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Abstract— Particle filters can be used in navigation and state
estimation problems. They can approximate arbitrary posterior
distributions and do not require assumptions of Gaussianity
or linearizations. This paper suggests to use the discretized
posterior distributions that are produced within the filter
beyond the state estimation, to compute control actions based
on the information about uncertainty of the states. A case study
is presented, and this indicates that the suggested approach can
give robustness against uncertainty and reduce the amount of
required control action.

I. INTRODUCTION

The guidance of an autonomous vehicle is often
performed based on a sequence of cascaded elements. One
is the acquisition of state estimates, then the guidance and
control blocks use those estimates to compute control actions
that allow the system to achieve the control objectives. The
estimates, due to sensor limitations, are often corrupted
with noise. Bayesian estimation techniques [1] allow to
estimate the states optimally based on the uncertainty of
the information, producing states estimates and posterior
distributions.

The wide spectra of sequential Monte-Carlo techniques
allow to compute any posterior distributions if a sufficiently
large amount of particles is given [2], [3]. This makes
particle filters versatile for many navigation applications
such as terrain or map base location [4].

The posterior density functions of the state vector
produced by Bayesian filters are generally used only within
the framework of state estimation. It is then implicitly
understood that an average or some other statistic from
the particle cloud is going to be used further down in the
control cascade. However, some authors have pointed out,
that controlling a vehicle/robot coherently with awareness
of the uncertainty can enhance the robustness and autonomy
of the system [5], [6], [7].

There exists an extensive literature on control under
stochastic environments [8], [9], [10]. A big part of
this literature is concerned about decision processes and
dynamic programming. Model Predictive Control can also
be implemented for finding trajectories that take into
consideration the uncertainty in the state estimate [11], [12],
[13], [6].

Contrary to the conventional approach, which computes
the control action given the estimate of the state, this
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Fig. 1. Block diagram of the architecture of the different control approaches

paper proposes to use a Rao-Blackwellized particle filter
to obtain state estimates; Since the filter also provides a
discretized posterior distribution, we can use this information
beyond the state estimate problem and use it to compute
the corresponding control action (see Fig. 1), similarly to
the approach proposed in [12]. This allows us to compute a
control action which is in accordance with the state uncer-
tainty. The contribution of the paper lies in the design of a
controller formulation that allows the implementation within
a Rao-Blackwellized Particle filter. Such a filter reduces the
dimension of the sampled state space, when compared to
a standard particle filter, making it possible to achieve the
same performance with a lower number of particles, thereby
decreasing the computational burden.

The paper is organized as follows: Section II formulates
the controller and explains the difference between the con-
ventional controller and the proposed one. Section III shows
how to calculate the controller based on a Rao-Blackwellized
particle filter. Section IV presents a case study to illustrate
an implementation and the possible differences between the
two control approaches. Section V explains the results and
Section VI draws the conclusions.

II. CONTROLLER

A common practice in the implementation of a controller,
described by a function v(·), is to use an estimate of the
state, typically the expectation value E[x] =

∫
p(x)dx,

to calculate the desired control input u = v(E[x]). The
approach suggested in this paper is to use the expected
input u = E[v(x)] as control input instead. For nonlinear
functions, these two approaches can have different outcomes
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Fig. 2. Example on how computing the expected value of the controller
(E[v(x)]) or the controller based on the expected value of the states:
v(E[x]) lead to differences.

as illustrated in Fig. 2. This is due to how the control function
v(·) transforms the probability distribution p(x). Note that
p(x) refers to p(xt|y1:t) but the conditioning is skipped for
notational simplicity.

In order to calculate the value of E[v(x)], the following
integral has to be solved:

u = E[v(x)] =

∫
p(x)v(x)dx (1)

In most of the cases the integral is complex or analytically
unsolvable, particularly when the controller, v(·) is nonlinear
and the probability distribution is not known in closed form.
For this, when a discretization such as a particle filter is
used to represent p(x), the expected value can be calculated
as [12]:

E[v(x)] ≈ Ê[v(x)] =
1

N

N∑
i=1

w(i)v(x(i)) (2)

The approach proposed in this paper is designed for a
controller that has the following formulation:

v(x) = apvp(x
p) + alVlx+ a0 (3)

where the state x can be separated in two parts xp and
xk. In particular, xp is the part of the state discretized
by particles, and xk consists of the remaining states.
Furthermore, The nonlinear function v(·) has a nonlinear
part vp(·) and a linear part in which Vl is a vector and
ap, al, a0 are constants. Then E[v(x)] can be simplified as:

