Simple a posteriori error estimators in adaptive isogeometric analysis
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Abstract

In this article we propose two simple a posteriori error estimators for solving second order elliptic problems using
adaptive isogeometric analysis. The idea is based on a Serendipity' pairing of discrete approximation spaces Sﬁ’k(./\/l)—

Sﬁ“’kH(M), where the space Sﬁ+1’k+1(M) is considered as an enrichment of the original basis of Sﬁ’k(./\/l) by means

of the k-refinement, a typical unique feature available in isogeometric analysis. The space Sﬁ“’kﬂ(./\/l) is used to
obtain a higher order accurate isogeometric finite element approximation and using this approximation we propose
two simple a posteriori error estimators. The proposed a posteriori error based adaptive h-refinement methodology
using LR B-splines are tested on classical elliptic benchmark problems. The numerical tests illustrate the optimal
convergence rates obtained for the unknown, as well as the effectiveness of the proposed error estimators.

Keywords: Isogeometric analysis, B-splines, NURBS, LR B-splines, A posteriori error estimation, Local
h-refinements, hpk-refinement, Adaptivity, Asymptotic exactness.

1. Introduction

1.1. Background

Isogeometric analysis (IGA) has been introduced in [24] as an innovative numerical methodology for the dis-
cretization of Partial Differential Equations (PDEs), the main idea was to improve the interoperability between CAD
and PDE solvers, and to achieve this authors in [24] proposed to use CAD mathematical primitives, i.e. splines
and NURBS, also to represent PDE unknowns. Isogeometric methods have been used and tested on a variety of
problems of engineering interests, see [15, 24| and references therein. The development on mathematical front start
with h-approximation properties of NURBS in [7], and further studies for hpk-refinements in [9] and for anisotropic
approximation in [11]. The recently published article in Acta Numerica [10] provides a complete overview in this
direction. Non-uniform rational B-splines (NURBS) are the dominant geometric representation format for CAD. The
construction of NURBS are based on a tensor product structure and, as a consequence, knot insertion is a global
operation. To remedy this a local refinement can be achieved by breaking the global tensor product structure of
multivariate splines and NURBS. In the current literature there are three different ways to achieve local refinements:
T-splines [37, 8, 17, 35], LR splines [16, 12, 27] and hierarchical splines [19, 23, 35, 29, 20, 40]. Recently, there has
been much progress on the topic of the generalization of splines construction which allow for local refinement but an
automatic reliable and efficient adaptive refinement routine is still one of the key issues in isogeometric analysis. To
achieve a fully automatic refinement routine to solve PDEs problem in adaptive isogeometric analysis the a posteriori
error estimator is required. This is the subject of current work.

The use of a posteriori error estimator in isogeometric analysis is still in its infancy. To the best of our knowledge
only few work has been done in this direction, see [13, 17, 28, 36, 38, 40, 41, 42, 43]. The authors in [17] used the idea

! According to Wikipedia: Serendipity means a “fortunate happenstance” or “pleasant surprise”. It was coined by Horace Walpole in
1754. One aspect of Walpole’s original definition of Serendipity is the need for an individual to be “sagacious” enough to link together
apparently innocuous facts in order to come to a valuable conclusion. We feel that this applies for the present discovery, but it is of course
up to the readers to judge.
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of hierarchical bases with bubble functions approach of Bank and Smith [5] to design a posteriori error estimator for
T-splines, which was also considered in [13, 40]. Another simple idea of explicit residual based error estimator has
been explored in [14, 26, 38, 41, 42, 43]. They require the computation of constants in Clement-type interpolation
operators. Such constant are mesh (element) dependent and often incomputable for general element shape. A global
constant can overestimate the local constants, and thus the exact error. Recently, a functional-type a posteriori error
estimate for isogeometric discretization is presented in [28]. These type of error estimate, which was originally intro-
duced in [32, 33| on functional grounds (including integral identity and functional analysis arguments) are applicable
for any conforming and non-conforming discretizations and known to provide a guaranteed and computable error
bounds. But the hindrance in their popularity is due to high cost of computations which are based on solving a
global minimization problem (Majorant minimization problem) in H(div) spaces. In [28], authors made an attempt
to reduce the cost of computations for tensorial spline spaces but the same idea of cost reduction need further study
in adaptive isogeometric analysis. To the best of authors knowledge, in the above mentioned work on the use of a
posteriori error estimators in isogeometric analysis the role of error estimator has been limited to either just as an
indicator to perform adaptive refinement steps or the error estimation computation is given on tensorial mesh. A
complete study about the performance of error estimators in adaptive analysis which makes them a suitable candi-
date for both the error estimation and adaptivity has not been considered so far. Recently, the present authors have
presented a recovery based approach for establishing efficient error estimator in adaptive isogeometric analysis [30].
The approach is based on Superconvergent Patch Recovery (SPR) procedure (original idea of Zienkiewicz-Zhu [44])
that is enhanced to be applicable within isogeometric analysis. The enhancement includes procedure for numerically
computing the location of true superconvergent points. Extensive numerical tests have been performed on elliptic
benchmark problems to show the efficiency of the develop SPR approach.

In this article we present another possibility to design a posteriori error estimators in adaptive isogeometric
analysis. The employed technique is based on solving the original problem with two discretization schemes of
different accuracy and using the difference in the approximations as an estimate of the error, see [21] and Chapter 5
in [2]. Consider the elliptic model problems of Section 5.1 and suppose that the numerical approximation uy, in Finite
Element (FE) subspace V}, is known. Then in classical Finite Element Methods (FEM), the enhanced space V;* may,
for example, be constructed by either global h-refinement or p-refinement of the mesh use to construct the original
FE subspace Vj, see [2, 4, 5, 6, 18]. Suppose u; € V;* is the another FE approximation to the original problem
then after using the triangle inequality on the energy error (the energy norm is induced by the bilinear form of the
underlying self adjoint elliptic problem as given by Eq. (35)) can be written as

lellz = llu—unlle < lup —unlle+ lu—ulls (1)

Computable Non—Computable

If we assume that the approximation u; € V,* is superior to the original approximation uy, then
llellg = ||lup, —uplle =n;,  (Computable error estimate). (2)

The enhanced subspace V;* based on global h- or p-refinement of the element of original subspace V}, clearly satisfies
Vi, € V¥, From a priori error estimation results in classical FEM, for a sufficiently smooth solution u it has been
observed that ||u — u}||g < Cyllu — up||g, where Cy € [0,1) for h-refined subspace V;* and Cyp = O(h) for p-refined
subspace V;'. It is seen in literature that the adaptive simulations based on the error estimator n; also provide the
asymptotic exactness result on refined meshes, see [2, 4, 5, 6, 18]. The attractiveness of such ideas stems from their
applicability to quite general classes of problems combined with simplicity and ease of implementation.

In isogeometric analysis, there are several possibilities to obtain a higher order approximation uj from the space
Vi, In comparison to the h- and p-refinement available in classical FEA, isogeometric analysis offers a new possibility
of k-refinement in which the global continuity and degree are increased together. Suppose SZ’k(M) is the given
isogeometric FE subspace of degree p, continuity k with size of elements h on the mesh M. Then the following



approximation spaces can be obtained under these operations:

& h-refinement k-
syt erefinement, - gpk Gy ()
k p-refinement k
SPEM) ——— SPTHEM) (4)
k k-refinement &
SpE M) = ST (M) (5)
where Sﬁ’/];(/\;l), Sﬁﬂ’k(./\/l), and Sﬁ“’kH(M) represents the isogeometric FE subspaces obtained after performing

the uniform h-, p-, and k-refinement on the subspace Sﬁ’k(./\/l), respectively. It should be noted that for p- and
k-refinement the integration mesh M will remain the same, whereas the continuity of the basis functions across the
element boundaries will increase by one for the case with k-refinement. For the case of h-refinement we obtain a new
mesh M that is a uniform h-refinement of the original mesh M, i.e. all the elements are halved.

