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Development of Adaptive Locomotion of a Caterpillar-like Robot 

Based on a Sensory Feedback CPG Model 

This paper presents a novel control mechanism for generating adaptive 

locomotion of a caterpillar-like robot in complex terrain. Inspired by biological 

findings in studies of the locomotion of the lamprey, we employ sensory 

feedback integration for online modulation of the control parameters of a new 

proposed central pattern generator (CPG). This closed-loop control scheme 

consists of the following stages: First, touch sensor information is processed and 

transformed into module states. Then, reactive strategies that determine the 

mapping between module states and sensory inputs are generated according to an 

analysis of the module states. Finally, by means of a genetic algorithm (GA), 

adaptive locomotion is achieved by optimising the amount and speed of sensory 

input that is fed back to the CPG model. Incorporating the closed-loop controller 

in a caterpillar-like robot, both simulation and real on-site experiments are carried 

out. The results confirm the effectiveness of the control system, based on which 

the robot flexibly adapts to, and manages to crawl across the complex terrain. 

Keywords: modular robot; central pattern generator; sensory feedback; adaptive 

locomotion 

1 Introduction 

Many animals exhibit highly efficient locomotion through walking, crawling, flying, 

and swimming. They achieve these rhythmic motions by coordination of articulation in 

the musculoskeletal system. Neurobiological studies of various vertebrates have shown 

that rhythmic movements are generated in the spinal cord by a central pattern generator 

(CPG). In general, a CPG consists of a group of neural networks that interact to produce 

coordinated rhythmic signals without necessarily requiring any sensory input [1]. 

In robotics, many studies have been carried out in order to understand and 

imitate the locomotion patterns of animals in a realistic manner, such as research 

involving humanoid robots [2, 3], snake-like robots [4-13], quadruped robots [14-17] 

and fish-like robots [18]. These robots were biologically inspired not only in mechanical 



design, but also in locomotion control strategy realisation. In particular, the CPG-based 

control method is considered an elegant and efficient solution for online gait generation 

[19]. Such CPG models typically have a few control parameters for online gait 

modulation. Moreover, the CPG is also a kind of decentralised control method that is 

well suited to robots with a modular implementation. There are several famous CPG 

models in scientific literature, including Ekeberg’s model [20], Matsuoka’s model [21] 

and Ijspeert’s model [22], all of which been investigated quite thoroughly for the past 

decade. 

Although sensory feedback is not necessary for CPG implementation, 

neuroscientists have found that sensory feedback plays an important role in altering 

CPGs when dealing with environmental perturbations [23]. To achieve adaptive 

locomotion, there are several approaches for taking sensory feedback integration into 

account when altering the control parameters of CPG models. In [15], Kimura designed 

sensory feedback resulting from motions induced by reflexes to change the period of 

CPG model. He succeeded in realising adaptive dynamic walking of the Tekken robot 

on irregular terrain. Another successful example is from Ryu et al., who proposed a 

frequency-adaptive oscillator that can learn and adapt to changes in the frequency of 

sensory feedback signals [8]. The control strategy was verified by employing a snake-

like robot moving with constant velocity over terrain with varying frictions. Zhu et al. 

proposed a CPG based controller with sensory feedback [9]. They developed feedback 

law on a snake-like robot and succeeded to achieve effective motion behaviour in 2D 

plane. Yet another example comes from Sato et al., who designed a discrepancy 

function to change the phase of oscillators of a snake-like robot so that the robot 

exhibited highly adaptive behaviour for climbing slopes [11, 12].  



Caterpillars are among the most successful climbers – they can manoeuvre in 

complex three-dimensional environments, burrow, and hold on to substrates using a 

very effective passive grasping system [24]. Our DFG on-going project is focused not 

only on understanding the principles behind the locomotion of caterpillars but also on 

trying to imitate their adaptive and efficient locomotion behaviour [25]. In this paper, 

we propose a hierarchical control mechanism based on a sensory feedback CPG model 

to realise the adaptive locomotion of a caterpillar-like robot moving on irregular terrain. 

