
AUV Pipeline Following using Reinforcement Learning
Sigurd A. Fjerdingen1, Erik Kyrkjebø and Aksel A. Transeth
SINTEF ICT, N-7465 Trondheim, Norway
1sigurd.fjerdingen@sintef.no

Abstract

This paper analyzes the application of several reinforcement learning techniques for continuous state and action spaces to
pipeline following for an autonomous underwater vehicle (AUV). Continuous space SARSA is compared to the actor-critic
CACLA algorithm [19], and is also extended into a supervised reinforcement learning architecture. A novel exploration
method using the skew-normal stochastic distribution is proposed, and evidence towards advantages in the case of tabula
rasa exploration is presented. Results are validated on a realistic simulator of the AUV, and confirm the applicability of
reinforcement learning to optimize pipeline following behavior.

1 Introduction

Subsea oil&gas pipeline inspection is a costly and time-
consuming operation traditionally carried out by trained
operators as a manually controlled operation using re-
motely operated underwater vehicles (ROVs). The ROV
is tethered to a surface vessel, which makes the operation
highly dependent on surface weather conditions. An un-
tethered autonomous underwater vehicle (AUV) only re-
quires a short launch window, which may greatly reduce
the costs and man-hours required for inspection since it
may operate without the constant presence of a costly sur-
face vessel. However, autonomous pipeline inspection us-
ing a robotic vehicle requires algorithms able to follow the
pipeline efficiently and robustly in the presence of distur-
bances and changing or unknown conditions.
The problem of pipeline localization by sensors such as
a camera system, sonar, and echo sounder have been
adressed separately for the AUV in question, and refer-
ences and results may be found in a paper by Breivik et
al [5]. AUV control has also been studied extensively pre-
viously, examples include using model-based [9, 23] and
model-free (learning) [6] techniques. In this paper we con-
centrate on obtaining a mapping from the detected pipeline
by the sensors to an efficient set of waypoints for the AUV
– low level control of the AUV is handled using traditional
controllers as described in section 3.
Reinforcement learning (RL) is a very active research field,
and has been successfully applied to a number of robotic
applications. It can be used to make a robot learn how to
accomplish or optimize a taskwhile interacting with its en-
vironment. The robot will receive rewards or punishments
based on its choice of actions, and thus over time learns to
optimize its actions in relation to the received rewards.
This paper focuses on how to program a robust high level
controller for maneuvering an AUV efficiently in relation
to a pipeline. The correct and complete set of control pa-

rameters for an AUV controller, and their corresponding
values, may be hard to determine. Reinforcement learning
strategies promise to alleviate such difficulties by exchang-
ing pre-programming by a robot programmer with on-line
experimentation by the AUV itself. Furthermore, RL al-
gorithms are able to account for situations unforseen at the
time of programming. Instead of spending time on pre-
programming the perfect controller able to cope with any
forseen or unforseen situations, an alluring alternative is to
let RL algorithms figure the difficulties out for themselves
by experimenting with pipeline following in the real envi-
ronment.
The paper is organized as follows. In section 2 a short in-
troduction to reinforcement learning is given. Moreover, a
particular type of RL and an extension using the CACLA

algorithm is discussed in section 2.2, together with a novel
exploration strategy in section 2.3. An overview of the
used dynamic simulation environment is given in section
3. Section 4 describes the setup of the simulations con-
ducted, and the results are presented in section 5. Section
6 and 7 gives a discussion of the results and a conclusion,
respectively.

2 Reinforcement Learning

Reinforcement learning (RL) deals with the problem of
learning when to do what, i.e. how to map situations to
actions, in order to maximise a reward [14]. An agent (e.g.
an AUV) interacts with a stochastic process modelled as
a Markov decision process (MDP), and can observe the
current state and immediate reward. The objective is to
discover which actions yield the most reward in each sit-
uation by experimenting, and may be viewed as a form of
associative learning.
An MDP can be defined as a tuple(S,A, R, T), whereS
is the set of all states,A the set of all actions,R the re-

ward function, andT (s, a, s′) ∈ [0, 1] the transition func-
tion (s ∈ S defines the current state,a ∈ A the current
action ands′ ∈ S the resulting state). In reinforcement
learning problems, the reward function and the transition
function are unknown to the agent, and thus ordinary dy-
namic programming approaches do not apply (see [14] for
details).
A value function in reinforcement learning may be defined
as