1.2. Outline of the article
In Section 2 we first discuss the general behavior of some different approaches available in isogeometric analysis
to refine a given discrete approximation space Vj, into V; in order to obtain a more accurate approximation wuj
compared to up. Based on our arguments given in this section we advocate the use of enrichment of the original basis
of Sz’k(M) by means of k-refinement to construct the approximation space V;*. The definitions of B-splines, NURBS
and LR B-splines which is necessary to build an approximation space in isogeometric analysis is briefly introduced in
Section 3. For adaptive isogeometric analysis, we present in Section 4 the construction of discrete pair of isogeometric
k-refined approximation spaces Sﬁ’k(M)—Sﬁﬂ’kH(M) using LR B-splines technology of [27]. In case of adaptive LR
meshes, we observe that
dim SPHH M) & dim SPF (M) (6)

i.e. the dimension of the k-refined space is approximately equal to the unrefined space. Furthermore, the integration
LR meshes are the same for this two spaces at each adaptive refinement level. Using the serendipity pairing of discrete
approximation spaces Sﬁ’k(./\/l) and Sﬁ“’kﬂ(/\/l) we propose two simple a posteriori error estimators n; and 77]11%}35
for solving second order elliptic problems using adaptive isogeometric analysis in Section 5. The first error estimator
ny, represents the computable part of Eq. (1) while the second error estimator nffES in addition try to estimate the
non-computable part of the error from (1). In Section 6 we investigate the numerical performance of the two a
posteriori error estimators on a smooth and non-smooth elliptic benchmark problems. We present results obtained
regarding the convergence rate for the unknown u” as well as the effectivity index of the different error estimators.
Furthermore, we briefly report results obtained by an even more cost efficient approach where we consider a coarser
mesh but higher order k-refined spaces Sg:,gm’mrm, m = 1,2,4. We end this article in Section 7 with some concluding

remarks and future prospectives.

2. Enrichment approaches to obtain a more accurate approximation

In this section we present the general behavior of different approaches to obtain a more accurate approximation uj
compared to uy in isogeometric analysis by means of enrichment of the original basis of Sﬁ’k (M). We mainly focus on
the dimension ratio, accuracy per degree of freedom, and cost involved in obtaining a more accurate approximation.
We fix the notation by considering V}, := Sﬁ’k(/\/l) and V;* the respective approximation spaces obtained from the h-,
p- and k-refinement of V.

2.1. Dimension ratio between Sﬁ’k(M) and its h-, p-, and k-refinement counterparts

On tensorial meshes in the parametric domain € := [0, 1]?, suppose dim Sﬁ’k (M) = Ngim X Ngim then its uniformly
refined counterparts will have the following dimensions:

dim S5 (M) = (2ngim — k — 1) X (2ngim — k — 1), (7)

dim Sﬁ“’k(/\/l) = (Ndim + %) X (Ngim + %)7 (8)

dim ST M) = (naim + 1) X (naim + 1). (9)



For a large systems, i.e, % >> p > k the relation between the dimension of original spline space S}I:’k(./\/l) and its
uniformly refined counterparts in 1D, 2D and 3D are also presented in Table 1. It can be observed from Table 1
that the dimension of S,I;’/’;(./\;l) and S}[:Jrl’k (M) are four times the dimension of S}f’k(./\/l), while the k-refined space

S,IZH’kH(M) has almost equal dimension as the space S}’z’k(/\/l).

Table 1: Dimension ratio between S,’;’k(/\/i) and its h-, p-, and k-refined counterparts.

Degree | Continuity | h-refinement p-refinement k-refinement
dim §P°F im gP Lk im SPHLEFL

P K "h = dimSZJ{; P ddirfg'ﬁ’k =" dii?sgv’“
1D |2D | 3D | 1D | 2D | 3D || 1D | 2D | 3D

4 3 2 4 8 2 4 8 1 1 1

2 2 4 8 1.5 2251338 | 1 1 1

1 2 4 8 1.33 | 1.77 | 2.35 1 1 1

0 2 4 8 || 1.25 ] 1.56 | 1.95 || 1 1 1

2.2. Accuracy per degree of freedom

On the tensorial meshes the h- and p-refined spaces of Sﬁ’k clearly satisfies Sﬁ’k C SZ’/]; and S,f’k - Sﬁ“’k,
respectively. This property makes these spaces a natural candidate to obtained more accurate approximations. In
Figure 1, we compare the energy norm errors obtained by solving the two dimensional self-adjoint elliptic problem
denoted Sinus problem given in Example 1 of Section 6 using different enhanced approximation spaces for V; := S}’:’k
of degree p = 2. The comparison for the energy norm errors given in Figure 1 shows that an increase in approximation
accuracy is achieved for h- and p-refined spaces, but with a significant increase in number of degrees of freedom.
In contrary, for the k-refined space we have that S,’j’k ) S,’;H’kﬂ and S,f’k 4 S,’ZH’]CH. However, an increase in
approximation order is still achieved, but now with minimal increase in number of degrees of freedom. Here we have
considered an example of the elliptic problem with smooth solution, whereas we in Section 6 show results obtained
for a non-smooth benchmark problem.

|lu—w|p in S}f’l
—O—||u — up|| g in k-refined space S;f‘2
—o||u — u;||g in p-refined space 5;?'1

10-1% —o—||u — up||g in h-refined space Sf,‘,,lz E

Energy norm errors

\
102 103 10* 10°
Degrees of freedom (Ny,y)

Figure 1: Sinus problem: Energy errors with uniform h-refinements of 82’1 and its h-, p- and k-refined spaces.

2.8. Computational cost comparison
Another important aspect to be taken into account before choosing enrichment strategy is the computational
costs involved. We have therefore investigated the computational effort used for the h-, p- and k-refinement com-



pared to the computational cost for finding the original solution u”. We have chosen to split the the total costs into
two categories: (i) Assembly of the linear equation system (including formation of the element matrices) and (ii)
Solving the linear equation system. We have again addressed the smooth problem given in Example 1 of Section 6
and Table 2 shows the obtained cost ratios for each level in a sequence of uniform mesh refinement. We see from
the columns presenting the assembly cost ratio and total time ratio that the approximation u; obtained from the
h-refined approximation space is four times more costly than the original approximation wy itself. While the total
cost involved for the p- and k-refined approximations are almost equal and approximately twice to the cost of original
approximation up. However, notice that the solving time ratio for p-refinement is more than four times compared to
the solving time for the the original approximation uy, whereas for k-refinement the ratio is slightly above one.

From the results of Table 2 it is clear that for all cases the assembly time are greater than the solving time. So
even though the k-refined space has less number of degrees of freedom than the p-refined space the total solution
time is similar as they have the same number of elements which is of greatest importance for the assembly time.
The high cost related to assembly is a well known drawback for isogeometric analysis compared to classical low order
Lagrange finite elements. This has sparked a renewed research interest into development of more efficient numerical
quadrature for splines. Some developments in constructing selective and reduced integration rules for isogeometric
analysis based on B-splines/NURBS elements are given in [1],[3],[22], [34], [25]. A more recent variationally con-
sistent domain integration approach of [22] allows a significant reduction in the number of quadrature points while
maintaining the stability, accuracy, and optimal convergence properties as high order quadrature rules. For example,
in case of quadratic C'' and cubic C? splines one Gauss points per internal element and p points per element where
repeated knot exists, has been proposed. The present authors expect that in near future (after some more research)
these kind of approaches will become well proven methods for isogeometric analysis such that the assembly cost will
be less than the corresponding solving time for realistic scientific and industrial applications. Hence, the k-refinement
will eventually be less costly than the p-refinement.

The above arguments about the dimension ratio, accuracy per degree of freedom, and computational cost involved
in obtaining a more accurate approximation clearly show that the p-refined space Sﬁ“’k and k-refined space Sﬁ“’kﬂ

are a preferred choice over the h-refined space S}I;’/IZ. Furthermore, notice that the p- and k-refinement achieve a higher

order approximation, whereas the h-refinement does not (h-refinement results in more accurate solution but with
same convergence order, see Figure 1).

The p-refined space is of significant larger dimension than the original space 8£’k which implies a larger data
set to handle by the computer and increased solving time (as shown in Table 2). On the other hand for globally
tensorial meshes an enhanced higher order approximation is obtained with the embedding property Sﬁ’k C S,’zﬂ’k.
However, in an adaptive setting one needs to design a local refinement algorithm which satisfies this property at each
level of the adaptive process, and that is in general non-trivial. To the contrary, the k-refined spaces do not satisfy
the embedding property, i.e. S,’l”k 2 Sﬁ“’kﬂ and Sﬁ’k 7 Sﬁ“’kﬂ, but an increase in approximation order is still
achieved and now with minimal increase in the number of degrees of freedom. Furthermore, k-refinement is easier to
realize in an adaptive setting since we don’t have the “embedding property to fulfill”.