E[v(x)] =E[apvp(x
p) + alVlx+ a0]

=apE[vp(x
p)] + alVlE[x] + a0

(4)

which by using the approximation described in Eq. (2) can
be expressed as:

E[V (x)] ≈ ap[
1

N

N∑
i=1

w(i)vp(x
p,(i))] + alVlx̂+ a0 (5)

Note that x̂ ≜ E[x]. The linear transformation Vlx̂
does not need a discrete description, while the nonlinear
transformation v(xp) needs a discrete description. The
notation of linear/non-linear parts of the controller separates
the states that need a discretized description of the
probability density function (pdf). One way to obtain such
discretization is by taking advantage of the state estimate
produced by a Rao-Blackwellized particle filter (RBPF).
The following section explains how to incorporate the
controller within the framework of an RBPF.

III. IMPLEMENTATION OF THE CONTROLLER WITH A
RAO-BLACKWELLIZED PARTICLE FILTER

Tracking applications often employ Bayesian frameworks
to make state estimates. Bayesian estimators combine the
knowledge of state-space models and approximations of the
posterior density functions to estimate the state vector. A
very generic model for Bayesian state estimation [3] can be
written as:

xt+1 = f(xt, wt)

yt = h(xt, et)
(6)

At a given time t, xt is the state variable, yt is a mea-
surement, f, h are nonlinear functions and et, wt are mea-
surement noise and process noise, respectively. Then the
estimation is done by computing the pdf:

p(xt|y1:t) =
p(yt|xt)p(xt|y1:t−1)

p(yt|y1:t−1)

p(yt|y1:t−1) =

∫
p(yt|xt)p(xt|y1:t−1)dxt

(7)

Depending on whether the integral can be analytically
solved, linearized or numerically computed, different filters
are used. Among the most common are: Kalman filter (KF),
Extended KF (EKF), Unscented KF (UKF), Gaussian sum
KF and particle filter (PF).

Particle filters are used when analytical approximations
and linearization are difficult to make. Instead, a dynamic
stochastic grid of particles is used to represent the posterior
density:

p(xt|y1:t) =
N∑
i=0

w
(i)
t δ(xt − x

(i)
t ) (8)

The large grid of particles comes with the drawback of
computational expense. The amount of particles needed
also grows with the state dimension. Even for moderate
dimensions (e.g. as low as 6 ) the problem quickly becomes
unfeasible for real time applications [14].

The Rao-Blackwellized PF solves part of this challenge by
separating the state vector in two parts: xpt refers to the part
of the filter described by particles and xkt represents the one
described by KFs. One part enters nonlinearly in the system
equations, and thus will be estimated by a particle filter, and
one enters linearly in the system equations, and thus will
be estimated by a Kalman filter. This reduces the amount
of computational burden compared to a basic PF, because



fewer particles are needed due to the smaller dimension of
xpt . Based on the RBPF formulation proposed in [3], [15] a
general expression for the model underlying the RBPF is:

xpt+1 = fp(xpt ) + F p(xpt )x
k
t +Gp(xpt )w

p
t

xkt+1 = fk(xpt ) + F k(xpt )x
k
t +Gk(xpt )w

k
t

yt = h(xpt ) +H(xpt )x
k
t + et

(9)

For which noises are assumed Gaussian and independent
wpt ∼ N (0, Qpt ), w

k
t ∼ N (0, Qkt ) and et ∼ N (0, Rt).

Since the particle filter offers a discretized description
of the posterior distribution, it fits nicely to implement the
controller proposed in Section II.

The following algorithm, based on the implementation
described in [15], illustrates how the computation of the
controller (Eq.5) can be implemented within the RBPF:(Note
that the model could also include the known control action
ut, but this is omitted in the generic expression following
the formulation proposed in [15].)

1.INITIALIZATION
N Particles are initialized as x

n,(i)
0|−1

∼ pxn
0
(xn

0 ) for the nonlinear states

and {xk,(i)
0|−1

, P
k,(i)
0|−1

} = {xk
0 , P

k
0 } for the linear states.