V (s) = E

{

∞
∑

i=0

γi
drt+i+1|π, st = s

}

. (1)

This function describes the cumulative future discounted
reward an agent expects to receive using its current policy
π from states = st, wherer is the received reward and
γd ∈ (0, 1] the discount factor. A corresponding action-
value function describes discounted reward when perform-
ing actiona in states as

Q(s, a) = E

{

∞
∑

i=0

γi
drt+i+1|π, st = s, at = a

}

. (2)

This formulation has been the basis for many RL-
algorithms focused on control (e.g. Q-learning and
SARSA).
SARSA is a well-known on-policy temporal difference-
based reinforcement learning algorithm for control prob-
lems – the action-valueQ(s, a) is estimated for the current
policy π. The algorithm is detailed by Sutton and Barto
[14], and is given by the equation

Q(s, a) = Q(s, a) + α (r + γdQ(s′, a′) − Q(s, a)) , (3)

where (s, a) is the current state-action pair,(s′, a′) the
next, r the numerical reward signal received when going
from s to s′ using actiona, andα ∈ (0, 1] is the learning
rate. The temporal difference (TD) error for value func-
tions is given as

δ = r + γdV (s′) − V (s), (4)

and corresponding(s, a) for action-value functions.
SARSA and other TD-methods converge to an optimal pol-
icy for discrete and finite states and actions under the as-
sumptions that all state-action pairs are visited an infinite
number of times and that the policy converges to a greedy
policy (a policy that always chooses the highest valued ac-
tion of Q(s, a) for a givens).

2.1 Continuous States and Actions

The case of continuous state spaces in reinforcement learn-
ing has been extensively studied [3, 13, 14, 15, 16, 18]. The
use of function approximators in some form has emerged
as the method of choice for representing the state space.
This also allows for generalizing experience. Commonly
used function approximators include connectionist struc-
tures such as artificial neural networks (ANNs), radial ba-
sis function networks (RBFNs) [20], and cerebellar model
arithmetic computers or tile coding (CMACs) [13, 14].

Two differing approaches of handling continuous actions
are common in reinforcement learning literature. The most
intuitive approach in relation to the previous description
of reinforcement learning may be to use a numerical opti-
miziation method on the estimatedQ-value (e.g. Newton-
Raphson or wire-fitting). Santamaría et al [13] use what
they call a one-step search to findmaxa Q. The approach
consists of a discretization(a1, . . . , an) overQ and selec-
tion of the maximumai. Numerical optimization, how-
ever, may require a lot of evaluations of the objective func-
tion, so if computing the objective function has a high cost
this procedure quickly becomes unmanageable for on-line
applications.
The other mentioned approach involves actor-critic meth-
ods, which separate the estimation of the value function
(critic) from the estimation of the policy (actor). The ap-
proach has been around for quite some time (see e.g. the
1977 article by Witten [22]), but has not gathered a lot of
interest until later years when problems using the approach
of direct determination of the policy from the action-value
estimate became apparent [15].

CACLA. Van Hasselt and Wiering [19] present an actor-
critic based reinforcement learning algorithm named CA-
CLA (Continuous Actor-Critic Learning Automaton) for
learning in continuous action spaces. The value function
(critic) is updated using the TD-error from (4) as

V (s) = V (s) + αV δ, (5)

whereαV ∈ (0, 1] is the learning rate for the value func-
tion. For continuous state spaces, the value function may
be represented by a function approximatorV̂θ(s) parame-
terized by a vectorθ. Using gradient-descent on the mean
squared error between the experienced and currently esti-
mated value function gives an update rule for the parame-
ters as (see Sutton and Barto [14] for details)

θ = θ + αV δ∇θV̂θ(s). (6)

In actor-critic algorithms, a stochastic policy Pr(a|s) =
π(a|s;φ), parameterized by a function approximator with
parameter vectorφ, is usually employed. The policy pa-
rameters for CACLA are updated by

φ = φ + απ max(sgn(δ), 0)(a − Ac
φ(s))∇φAc

φ(s), (7)

whereαπ ∈ (0, 1] is the actor learning rate and

π(a, s;µ, σ) =
1√
2πσ

e−
(a−Ac

φ
(s))2

2σ2 (8)

is a stochastic actor policy employing the Gaussian distri-
bution with meanµ(s) = Ac