Based on the fact that the selective and reduced integration rules will be available in near future for isogeometric
analysis we advocate to use the k-refined approximation spaces in obtaining higher order approximation wuj. We will
herein use u; (obtained by means of k-refinement) to design some a posteriori error estimators for solving elliptic
problems in adaptive isogeometric analysis. Although the present authors prefer to use the same integration meshes
for Vj, and V" in adaptive analysis, we also propose in Section 6 some cost efficient k-refinement approaches where

we use higher order but coarse grid to obtain spaces V", := ng}-lm,kerj m = 1,2,4. This unique setting of involving
higher order combined with coarse meshes k-refined spaces can reduce the computational cost ratio compared to

solving u” to less than 0.5.



Table 2: Sinus problem:Degrees of freedoms and timings, Case: Vj, = 82’1(./\/!) with different spaces V.

k-refinement: Vj, = Si’l(/\/l) and V¥ = 3272(/\4)

Mesh size Degrees of freedom Assembling time | Solving time | Total

. . e | Nao FE(u}) FE(u}) FE(u})

Naos = dim(V3) | Ng,; = dim(Vyy) | 52 FE(un) FE(ur) FE(up)

4 x4 36 49 1.36 1.12 1.07 1.12

8§ x 8 100 121 1.21 1.36 1.38 1.36
16 x 16 324 361 1.11 1.51 1.98 1.52
32 x 32 1156 1225 1.06 1.61 2.03 1.62
64 x 64 4356 4489 1.03 1.66 2.00 1.66
128 x 128 16900 17161 1.01 1.70 2.11 1.70

h-refinement: Vj, = SZ’I(M) and V;* = 82/12(./\;1)

Mesh size Degrees of freedom Assembling time | Solving time | Total

. X . N Nio FE(u}) FE(u}) FE(u})

Naoy = dim(Vp) | Ng,p = dim(V}) NZO; FE(uy) FE(u) FE(u)

4 x4 36 100 2.78 0.68 0.70 0.68

8 X 8 100 324 3.24 2.89 16.61 291
16 x 16 324 1156 3.57 3.26 5.91 3.28
32 x 32 1156 4356 3.77 3.61 4.92 3.62
64 x 64 4356 16900 3.88 3.77 4.70 3.78
128 x 128 16900 66564 3.93 3.91 4.88 3.93

p-refinement: V, = Sz’l(./\/l) and V¥ = 82’1(./\/1)

Mesh size Degrees of freedom Assembling time | Solving time | Total

. . N7, FE(u}) FE(u}) FE(u)

Naoy = dim(Vy) | Ng,p = dim(V}7) 71\/3; FE(uy) FE(up) FE(uy)
4 x4 36 100 2.78 1.01 1.44 1.01

8 X 8 100 324 3.24 1.32 1.38 1.33
16 x 16 324 1156 3.57 1.44 5.62 1.46
32 x 32 1156 4356 3.77 1.54 4.28 1.57
64 x 64 4356 16900 3.88 1.60 4.41 1.64
128 x 128 16900 66564 3.93 1.67 4.86 1.73




3. Approximation spaces in isogeometric analysis

In order to properly introduce the notation and to give a brief overview of how to construct the approximation
spaces in isogeometric analysis, we recall the definition and some aspects of isogeometric analysis using B-splines,
NURBS and LR B-splines basis functions and their geometry mappings in this section.

3.1. B-splines and NURBS
Given two positive integer p and n, we introduce the (ordered) knot vector

Ei={&1,&, ., &nypr1) with & < &1 Vi, (10)

where p is the degree of the B-spline and n is the number of basis functions (and control points) necessary to describe
it. Here we allow repetition of knots, that is, & < &1 Vi. The maximum multiplicity we allow is p + 1. In the
following we will only work with open knot vectors, which means that first and last knots in = have multiplicity
p+ 1. Given a knot vector =, univariate B-spline basis functions B; ,(£),i = 1,...,n, are defined recursively by the
well known Cox-de Boor recursion formula:

1 if & <€ <&t
B;o(€) =
(&) {0 otherwise.

(11)

= e B+ P B, (0 I GSe<bn, (12)

Bi7p (5)

where in (12), we adopt the convention 0/0 = 0.

Let B;p fori =1,...,nand Bj, for j =1,...,m are the B-spline basis functions of degree p and ¢ defined by open
knot vector Z = {&1,&2...,&nqpr1} and ¥ = {91, 92, ..., Vmiq+1}, respectively. Then by means of tensor products,
a multi-dimensional B-spline can be constructed as BY f(g V) = B (&) - Bj4(¢). In general, a rational B-spline

in R? is the projection onto d-dimensional physical space of a polynomial B-spline defined in (d — 1)-dimensional
homogeneous co-ordinate space. Let Cj; € R? be the control points and Wy = (C}j )3 are the positive weights given

by projective control points C';“;- € R3. Then NURBS basis function on two dimensional parametric space () = [0, 1)

are defined as
Rij(&v) = 5 %’p(g)Bﬂ"qw’)wij (13)

3 B; ,(§)B; ,(¥)w;;

=1 j=1

Observe that the continuity and support of NURBS basis function are the same as for B-splines. Furthermore,
B-splines can be seen as a special case of NURBS with all weights being equal to one.

3.2. Local h-refinement using LR B-splines

In the following, we present briefly a class of Locally Refined (LR) B-splines space. For a more detailed presen-
tation of of the present class of LR B-splines we refer to the original contribution [27].

Local knot vectors

We have seen that a univariate spline basis function is constructed using a recursive formula of (11) and (12) with
the global knot vector =. However the support of a B-spline function, B, ;, is contained in [§;, {;4p+1] and these knots
{&,&+1...,&+pt1} only contribute to the definition of B;,. Thus we do not need the global knot vector Z to define
B; p,, instead we can consider a local knot vector

Ei = {&i Mol fori=1,...,n, (14)

and use it in conjunction with (11) and (12) to define B;,, without altering the result. We have illustrated the basis
functions given by local knots vectors Z;s from = = [0,0,0,1,2,3,3,4,4,4] in Figure 2.
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Figure 2: All quadratic basis functions generated by the knot = = [0,0,0, 1,2, 3, 3,4, 4, 4]. Each individual basis function B; 2 (represented
by different colors) can be described using a local knot vector Z; of length 4 described in (14).

Knot insertion

For local h-refinement, we again turn to existing spline theory. Tensor product B-splines form a subset of the LR
B-splines and they obey the same core refinement ideas. From the tensor product B-spline theory we know that one
might insert extra knots to enrich the basis without changing the geometric description. This comes from the fact
that we have the available relation between B-splines in the old coarse spline space and in the new enriched spline
space. For instance if we want to insert the knot f into the knot vector = between the knots &;_1 and &;, then the
relation is defined by

B=(¢) = a1 Bz, (§) + aaB=, (), (15)
where
1, Epr1 < € < Epio
o {gi‘f_g éiésf " 1)
" - {g:;:g, << an
1, §1 <8656

and the knot vectors are El = [51,52, ...&71,5, £i7 -'-£p+1] and E.Q = [52, ...&;71,5, gi, ~--£p+1>£p+2]-

To refine the bivariate B-spline basis function Bz ¢ (&, ) = B=(&) - By (1) we consider the refinement of the basis
function in one parametric direction at a time. By using the splitting algorithm of (15), when splitting in ¢-direction,
we obtain

B=w(&,v) = B=z(§) - Bu(v)
= (o1Bz,(§) + a2B=,(£)) - By(¥)
= a1Bz, w(§,¢) + a2Bs, w(§, ).

Similarly, the splitting in another direction can be performed.