The contribution of this paper is threefold. First, the proposed CPG circuit provides a 

possible solution for easily integrating sensory feedback at the neural level. Second, a 

closed-loop control system is developed by incorporating sensory feedback from the 

environment. Through a genetic algorithm (GA), sensory information is analysed and 

transformed as sensory input into the CPG model, which helps the robot to adapt to the 

environment. Third, simulation and real on-site experiments are implemented to verify 

the effectiveness of the proposed control mechanism. 

2 Robotic control system 

Figure 1 illustrates the control architecture of the robot. It consists of three main 

components: The locomotion control part, the environment part, and the reaction control 

part.  

The locomotion control component plays a role in gait generation. A CPG model 

inspired by the lamprey’s spinal circuit is as well-developed as the controller of the 

robot. The output of the model is transmitted as desired joint angles to each module of 

the robot. Due to the phase lag between the modules, the robot can perform peristaltic 

crawling behaviour like real caterpillars. 
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Figure 1. Adaptive control architecture. 

 

In the environment component, sensory information is collected regularly from 

touch sensors on the robot. After interacting with the environment, the sensory 

information is transmitted to the reaction control component. 

The reaction control component is the key part of the whole control system and 

can be further divided into three sub-functional parts, namely a sensor processor, a 

reaction maker, and a parameter modulator: 

 The sensor processor filters the raw sensory information and converts it to a 

sequence, or string, of binary bits. Since the raw sensory information is sampled 

and accumulated over a period of time, each converted binary bit contains 

accumulated contact information instead of an instantaneous contact event (see 

details in Section 4.1). Thus the binary string represents the accumulated contact 

state of the robot, eliminating the impact of frequent change of instantaneous 

contact information.  

 The reaction maker determines module reflex behaviour. For each module of 

the caterpillar-like robot, the reaction maker maps the contact states into a 



reaction rule that determines whether to generate a sensory input to the module 

in a given time step.  

 The parameter modulator is responsible for generating sensory input for the 

CPG model according to the reaction rules, so as to adaptively shape the 

locomotion gait to be compliant with the environment. 

Although the control architecture described above may seem sufficient for our 

closed-loop control system, there are still several key issues that must be solved. First, 

the mapping mechanism between the contact states and reaction rules need to be 

considered. Second, one must determine what amount of sensory input should be 

generated in such a manner as to successfully achieve adaptive movement. Together, 

these two aspects require that a large number of parameters be simultaneously and 

appropriately chosen. Since this task is not easily solved with analytical methods, a GA 

is selected as the tool to find an optimal solution that yields satisfactory adaptive 

behaviour. Once the set of related parameters has evolved, the reaction maker and the 

parameter modulator can operate properly. As a result, the robot is endowed with the 

capability of traversing over complex terrain. 

3 Locomotion control 

Although the underlying biological details of complex neural CPG circuits in many 

animals are not yet fully understood, the simpler neural circuitry in the spinal cord of 

lampreys has been thoroughly studied [26]. In this section, a CPG circuit inspired by the 

neural circuit diagram of lampreys is designed as the locomotion control model of the 

robot. The resulting model not only features the ability to modulate CPG parameters 

such as amplitude, period, phase difference and offset, but also provides a solution 

inspired by biological findings in the lamprey for realising the sensory feedback at the 



neural circuit level. The locomotion control model consists of a neural model and a 

chained inhibitory circuit that are discussed in the following sections, respectively. 

Here, we will only give a brief introduction to the new proposed CPG model in order to 

aid the explanation of the overall control mechanism. The details of this new CPG are 

presented in [27]. 

3.1 Neural model 

As shown in Figure 2, the neural model consists of two parts: a motor control centre and 

a chain of oscillators connected to the motor control centre. The motor control centre is 

the brainstem of the biological controller. It descends motor commands through 

command neurons to modulate the behaviour of a command oscillator, which in turn is 

responsible for generating rhythmic signals that are passed to the chain of oscillators. 

The circuit on the two sides of an oscillator are mirror images to one another. 