φ(s) approximated by a func-
tion approximator. The parameterσ is used to control the
amount of exploration for the policy. For a general actor-
critic algorithm, the policy parameters are updates as (e.g.
[4])

φ = φ + απδ∇φ lnπ(a, s;φ). (9)

The modifications of (7) in relation to (9) is based on the
following intuitions (see [19] for details):

1. Themax-term insures that the estimate of the best
actor value is not updated when the TD-error is neg-
ative. This is reasonable since we do not want to
adjust the policy in the opposite direction of some
perceived negative action as this does not necessar-
ily equal better solutions.

2. The signum-term (sgn) makes updates of the actor
invariant to scaling issues when relating the TD-
error to the actor policy. Van Hasselt and Wiering
note CACLA as superior to some comparable actor-
critic algorithms when experimenting with varying
the scaling of the reward function.

The strong theoretical underpinnings presented by several
authors [4, 7, 15] for actor-critic algorithms, together with
the intuitions given by Van Hasselt and Wiering in addition
to the good performance of the algorithm when tested on
the cart pole-problem, constitute the reasoning behind con-
sidering this particular method for the application domain
of autonomous underwater vehicles.

2.2 Supervised Reinforcement Learning

The main difference between supervised learning and re-
inforcement learning is the availability of a trainer with
knowledge of correct input/output sequences for a super-
vised learning problem. In reinforcement learning, the
learner has to discover these by trial and error via the ex-
ternal reinforcement signal.
Rosenstein and Barto [11] combine a form of supervised
learning with an actor-critic reinforcement learning archi-
tecture in order to implement previous knowledge in a re-
inforcement learner. The algorithm uses a supervisor in
the form of a previously known controller. Actions from
this controller are combined with the actions from the RL
controller through a weighted sum

a = kaRL + (1 − k)aSUP, (10)

where the parameterk ∈ [0, 1] weights the influence of the
supervisor actionaSUPversus the RL controller actionaRL.
The actor approximator weights are now updated as

φ = φ + απ

[

kδ(a − Ac
φ(s))

+ (1 − k)(aSUP− Ac
φ(s))

]

∇φAc
φ(s).

(11)

The first part of (11) is identical to (9), while the sec-
ond part is the gradient from a quadratic supervisory error.
Whenk → 1 the update rule behaves like a standard actor-
critic algorithm, whilek → 0 turns the update rule into
adapting the weights to fit the supervisory controller.
In this paper we propose to extend the CACLA algorithm
into the supervised reinforcement learning architecture of
Rosenstein and Barto by modifying (11) to suit the update
rule of (7) in the following manner

φ = φ + απ

[

k max(sgn(δ), 0)(a − Ac
φ(s))

+ (1 − k)(aSUP− Ac
φ(s))

]

∇φAc
φ(s)

(12)

The parameterk weighting the influence of the supervisor
versus the learner may vary with state;k(s). Rosenstein
and Barto use a function approximator to keep track of the
state-dependentk. The underlying intuition is thatk may
be used as a measure of confidence for each state in the
state-space: States that have been visited more often can
yield more trust to the learner since the value function and
policy should already have adopted the supervisory con-
troller’s action as a base estimate.k(s) thus starts at0 for
all s ∈ S, and is updated using

k(s) = k(s) + Γk(∆k) (13)

in our algorithms, whereΓk caps updates whenk reaches
kmax = 1. Rosenstein and Barto also implement a forget-
ting mechanism into thek updates, such that states which
have not been visited in a long time will be less trusted.

2.3 Exploration

A reinforcement learning agent needs to explore its en-
vironment in order to discover more optimal solutions.
Methods for exploring range from simple to the more elab-
orate. Gibbs softmax,ǫ-greedy and Gaussian exploration
are commonly used exploration strategies [11, 13, 14, 19].
Other methods attempt to build a model of the environment
(directed exploration) [17, 21] or augment the reward func-
tion [8]. Rückstieß et al [12] use a hybrid method of ran-
dom and directed exploration where actions are offseted
the same state-dependent amount in an episode, and the
amount is randomized using a Gaussian distribution be-
tween each episode. Supervised reinforcement learning
may also be viewed as a way to guide exploration, either
in the form of gradual guidance from a teacher [11] or e.g.
in the context of apprenticeship learning [1].