2A. PF MEASUREMENT UPDATE For the N particles calculate the
importance weights

q
(i)
t = N

(
h(xp

t ) +H(xp
t )x

k
t|t−1, H(xp

t )Pt|t−1(H(xp
t ))

⊤ +Rt

)
(10)

Normalize (q̃t(i) =
q
(i)
t∑
qt

)

x̂p
t|t =

∑
q̃
(i)
t x

p,(i)
t (11)

2B. KF MEASUREMENT UPDATE

x̂k
t|t = x̂k

t|t−1 +Kt

(
yt − h(xp

t )−H(xp
t )x

k
t|t−1

)
Pt|t = Pt|t−1 −KtMtK

⊤
t

Mt = H(xp
t )Pt|t−1(H(xp

t ))
⊤ +Rt

Kt = Pt|t−1H
⊤(xp

t )M
−1
t

(12)

2C. COMPUTE CONTROL ACTION

ut = ap[

N∑
i=1

q̃
(i)
t v(x

p,(i)
t )] + alVlx̂t|t + a0 (13)

Resample particles if needed.
3A. PF TIME UPDATE

xp
t+1 ∼ N

(
fp(xp

t ) + F (xp
t )x

p
t , F p(xp

t )Pt|t(F
p(xp

t ))
⊤+

Gp(xp
t )Q

p
t (G

p(xp
t ))

⊤) (14)

3B. KF TIME UPDATE

x̂k
t+1|t =Fkx̂k

t|t + fk(xp
t ) + Lt

(
xp
t+1|t − fp(xp

t )− F p(xp
t )x̂

k
t|t

)
Pt+1|t =Fk(xp

t )Pt|tF
k(xp

t )
⊤ +Gk(xp

t )Q
k
t (G

k(xp
t ))

⊤ − LtMtL
⊤
t

Mt = Fk(xp
t )Pt|tF

k(xp
t )

⊤ +Gp(xp
t )Q

p
t (G

k(xp
t ))

⊤

Lt = Fk(xp
t )Pt|t(F

p(xp
t ))

⊤M−1
t

(15)
4. T=T+1 and step 2

Note that all the states present in the nonlinear part of the
controller, vp(xp), must be estimated with a particle filter.
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Fig. 3. Representation of the states, the masurements, the coordinates and
the path.

Given the case that an RBPF is already being used for state
estimation purposes, implementing the controller does not
represent a significant increase in the computational burden.

IV. ILLUSTRATIVE EXAMPLE AND SIMULATION

The behavior of the proposed control approach is sim-
ulated for the case of an underactuated autonomous un-
derwater vehicle (AUV) that moves at a constant velocity.
In the proposed scenario the vehicle obtains its navigation
information relative to a transponder placed subsea (p =
[0m, 0m]) whose position is assumed to be fixed and known.
The AUV measures the distance (r) and the bearing angle (θ)
from the transponder. The heading direction (ψ) is obtained
from an internal compass. The mission of the vehicle is to
follow a straight line path. The guidance used is line-of-
sight (LOS) guidance [16], together with with a proportional
controller.

A. Filter Model

The state vector: xt = [x, y, ψ, u, v, ψ̇]
⊤

is used for
estimate. The position elements of the state space are
estimated by the particle filter part of the Rao-Blackwellized
PF, i.e. xp = [x, y]

⊤
The rest of the state is estimated by

the Kalman filter: xk = [ψ, u, v, ψ̇]
⊤

.

The state transition model F used for the filter consists of
a constant velocity model and Q represents the process noise
of the system. Accelerations are modeled as white noise in
this model, and not measured or estimated.

F =


1 0 0 dt cos(ψ) −dt sin(ψ) 0
0 1 0 dt sin(ψ) dt cos(ψ) 0
0 0 1 0 0 dt
0 0 0 1 0 0
0 0 0 0 1 0
0 0 0 0 0 1


Q = diag([10−6, 10−6, 10−5, 10−4, 10−4, 10−2])

G = I6x6

(16)

The sensor used for positioning measures range, bearing
angle and yaw, that is, y = [r, ϕ, ψ]

⊤
and R is the covariance

matrix of the measurement noise. The observation model
that maps true states to measurements is described by the
following H,h matrices. The simulated measurements from
the USBL sensor that provides range r and bearing, and ϕ



the magnetometer that provides yaw measurements ψ are
corrupted with Gaussian noise.