Rhythmic activity is generated by interaction among four types of interneurons, namely 

crossed interneurons (CIN), lateral interneurons (LIN), excitatory interneurons (EIN), 

and motoneurons (MN). The CIN projects an excitatory synapse onto the EIN and 

projects inhibitory synapses onto the LIN, CIN, and MN, all on the contralateral side; 

the EIN projects excitatory synapses onto the other three types of interneurons on the 

ipsilateral side of the circuit; the LIN projects an inhibitory synapse onto the ipsilateral 

CIN; and finally, the output of the oscillator is determined from a comparison of the two 

MNs on each side of the circuit. A major difference compared to the original neural 

diagram of the lamprey is that the synapses emitted from CINs to EINs are excitatory 

instead of inhibitory. 
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Figure 2. The neural model consists of a motor control centre with a command oscillator connected 

to a chain of oscillators. The motor control centre is responsible for neuromodulation, while the 

command oscillator is responsible for rhythmic activity generation. 

 

In addition to the internal coupling, an oscillator can also project synapses onto 

other oscillators through the EINs, and receive synaptic interaction from other 

oscillators through LINs. The resulting dynamic system of each side of the ith oscillator 

can thus be described by the following equations: 

{ } { } { }CIN i CIN i s CIN ix x s                                                  (1) 
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where xi is the state of each interneuron, the subscript in curly brackets indicates the 

type of interneuron, and its overline indicates the state of interneurons at the 

contralateral side of the oscillator; si represents synapses with a synaptic weight ωs 

received from other interneurons in the same oscillator; cj represents synapses with a 

synaptic weight ωc received from other oscillators; τ, A and β are tunable parameters 

that determine the oscillator’s period, amplitude and offset, respectively; and outputi is 

the oscillator’s output. The sign of the synaptic weight ωs or ωc determines the 

characteristic of the corresponding synapse. A positive value represents an excitatory 

synapse, whereas a negative value represents an inhibitory synapse. 

To ensure smoothness of the output, all of the synaptic weight parameters in an 

oscillator have an absolute value of 1.0, except for the synapses from EINs to MNs, 

whose weight parameter’s absolute value is 0.1. Moreover, the initial state of the 

interneurons at the start of an oscillation is important, as it was found that only a small 

initial value of interneurons and a slight initial asymmetry between the two CINs on 

both sides can give rise to self-sustained oscillation. 

3.2 Chained inhibitory circuit 

The chained inhibitory circuit is designed for linear gait generation. Figure 3 shows the 

chained topology of a set of connected oscillators. In each oscillator, ‘L’ and ‘R’ 

represent the interneurons on the left and right side, respectively. In order to maintain a 

fixed phase difference, each oscillator is required to project unidirectional inhibitory 

synapses onto its adjacent oscillator. The synaptic weights between these oscillators are 

all set to -1. 

The command oscillator that belongs to the motor control centre projects 

inhibitory synapses onto the chained topology. As shown in Figure 3, the command 

oscillator is self-connected by using two additional synapses, one excitatory and one 



inhibitory. The parameters α and γ related to the two additional synaptic weights are 

tunable parameters for phase difference modulation and lie in the range [0, 1]. The 

parameter γ is usually regarded as a constant (γ = 0.2 in this paper) so as to simplify the 

control of the phase difference. This means that only the parameter α has an effect on 

phase difference modulation. Figure 4 illustrates the phase difference modulation with 

respect to parameter α. It is noted that the phase difference decreases with the growth of 

α. The available phase difference lies in the range [45°, 145°]. 
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Figure 3. The chained topology of oscillators. Two additional synapses in the command oscillator 

determine the phase difference between these oscillators. Parameters α and γ within the range       

[0, 1] are used for phase difference modulation. 
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Figure 4. Phase difference modulation with respect to parameter α. The phase difference can be 

modulated in the range from 45° to 145°. 



4 Reaction control 

The reaction control component is an essential part of the control system and enables 

the robot to move adaptively when confronted with irregular terrain. As mentioned 

before, there are three sub-functional stages in the reaction control component, namely a 

sensor processor, a reaction maker, and a parameter modulator. In addition, there is a 

fourth mechanism related to motion optimisation, in which a GA is used for adaptively 

tuning sensory input parameters. These four stages are presented in the corresponding 

sections below. 

4.1 Sensor processor 

The sensor processor handles the raw touch sensor data and identifies the contact state 

for each module at regular intervals of time. Importantly, “module state” indicates 

accumulated contact information rather than instantaneous contact state. There are only 

two possible module states, namely “periodic touch” and “hanging in the air”, both of 

which imply an accumulated contact state over one period of time. Figure 5 shows an 

example of how a module state is determined using only touch information.  