This paper proposes to direct the exploration resources in
an action direction that looks more promising with regards
to receiving positive temporal difference-errors in a state-
dependent manner. Looking at one of the fundamental un-
derpinnings of reinforcement learning theory, Thorndike’s
Law of Effects states (amongst other things) thatresponses
accompanied by discomfort to the animal will[. . .] have
their connections with that situation weakened(see e.g.
Sutton and Barto [14] for an introduction). The CACLA

approach breaks from this behavior when electing to avoid
updating the actor policy for negative TD-errors (see (7)).
At the same time, the intuition of not updating the esti-
mated optimal action towards some value with unknown
utility holds some merit. This proposition is an attempt at
using the information inherent in negative TD-errors while
keeping the current estimate of the optimal action constant.
This is achieved by using the skew normal distribution in-
stead of the Gaussian distribution (see (8)) as basis for the
stochastic policy. The skew normal distribution was intro-
duced by Azzalini [2], and its probability density function

−3 −2 −1 0 1 2 3
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

Deviation in σ from mean

P
ro

ba
bi

lit
y

Skew normal distribution with different γ

γ = −2

γ = 0

γ = 2

Figure 1: Influence on the skew normal distribution for
different values ofγ.

−8 −7 −6 −5 −4 −3 −2 −1 0 1
−1

0

1

2

3

4

5

6

Meters

AUV Simulation

M
et

er
s

Figure 2: Red line illustrates the pipe centerline, the blue
triangle is the AUV, and the green rectangle is the visible
area for the camera system.

is given by

f(x) =
1

σπ
e−

(x−µ)2

2σ2

∫ γ(x−µ
σ)

−∞

e−
t2

2 dt, (14)

where the meanµ and standard deviationσ equal their
Gaussian distribution counterparts, while the parameterγ
directs theskewnessof the distribution.γ = 0 gives the
Gaussian distribution. Skewness refers to an asymmetric
perturbation of the density center and tail of the Gaussian
distribution in such a way as to give higher probabilities for
drawing either from the right or left side ofµ. The effects
of varyingγ are illustrated in Fig. 1.
The γ parameter of the skew normal distribution may in
other words be used to guide exploration away from action
values that have received negative TD-errors while keep-
ing the current estimateµ of the optimal action fixed. In
addition to updating the weight parameters for the mean,
an update has to be done for theγ parameter in order to
direct the exploration. In order to handle this, we propose
the update equation

φγ = φγ + Γ
(

sgn(δ)sgn(a − Ac
φ(s))∆γ

)

, (15)

whereΓ is a function which caps updates when|γmax| is
reached, and∆γ is theγ increment (or decrement). Note
here the underlying assumption that also theγ parameter
is estimated using a function approximator similar to the
estimation ofµ.

3 AUV Model and Implementation

The AUV used for pipeline following is based on a small,
low cost vessel developed for experimental validation of
underwater vehicle control systems at NTNU/SINTEF.
The AUV is equipped with two vertical and two horizontal

tunnel thrusters, two aft propellers and two diving rudders.
The 3 degree-of-freedom simulation model of the AUV in
the body frame is given as

Mν̇ + C (ν) ν + D (ν) ν = τν , (16)

and is a function of the body fixed velocitiesν = [u, v, r]
T .

The inertia matrixM, Coriolis and centrifugal matrix
C (ν), and the nonlinear damping matrixD (ν) = D +
Dn (ν) are defined as

M=

80 + 0.026ρ 0 0
0 80 + 0.04ρ 0.0135ρ
0 0.0135ρ 10 + 0.0107ρ

C (ν)=

0 0 (0.04ρ−80) v+0.0135ρr
0 0 (80 − 0.026ρ)u

(80−0.04ρ) v−0.0135ρr (0.026ρ−80)u 0

D=

0.72 0 0
0 0.8896 7.25
0 0.0313 1.90

Dn (ν)=

1.33|u|+5.87u2 0 0
0 36.5|v|+0.805|r| 0.845|v|+3.45|r|
0 3.96|v|−0.130|r| −0.080|v|+0.75|r|

ρ = 1.025 is the density of seawater. The AUV is con-
trolled by a PD waypoint controller in an earth-fixed refer-
ence frame with gainsKp = [1.5, 0.3, 1] ,Kd = [6, 4, 2]
where waypoints are limited to be placed on a circle within
the angular range of[−90◦, 90◦]. The AUV is equipped
with an Inertial Measurement Unit, an echo sounder and
a stereo camera system detecting the centerline of the
pipeline in view. If the pipeline is lost from view, a heuris-
tic circular search algorithm is invoked.