Now we define a weighted B-spline B2 (£, 1) := 7Bz w(&, 1), where the weight factor v € (0, 1]. This is to ensure
that LR B-splines maintain the partition of unity property, and it is noted that the weight factor v is different from
the rational weight w which is common in NURB representation. Refining a bivariate weighted B-splines becomes

BLy(&v) = vBzw(S,¥) (18)
= 1Bz, w(&¥) + yo2 Bz, (€, ) (19)
= BI (&) + BL 4 (&), (20)



where B;llq, and Bgij are new weighted B-spline basis functions with weights 71 = va; and v9 = yae, respectively.
Local refinement algorithm

We now have the main ingredients to formulate the LR B-spline refinement rules. This will be implemented by
keeping track of the mesh M, at level £ and the spline space S;. For each B-spline basis B%’Z Uy where k is a single
running global index, we store the following information:

e =, Ur-local knot vectors in each parametric directions
e 7i-scaling weights and Cp-control points.

Throughout the refinement we aim at keeping the partition of unity and leaving the geometric mapping un-
changed, i.e. Z ngﬁl’k (&,9) =1 and F(§,¢) = Vsz (&,9)Cy at all levels of refinements.

Yk Ek, Vg

Assuming a meshline £ is inserted, the refinement process is characterized by two steps.

e Step 1: Split any B-spline which support is completely traversed by the new meshline - update the weights
and control points

e Step 2: For all new B-splines, check if their support is completely traversed by any ezisting meshline.

On the basis of that the above characterization is fulfilled at each refinement level a local refinement algorithm
(Algorithm 1) to construct the LR B-spline space is proposed in [27]. The ”Update control points and weight” step
is described when a parent basis function B; split into two newly created B-spline functions B; amd B results of
splitting by Eq.(18). If B is not present in LR B-spline list then we add it to the list and set its weight and control

points equal to its parent function, i.e. ¥ = ayv; and CT'*" = ;. While if the newly created function is already
exits in our spline space then we just update its control points and weight such as C7% := (C1y1 +Civiaa) /(1 +7yi0q)

and 77" := 1 + y;1. Finally we remove the old basis functions from the spline space.

Algorithm 1 Local refinement algorithm
1: Input parameters: Spline space (S), LR mesh(M), Meshline (£)
2: for every B-spline B; € S do
3: if £ traverse support of B; then
4 refine B; according to Eq. (18)
5: Update control points C' and weights
6
7
8
9

. end if
: end for
: Update S to Spew and M to Moew
. for every existing B; € Spew do
10: for every edges & € M do
11: if &; traverse support of B; then
12: refine B; according to Eq. (18)
13: Update control points C' and weights
14: (These steps may enlarge Spew space further)
15: end if
16: end for
17: end for

We now define an LR spline as an application of the local refinement algorithm Algorithm 1.

Definition 3.1 (LR spline). An LR spline L consist of (M,S), where M is an LR mesh and S is a set of LR
B-splines defined on M, and
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Figure 3: The ideas behind the different refinement strategies, here illustrated on a quadratic tensor product mesh. Notice the fundamental
difference in that 3(a) is refining an element, while 3(b) is refining a B-spline.

o At each refinement level, Myy1 := MU &, where & is a new meshline extension.
o Sp:={B=, w, (&)}, is a set of all LR B-splines on My as a results of Algorithm 1.

In [27] , the authors have illustrated two main isotropic h-refinement strategies as shown in Figure 3. A full span
refinement strategy split an element with a knotline insertion which transverse through the support of every B-splines
on the marked elements is shown in Figure 3(a). The idea of refining elements is a legacy from the finite element
method where every inserted vertex would correspond to an additional degree of freedom. With LR B-splines this
is not the case as the required length of the inserted meshlines may vary from element to element. Another way
of refining LR B-splines is to identify the B-spline which should be refined instead of identifying which element. A
strategy based on this approach denoted structured mesh refinement is shown in Figure 3(b) and the resulting mesh
obtained through the use of structured mesh refinement strategy is said to be a Structured LR Mesh of degree (p, q).

On the structured mesh of LR splines the following property holds:

Proposition 3.1. A structured LR mesh of degree (p,q) is also a structured mesh of all degrees (p, ), where p < p
and § <gq.

Proof. We here note that the definition of structured LR mesh is linked to the polynomial degree of the basis
constructed on it. For tensor products, we have that every lower order function is completely contained in the
support of a function of larger polynomial degree; in both directions. Due to Algorithm 1, when a larger B-spline
split, we note that the lower order functions is split. Any B-spline of bi-degree (p, q) is thus guaranteed to contain
enough functions of lower degree to span it’s own support. ]

The above property will be useful in constructing the Serendipity pairing of discrete approximation spaces
Sﬁ’k (M)—Sﬁ“’kH(M) using locally refined LR B-splines methodology of [27] in Section 4.

3.83. Geometry mappings

In particular, a single patch domain 2 is a NURBS region associated with the control points Cj;, and we introduce
the geometrical map F : Q — () given by

F(&¢) =Y > CijRij(&1). (21)

i=1 j=1

The above equation gives a B-spline region in a special case with all weights being equal to one. For our purpose
we assume that the geometry mapping is continuous and bijective which are natural assumption for CAD applications.
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Following the isoparametric approach, the space of B-splines and NURBS vector fields on the patch € is defined,
component by component as the span of the push-forward of their respective basis function, e.g., in case of NURBS

Vi, =span{R; joF~ ' with i=1,...,n; j=1,...,m} (22)

For LR B-splines, these will instead be defined over a single running global index &k using the local knot vectors =y,
and Wy (defined by a subsequences of global knot vectors = and ¥, respectively) by

Naim

F(¢9) = > wCkBz, v, (&), (23)
k=1

where the local knot vectors based spline basis functions are defined by Bz, v, (§,v¢) = Bz, (§) - By, (¢) and 73 is a
weighting factor needed to obtained partition of unity, as discussed in Section 2.2. The isoparametric approach gives
the space of LR B-splines vector fields on {2 by

Vi, = span{Bz, v, (&,%) o F~, with k=1,..., Ngin}. (24)

4. Serendipity pairing of discrete approximation spaces Sﬁ’k(M)-S£+1’k+1(M)

In this section we explain and discuss the construction of Serendipity pairing of discrete isogeometric FE approx-
imation spaces Sﬁ’k(M)—Sﬁﬂ’kH(M) using locally refined LR B-splines methodology of [27]. We first explain the
basic differences in h-, p-, and k-refinements available in isogeometric analysis.

4.1. Basics about h-, p- and k-refinement

12
1393 0
of three elements and four C? linear basis functions, i.e. the discrete FE space S,ll’ (M), which may be refined (or
enriched) by three different approaches: h-, p- and k-refinement shown in Figure 4(b), (c), and (d), respectively.
The corresponding discrete isogeometric FE spaces are Sz’/]; (M), Sﬁ“’k(/\/l), and SZH’kH(M), respectively. Thus,

by doing h-refinement we obtain seven C? linear basis functions with halved element size (therefore h/2 and M in

k
Shya

and p-refinement shown here is identical to what is done using classical C° Lagrange finite elements, but in iso-
geometric analysis we have one more option to play with and that is the interelement regularity. Thus, we might
combine order elevation with increasing the regularity accordingly, i.e increase p — p+1 and k — k41 simultanously,
and this is denoted k-refinement. In Figure 4(d) we see that by doing k-refinement we obtain five C'! quadratic splines.

A univariate B-spline of degree p = 1 with knot vector E = {0,0 1,1} is shown in Figure 4(a). It consists

(M)), whereas we for p-refinement obtain six C° quadratic splines without changing the mesh. Both the h-

To illustrate k-refinement for 2D we show in first row of Figure 5 a set of bi-variate tensorial meshes. Let Z! =
=2 =1{0,0,0,1/8,1/4,3/8,1/2,5/8,3/4,7/8,1,1,1} be two given knot vectors and S}[:’k with h =1/8,p =2,k =1 be
the quadratic spline space generated by these knot vectors as shown in Figure 5(a). The tensorial meshes displayed
in the right is the mesh obtained by k-refinement of the mesh to the left. Thus, the first row of Figure 5 shows
Serendipity pairings of isogeometric FE approximation spaces SZ’I—S2’2 on given mesh Mgy. The basis functions
generated on these meshes are illustrated by means of the location of the Greville abscissa points defined by an
average of internal local knot vectors with respect to each basis functions. A more detailed information about these
types of refinements available in isogeometric analysis can be obtained from [15].