Assume a robot performs a linear gait during the locomotion. Each module of 

the robot therefore moves up and down, tapping the terrain periodically. Figure 5(a) 

shows the raw touch sensor data of two consecutive modules i and i+1 when the robot 

is climbing a slope, with spikes in the force measured by the touch sensors, indicating 

contact. The top of Figure 5(b) shows the instantaneous module states that result from 

applying a threshold function to Figure 5(a), whereas the bottom of Figure 5(b) shows 

the module states based on accumulated contact information. In this example, modules i 

and i+1 have periodic touch for the first 2.4s and 1.9s, respectively, before they begin 

hanging in the air. 
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Figure 5. Sensor data processing. (a) Raw data of touch sensors are gathered when the robot is 

climbing a slope. (b) Module states are produced by filtering the raw data and accumulating the 

touch state over a period of time. 

 

To identify the change of module states automatically, a filter is used to classify 

the raw data as binary values, representing either a touched or an untouched state, 

respectively, as seen at the top of Figure 5(b). This filter can be described as follows: 

( , ) ( , )( )i n i nt G R                                                         (6) 

where t denotes the instantaneous touch state of the ith module at time step n; R is the 

raw data of the ith module’s touch sensor; and G is a threshold function. 

However, because the instantaneous touch states generally change frequently, 

using this information for CPG modulation may lead to unstable, jerky behaviour. 

Instead, accumulating instantaneous values of the touch states over more than one 

period of locomotion as shown in (7) yields an acceptable solution for module state 

identification: 
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where s(i,n) is the state of the ith module at the time step n; N denotes the number of time 

steps in one period of locomotion; and k is the number of historic touch states to 

consider. The module state value of “1” means that the module is touching the surface, 

whereas a “0” means that the module is in the air. Using the history of touch states to 

determine the module states causes a lag of approximately (k-1)N samples between the 

raw touch sensor data and the processed binary module states. In the example in Figure 

5, a history of k=1.5 is used, which means that since there are about 200ms between 

each detected touch (sample), the delay in detecting a state change is about 100ms (see 

bottom of Figure 5(b)). 

4.2 Reaction maker 

The reaction maker is used to produce reasonable reactive behaviour of the robot. It 

takes the module states into account and generates proper external stimuli λ that will be 

fed back to the CPG model (see details in Section 4.3), so as to shape the CPG output 

and adapt the robot to the environment. Suppose the robot’s status can be described as a 

sequence of the module states, where each module state is represented as a binary 

function, as seen in (8): 

(1, ) (2, ) ( , ), ,...,n n n m nr s s s                                     (8) 

According to analyse the binary string of rn, there are three cases that the reaction maker 

should identify: 

 Case 1: The first case concerns a border reaction, where the head or the tail of 

the caterpillar-like robot is not touching the substrate. Suppose the caterpillar-



like robot is in a state where the tail modules are all in touch with the substrate 

and the head modules are not, or vice versa. This implies that rn has a form like 

<0, 0...0, 1...> or <...1, 0, 0...0>. The reaction maker is then responsible for 

finding the joint from the border side where two adjacent module states are 0 

and 1 (indicated with boldface). Then a certain amount of stimulus, represented 

as λ1 and λ2 for head and tail side respectively, is integrated into the 

corresponding oscillator of the joint, so that the border body of the robot is able 

to make contact on the substrate. 

 Case 2: The second case concerns a “camelback” pose of the caterpillar-like 

robot. Suppose the caterpillar-like robot is in a condition where two internal 

modules are touching the substrate, whereas a number of modules in the middle 

are not. This implies that rn has a form like <...1, 0, 0...0, 0, 1... >. In this case, a 

certain amount of stimulus, represented as λ3, is added to the corresponding 

oscillators of the joints whose adjacent module states are both 0 (indicated with 

boldface). This, in turn, causes the middle modules of the robot to adapt to the 

terrain. 

 Case 3: The final case concerns the recovery of the body shape during 

locomotion. To prevent the body shape of the caterpillar-like robot from 

excessively adapting to the terrain, any afferent stimuli to oscillators should be 

removed once the corresponding joint of the robot has adapted to the terrain.  