4 Simulation Setup

This section describes the simulation setup used to train
and validate the previously described reinforcement learn-
ing algorithms for the AUV and pipeline environment.
Two main experiments have been conducted. The first is
carried out in order to analyse the performance of previ-
ously discussed RL algorithms for our application of inter-
est, and is described in section 4.1. The second experiment,
described in section 4.2, validates if the learned policy is
able to generalize to other pipeline geometries.

Function Approximation. In the experiments presented
in this paper, RBFNs are used as function approximators
both for critic and actor approximation. RBF networks typ-
ically have three layers; an input layer, a hidden layer with
a Gaussian activation function, and a linear output layer.
The output of the network is

f(x) =
N

∑

i=1

φiρ(||x − ci||), (17)

where

ρ(||x − ci||) = e−
1
σ
||x−ci||

2

=
∏

j

e
− 1

σj
(xj−cij)

2

(18)

is the Gaussian activation function with center vectorc and
width σ, φ the associated weight parameter, andN the
number of activation functions.
The state space is constructed of four dimensions;x and
y position of one endpoint of the current pipeline in view,
x position of the other end of the detected pipeline, and
the longitudinal speedvx of the AUV. Fig. 3 illustrates
the points of the pipeline available as state space dimen-
sions. The reasoning behind the state space division has
been to minimize the number of state space dimensions in
order to keep calculations at a minimum, while keeping
all coordinates local with respect to the AUV in the sense
that all information is available without external reference
systems. Both critic and actor use the exact same state
space dimensions, and the basis function parameters are
also equal. The basis function parameters are the center
vectorc and the width vectorσ. The center vectors for the
state space dimensions are as follows

x1 → [−1,−0.8,−0.4, 0, 0.4, 0.8, 1][m]
y1 → [0, 0.375, 1.125, 1.875, 2.625, 3][m]
x2 → [−1,−0.8,−0.4, 0, 0.4, 0.8, 1][m]
vx → [−0.25,−0.156, 0.031, 0.219, 0.406, 0.5][m/s],

and the width is calculated as half the largest distance be-
tween centers in order to cover the entire state space com-
pletely in each dimension. See e.g. Park and Sandberg
[10] for more details on RBFNs. The total number of basis
functions thus sums to 1’764. Reducing or optimizing the
choice of basis functions has not been tried.

The learning rate has been set toαV = 0.4 for the value
function updates andαπ = 0.2 for the actor update, and
are held constant throughout the learning period. The dis-
count factor is set toγd = 0.8. The exploration factor
starts atσ = 1 and decreases linearly per episode towards
σ = 0.01 for the final episode.
The reward function is calculated by the environment (un-
known to the learner) as

R = vx − e2
dist − e2

angl− (a − aprev)
2. (19)

That is, the AUV receives reward for higher speedvx and
is punished if the pipeline either deviates from the middle
of the camera frame (edist), the angle of the pipeline de-
viates from a vertical line in the camera fram (eangl), or if
chosen actions vary greatly between consecutive decisions
(a−aprev). Qualitatively, this should provide the AUV with
a goal of keeping a smooth trajectory with the pipeline as
center and level as possible in view. If the AUV ever looses
track of the pipeline, a pre-coded safety behavior overrides
the learning behavior, and a punishment of−10 per control
step – a larger punishment than possible if the pipeline is
in view – is incurred. The safety behavior is a rotating mo-
tion around the AUV center axis, making the AUV camera
system sweep the entire surrounding of the AUV in hope
of returning track of the pipeline.

−1 −0.8 −0.6 −0.4 −0.2 0 0.2 0.4 0.6 0.8 1
0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

1.8
Camera view

Meters relative to AUV y axis

M
et

er
s

re
la

tiv
e

to
 A

U
V

 x
 a

xi
s

Figure 3: Red line is visible pipeline segment. Blue
crosses are data points extracted by the camera system
available to the learner.