11
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p=2 2

Figure 4: Different types of refinements in IGA : (a) Linear splines obtain from knot vector = = {0,0, %7 %, 1,1} (corresponding

space denoted S}'°(M), (b) h-refinement (S,lb’/(;(/\;l)) , (¢) p-refinement (SPT*(M)), (d) k-refinement (SPT1F1(M)).

4.2. Algorithm for Serendipity pairing using k-refinement in an adaptive setting

To construct the Serendipity paring of isogeometric FE approximation spaces Sﬁ’k(M)—Sﬁﬂ’kH(M) in an adap-
tive setting, we consider the structured mesh refinement strategy of LR B-splines [27] as shown in Figure 3(b). In
our adaptive isogeometric analysis, we start the refinement procedure from a tensorial mesh and then the mesh is
adapted using the structured mesh refinement strategy of [27]. To decide which basis functions to refine we make
use of a posteriori error estimators that is typically computed on each element. We transfer this information from
elements to basis functions by adding the element errors for all elements in the support of each basis function.

The complete procedure to construct the Serendipity paring of isogeometric FE approximation spaces Sﬁ’k(./\/l)—

Sﬁ“’kH(M) in adaptive isogeometric setting is given by the following algorithm:

Algorithm 2 Discrete pair of Sﬁ’k(M)—SZH’kH(M) spaces

Input parameters: Spline spaces Sﬁ’k(Mo), Sﬁ“’kH(Mo), initial tensorial LR mesh(My)
for each level (¢) of refinement steps

Select some percentage of B-spline functions B; € Sﬁﬂ’kH(MZ) using given error indicator
Refine selected B-spline functions of using Algorithm 1 to obtain S£+1’k+1(./\/l£+1)

Store the information about Meshline of length p + 2 in &

Refine every B-spline B; € Sﬁ’k(/\/lg) using the the Meshline & and Algorithm 1.

end for

To illustrate Algorithm 2 we have in Figure 5 displayed the obtained Serendipity pairings of isogeometric FE
approximation spaces S}%’l(Mz)—SZ’Q(Mg) in adaptive setting by means of local h-refinements using LR B-splines.
The algorithm starts with the tensorial mesh displayed in Figure 5(a) with the corresponding Serendipity paring
of quadratic and cubic LR B-splines spaces as shown in first row of Figure 5(b)-(c). Notice that the integration

12
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Figure 5: Serendipity pairing of approximation spaces with LR B-splines: Left column represents the LR adaptive mesh obtained
from three step of local h-refinement, Middle column represent the case of quadratic LR isogeometric elements Si‘l, and right column
represents the cubic LR isogeometric elements 52’2 which can be seen as k-refined version of quadratic LR spline elements of middle
column.
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Table 3: Dimensions for Si’l(M) from Figure 5 and their h-, p-, and k-refined spaces.

h-refinement p-refinement k-refinement
. ce21 | g @21 _ dimS) ), . @31 _ dimS}! . @32 _ dimSP?
Adaptive steps | dimS;” | dim Sh/2 h = Gms? dim S, | rp = dim s dimS;" | rp = dim s
0 100 324 3.24 324 3.24 121 1.21
1 219 1132 5.16 1132 5.16 238 1.08
2 366 1860 5.08 1860 5.08 364 0.99
Table 4: Dimensions for S;**(M) on meshes similar to Figure 5 and their h-, p-, and k-refined spaces.
h-refinement p-refinement k-refinement
dim 832 i 4,2 i 43
Adaptive steps | dimSy? | dimSy7 | = 2 | dimS,? |, = j?migg dim S>3 | ry = j?mig@,
1m h 1im h 1m h
0 121 361 2.98 361 2.98 144 1.19
1 292 1483 5.09 1483 5.09 320 1.10
2 502 2377 4.73 2377 4.77 513 1.02

LR mesh for the pair of isogeometric spaces SZ’I(Mg)—SfL’Q(Mg) will be the same. Here we choose to first transfer
the element error information obtained by the given indicator to the basis functions of the space 52’2(Mg). Then
some percentage of the basis functions of this space are refined using the structured mesh refinement strategy in
Algorithm 1. The information about the new inserted Meshline of length (p + 2) at each steps ¢s are stored in
&p. Based on these information we then refine the basis functions of Si’l(/\/lg). By performing the refinement this
way a Serendipity pairing of spaces Si’l(Mg)—S}SLQ(M ¢) is obtained at each refinement levels. The Meshline of length
(p+2) will make sure that the h-refinement is proper both in the space SZ’l(M ¢) along with its k-refined counterparts.

In adaptive isogeometric analysis using LR B-spline we noticed that the dimension of spline space Sﬁ“’kﬂ(/\/lg)
could be less (equal, or more) than the dimension of spline space SZ’k (M), while on tensorial meshes we know for

fact that the dimension of SZJrl’kH(Mg) will be always larger than Sﬁ7k(/\/l4). However, in both cases the dimension
are almost equal and the difference is very small in comparison to their h- and p-refined discrete pair counterpart.
This is illustrated in Tables 3-5 for quadratic C' LR B-splines, cubic C?> LR B-splines, and quartic C® LR B-splines
on three adapted LR meshes of Figure 5, respectively.

Remark 4.1. In case of h-refinement and p-refinement the Serendipity pairing of isogeometric approximation spaces
Sﬁ’k(/\/l)- S}[:/];(M) and Sﬁ’k(/\/l)- Sﬁ“’k(/\/l), respectively, satisfy

SPEM) C SP(M) and SEE(M) € SEFE(M), (25)

while for the k-refined discrete spaces Sﬁ’k(/\/{)— SZH’HI(M) we have
SPE(M) ¢ SEFPY M) and SPR(M) B SETHRTY M), (26)
Remark 4.2. The integration LR mesh at each refinement level will be same for both the spaces Sﬁ’k(/\/lg) and

Sﬁ“’kﬂ(/\/lg) and at each refinement level they satisfy the following nestedness behavior

SPEMy) € SEH(Mesa)  and - SEPPRH (M) € SEEPER (M)

5. Error estimation

5.1. Model problem

The model problem is Poisson’s equation on a open bounded two dimensional domain € R? with Lipschitz
boundary I' = I'p UT'y, where I'p and 'y are the Dirichlet and Neumann boundaries, respectively. The strong form
of the boundary value problem: Find the displacement v :  — R such that
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Table 5: Dimensions for S;‘;‘?’(M) on meshes similar to Figure 5 and their h-, p-, and k-refined spaces.

h-refinement p-refinement k-refinement
. . . dims,7 | . dims®? | .. dim %
Adaptive steps | dim 53’3 dim Sﬁ’/g’z Ty = dimS%{ 2 | dim 82’3 Ty = - 85’3 dim 82’4 Th= S%’g’
0 144 400 2.77 400 2.77 169 1.17
1 484 2260 4.67 2260 4.67 498 1.03
2 699 3476 4.80 3476 4.80 724 1.04
—Au f on € (27)
u = 0 on I'p; (28)
n-Vu = g on I'y. (29)

The data are assumed to be sufficiently smooth, that is, f € L?(f2), g € L?*(T'y) and n is the unit outward normal
vector to I'. An equivalent formulation of the boundary value problem is the variational formulation seeking u € V'
such that

a(u,v) =4(v) YveV, (30)

where the trial and test space V is the usual Sobolev space of functions from H!({) whose trace vanishes on the
Dirichlet part of the boundary and is defined by V := {v € H'(Q) : v=0o0nTIp}.

The form a(u,v) is assumed to be a V-coercive bilinear form on V' x V' and the linear functional /(v) is an element
of the dual space V', given as

a(u,v) = / Vu-VodQ and /£(v) = / fodQ2 +/ guds. (31)
Q Q I'n

The existence and uniqueness of the solution to this continuous problem is guaranteed by the Lax-Milgram theorem.

The Galerkin finite element approximation to this variational problem may then be given as follow: Given a finite-

dimensional subspace V}, C V and ¢ € V', find u;, € V}, such that

a(up,vp) = L(vy) Y vy € V. (32)

In isogeometric setting, the discrete space V, formed with B-splines/NURBS and LR B-splines are given by (22) and
(24), respectively.

