sp,kh (M`+1) and Sp+1,k+1
h (M`) ⊂ Sp+1,k+1

h (M`+1)

5. Error estimation

5.1. Model problem

The model problem is Poisson’s equation on a open bounded two dimensional domain Ω ∈ R2 with Lipschitz
boundary Γ = ΓD ∪ΓN , where ΓD and ΓN are the Dirichlet and Neumann boundaries, respectively. The strong form
of the boundary value problem: Find the displacement u : Ω̄→ R such that
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Table 5: Dimensions for S4,3
h (M) on meshes similar to Figure 5 and their h-, p-, and k-refined spaces.

h-refinement p-refinement k-refinement

Adaptive steps dimS4,3
h dimS4,3

h/2 rh =
dimS4,3

h/2

dimS4,3h
dimS5,3

h rp =
dimS5,3h
dimS4,3h

dimS5,4
h rk =

dimS5,4h
dimS4,3h

0 144 400 2.77 400 2.77 169 1.17
1 484 2260 4.67 2260 4.67 498 1.03
2 699 3476 4.80 3476 4.80 724 1.04

−∆u = f on Ω; (27)

u = 0 on ΓD; (28)

n · ∇u = g on ΓN . (29)

The data are assumed to be sufficiently smooth, that is, f ∈ L2(Ω), g ∈ L2(ΓN ) and n is the unit outward normal
vector to Γ. An equivalent formulation of the boundary value problem is the variational formulation seeking u ∈ V
such that

a(u, v) = `(v) ∀ v ∈ V, (30)

where the trial and test space V is the usual Sobolev space of functions from H1(Ω) whose trace vanishes on the
Dirichlet part of the boundary and is defined by V := {v ∈ H1(Ω) : v = 0 on ΓD}.

The form a(u, v) is assumed to be a V -coercive bilinear form on V ×V and the linear functional l(v) is an element
of the dual space V ′, given as

a(u, v) =

∫
Ω
∇u · ∇vdΩ and `(v) =

∫
Ω
fvdΩ +

∫
ΓN

gvds. (31)

The existence and uniqueness of the solution to this continuous problem is guaranteed by the Lax-Milgram theorem.
The Galerkin finite element approximation to this variational problem may then be given as follow: Given a finite-
dimensional subspace Vh ⊂ V and ` ∈ V ′, find uh ∈ Vh such that

a(uh, vh) = `(vh) ∀ vh ∈ Vh. (32)

In isogeometric setting, the discrete space Vh formed with B-splines/NURBS and LR B-splines are given by (22) and
(24), respectively.

Let u be the exact solution and uh be the isogeometric FE solution. The discretization errors are denoted by

e(x) = u(x)− uh(x), eσ(x) = ∇u(x)−∇uh(x), (33)

where e is the error in the displacement uh and eσ is the error in the gradient ∇uh. We now introduce the following
error norms:

‖e‖L2(Ω) := ‖u− uh‖L2(Ω) =

(∫
Ω

(u− uh)2dΩ

)1/2

(34)

‖e‖E :
√
a(e, e) = |e|H1

0 (Ω) = ‖eσ‖L2(Ω) =

(∫
Ω

(∇u−∇uh)T · (∇u−∇uh)dΩ

)1/2

(35)

5.2. A priori error estimation

In classical FEA, the fundamental error estimate for the elliptic boundary value problem, expressed as a bound
on the difference between the exact solution, u, and the FEA solution, uh, takes the form

‖u− uh‖m ≤ CFEAh
β‖u‖r (36)
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where ‖ · ‖k is the norm corresponding to the Sobolev space Hk(Ω), h is a characteristic length scale related to the
size of the element in the mesh and β = min(p + 1 −m, r −m) where p is the polynomial degree of the basis, and
CFEA is a constant that does not depend on u and h. The parameter r describe the regularity of the exact solution
u and 2m is the order of the differential operator of the corresponding PDE.

The basic a priori error estimate results analogous to (36) for NURBS based isogeometric method (cf. [7]) is
given as follows: for u ∈ Hr(Ω) with 0 ≤ m ≤ r ≤ p+ 1 and uh ∈ Vh:

‖u− uh‖m ≤ CIGAh
β‖u‖r, where β = min(p+ 1−m, r −m). (37)

For the uniform h-refinement, one sees from (36) and (37) that the isogeometric solution obtained using Cp−1 NURBS
of degree p converges at same rate as FEA polynomial of degree p. However, provided that CIGA < CFEA, IGA may
be more efficient (i.e. accurate) in terms of degrees of freedom (Ndof), and this is often the case in practice.