4.1 RL analysis

In this experiment, the pipeline is laid out as three straight
segments with90◦ left turns between. The simulation en-
vironment may be visualized as in Fig. 2. The goal of the
experiment is to analyse the application of (a) the standard
SARSA algorithm, (b) the CACLA algorithm, (c) CACLA

with skew normal exploration, and (d) supervised CACLA .
Each episode lasts for 20 seconds, and each trial repeats
500 episodes. The learning controller runs once each sec-
ond, giving a total of 20 decisions per episode. Each of the
experiments were repeated 5 times.

SARSA. For the SARSA algorithm, the central equa-
tion is (3). An RBFN is used to estimateQ, employ-
ing the state space previously described. The action di-
mension has been added to the state space, with centers
[−90◦,−81◦,−63◦,−45◦, . . . , 63◦, 81◦, 90◦]. For action
selection, theQ-function has been discretized with step
size9◦ in the range[−90◦, 90◦]. The state space explo-
sion ofQ-function based methods is easily visible here, as
the total number of basis functions now sums to 22’932.

CACLA. For skew normal exploration, ∆γ =
(11.25◦, 22.5◦, 45◦) has been tested andΓ caps updates
of φα at αmax = 1 in all cases. In the case of supervi-
sion, the heuristic controller providingaSUP is a controller
that sets the waypoint in the exact direction of the pipe
endpoint furthest away from the AUV. This simple control
scheme generates a path that is able to track the90◦ turns,
but overshoots somewhat when tracking. Theα andk pa-
rameters are updated in a state-dependent manner by using
an identical RBFN as for the state space. Thek parameter
is initialized at0 for all states, meaning that the supervi-
sory controller has full control over the action. Updates are
given with∆k = 0.05. Our algorithms do not implement
a forgetting factor.

4.2 Validation

This experiment aims to validate if the AUV is able to track
a different, unknown pipe geometry. A suitable algorithm
was selected based on the analysis experiment – the su-
pervised CACLA algorithm withγ = 22.5◦ skew (equals
absolute value of0.5 in relation to Fig. 1), see section 5 for
results. Since the AUV learning algorithm had only been
trained in left turns, the pipeline was first mirrored along
the y-axis in Fig. 2 to get right turns. A learning phase
with identical parameters as in section 4.1 was conducted.
The AUV learning algorithm was validated on the pipe ge-
ometry shown in Fig. 4. During this experiment, the opti-
mal action was always chosen deterministically. For com-
parison, the unknown pipe geometry was also tested using
the heuristic controller described in section 4.1.

0 2 4

0

5

10

15

20

Meters

AUV Simulation

M
et

er
s

Figure 4: Validation environment for learner.

5 Results

5.1 RL analysis

0 50 100 150 200 250 300 350 400 450 500
−3000

−2500

−2000

−1500

−1000

−500

0

Episode number

T
ot

al
 a

cc
um

ul
at

ed
 r

ew
ar

d

CACLA
Supervised CACLA
Continuous SARSA

Figure 5: Continuous SARSA versus CACLA and super-
vised CACLA .

Fig. 5 shows a comparison of CACLA , supervised CACLA

and SARSA. The Sarsa algorithm did not converge to a
result able to track the pipeline within the alloted number
of episodes in any instance. Both versions of CACLA con-
verged to a successful policy in all instances.

50 100 150 200 250 300 350 400 450 500
−2500

−2000

−1500

−1000

−500

0

Episode number

T
ot

al
 a

cc
um

ul
at

ed
 r

ew
ar

d

CACLA
CACLA 0.25 skew
CACLA 0.5 skew
CACLA 1 skew

Figure 6: Tabula rasa CACLA with varying skew (α).

Skew updates of∆γ = 11.25◦, 22.5◦ and45◦ has been
tested for the tabula rasa CACLA algorithm. Results are
shown in Fig. 6. All cases converged to a successful pol-
icy in all instances.

0 50 100 150 200 250 300 350 400 450 500
−500

−450

−400

−350

−300

−250

−200

−150

−100

−50

0

Episode number

T
ot

al
 a

cc
um

ul
at

ed
 r

ew
ar

d

CACLA
CACLA 0.5 skew

Figure 7: Supervised CACLA with varying skew (α).