Let u be the exact solution and uj be the isogeometric FE solution. The discretization errors are denoted by

e(x) =u(x) —up(x), es(x) = Vu(x) — Vu(x), (33)

where e is the error in the displacement uj;, and e, is the error in the gradient Vuy,. We now introduce the following
error Norms:

1/2
lellzzey = e — unllozey = ( Js uh>2dﬂ) (34)

lellz = Vale,e) = lelmy ) = llesll2@) = (35)

(/Q(Vu — Vup)? - (Vu - Vuh)d§2> v

5.2. A priori error estimation

In classical FEA, the fundamental error estimate for the elliptic boundary value problem, expressed as a bound
on the difference between the exact solution, u, and the FEA solution, uy, takes the form

lu = upllm < Craah®|ull, (36)
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where || - || is the norm corresponding to the Sobolev space H¥(), h is a characteristic length scale related to the
size of the element in the mesh and 5 = min(p + 1 — m,r — m) where p is the polynomial degree of the basis, and
CFEa is a constant that does not depend on u and h. The parameter r describe the regularity of the exact solution
u and 2m is the order of the differential operator of the corresponding PDE.

The basic a priori error estimate results analogous to (36) for NURBS based isogeometric method (cf. [7]) is
given as follows: for u € H"(Q) with 0 < m <r <p+ 1 and up € Vj:

|w — upllm < Craah®||ull,, where B8 =min(p+1—m,r—m). (37)

For the uniform h-refinement, one sees from (36) and (37) that the isogeometric solution obtained using C?~! NURBS
of degree p converges at same rate as FEA polynomial of degree p. However, provided that Ciga < Crga, IGA may
be more efficient (i.e. accurate) in terms of degrees of freedom (Ngof), and this is often the case in practice.

5.8. A posteriori error estimation

The standard a priori error estimate for the exact error given in previous section tells us about the rate of con-
vergence which we can anticipate but is of limited use if we wish to find a numerical estimate of the accuracy. One
way in which we might get a realistic estimate or bound upon the discretization error is to use the approximation
solution wy, itself in estimating ||e||g. The idea of using uy to estimate the error is called a posteriori error estima-
tion and some variety of methods to use it have been seen in literature, see [2] and [39] for detailed survey on this topic.

Now we design a simple posteriori error estimators in adaptive isogeometric analysis, the employed technique is
based on solving the original problem with two discretization schemes of different accuracy and using the difference
in the approximations as an estimate of the error. Consider the elliptic model problems of (27)-(29) and suppose the
numerical approximation u; in FE subspace V}, is known. Let uj be an approximation of elliptic problem (27)-(29)
from the k-refined FE subspace V', then the energy error can be written as

lelz = llu—unlle < Jup —unllg+ [lu—uils - (38)

Computable Non—computable

Let us consider the right hand side part of (38) as the exact error estimate defined by
iy = lluh, = unlle + llu = uj e, (39)

which will show us the role of the triangle inequality in estimating the exact error using (38).

Next, If uj is superior to the original approximation wuj then the difference between the two approximations
|uy — up||p will provide a computable estimate for the exact error

lellz ~ lluy, — unlle = nj- (40)

In Eq.(40), the second term from (39) is neglected completely on the basis that it should be small in comparison to
the first term and 7; is used as an estimate of the error. However, the term 7; does not provide a guaranteed upper
bound in general as shown by our numerical results in Section 6. Here we consider a simple explicit residual based
error estimate to get an upper bound on the term |lu — uj| £, see [26, 38], and a complete error estimate from (38)
then becomes

1/2

1

S = |luf - unlle + Cres { > hklIRIZ ) + thuuizwm} : (41)
VKeM

where hg is the diameter of element K € M, R = f + Auj defined the interior residual and J defined the boundary

residual J|, = g — %Ln:l for v € 0K N Ol'y and the jump term J|, = —3 [%Lf] for v € K. The contribution of

element jump discontinuity term becomes zeros for smooth spline approximation spaces, which generally have at
least C'-continuity across the element boundaries. The error constant Crgs in (41) comes from the Clement-type
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interpolation operators. Such constant are mesh (element) dependent and often incomputable for general element
shape. A global constant can overestimate the local constants, and thus the exact error. We assume the value of
constant Crgs = 1 in the computation of numerical results of Section 6.

Saturation assumption

The effectiveness of the approximation |le||g ~ ||u} — uy| g is dictated by whether v} really does represent an
improved approximation over the approximation uy. This notion is quantified in terms of the saturation assumptions,
i.e. there exist a constant Cs,; € [0,1) such that

lu—uplle < Csarllu — unlle (42)

It is easy to see that the saturation condition (42) will hold for reasonable functions u. For example, suppose that
the Galerkin subspace Vj, = S,%’l(./\/l) consists of quadratic C! splines basis functions and its k-refined subspace
Vi = 52’2 (M) consists of cubic C? splines basis functions.

(1) If the solution u is smooth, say u € H*(Q), then a priori error estimates from (37) imply that on quasi-uniform
meshes of size h, we have

lu— wnl) < Cobull sy and  [lu— uhl] < Coh®Jull s ey, (43)

Therefore, asymptotically, we obtain that Css¢ = O(h)—a much stronger behaviour than that is required for the
saturation assumption.

(43) If the solution u is not sufficiently smooth, say u € H*(Q), A € [1,2), examples are problems with singularities
within the solution domain or on its boundary, then a priori error estimates from (37) imply that on quasi-uniform
meshes of size h, we have

[ = up|| < Csh®ul geasrq)  and - [lu = u || < Cah™||ul[ oo t1(q), (44)

where the value of the non-negative real parameter a;s depends on how the family of meshes M are created. Assume
that A is a real number characterizing the strength of the singularity. For a sequence of uniformly, or nearly uniformly,
refined meshes we then have

a; =min{2,\} and «ay = min{3, \}. (45)

Thus, when A < p the rate of convergence is limited by the strength of the singularity, and not on the polynomial
degree p. In isogeometric analysis, the constant Crga present in a priori error estimates (37) depends on degree p
and the shape (but not size) of the domain €, as well as the shape regularity of the mesh, see [7]. A clear argument
about its dependence on p for CP~! smooth isogeometric element case is not known while some partial results for
reduce continuity order isogeometric elements are presented in [9]. Thus the constants C3 and Cy4 present in (44) also
depend on the degree of approximations. Numerically we observed that both approximation w; and wu; will provide
the same rate of convergence but the results for u; will be more accurate than wj,. Hence on some coarse meshes for
the problem with singularity we observed Csq¢ < 1, and asymptotically with adaptive h-refinement steps, we are able
to create the family of meshes where we obtain that Cye = O(h).

Remark 5.1. We numerically illustrate in Section 6 that the above two arguments about the saturation assumption
(42) will holds true for the case of elliptic problems with smooth and non-smooth solution.

Remark 5.2. Despite the above arguments on the saturation assumption, we want to point out that the saturation
assumption will fail to be true in general. For example, let the exact solution u € SZ’l(M) on a given mesh M with

C-continuity across element boundaries and we consider Vj, = Sz’l(/\/l) and V' = 5,3;’2(/\/1) in the error estimate
(40). Then the error in up, € S,QL’I(M) approzimation will be zero, i.e |lu — uy||g = 0, while there will be some errors
inuy € 82’2 (M) and the saturation assumption will fail in this particular case. Such problem can also arise by taking
some classes of data of problem f such that the approximations uy, and ujy belong to the finite-dimensional FE spaces
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and so the component of data f that is orthogonal (in an Lo sense) to the spaces is essentially invisible, see Chapter 5
of [2]. Fortunately, the data in practical computations are taken from quite restricted sets such as global polynomials
or piecewise analytical functions, so that the saturation assumption may be quite realistic in a practical setting.

6. Numerical results

In this section, we first introduce the nomenclature used and the aim of our numerical studies. Then we consider
two elliptic benchmark problems with analytical known solution u to demonstrate the effectiveness of the proposed
error estimators. Finally we report some preliminary results obtained with an even more cost effective approach.