This mechanism can help the robot to resume from a modified gait to the normal 

one. In this case, the reaction maker tries to identify continuous ones in the 

binary string rn, such as the form <...0, 1, 1...1, 1, 0...>. The integrated stimuli on 

these joints whose adjacent module states are both 1 (indicated in boldface) are 



removed, so that the affected joint oscillation could gradually recover to original 

state. 

4.3 Parameter modulator 

To deal with sensory information, sensory neurons are integrated into the model, as 

shown in Figure 6. For simplicity, the ellipses labelled “interneurons” represent the 

CIN, LIN and EIN on each side of the oscillator. The sensory neurons on each side of 

the oscillator set excitatory and inhibitory synapses to motoneurons. Due to the mirrored 

functionality of these sensory neurons, the two sensory neurons can be considered 

together. When an external stimulus λ is transmitted to a sensory neuron, the sensory 

neuron will in turn have an inhibitory effect on the motoneuron on the same side and an 

excitatory effect on the motoneuron on the opposite side. As a result, the external 

stimulus will add a contribution to the output of the oscillator. We can thus rewrite (3) 

as follows: 

{ } { } { } { }MN i MN i s MN i SN ix x s A x                                 (9) 

where x{SN} represents the output of the sensory neuron and the positive or negative sign 

of the last term indicates an excitatory or inhibitory effect on the motoneuron, 

respectively. 

The dynamic change of the sensory neuron is a piecewise function. It depends 

on what case its corresponding joint belongs to. For example, as described in the 

previous section, when a joint satisfies case 1 or 2, a certain amount of stimulus λp is 

accumulated in its sensory neuron, as shown in (10). 

0

{ } { }        {1,  2, 3}
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m SN i SN i p
n

x x A p                              (10) 
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Figure 6. Sensory neuron integration. The oscillator with its interneurons lumped together is the 

same to the one in Figure 2. Two additional sensory neurons are employed on each side of the 

oscillator for sensory feedback. 
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Figure 7. Effect of the sensory integration on the CPG output. (a) Normal CPG output. (b) The 

sensory input generated in oscillator 3 varies with the amount of afferent stimuli. (c) The variation 

of the CPG output after sensory integration over time. 

 



where δm is a time constant that controls how quickly the output signal x{SN} will change; 

n is the current time step; n0 is the time step when the state of the corresponding joint 

changes from case 3 to case 1 or 2; the sum of λp indicates an accumulation of stimulus 

from the time step n0 to n; and A denotes the desired amplitude of the oscillator. 

If a joint belongs to case 3, its sensory neuron with a time constant δr will 

gradually remove the effect on motoneurons, as seen in (11): 

{ } { }r SN i SN ix x                                                (11) 

Figure 7 explains how the sensory input affects the joint angle generated by the 

sensory neurons in the CPG model. Figure 7(a) shows normal joint angle generated 

using the chained inhibitory circuit. In Figure 7(b), some amount of accumulated stimuli 

is transmitted into the sensory neuron in one of the oscillators at the time 20s, where its 

corresponding joint satisfies case 1 or 2. After 2 additional seconds at time 22s, the 

generated sensory input gradually recovers to a value of zero since the corresponding 

joint switches are changed to case 3 and there are no further stimuli afferent to the 

oscillator. Figure 7(c) illustrates the result of sensory integration. Sensory integration is 

achieved by means of the superposition of the generated sensory input and the normal 

CPG output. Note that the goal of this example is not to emphasise the resultant 

coordination of all the oscillators after the integration of sensory neurons. Instead, it is 

only to emphasise the fact that the CPG model is able to respond to external stimuli 

with the help of integrated sensory neurons. 

4.4 Motion optimisation 

As described above, the sensory neuron integrated in the CPG model plays an important 

role in adaptive locomotion. However, it is difficult to determine the amount of stimulus 



λ for each case, as well as the time constant (δm and δr) for the output of the sensory 

neuron. 

In this work, genetic algorithm (GA) is employed as a solution to evolve related 

parameters λ, δm and δr in the CPG. A real number GA derived from the standard binary 

GA is used, with genes containing real values within a specified range instead of 

employing binary values. Candidate solutions are encoded as chromosomes of fixed-

length strings of genes. Each gene corresponds directly to one parameter. For our 

control model, there are 5 parameters that need to be evolved in each oscillator, as 

shown in Table 1. 