Supervised CACLA is compared to supervised CACLA

with a skew update of∆γ = 22.5◦ in Fig. 7. Both cases
converged to a successful policy in all instances. All fig-
ures are an average of 5 runs of 500 episodes, and a sliding
average of 10 episodes has been used to smooth the figures.

5.2 Validation

Training of the supervised CACLA algorithm resulted in a
successful policy also for right turns. Table 1 shows the
results of the RL-algorithm compared to the supervisory
heuristic controller previously described.

Algorithm Acc. reward
CACLA −23.2349
Heuristic −27.8590

Table 1: Accumulated reward for supervised CACLA and
heuristic controller. More positive reward is better. Ac-
cumulated reward per episode converges to a constant as
t → ∞ when explorationσ → 0.

6 Discussion

The CACLA algorithm clearly outperforms the traditional
SARSA algorithm for our application. Adding skew explo-
ration also seems to have a positive effect on early stages
of the tabula rasa CACLA algorithm – the stages with more
heavy exploration. Comparing the supervised CACLA al-
gorithm with and without skew, we see no advantage of
using the skew exploration parameter. A possible expla-
nation for this is that when the solution already is close
to an optimum (initialized by the supervisory controller),
the skew parameter will just oscillate around the optimal
µ because of inaccuracies in the value function estimates.
It is believed to be beneficial to exploration with skew to
employ a more elaborate update strategy which dampens
responses in such cases.

The exploration policy for CACLA and the skew variant
does not equate to the gradient of the actor update rule
via Sutton et al’s [15]compatiblefunction approximator.
The authors have chosen to keep with the intuition of the
original CACLA algorithm in this respect, but a theoretical
derivation of the implications should be done.
Since the CACLA algorithm has proven quite robust with
respect to parameters such as learning rate and discount-
ing, little effort has gone into tuning these variables – gen-
eral guidelines as given by Van Hasselt and Wiering [19]
have been followed. Better results from the SARSA algo-
rithm might be obtained by tuning these variables. This
has not been verified by the authors. The gain scheduling
employed by the supervised reinforcement learning algo-
rithm is implemented as a weighted sum. In the general
case, this may lead to choosing a worse action than any of
the alternatives and thus may gain from using a different
strategy such as stochastic choice.

7 Conclusions and Future Work

7.1 Conclusions

This paper has analyzed the application of SARSA, CA-
CLA and supervised CACLA for continuous state and ac-
tion spaces applied to the task of pipeline following for
an AUV. Experiments in a simulation environment have
shown supervised CACLA to be the best candidate, as well
as the ability to generalize the learned pipeline following
strategy to new and unknown pipe geometries.
The use of skew normal distribution for exploration has
been proposed, and evidence towards its advantages in the
tabula rasa case has been presented. No such evidence has
been found in the case of supervised reinforcement learn-
ing.
The simulation results show that reinforcement learning is
well suited to optimize pipeline following behavior for an
AUV.

7.2 Future Work

It is important to analyze the application of skew normal
exploration more rigorously, for instance by looking at the
situation in which the estimated policy is close to the op-
timal one. It is also necessary to study the theoretical im-
plications of changing the policy from a Gaussian distribu-
tion (see (7-9)). Implementation on the real-world AUV is
a necessary next step in evaluating the RL-algorithms for
AUV pipeline following.

References

[1] Pieter Abbeel and Andrew Y. Ng. Exploration and
apprenticeship learning in reinforcement learning. In
Proceedings of the 22nd international conference

on machine learning, volume 119 ofACM Inter-
national Conference Proceeding Series, pages 1–8.
ACM, 2005.

[2] A. Azzalini. A class of distributions which includes
the normal ones.Scandinavian Journal of Statistics,
12:171–178, 1985.

[3] Leemon Baird. Residual algorithms: Reinforce-
ment learning with function approximation. InPro-
ceedings of the International Conference on Machine
Learning. Morgan Kaufmann Publishers Inc., 1995.

[4] Shalabh Bhatnagar, Richard S. Sutton, Mohammad
Ghavamzadeh, and Mark Lee. Incremental natural
actor-critic algorithms. InAdvances in Neural Infor-
mation Processing Systems 20, pages 105–112. MIT
Press, Cambridge, MA, 2008.