5.3. A posteriori error estimation

The standard a priori error estimate for the exact error given in previous section tells us about the rate of con-
vergence which we can anticipate but is of limited use if we wish to find a numerical estimate of the accuracy. One
way in which we might get a realistic estimate or bound upon the discretization error is to use the approximation
solution uh itself in estimating ‖e‖E . The idea of using uh to estimate the error is called a posteriori error estima-
tion and some variety of methods to use it have been seen in literature, see [2] and [39] for detailed survey on this topic.

Now we design a simple posteriori error estimators in adaptive isogeometric analysis, the employed technique is
based on solving the original problem with two discretization schemes of different accuracy and using the difference
in the approximations as an estimate of the error. Consider the elliptic model problems of (27)-(29) and suppose the
numerical approximation uh in FE subspace Vh is known. Let u∗h be an approximation of elliptic problem (27)-(29)
from the k-refined FE subspace V ∗h , then the energy error can be written as

‖e‖E = ‖u− uh‖E ≤ ‖u∗h − uh‖E︸ ︷︷ ︸
Computable

+ ‖u− u∗h‖E︸ ︷︷ ︸
Non−computable

. (38)

Let us consider the right hand side part of (38) as the exact error estimate defined by

ηEXh = ‖u∗h − uh‖E + ‖u− u∗h‖E , (39)

which will show us the role of the triangle inequality in estimating the exact error using (38).

Next, If u∗h is superior to the original approximation uh then the difference between the two approximations
‖u∗h − uh‖E will provide a computable estimate for the exact error

‖e‖E ≈ ‖u∗h − uh‖E = η∗h. (40)

In Eq.(40), the second term from (39) is neglected completely on the basis that it should be small in comparison to
the first term and η∗h is used as an estimate of the error. However, the term η∗h does not provide a guaranteed upper
bound in general as shown by our numerical results in Section 6. Here we consider a simple explicit residual based
error estimate to get an upper bound on the term ‖u− u∗h‖E , see [26, 38], and a complete error estimate from (38)
then becomes

ηRESh = ‖u∗h − uh‖E + CRES

{ ∑
∀K∈M

h2
K‖R‖2L2(K) +

1

2
hK‖J‖2L2(∂K)

}1/2

, (41)

where hK is the diameter of element K ∈M, R = f + ∆u∗h defined the interior residual and J defined the boundary

residual J |γ = g − ∂u∗h
∂n for γ ∈ ∂K ∩ ∂ΓN and the jump term J |γ = −1

2

[
∂u∗h
∂n

]
for γ ∈ ∂K. The contribution of

element jump discontinuity term becomes zeros for smooth spline approximation spaces, which generally have at
least C1-continuity across the element boundaries. The error constant CRES in (41) comes from the Clement-type
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interpolation operators. Such constant are mesh (element) dependent and often incomputable for general element
shape. A global constant can overestimate the local constants, and thus the exact error. We assume the value of
constant CRES = 1 in the computation of numerical results of Section 6.

Saturation assumption

The effectiveness of the approximation ‖e‖E ≈ ‖u∗h − uh‖E is dictated by whether u∗h really does represent an
improved approximation over the approximation uh. This notion is quantified in terms of the saturation assumptions,
i.e. there exist a constant Csat ∈ [0, 1) such that

‖u− u∗h‖E ≤ Csat‖u− uh‖E . (42)

It is easy to see that the saturation condition (42) will hold for reasonable functions u. For example, suppose that
the Galerkin subspace Vh = S2,1

h (M) consists of quadratic C1 splines basis functions and its k-refined subspace

V ∗h = S3,2
h (M) consists of cubic C2 splines basis functions.

(i) If the solution u is smooth, say u ∈ H4(Ω), then a priori error estimates from (37) imply that on quasi-uniform
meshes of size h, we have

‖u− uh‖ ≤ C1h
2‖u‖H3(Ω) and ‖u− u∗h‖ ≤ C2h

3‖u‖H4(Ω). (43)

Therefore, asymptotically, we obtain that Csat = O(h)–a much stronger behaviour than that is required for the
saturation assumption.