A fitness function is defined over the genetic representation and measures the 

quality of the represented solution, as seen in (12): 
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                                          (12) 

where η (0<η<1) is a proportional variable; v is the average speed of the robot climbing 

over uneven terrain, whereas v0 is the speed of the robot climbing on flat terrain; s(i, j) 

is the module state; and m and n are the module number and time step,  respectively. 

  

Table 1. Optimised parameters of CPG model. 

Parameters  Case  Description Range 

λ1  1 Stimulus for head bending  [-1, 1] 

λ2  1 Stimulus for tail bending  [-1, 1] 

λ3  2 Stimulus for internal bending  [-1, 1] 

δm  1 or 2 Time constant for modulation  (0, 20] 

δr  3 Time constant for recovery  (0, 20] 

 



The aim of the GA algorithm is to find the best chromosome that enables the 

fitness function to reach a maximum value. The fitness function in (12) is a weighted 

sum of two different components of locomotion. The first component rewards the 

velocity of the adaptive locomotion for the robot climbing over uneven terrain relative 

to the velocity over flat terrain. The second component rewards locomotive stability 

measured as the percentage of the average number of modules that are in contact with 

the terrain. The weighting factor η in (12) determines which component has a higher 

priority during the evolutionary process and ensures that constrains the fitness function 

is to the range (0, 1). In this study, η is set to 0.7, which means that the locomotive 

speed in uneven terrain is weighted more than locomotive stability.  

5 Simulation and experiment 

Simulation and on-site experiment were carried out to validate the effectiveness of the 

control system in realising adaptive locomotion with sensory feedback. To imitate the 

motion of real caterpillars in this experiment, we used a linear gait and followed the 

investigation of the locomotive parameters in [28]. Thus, all oscillators in the chained 

inhibitory circuit are predefined, with an amplitude of 20° and a phase difference of 

120°. 

5.1 Simulation 

For the simulation, a simplified modular caterpillar-like robotic configuration was 

designed for the locomotion research in ODE [29]. Each mechanical module of the 

robot is designed as a simple rigid box. A one-dimensional joint rotating along the 

horizontal axis, located between every two modules, allowed adjacent modules to rotate 

in a vertical plane with a range of ±90°. Touch sensors were installed on the abdominal 

parts of the robot, with a function similar to that of the prolegs of living caterpillars. As 



a result, the control system of the robot is able to collect terrain contact information 

regularly. The related parameters of the robot module are listed in Table 2. 

Table 2. Specification of the simulated robot module. 

Components  Module  Touch sensor 

Length (mm)  72   10 

Width (mm)  52   52 

Height (mm)  52   10 

Weight (g)  150   10 

Table 3. GA operations and parameters. 

Genome type Real genome 

Selection Roulette selection and elite selection 

Crossover Uniform crossover 

Mutation Random number 

Population size 100 

Crossover rate 0.9 

Mutation rate 0.01 

Termination criterion Converge to 0.99 after 50 generations 

 

A simulation scenario is also constructed, consisting of ramps with different 

inclinations and different angles between them, as shown in Figure 8(a). The goal is to 

make the robot climb over the complex terrain adaptively and autonomously. 

First, the GA algorithm implemented in GAlib library [30] was utilised to evolve 

CPG parameters listed in Table 1 to optimise the robot’s climbing skills. Details of the 

GA operations and parameters applied in this experiment are listed in Table 3. During 

the GA progress, each simulation was run for a fixed number of time steps and an 



evaluated value was returned based on the fitness function. After the evolution of the 

GA, the best chromosome is chosen as the evolved result of the CPG parameters. Then, 

according to these evolved parameters, the robot is controlled by the following routine 

at each time step n: 

(1) Get raw sensor data at time step n; 

(2) Process the data and update rn; 

 

Figure 8. Simulation for adaptive locomotion. (a) The overall of the constructed environment. 

