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ABSTRACT: Chilean salmon farms release inorganic nutrients excreted by the fish into the sur-
rounding water in Patagonian fjords. The objective of this experiment from the Comau Fjord
(42.2° S) in southern Chile was to study how increased input of ammonium (NH,) and phosphate
(POy) from salmon farms might affect the community structure of bacteria in surface waters where
fish farms are located. We used microcosms (35 1) with NH,-N and PO,-P added to the natural sea-
water in a gradient of nutrient-loading rates, with the same N:P ratio as in salmon aquaculture
effluents. Additionally, we measured bacterial community structure at different depths in the
Comau Fjord to assess the natural variation to compare with our experiment. We used denaturing
gradient gel electrophoresis (DGGE) to create 16S rDNA fingerprints of the bacterial communities
and monitored biological and environmental variables (chlorophyll a, inorganic nutrients, pH,
microbial abundance). The nutrient-loading rate had a significant impact on the bacterial commu-
nity structure, and the community dissimilarity between low and high nutrient additions was up to
78 %. Of the measured environmental variables, phytoplankton abundance and increased pH
from photosynthesis had a significant effect. We observed no significant changes in bacterial
diversity, which remained at the same level as in the unmanipulated community. Thus, the bac-
terial community of the fjord was not resistant, but resilient within the time frame and nutrient
gradient of our experiment.

KEY WORDS:
Chile - Patagonia

Aquaculture - Eutrophication - Microbial community - Bacterial diversity -

INTRODUCTION

Cage aquaculture of fish releases inorganic nitro-
gen (N) in the form of ammonium (NH,) and inor-
ganic phosphorus (P) in the form of phosphate (PO,)
excreted by the fish to the surrounding water. Almost
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all organic waste is released as faeces, which sink out
of the water column but may partly dissolve and
enter the water eventually (Olsen & Olsen 2008,
Wang et al. 2012). The release of inorganic N and P
can potentially cause eutrophication. Most eutrophi-
cation studies have focussed on the effects on pri-
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mary production and resulting algal blooms (Ferreira
et al. 2011), whereas very few have investigated the
effects on the bacterial community structure. Seawa-
ter contains 108-10° bacteria I-! and hundreds of spe-
cies in a community under normal natural conditions
(Torsvik et al. 2002). Marine bacteria have important
roles in the recycling of biomass and in biogeochem-
ical cycling of essential elements for life, and they
play an ecological role in the microbial food web
(Azam et al. 1983, Falkowski et al. 2008, Gilbert &
Neufeld 2014). Possible regulating factors for bac-
terial community structure are inorganic nutrients
(Fisher et al. 2000), the type and availability of or-
ganic substrate (Cottrell & Kirchman 2000, Gémez-
Consarnau et al. 2012), mortality from predation and
virus infection (Langenheder & Jurgens 2001, Topper
et al. 2013), physicochemical variables like tempera-
ture, salinity and pH (Krause et al. 2012, Campbell &
Kirchman 2013) and possibly other biotic interactions
such as allelopathy (Long & Azam 2001). Previous
field studies indicated that bacterial community com-
position and diversity changed after an increase in
nutrient loading (Fisher et al. 2000, Schafer et al.
2001). In the microbial ecosystem, this is likely to be
the result of a complex response, with bottom-up
effects from increased productivity and top-down
effects from predation and some of the other regulat-
ing factors mentioned above (Lebaron et al. 1999,
Bohannan & Lenski 2000, Schafer et al. 2001, Horner-
Devine et al. 2003).

Very large changes in the bacterial community
may disturb its functions and possibly favour species
that might be harmful or a nuisance to aquatic organ-
isms, including aquaculture fish, and to people. In
soil microbiology, there is a concept of healthy soil,
which harbours a healthy microbial community, i.e.
one that is maintaining its biogeochemical processes,
and sustainability of agriculture or land use can be
related to it (Kennedy & Stubbs 2006). It might be
useful to have a similar concept for the seawater
microbial community to aid the management of
coastal and fjord waters.

The Comau Fjord (42.2° S, northern Patagonia,
Chile) is naturally prone to N-limitation of the pri-
mary production in surface water (Iriarte et al. 2007,
2013) and has cage aquaculture activity along the
shores. In an in situ microcosm experiment, L. Olsen
et al. (2014) studied how the microbial food web in
the Comau Fjord responded to increased inorganic
nutrient loading with a nitrogen to phosphorus ratio
of 28 (mol:mol), typical for aquaculture (Olsen &
Olsen 2008, Wang et al. 2012). The main result of that
study was a positive linear biomass response to an

ammonium-loading gradient observed in the micro-
autotrophic, micro-heterotrophic and meso-hetero-
trophic functional groups, dominated by phytoplank-
ton, ciliates and copepods, respectively (L. Olsen et
al. 2014). This is similar to the response found in
other temperate coastal waters (Olsen et al. 2006,
2007). Both in the Comau Fjord (L. Olsen et al. 2014)
and in Atlantic water (Olsen et al. 2006), the relative
contribution of bacteria to biomass decreased with
increasing nutrient-loading rate.