(ii) If the solution u is not sufficiently smooth, say u ∈ Hλ(Ω), λ ∈ [1, 2), examples are problems with singularities
within the solution domain or on its boundary, then a priori error estimates from (37) imply that on quasi-uniform
meshes of size h, we have

‖u− uh‖ ≤ C3h
α1‖u‖Hα1+1(Ω) and ‖u− u∗h‖ ≤ C4h

α2‖u‖Hα2+1(Ω), (44)

where the value of the non-negative real parameter αis depends on how the family of meshesM are created. Assume
that λ is a real number characterizing the strength of the singularity. For a sequence of uniformly, or nearly uniformly,
refined meshes we then have

α1 = min{2, λ} and α2 = min{3, λ}. (45)

Thus, when λ < p the rate of convergence is limited by the strength of the singularity, and not on the polynomial
degree p. In isogeometric analysis, the constant CIGA present in a priori error estimates (37) depends on degree p
and the shape (but not size) of the domain Ω, as well as the shape regularity of the mesh, see [7]. A clear argument
about its dependence on p for Cp−1 smooth isogeometric element case is not known while some partial results for
reduce continuity order isogeometric elements are presented in [9]. Thus the constants C3 and C4 present in (44) also
depend on the degree of approximations. Numerically we observed that both approximation uh and u∗h will provide
the same rate of convergence but the results for u∗h will be more accurate than uh. Hence on some coarse meshes for
the problem with singularity we observed Csat < 1, and asymptotically with adaptive h-refinement steps, we are able
to create the family of meshes where we obtain that Csat = O(h).

Remark 5.1. We numerically illustrate in Section 6 that the above two arguments about the saturation assumption
(42) will holds true for the case of elliptic problems with smooth and non-smooth solution.

Remark 5.2. Despite the above arguments on the saturation assumption, we want to point out that the saturation
assumption will fail to be true in general. For example, let the exact solution u ∈ S2,1

h (M) on a given mesh M with

C1-continuity across element boundaries and we consider Vh = S2,1
h (M) and V ∗h = S3,2

h (M) in the error estimate

(40). Then the error in uh ∈ S2,1
h (M) approximation will be zero, i.e ‖u− u∗h‖E = 0, while there will be some errors

in u∗h ∈ S
3,2
h (M) and the saturation assumption will fail in this particular case. Such problem can also arise by taking

some classes of data of problem f such that the approximations uh and u∗h belong to the finite-dimensional FE spaces
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and so the component of data f that is orthogonal (in an L2 sense) to the spaces is essentially invisible, see Chapter 5
of [2]. Fortunately, the data in practical computations are taken from quite restricted sets such as global polynomials
or piecewise analytical functions, so that the saturation assumption may be quite realistic in a practical setting.

6. Numerical results

In this section, we first introduce the nomenclature used and the aim of our numerical studies. Then we consider
two elliptic benchmark problems with analytical known solution u to demonstrate the effectiveness of the proposed
error estimators. Finally we report some preliminary results obtained with an even more cost effective approach.

6.1. Nomenclature

Error measures

The effectiveness of the various error estimators is assessed by evaluating how well they are able to estimate the
relative errors (%) in energy norm

‖e‖RE =
‖u− uh‖E
‖u‖E

× 100%, for uh ∈ Sp,kh (M), (46)

‖e∗‖RE =
‖u− u∗h‖E
‖u‖E

× 100%, for u∗h ∈ S
p+1,k+1
h (M). (47)

Furthermore, let ‖e‖E and ‖e‖E(Ωel) be the global and element error, respectively. Then we define the root mean
square of the exact element errors by:

‖e‖RMS =

(
1
Nel

Nel∑
el=1

(‖e‖E(Ωel) − ‖e‖avg)
2

)1/2

‖e‖avg
, (48)

where the average exact element error is defined as

‖e‖avg =
1

Nel

Nel∑
el=1

‖e‖E(Ωel). (49)

The root mean square of the exact element errors given in Equation (48) measures the deviation from an uniform
element error distribution. A mesh giving uniform element error distribution is considered to be optimal for which
we have that ‖e‖RMS = 0. Thus, we refer to asymptotically optimal mesh refinement procedure when a sequence of
meshes satisfying lim

h→0
‖e‖RMS = 0.
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Error estimators