Slopes with different angles (from 5° to 20°) and boxes are spliced together. (b)-(g) Adaptation of 

caterpillar-like locomotion. The robot managed to climb over these slopes with the help of sensory 

feedback. 
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(3) For each joint i, check which case it belongs to and determine reaction time 

constant δ as well as the amount of afferent stimulus λ; 

(4) Calculate the output of the sensory neuron in each oscillator; 

(5) Calculate the output of all the oscillators; 

(6) Apply the result to all the joints. 

Figure 8(b)-(g) illustrates the procedure of the adaptive locomotion for the robot 

climbing over the slopes. Note that the position of each sub-figure (b)-(g) corresponds 

to a position labelled in Figure 8(a). The feasibility of the control mechanism is 

validated via the simulated result. 

5.2 On-site experiment 

A real pitch-pitch connected modular robot with 6 aluminium modules was constructed 

for the on-site experiment. The aluminium module, driven by a RC servomotor (Futaba 

3003), weighs 0.15kg and has a length of 72mm with a cross-section of 52×52mm. 

Each end of the module is surrounded by six touch switches (Omron D2MQ). In this 

experiment, only the touch switches on the bottom are used to collect the terrain 

information. The testing scenario built with boards is 6m long and is the same size as 

the one constructed in the simulation. Also, the on-site experiment was examined with 

the same set of evolved parameters, as shown in Table 4. 

Figure 9 shows a series of snapshots taken from a video recorded during the 

experiment1. The robot successfully used adaptive behaviours when climbing over the 

slopes in Figure 8(a). It was found that the body shape of the robot can be bent flexibly 

to adapt to the terrain with the help of integrated sensory information of the 

                                                 

1 The video of the on-site experiment is available at: http://tams-www.informatik.uni-hamburg.de/people/li/on-

site_experiment.mp4. 



environment. In contrast, the caterpillar-like robot without sensory feedback gets stuck 

at the second slope (the position as in Figure 9(b)). 

Table 4. Evolved parameters. 

Module 

Parameters 

λ1 λ2 λ3 δm δr 

No. 1 0.40 - - 6 1.5 

No. 2 0.55 0.10 -0.25 17.5 1.5 

No. 3 0.10 0.25 -0.30 11 3.5 

No. 4 0.25 0.45 -0.35 8 9 

No. 5 0.05 0.65 -0.15 6.5 17 

No. 6 - 0.40 - 17 3.5 

 

 

Figure 9. On-site experiment. (a)-(f) Scene of the robot climbing over slopes in the environment. 

   
(a)                                                                             (b) 

   
(c)                                                                              (d) 

   
(e)                                                                              (f) 



Figure 10 shows an example from the on-site experiment where a module in the 

centre of the robot (module 4) is tracked and analysed. In Figure 10, the three curves 

from the top to the bottom represent the afferent stimuli, sensory input and joint output, 

respectively. The vertical lines indicate the moments when the robot is climbing over 

slopes shown correspondingly in Figure 9(a)-(f). The output of the module is shifted 

when the robot is climbing over slopes. An exception is the last slope (see Figure 9(f)). 

The reason is that during the climbing of the last slope, all modules can contact the 

terrain periodically. This means no stimuli are passed to the modules and thus their 

corresponding joint oscillation would not be shifted. Based on the results, we conclude 

that the proposed control mechanism is effective in realising adaptive locomotion 

pattern for caterpillar-like robot. 
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Figure 10. Tracked data of module 4 during the on-site experiment, namely the afferent stimuli 

over time (top); the sensory input generated by the corresponding sensory neuron (middle); and 

output (bottom). 



6 Conclusion 

In this paper, a framework of closed-loop control for adaptive locomotion of a 

caterpillar-like robot was presented. Biologically inspired by the spinal circuit of 

lampreys, sensory feedback is successfully integrated into a new CPG model by means 

of three components, namely a sensor processor, a reaction maker, and a parameter 

modulator that control the robot locomotion together. To achieve adaptive behaviours, 

reaction strategies are further optimised by a genetic algorithm. Both simulation and on-

site experiment show the effectiveness of the approach in realising adaptive locomotion 

of a caterpillar-like robot. 

For future work, two aspects need to be improved. First, for the reaction maker, 

more specific patterns should be identified so that more reaction behaviours can be 

made. Second, energy consumption should be considered during the robot locomotion, 

which would be helpful in making the locomotion not only faster and more stable, but 

also more efficient. 
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