[5] Gøril M. Breivik, Sigurd A. Fjerdingen, and Øystein
Skotheim. Robust pipeline localization for an au-
tonomous underwater vehicle using stereo vision and
echo sounder data. InIS&T/SPIE Intelligent Robots
and Computer Vision XXVII: Algorithms and Tech-
niques, accepted for publication, 2010.

[6] C. Gaskett, D. Wettergreen, and A. Zelinsky. Rein-
forcement learning applied to the control of an au-
tonomous underwater vehicle. InProceedings of the
Australian conference on robotics and automation,
1999.

[7] Vijay R. Konda and John N. Tsitsiklis. On actor-critic
algorithms.SIAM Journal on Control and Optimiza-
tion, 42(4):1143–1166, 2003.

[8] Maja J. Mataric. Reward functions for accelerated
learning. InProceedings of the Eleventh Interna-
tional Conference on Machine Learning, pages 181–
189. Morgan Kaufmann Publishers Inc., 1994.

[9] P. K. Paim, B. Jouvenecel, and L. Lapierre. A reac-
tive control approach for pipeline inspection with an
auv. InOCEANS 2005, volume 1-3, pages 201–206,
2005.

[10] J. Park and J. W. Sandberg. Universal approximation
using radial-basis-function networks.Neural Com-
putation, 3(2):246–257, 1991.

[11] Michael T. Rosenstein and Andrew G. Barto. Super-
vised actor-critic reinforcement learning. InLearn-
ing and Approximate Dynamic Programming: Scal-
ing Up to the Real World, pages 359–380, 2004.

[12] Thomas Rückstieß, Martin Felder, and Jürgen
Schmidhuber. Machine Learning and Knowledge
Discovery in Databases, chapter State-dependent ex-
ploration for policy gradient methods, pages 234–
249. Springer Berlin / Heidelberg, 2008.

[13] Juan C. Santamaria, Richard S. Sutton, and Ashwin
Ram. Experiments with reinforcement learning in
problems with continuous state and action spaces.
Adaptive behavior, 6(2):163–217, 1997.

[14] Richard S. Sutton and Andrew G. Barto.Reinforce-
ment Learning: An Introduction. Adaptive Computa-
tion and Machine Learning. The MIT Press, London,
England, 1998.

[15] Richard S. Sutton, David McAllester, Satinder Singh,
and Yishay Mansour. Policy gradient methods for
reinforcement learning with function approximation.
In S. A. Solla, T. K. Leen, and K. R. Muller, editors,
Advances in neural information processing systems,
volume 12 ofAdvances in neural information pro-
cessing systems, pages 1057–1063. MIT Press, 2000.

[16] Sebastian Thrun and Anton Schwartz. Issues in us-
ing function approximation for reinforcement learn-
ing. In Proceedings of the 1993 Connectionist Mod-
els Summer School, 1993.

[17] Sebastian B. Thrun. Efficient exploration in rein-
forcement learning. Technical report, Carnegie Mel-
lon University, 1992.

[18] John N. Tsitsiklis and Benjamin van Roy. An analy-
sis of temporal-difference learning with function ap-
proximation. IEEE Transactions on Automatic Con-
trol, 42(5):674–690, 1997.

[19] Hado van Hasselt and Marco A. Wiering. Rein-
forcement learning in continuous action spaces. In
Proceedings of the 2007 IEEE symposium on ap-
proximate dynamic programming and reinforcement
learning, pages 272–279, 2007.

[20] X. S. Wang, Y. H. Cheng, and W. Sun. Q learning
based on self-organizing fuzzy radial basis function
network. In J. Wang, Z. Yi, J. M. Zurada, B. L. Lu,
and H. J. Yin, editors,Advances in neural networks,
volume 3971 ofLecture notes in computer science,
pages 607–615. Springer-verlag Berlin, 2006.

[21] Marco Wiering and Jürgen Schmidhuber. Efficient
model-based exploration. InProceedings of the fifth
international conference on simulation of adaptive
behavior on From animals to animats 5, pages 223–
228, 1998.

[22] Ian H. Witten. An adaptive optimal controller for
discrete-time markov environments.Information and
Control, 34(4):286–295, 1977.

[23] S. Zhao and J. Yuh. Experimental study on ad-
vanced underwater robot control.IEEE Transactions
on Robotics, 21(4):695–703, 2005.