In the present adaptive methodology we consider the following error estimators η
(·)
h , · = {EX, ∗,RES} of Section

5:

ηEXh = ‖u∗h − uh‖E + ‖u− u∗h‖E , (50)

η∗h = ‖u∗h − uh‖E , (51)

ηRESh = ‖u∗h − uh‖E +

{ ∑
∀K∈M

h2
K‖R‖2L2(K) +

1

2
hK‖J‖2L2(∂K)

}1/2

. (52)

Effectivity index (θ)

The effecitivity indices that measures the quality of error estimators are defined by

θ(·) =
η

(·)
h

‖e‖E
for (·) = {EX, ∗,RES}. (53)

and we refer to η
(·)
h as an asymptotically exact error estimators if lim

h→0
θ(·) = 0.

Saturation constant (Csat)

For the higher order approximation u∗h we compute the saturation constant Csat, defined by

Csat =
‖u− u∗h‖E
‖u− uh‖E

. (54)

In order to get reliable error estimates the saturation constant should satisfy Csat ∈ [0, 1). Furthermore, to obtain
asymptotically exact error estimator the saturation constant have to fulfill Csat = O(hα) for some α > 0.

Marking strategy

The marking strategy, that is, the method of how to choose the basis functions for refinement in structured mesh
refinement is the Fixed iteration strategy. Thus, in the adaptive refinement procedure, we always choose to refine a
fixed percentages of those basis functions which contributes with most error in the isogeometric FE computation. It
is recommend to use some small percentages say γ < 5% to achieved a proper adaptive refinement process resulting
in optimal convergence rates. For the numerical results in this article we have been using γ = 3%.

6.2. Aim of the numerical studies

The aim of numerical studies is to investigate whether for smooth problems with uniform mesh refinement we
obtain:

• A higher convergence rate for u∗ compared to uh

• asymptotically exact error estimate for η∗h on refined meshes

• conservative error estimate with ηRESh

and for non-smooth problems with adaptive mesh refinement we obtain:

• Optimal convergence rate, i.e. O(hp) for uh measured in energy norm

• a higher convergence rate for u∗ compared to uh

• asymptotically exact error estimate for η∗h on adaptive refined meshes

• conservative error estimate with ηRESh

• asymptotically optimal element error distribution
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6.3. Uniform refinement results

Example 1. (Sinus problem) Consider the following two dimensional elliptic problem

−∆u = f in Ω, (55)

with homogenous boundary conditions
u = 0 on ∂Ω. (56)

Here Ω = (0, 1)2 is a square domain and f is constructed to correspond to the exact solution

u(x, y) = sin(2πx) sin(2πy). (57)

The error plots for the comparison of relative error (%) in energy norm and effectivity indeces θ(·), · = {∗, RES,EX}
using the approximation spaces Vh := Sp,p−1

h and k-refined spaces V ∗h := Sp+1,p
h for p = 2, 3, 4 (respectively in each

row) with uniform h-refinements for Example 1 are shown in Figure 6.

From the error plots it can be noticed that the exact error in the higher order approximation ‖u−u∗h‖RE converges
with the rate of one order higher than the exact error in original approximation ‖u− uh‖RE .

The effectivity index comparison plots show that η∗h provides a more accurate estimation of the exact error than
the exact estimate ηEXh and residual based estimate ηRESh for all presented cases. The estimate ηEXh presents the best
error approximation one can achieve after applying the triangle inequality on the exact error when the exact solution
u is available. For the considered example we also noticed that the estimators η∗h and ηEXh are asymptotically exact
on refined meshes while the residual based estimator ηRESh also shows a very good approximation of the exact error
on refined meshes. The effectivity index for η∗h are within the range of [1, 1.2).

In Figure 7 we numerically illustrate that the saturation property given in Equation (42) holds for k-refined ap-
proximations. In fact for the present case with smooth exact solution we obtain that Csat = O(h)—a much stronger
behavior than that is required for the saturation assumption.
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(a) Error plots, Vh := S2,1
h , V ∗

h = S3,2
h (b) Effectivity index θ

(c) Error plots, Vh := S3,2
h , V ∗

h = S4,3
h (d) Effectivity index θ

(e) Error plots, Vh := S4,3
h , V ∗

h = S5,4
h (f) Effectivity index θ

Figure 6: Sinus problem: Plots of relative errors (%) in energy norm and effectivity index θ(·), · = {∗, RES,EX} obtained using
Vh := Sp,p−1

h and V ∗
h := Sp+1,p

h for p = 2, 3, 4 (respectively in each row) with uniform h-refinements.
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(a) Csat for Example 1

Figure 7: Sinus problem: Plots of Saturation constant Csat obtained with uniform h-refinements and degrees p = 2, 3, 4.