6.1. Nomenclature

Error measures

The effectiveness of the various error estimators is assessed by evaluating how well they are able to estimate the
relative errors (%) in energy norm

lelrs = W x 100%, for wj € SP*(M), (46)
E
* |u — U;;”E * p+1,k+1
He HRE = W X 100%, for Up, S Sh (M) (47)

Furthermore, let [le[|g and |le||gq,,) be the global and element error, respectively. Then we define the root mean
square of the exact element errors by:

N, 1/2
(J\il Z(HGHE(QSZ) - HeHavg)2>

=
lellras = <= : (48)
lellavg
where the average exact element error is defined as

1 Nel

lellavg = = 2 llellz@.)- (49)
N
¢ el=1

The root mean square of the exact element errors given in Equation (48) measures the deviation from an uniform
element error distribution. A mesh giving uniform element error distribution is considered to be optimal for which
we have that ||e||grars = 0. Thus, we refer to asymptotically optimal mesh refinement procedure when a sequence of
meshes satisfying ]lllil% lellrars = 0.
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Error estimators

In the present adaptive methodology we consider the following error estimators 77('), - = {EX, %, RES} of Section

nEX = i~ unlls + lu = il (50)
mo= i =l (51)
1/2
% 1
s = Huh—uhum{ > h%HRH%z(Kw2hKHJHiQ<aK)} - (52
VKeM

Effectivity index (0)

The effecitivity indices that measures the quality of error estimators are defined by

()
o) — Hzﬁ for (-) = {EX, ,RES}. (53)
E

) a5 an asymptotically exact error estimators if lim 60) = 0.

and we refer to n L
—0

Saturation constant (Csq)

For the higher order approximation u; we compute the saturation constant Cy,, defined by

u—urllg
Csat = M (54)
v —unllE

In order to get reliable error estimates the saturation constant should satisfy Csq € [0,1). Furthermore, to obtain
asymptotically exact error estimator the saturation constant have to fulfill Csqy = O(h®) for some a > 0.

Marking strategy

The marking strategy, that is, the method of how to choose the basis functions for refinement in structured mesh
refinement is the Fized iteration strategy. Thus, in the adaptive refinement procedure, we always choose to refine a
fixed percentages of those basis functions which contributes with most error in the isogeometric FE computation. It
is recommend to use some small percentages say v < 5% to achieved a proper adaptive refinement process resulting
in optimal convergence rates. For the numerical results in this article we have been using v = 3%.

6.2. Aim of the numerical studies
The aim of numerical studies is to investigate whether for smooth problems with uniform mesh refinement we
obtain:

e A higher convergence rate for u* compared to u”

e asymptotically exact error estimate for ; on refined meshes

e conservative error estimate with nfES

and for non-smooth problems with adaptive mesh refinement we obtain:

e Optimal convergence rate, i.e. O(hP) for u measured in energy norm

e a higher convergence rate for u* compared to u”

e asymptotically exact error estimate for 77; on adaptive refined meshes

e conservative error estimate with n}leS

asymptotically optimal element error distribution
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6.3. Uniform refinement results

Example 1. (Sinus problem) Consider the following two dimensional elliptic problem

—Au=f in{, (55)

with homogenous boundary conditions
u=0 on 0. (56)

Here Q = (0,1)? is a square domain and f is constructed to correspond to the exact solution
u(z,y) = sin(27x) sin(27y). (57)

The error plots for the comparison of relative error (%) in energy norm and effectivity indeces 80), - = {x, RES, EX}
using the approximation spaces Vj, := Sp* ~! and k-refined spaces Vo= Sﬁ“’p for p = 2,3, 4 (respectively in each
row) with uniform h-refinements for Example 1 are shown in Figure 6.

From the error plots it can be noticed that the exact error in the higher order approximation ||u—u} || rr converges
with the rate of one order higher than the exact error in original approximation ||u — us|| rE.

The effectivity index comparison plots show that n; provides a more accurate estimation of the exact error than
the exact estimate n,]fX and residual based estimate n,leS for all presented cases. The estimate nfx presents the best
error approximation one can achieve after applying the triangle inequality on the exact error when the exact solution
u is available. For the considered example we also noticed that the estimators n; and nfx are asymptotically exact
on refined meshes while the residual based estimator nfES also shows a very good approximation of the exact error

on refined meshes. The effectivity index for n; are within the range of [1,1.2).
In Figure 7 we numerically illustrate that the saturation property given in Equation (42) holds for k-refined ap-

proximations. In fact for the present case with smooth exact solution we obtain that Csq: = O(h)—a much stronger
behavior than that is required for the saturation assumption.
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6.4. Adaptive refinement results

Example 2. (L-shaped domain problem)
The governing equation of the L-shaped domain problem is

Au=0 1in €, (58)
with the boundary conditions
0
u=0 on I'p and —u:g on I'y, (59)
on
Here Q = (—1,1)2\ (0,1) x (—1,0) is a L-shaped domain and g is constructed to correspond to the exact solution
20
u(z,y) = ri sin (3> , with r= (22 + yQ)%, 0 = tan™! <g> . (60)
x

The set up of the problem with given boundary conditions and the exact solution u are shown in Figure 8.

For the given elliptic problem, the re-entrant corner at (0,0) in the domain cause a singularity in the solution.
It is known that the convergence for uniform mesh refinement is limited by the strength of the singularity, i.e. the
convergence rate (versus degrees of freedoms) is equal to —1/3. For problems where the solution is not sufficiently
smooth, u ¢ HPT1(Q), as is the case for the L-shaped domain problem, we do not obtain optimal convergence rate
when we do uniform mesh refinement. In particular, the use of high order polynomials is then inefficient.

The L-shaped domain geometry is modeled with two patches which join merely continuously C°, k = 0) along
the line segment from (0,0) to (—1,1). Here the geometry parametrization does not quite fit into the framework of
the single-patch spaces Sﬁ’k (M), while we will show numerically that we obtained good results in this case. Similar
to two patches considered in L-shaped domain geometry model one can also consider a simple three patches model
by subdividing the L-shaped region into three congruent squares; parametrization would then not even be neces-
sary. The L-shaped domain problem is solved using the linear, quadratic and cubic LR B-spline spaces V}, : Sﬁ’p _1,

p = 1,2,3 with uniform h-refinements and adaptive h-refinements based on a posteriori error estimators nfES and
;. The error plots for the relative error (%) in energy norm and effectivity index for 0¢), - = {x, RES, EX}, and

the saturation constant using the approximation spaces Vj, := S;"* ~! and k-refined spaces V= S,’;H’p forp=1,2,3
with uniform and adaptive h-refinement are shown in Figures 9-11. The numerical results of uniform and adaptive

h-refinement using the error estimators n,?ES and 77 are shown in left and right column of Figures 9-11, respectively.

From the error plots presented in first row of Figures 9-11 the difference in the convergence rate of exact errors
obtained by means of uniform h-refinement and adaptive h-refinement is clearly noticed. For uniform h-refinements
the exact energy error for u; converges at the rate of O(N JO}/ 3) for all approximation spaces, this is clearly caused
by the singularity present in the problem. While in the case of adaptive refinement we achieve an optimal rate of
convergence for all the cases presented here with both error estimators. It can also be noticed that the exact error
in higher order approximation ||u — u}||rr converges asymptotically with one order higher rate than the exact error
in original approximation ||u — up||rE-

The effectivity index comparison plots with uniform h-refinement and adaptive refinement clearly show that n;
provides more accurate estimation of the exact error than the residual based estimate n,]fES for all cases. The esti-
mate an presents here the best error approximation one can achieve after applying the triangle inequality and is

computable only when the analytical solution u is known. For the L-shaped domain problem we also noticed that the

estimators 7, and an are asymptotically exact on refined meshes. Furthermore, the residual based estimator n,leS

also shows a very good approximation of the exact error on adaptive refined meshes and we also have asymptotically

convergence for the corresponding effectivity index. Since the present residual based estimator n,?ES involves the

residual of a high order approximation uj its behavior is different than the standard residual estimator based on wy,.

The error estimator n,?ES is very conservative on coarse meshes and then converges to the exact error when proper

adaptive mesh refinement has been achieved for the higher order approximation wu;. On coarse meshes the residual

term involved in the estimator n,leS provides a safeguard in the error estimation process as the estimator 7; in these
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cases generally underestimates the error. When we compare the exact error in u” we notice that the results provided

by using the estimator n,?ES to drive the adaptive refinement are slightly better than the results obtained with use
of the 7, estimator.

In third row of Figures 9-11 we numerically illustrate that the saturation property given in Equation (42) holds
for k-refined approximations even on non-smooth solution case on coarse meshes. In fact, for all the cases, asymptot-
ically we obtain that Cs, = O(h)—a much stronger behavior than that is required for the saturation assumption. We
also noticed that the value of saturation constant Cy,; with the application of error estimator nﬁES decrease more
rapidly in comparison to the case with the error estimator n;. Thus we can obtain a more accurate approximation
uy with estimator n,leS than with the use of 7;.