H =

0 0 0 0 0 0
0 0 −1 0 0 0
0 0 1 0 0 0

h =


√
xt2 + yt2

atan
(
xt

yt

)
+ π

0


R = diag([0.2, 5π

180 ,
2π
180 ])

(17)

B. Controller

The LOS guidance controller, uses the distance to the path
e to calculate the angle at which the AUV should approach
the path. The look-ahead distance parameter ∆ = 3m
dictates the ratio of steering compared to the distance to
the path. The controller ensures that the vehicle follows
the direction prescribed by the guidance law. For simplicity,
this example only uses a proportional control action, with
kp = 10. For this particular case, the mission is to follow
the x axis, therefore e = y.

ψd = atan
(−e

∆

)
u(x) = −kψ(ψ − ψd)

(18)

The control action for this example is found by applying
to the proposed controller described in Eg. (5) the guidance
law and proportional action described in equations (18):

u(xt) = −kψ

(
N∑
i=1

−q̃(i) atan
(

−y(i)t

∆

))
− kψψ̂t|t (19)

C. Simulation Setup

In order to test and illustrate the difference between
the proposed control approach and the classical control
approach described in Section II, a batch of 100 simulations
is performed for each controller. The simulations use the
dynamics of the AUV described in [17].

The first controller uses the conventional approach where
the estimate of the position E[x] is used to calculate the
control action: u = v(E[x]). The second, the controller
proposed in this paper, finds the expected control action
given the position posterior density: u = E[v(x)].

In each simulation the filter uses 1000 particles,
and the vehicle is set up to start from the position:
P0(x, y, ψ) = [−100m,−5m, 0rad] and velocity
u, v, ψ̇ : [1m/s, 0m/s, 0rad/s]. The simulations first
run the vehicle in a straight line path at y = −5m to
allow the filter to converge; this is done to avoid that the
initialization choice of the filter affects the behavior of the
controller. Once it converges, at approximately x = −70m,
the vehicle starts the mission of following the straight line
y = 0. The results presented in the next section illustrate
how the vehicle behaves, once it has switched to follow the
y = 0 line.
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V. SIMULATION RESULTS AND DISCUSSION

An example of the performance of The Rao-Blackwellized
PF and the guidance is shown in Fig. 4. The vehicle
trajectory, represented with a black line, shows that the
vehicle is able to converge to and follow the path. The
blue line shows the estimate of the position by the RBPF.
The figure also shows seven different clouds of particles,
obtained at different times during the simulation. One can
see that the posterior distribution is quite wide, and there
is significant uncertainty regarding whether the vehicle is
above or below the path.

The results of the batch of simulations are shown in Fig.
5 and 6: red for the conventional controller, and blue for the
proposed controller. In both cases the parameters are tuned
equally for the filters and the controllers. Two apparently
similar controllers show a slight different behavior, still
both of them achieve the control objective of following the
straight line path at y = 0.

The proposed controller (see Fig. 5, shaded in blue) has
a slightly slower steering towards the path. An explanation
of this slower convergence rate could have been credited



Fig. 4. Result of a simulation the cloud of particles represents the position posterior distribution

by Jensen’s inequality that says that for a concave function
E[v(x)] ≤ v(E[x]). The absolute value of our function v(·)
is concave for the intervals (−∞, 0) and (0,∞), which
means that at least during the approach (when all the pdf lies
inside the intervals) the control action is smaller. It can also
be interpreted by looking at Fig. 4 at the first point. Here
some of the particle distribution lies on the upper side of the
path, and those particles contribute to making the controller
action smaller than for the conventional controller which
uses the state estimate to calculate the control action. On
the other side, the position uncertainty gives the proposed
controller a more cautious response, which results in less
oscillations from side to side. This makes the steady state
RMS error smaller than that of the conventional controller.
Note also that as the vehicle gets closer to the origin, the
posterior distribution becomes narrower (see Fig. 4). This
partially explains the reduction of the average RMS error
for the conventional controller (red line Fig. 5), since the
narrower the posterior distribution the more similar the
controllers become.

One of the benefits of using the proposed control approach
for this particular case is that it reduces the amount of
control action used to steer the vehicle, which is measured
as
∫
|u|dt. Fig. 6 shows the the amount of ”energy” used

by the controller grows slower for the suggested controller.

VI. CONCLUSIONS

This paper has proposed a controller that uses the frame-
work of a Rao-Blackwellized particle filter to compute the
expected control action given the uncertainty of the vehicle
location. The simulations for the tested scenario show that
this control approach may result in a more robust controller
and reducing the amount of action required to steer the

vehicle. This paper has demonstrated that for the given case,
accounting for the uncertainty in the states can improve the
performance of a controller.
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