(a) L-shaped problem description (b) Exact solution u

Figure 8: L-shaped problem: Problem description and Exact solution u.
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6.4. Adaptive refinement results

Example 2. (L-shaped domain problem)
The governing equation of the L-shaped domain problem is

∆u = 0 in Ω, (58)

with the boundary conditions

u = 0 on ΓD and
∂u

∂n
= g on ΓN , (59)

Here Ω = (−1, 1)2 \ (0, 1)× (−1, 0) is a L-shaped domain and g is constructed to correspond to the exact solution

u(x, y) = r
2
3 sin

(
2θ

3

)
, with r = (x2 + y2)

1
2 , θ = tan−1

(y
x

)
. (60)

The set up of the problem with given boundary conditions and the exact solution u are shown in Figure 8.

For the given elliptic problem, the re-entrant corner at (0, 0) in the domain cause a singularity in the solution.
It is known that the convergence for uniform mesh refinement is limited by the strength of the singularity, i.e. the
convergence rate (versus degrees of freedoms) is equal to −1/3. For problems where the solution is not sufficiently
smooth, u /∈ Hp+1(Ω), as is the case for the L-shaped domain problem, we do not obtain optimal convergence rate
when we do uniform mesh refinement. In particular, the use of high order polynomials is then inefficient.

The L-shaped domain geometry is modeled with two patches which join merely continuously C0, k = 0) along
the line segment from (0, 0) to (−1, 1). Here the geometry parametrization does not quite fit into the framework of

the single-patch spaces Sp,kh (M), while we will show numerically that we obtained good results in this case. Similar
to two patches considered in L-shaped domain geometry model one can also consider a simple three patches model
by subdividing the L-shaped region into three congruent squares; parametrization would then not even be neces-
sary. The L-shaped domain problem is solved using the linear, quadratic and cubic LR B-spline spaces Vh : Sp,p−1

h ,
p = 1, 2, 3 with uniform h-refinements and adaptive h-refinements based on a posteriori error estimators ηRESh and
η∗h. The error plots for the relative error (%) in energy norm and effectivity index for θ(·), · = {∗, RES,EX}, and

the saturation constant using the approximation spaces Vh := Sp,p−1
h and k-refined spaces V ∗h := Sp+1,p

h for p = 1, 2, 3
with uniform and adaptive h-refinement are shown in Figures 9-11. The numerical results of uniform and adaptive
h-refinement using the error estimators ηRESh and η∗h are shown in left and right column of Figures 9-11, respectively.

From the error plots presented in first row of Figures 9-11 the difference in the convergence rate of exact errors
obtained by means of uniform h-refinement and adaptive h-refinement is clearly noticed. For uniform h-refinements

the exact energy error for uh converges at the rate of O(N
−1/3
dof ) for all approximation spaces, this is clearly caused

by the singularity present in the problem. While in the case of adaptive refinement we achieve an optimal rate of
convergence for all the cases presented here with both error estimators. It can also be noticed that the exact error
in higher order approximation ‖u− u∗h‖RE converges asymptotically with one order higher rate than the exact error
in original approximation ‖u− uh‖RE .

The effectivity index comparison plots with uniform h-refinement and adaptive refinement clearly show that η∗h
provides more accurate estimation of the exact error than the residual based estimate ηRESh for all cases. The esti-
mate ηEXh presents here the best error approximation one can achieve after applying the triangle inequality and is
computable only when the analytical solution u is known. For the L-shaped domain problem we also noticed that the
estimators η∗h and ηEXh are asymptotically exact on refined meshes. Furthermore, the residual based estimator ηRESh

also shows a very good approximation of the exact error on adaptive refined meshes and we also have asymptotically
convergence for the corresponding effectivity index. Since the present residual based estimator ηRESh involves the
residual of a high order approximation u∗h its behavior is different than the standard residual estimator based on uh.
The error estimator ηRESh is very conservative on coarse meshes and then converges to the exact error when proper
adaptive mesh refinement has been achieved for the higher order approximation u∗h. On coarse meshes the residual
term involved in the estimator ηRESh provides a safeguard in the error estimation process as the estimator η∗h in these
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cases generally underestimates the error. When we compare the exact error in uh we notice that the results provided
by using the estimator ηRESh to drive the adaptive refinement are slightly better than the results obtained with use
of the η∗h estimator.