The comparison of root mean square of the exact element error given in Equation (48) which measures the de-
viation from an uniform element error distribution are shown in Figure 12. For the uniform h-refinement case we
observed that the root mean square error will not converges because of pollution error present in the L-shaped prob-
lem while the adaptive refinement procedure provides a sequence of meshes that seems to satisfy }LI_I)I%) llellrars = 0.

The adaptive LR-meshes at step 20 for all the different cases are also displayed in Figure 13.
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6.5. A cost efficient approach

As we have discussed in Section 2 the cost to obtain a higher order approximation u; using k-refined spaces will
be almost twice to the original approximation uy, itself when full Gauss-quadrature points are used in the assembly
procedure. Although the cost can be reduced by choosing the recently available selective and reduced integration
rules in isogeometric analysis. But in this section, we present a different approach to reduce this cost which is based
on reducing the number of degrees of freedom for u; by coarsening the mesh by a factor of m in each direction. We
remedy the reduction in accuracy that occurs due to mesh coarsening by increasing the polynomial degree by the
same factor m. For this we define

Vy = Sﬁ’k and Vi, = S%J;Lm’k+m, m=1,24,

where V*, represents a coarse and high order k-refined space of V}, at level m. For m = 1 we obtain the classical
k-refined space as discussed in Section 2 and 4.

The assembly and solving cost ratio to obtain a higher order approximation wu}, similar to as presented in Table 2,
using these new coarser and higher order k-refined spaces for Vj := 82’1 are shown in Table 6. This alternative mod-
ified k-refinement approach to obtain Serendipity pairings in isogeometric analysis is clearly a cost efficient approach
where we may reduce the the cost ratio to less than 0.5.

In Figure 14, energy error plots with uniform h-refinements of V, := Si’l and its modified k-refined spaces for
the Sinus problem (Example 1) are given. The better accuracy per degrees of freedom achieved with these modified
k-refined spaces are clearly visible.

Table 6: Sinus problem:Degrees of freedoms and timing for solving the Sinus problem using V} = Si’l(./\/l) with different modified
k-refined spaces Vj'.

Vi = 8y (M) and V3, = Sy’ (M)

Mesh size Degrees of freedom Assembling time | Solving time | Total
N* w* w* w*

Naos = dim(Va) | Nj,, = dim(Vz,) | 52 | Fils Frte) | P

8 X8 100 64 0.64 0.63 0.66 0.63
16 x 16 324 144 0.44 0.64 0.10 0.63
32 x 32 1156 400 0.34 0.67 0.52 0.67
64 x 64 4356 1296 0.29 0.68 0.51 0.68
128 x 128 16900 4624 0.27 0.70 0.47 0.69

Vi =8y (M) and Vi, = Sgi’ (M)

Mesh size Degrees of freedom Assembling time | Solving time | Total
1. 1 % N7, FE(uy) FE(uj) FE(u})
Naoy = dim(V3) Ndof = dim(V,) NZO; FE(uZ) FE(UZ) FE(u:)
8 x 8 100 64 0.64 0.50 0.92 0.51
16 x 16 324 100 0.31 0.44 0.08 0.44
32 x 32 1156 196 0.17 0.47 0.06 0.48
64 x 64 4356 484 0.11 0.49 0.04 0.49
128 x 128 16900 1444 0.09 0.51 0.19 0.50
The error plots for the comparison of relative error (%) in energy norm and effectivity indeces 80), - = {x, RES, EX}

using the approximation spaces Vj, := Si’l and modified k-refined spaces V', = anJ,rlm’Hm for m = 2,4 (respectively

in each row) with uniform h-refinements for the Sinus problem are shown in Figure 15. Here we consider a very
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Figure 14: Energy errors with uniform h-refinements of V}, := Si’l and its k-refined coarse spaces for Example 1.

coarse starting mesh of (8 x 8) elements for the space V}, := Si’l and the element mesh of (4 x 4) and (2 x 2) for V3,
and Vj , respectively.

From the error plots it can be noticed that the exact error in the higher order approximation ||u —uj || kg obtained
with modified k-refined spaces V" := ;Zm,l-l—m for m = 2,4 converges with the rate m + 2 that is m order higher
than the exact error in the original approximation ||u — up||ge. The high order convergence rates obtained with the
modified k-refined spaces V;* improves the performance of all the herein proposed estimators. When we compare the
error plots given in the first row of Figure 6 for Vj := S}QL’1 with the error plots of Figure 15 then a clear benefit
of using modified k-refined spaces for V', can be noticed. We also notice that the performance of all the proposed
error estimators are also improved in comparison to the case presented in first row of Figure 6. The estimators 7
and an now becomes asymptotically exact on much coarser meshes while the residual based estimator nf”ES , which

was not asymptotically exact in Figure 6, now becomes asymptotically exact.
In Figure 16 we show that the saturation property given in Equation (42) holds for these modified k-refined

approximations. For the present case with smooth exact solution we obtain that Cs,; = O(h™)—a much stronger
behavior than that is required for the saturation assumption.
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Figure 15: Sinus problem: Plots of relative errors (%) in energy norm and effectivity indeces 00 . = {x, RES, EX} obtained using
Vi := 8Pt and Vi, := S2H™™ for m = 2,4 (respectively in each row) with uniform h-refinements.
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Figure 16: Sinus problem: Plots of the Saturation constant Cs,: obtained with uniform h-refinements and using Vj, := Si‘l and the

modified k-refined spaces V%, := S2™ '™ with m = 2, 4.

7. Conclusion and perspectives

The aim of the present study has been to propose a simple error estimation technique in adaptive isogeometric
analysis. The main focus was to present a serendipity pairing of discrete approximation spaces Sﬁ’k (/\/l)—SﬁJrl’kJr1 (M)
using LR B-splines technology of [27]. Using this discrete pairing of spaces we propose two simple a posteriori error
estimators 7; and n,?ES for solving second order elliptic problems using adaptive isogeometric analysis. The main
findings of the articles are:

e For smooth elliptic problems with uniform A-refinement we obtain:

— A higher convergence rate for u* compared to u”
— asymptotically exact error estimate for n; on refined meshes

— conservative error estimate with n,}fES

e For non-smooth elliptic problems with adaptive h-refinement we obtain:

— Optimal convergence rate, i.e. O(hP) for u" measured in energy norm
h

a higher convergence rate for u* compared to u

— asymptotically exact error estimate for n; on adaptive refined meshes

— conservative error estimate with n}?ES

— asymptotically optimal element error distribution

Furthermore, we briefly report results obtained by an even more cost efficient approach where we consider a coarser
mesh but higher order k-refined spaces Sfrj,rlm’ker, m = 1,2,4. For the smooth problems with uniform h-refinement
this approach seems to be very promising but to use it in adaptive isogeometric analysis a further study is needed.

In this article, we have discussed the general behavior of some different approaches using h-, p-, and k-refinement
to refine a given discrete approximation space Vj, into V; in order to obtain a more accurate approximation wuj
compared to up. Through the numerical study we clearly demonstrated the benefits of considering a discrete pair
of approximation spaces Sﬁ’k(M)—Sﬁﬂ’kH(M) obtained using k-refinement in solving the elliptic PDEs. Looking
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forward we assume that computational costs related to assembly of coefficient matrices in isogeometric analysis will
be significantly reduced, after some more research on selective integration rules, and this will make k-refinement even
more efficient than p-refinement.

The authors are of the opinion that the approach presented herein is very suitable for a posteriori error es-
timation in isogeometric analysis. In particular we think it is especially suited for goal oriented error estimation.
Recently, the authors in [31] considered a discrete pair of approximation spaces Sﬁ’k(M)—Sﬁﬂ’k (M) obtained through
p-refinement and using hierarchical B-splines for the goal oriented adaptive isogeometric analysis. In the near future,
we will address goal oriented error estimation based on adaptive h-refinement using LR B-splines methodology ([27])
by considering the serendipity pairing of discrete approximation spaces Sﬁ’k(M)—Sgﬂ’kH(M) presented herein.
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