In third row of Figures 9-11 we numerically illustrate that the saturation property given in Equation (42) holds
for k-refined approximations even on non-smooth solution case on coarse meshes. In fact, for all the cases, asymptot-
ically we obtain that Csat = O(h)–a much stronger behavior than that is required for the saturation assumption. We
also noticed that the value of saturation constant Csat with the application of error estimator ηRESh decrease more
rapidly in comparison to the case with the error estimator η∗h. Thus we can obtain a more accurate approximation
u∗h with estimator ηRESh than with the use of η∗h.

The comparison of root mean square of the exact element error given in Equation (48) which measures the de-
viation from an uniform element error distribution are shown in Figure 12. For the uniform h-refinement case we
observed that the root mean square error will not converges because of pollution error present in the L-shaped prob-
lem while the adaptive refinement procedure provides a sequence of meshes that seems to satisfy lim

h→0
‖e‖RMS = 0.

The adaptive LR-meshes at step 20 for all the different cases are also displayed in Figure 13.
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(a) Relative errors (%) in energy norm plots (b) Relative errors (%) in energy norm plots

(c) Effectivity index θ (d) Effectivity index θ

(e) Saturation constant Csat (f) Saturation constant Csat

Figure 9: L-shaped domain problem: Case Vh = S1,0(M) and V ∗
h = S2,1(M). Plots of relative errors (%) in energy norm, effectivity

index θ and saturation constant Csat obtained using ηRESh (at left) and η∗h (at right) error estimators in adaptive isogeometric analysis
with LR B-splines.
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(a) Relative errors (%) in energy norm plots (b) Relative errors (%) in energy norm plots

(c) Effectivity index θ (d) Effectivity index θ

(e) Saturation constant Csat (f) Saturation constant Csat

Figure 10: L-shaped domain problem: Case Vh = S2,1(M) and V ∗
h = S3,2(M). Plots of relative errors (%) in energy norm, effectivity

index θ and saturation constant Csat obtained using ηRESh (at left) and η∗h (at right) error estimators in adaptive isogeometric analysis
with LR B-splines.
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(a) Relative errors (%) in energy norm plots (b) Relative errors (%) in energy norm plots

(c) Effectivity index θ (d) Effectivity index θ

(e) Saturation constant Csat (f) Saturation constant Csat

Figure 11: L-shaped domain problem: Case Vh = S3,2(M) and V ∗
h = S4,3(M). Plots of relative errors (%) in energy norm, effectivity

index θ and saturation constant Csat obtained using ηRESh (at left) and η∗h (at right) error estimators in adaptive isogeometric analysis
with LR B-splines.
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(a) p = 1, k = 0, Errors in ‖ · ‖RMS norm (b) p = 1, k = 0, Errors in ‖ · ‖RMS norm

(c) p = 2, k = 1, Errors in ‖ · ‖RMS norm (d) p = 2, k = 1, Errors in ‖ · ‖RMS norm

(e) p = 3, k = 2, Errors in ‖ · ‖RMS norm (f) p = 3, k = 2, Errors in ‖ · ‖RMS norm

Figure 12: L-shaped domain problem: Plots of root mean square errors ‖ · ‖RMS obtained using Sp,k(M)-Sp+1,k+1(M) based error
estimators in adaptive isogeometric analysis with LR B-splines: ηRESh (left) and η∗h (right).
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(a) p = 1, k = 0, Ndof = 6257, N∗
dof = 6294 (b) p = 1, k = 0, Ndof = 8075, N∗

dof = 8122

(c) p = 2, k = 1, Ndof = 6017, N∗
dof = 6046 (d) p = 2, k = 1, Ndof = 7804, N∗

dof = 7892

(e) p = 3, k = 2, Ndof = 5694, N∗
dof = 5724 (f) p = 3, k = 2, Ndof = 7655, N∗

dof = 7681

Figure 13: L-shaped domain problem: LR meshes obtained at intermediate refinement step 20 using Sp,kh (M)-Sp+1,k+1
h (M) based

error estimators in adaptive isogeometric analysis with LR B-splines: ηRESh (left) and η∗h (right). Here Ndof and N∗
dof represents degrees

of freedom for Vh = Sp,kh (M) and V ∗
h = Sp+1,k+1

h (M) spaces, respectively.
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6.5. A cost efficient approach

As we have discussed in Section 2 the cost to obtain a higher order approximation u∗h using k-refined spaces will
be almost twice to the original approximation uh itself when full Gauss-quadrature points are used in the assembly
procedure. Although the cost can be reduced by choosing the recently available selective and reduced integration
rules in isogeometric analysis. But in this section, we present a different approach to reduce this cost which is based
on reducing the number of degrees of freedom for u∗h by coarsening the mesh by a factor of m in each direction. We
remedy the reduction in accuracy that occurs due to mesh coarsening by increasing the polynomial degree by the
same factor m. For this we define

Vh := Sp,kh and V ∗mh := Sp+m,k+m
mh , m = 1, 2, 4,

where V ∗mh represents a coarse and high order k-refined space of Vh at level m. For m = 1 we obtain the classical
k-refined space as discussed in Section 2 and 4.

The assembly and solving cost ratio to obtain a higher order approximation u∗h, similar to as presented in Table 2,

using these new coarser and higher order k-refined spaces for Vh := S2,1
h are shown in Table 6. This alternative mod-

ified k-refinement approach to obtain Serendipity pairings in isogeometric analysis is clearly a cost efficient approach
where we may reduce the the cost ratio to less than 0.5.

In Figure 14, energy error plots with uniform h-refinements of Vh := S2,1
h and its modified k-refined spaces for

the Sinus problem (Example 1) are given. The better accuracy per degrees of freedom achieved with these modified
k-refined spaces are clearly visible.

Table 6: Sinus problem:Degrees of freedoms and timing for solving the Sinus problem using Vh = S2,1
h (M) with different modified

k-refined spaces V ∗
h .

Vh = S2,1
h (M) and V ∗2h = S4,3

2h (M̃)

Mesh size Degrees of freedom Assembling time Solving time Total

Ndof = dim(Vh) N∗dof = dim(V ∗2h)
N∗
dof

Ndof

FE(u∗h)

FE(uh)

FE(u∗h)

FE(uh)

FE(u∗h)

FE(uh)

8× 8 100 64 0.64 0.63 0.66 0.63
16× 16 324 144 0.44 0.64 0.10 0.63
32× 32 1156 400 0.34 0.67 0.52 0.67
64× 64 4356 1296 0.29 0.68 0.51 0.68

128× 128 16900 4624 0.27 0.70 0.47 0.69

Vh = S2,1
h (M) and V ∗4h = S6,5

4h (M̃)

Mesh size Degrees of freedom Assembling time Solving time Total

Ndof = dim(Vh) N∗dof = dim(V ∗4h)
N∗
dof

Ndof

FE(u∗h)

FE(uh)

FE(u∗h)

FE(uh)

FE(u∗h)

FE(uh)

8× 8 100 64 0.64 0.50 0.92 0.51
16× 16 324 100 0.31 0.44 0.08 0.44
32× 32 1156 196 0.17 0.47 0.06 0.48
64× 64 4356 484 0.11 0.49 0.04 0.49

128× 128 16900 1444 0.09 0.51 0.19 0.50

The error plots for the comparison of relative error (%) in energy norm and effectivity indeces θ(·), · = {∗, RES,EX}
using the approximation spaces Vh := S2,1

h and modified k-refined spaces V ∗mh := S2+m,1+m
mh for m = 2, 4 (respectively

in each row) with uniform h-refinements for the Sinus problem are shown in Figure 15. Here we consider a very
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(a) Energy errors for Vh := S2,1
h

Figure 14: Energy errors with uniform h-refinements of Vh := S2,1
h and its k-refined coarse spaces for Example 1.

coarse starting mesh of (8× 8) elements for the space Vh := S2,1
h and the element mesh of (4× 4) and (2× 2) for V ∗2h

and V ∗4h, respectively.

From the error plots it can be noticed that the exact error in the higher order approximation ‖u−u∗h‖RE obtained

with modified k-refined spaces V ∗h := S2+m,1+m
mh for m = 2, 4 converges with the rate m + 2 that is m order higher

than the exact error in the original approximation ‖u− uh‖RE . The high order convergence rates obtained with the
modified k-refined spaces V ∗h improves the performance of all the herein proposed estimators. When we compare the

error plots given in the first row of Figure 6 for Vh := S2,1
h with the error plots of Figure 15 then a clear benefit

of using modified k-refined spaces for V ∗mh can be noticed. We also notice that the performance of all the proposed
error estimators are also improved in comparison to the case presented in first row of Figure 6. The estimators η∗h
and ηEXh now becomes asymptotically exact on much coarser meshes while the residual based estimator ηRESh , which
was not asymptotically exact in Figure 6, now becomes asymptotically exact.

In Figure 16 we show that the saturation property given in Equation (42) holds for these modified k-refined
approximations. For the present case with smooth exact solution we obtain that Csat = O(hm)—a much stronger
behavior than that is required for the saturation assumption.
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(a) Error plots, Vh := S2,1
h , V ∗

2h = S4,3
2h (b) Effectivity index θ

(c) Error plots, Vh := S2,1
h , V ∗

4h = S6,5
4h (d) Effectivity index θ

Figure 15: Sinus problem: Plots of relative errors (%) in energy norm and effectivity indeces θ(·), · = {∗, RES,EX} obtained using
Vh := S2,1

h and V ∗
mh := S2+m,1+m

mh for m = 2, 4 (respectively in each row) with uniform h-refinements.
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(a) Csat for Example 1

Figure 16: Sinus problem: Plots of the Saturation constant Csat obtained with uniform h-refinements and using Vh := S2,1
h and the

modified k-refined spaces V ∗
mh := S2+m,1+m

mh with m = 2, 4.

7. Conclusion and perspectives

The aim of the present study has been to propose a simple error estimation technique in adaptive isogeometric
analysis. The main focus was to present a serendipity pairing of discrete approximation spaces Sp,kh (M)-Sp+1,k+1

h (M)
using LR B-splines technology of [27]. Using this discrete pairing of spaces we propose two simple a posteriori error
estimators η∗h and ηRESh for solving second order elliptic problems using adaptive isogeometric analysis. The main
findings of the articles are:

• For smooth elliptic problems with uniform h-refinement we obtain:

– A higher convergence rate for u∗ compared to uh

– asymptotically exact error estimate for η∗h on refined meshes

– conservative error estimate with ηRESh

• For non-smooth elliptic problems with adaptive h-refinement we obtain:

– Optimal convergence rate, i.e. O(hp) for uh measured in energy norm

– a higher convergence rate for u∗ compared to uh

– asymptotically exact error estimate for η∗h on adaptive refined meshes

– conservative error estimate with ηRESh

– asymptotically optimal element error distribution

Furthermore, we briefly report results obtained by an even more cost efficient approach where we consider a coarser
mesh but higher order k-refined spaces Sp+m,k+m

mh ,m = 1, 2, 4. For the smooth problems with uniform h-refinement
this approach seems to be very promising but to use it in adaptive isogeometric analysis a further study is needed.

In this article, we have discussed the general behavior of some different approaches using h-, p-, and k-refinement
to refine a given discrete approximation space Vh into V ∗h in order to obtain a more accurate approximation u∗h
compared to uh. Through the numerical study we clearly demonstrated the benefits of considering a discrete pair
of approximation spaces Sp,kh (M)-Sp+1,k+1

h (M) obtained using k-refinement in solving the elliptic PDEs. Looking
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forward we assume that computational costs related to assembly of coefficient matrices in isogeometric analysis will
be significantly reduced, after some more research on selective integration rules, and this will make k-refinement even
more efficient than p-refinement.

The authors are of the opinion that the approach presented herein is very suitable for a posteriori error es-
timation in isogeometric analysis. In particular we think it is especially suited for goal oriented error estimation.
Recently, the authors in [31] considered a discrete pair of approximation spaces Sp,kh (M)-Sp+1,k

h (M) obtained through
p-refinement and using hierarchical B-splines for the goal oriented adaptive isogeometric analysis. In the near future,
we will address goal oriented error estimation based on adaptive h-refinement using LR B-splines methodology ([27])

by considering the serendipity pairing of discrete approximation spaces Sp,kh (M)-Sp+1,k+1
h (M) presented herein.
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