Here we focussed on how bacterial community
structure and diversity were affected by increased
loading rate of inorganic nutrients with an aquacul-
ture effluent N:P ratio, in the microcosm experiment
described in L. Olsen et al. (2014). We used denatur-
ing gradient gel electrophoresis (DGGE) to make 16S
rDNA fingerprints of the bacterial communities, and
we monitored environmental variables. In addition,
we created a depth profile of bacterial community
structure and environmental variables in the Comau
Fjord for comparison with our experiments. By com-
paring the community dissimilarity between treat-
ments and comparing with the natural communities
and literature values, we tried to quantify the impact
of changes in nutrient loading. With direct gradient
analysis (redundancy analysis), we tested whether
the nutrient-loading gradient had a significant effect
on the community and attempted to elucidate which
environmental factors had the strongest effect.

MATERIALS AND METHODS

This study is partly based on the microcosm ex-
periment described by L. Olsen et al. (2014). For a
more detailed description of the experimental setup
and methods, see that study.

Microcosm experiment
Experimental setup

The effect of increasing the inorganic nutrient-
loading rate on the bacterial community was tested
with a microcosm experiment in the Comau Fjord in
northern Chilean Patagonia. The experiment lasted
16 d and took place during austral summer, between
18 January and 3 February 2010, at the Huinay Field
Station (Fig. 1). White, pre-washed polyethylene
containers (35 1 capacity) were filled with seawater
from 10 m depth to ensure collection of full-salinity
seawater. The water was pumped from close to the
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Fig. 1. Comau Fjord and Huinay Field Station in the Los
Lagos region, Chile

pier and was pre-screened through a 100 pm net and
mixed in a polyethylene container before all micro-
cosm containers were filled. Copepods, mainly small
calanoid species, were added to a concentration of
0.25 ind. 17!, equal to the in situ concentration. Pre-
filtering and subsequent addition of copepods was
done to ensure an equal abundance in all micro-
cosms. The microcosms were incubated at 2 m depth
to ensure stable in situ temperature. The irradiance
in the microcosms ranged from 70 to 350 pmol pho-
tons m~2 s~'. The microcosms were mixed daily when
they were taken up for sampling and/or nutrient
addition (L. Olsen et al. 2014).

Nutrient addition

Ammonium and phosphate were added according
to the 8 treatments summarized in Table 1. The N:P
ratio was set to 28 (mol:mol), which is typical for
nutrient emission from salmon farms (Wang et al.
2012). No nutrients were added to Treatment 1, and
Treatment 2 was intended to mimic natural loading
with an N:P ratio of 16 (Redfield 1958). Silicon was
added to achieve an N:Si ratio of 1, which is the aver-
age natural ratio (Redfield 1958). Three replicate
microcosms were established for the 8 levels of nutri-
ent addition, i.e. 24 containers in total. Nutrients
were added once every day in the afternoon. On
sampling days, the nutrients were added after the
sampling was finished.

Table 1. Loading rates (pmol 1! d7!) for ammonium (Ly,

NH,-N) and phosphate (Lp, PO4-P) and N:P ratio (mol:mol)

in the 8 experimental treatments of the main microcosm
experiment. Modified from L. Olsen et al. (2014)

Treatment Ly Lp N:P
T1 0.00 0.00

T2 0.30 0.019 16
T3 0.50 0.018 28
T4 0.70 0.025 28
TS5 1.00 0.036 28
T6 1.40 0.050 28
T7 2.00 0.071 28
T8 3.00 0.107 28

Sampling and measurements

Every second day, 1 1 water samples for chloro-
phyll a (chl &), pH and nutrients were measured on
almost every sampling day, whereas flagellates were
counted on Days 2, 8, 10 and 16, bacteria on Days 2,
6, 10 and 16, and phytoplankton on Days 0, 4, 10 and
16 (L. Olsen et al. 2014) were retrieved. The micro-
cosms were mixed by carefully turning the contain-
ers before sampling.

Samples for chl a analysis were collected on GFF
filters before pigment extraction for 24 h in 90 % ace-
tone and measurement in a fluorometer (Turner TD
700) before and after acidification (Holm-Hansen &
Riemann 1978). Nitrate, phosphate and silicic acid
were measured in an auto-analyser (Technicon),
described by Atlas et al. (1971). Ammonium was
measured by the indophenol blue method (Grasshoff
et al. 1983). Seawater pH was measured with a com-
bined glass electrode with an Ag/AgCl reference
electrode (Radiometer). The pH electrode was cali-
brated with NBS buffer solutions at 20°C.

For counts of bacteria and nanoflagellates, 50 ml
samples were preserved with glutaraldehyde (2%
v/v) and stored in the dark at 4°C before the cells
were counted by epifluorescence microscopy in a
Zeiss Axiostar microscope. Bacteria were stained
with DAPI on 0.2 pm black polycarbonate filters
(Millipore) to a final concentration of 0.01% v/v
(Porter & Feig 1980). Nanoflagellates (20 to 30 ml)
were filtered stained with proflavine (3-6-diamidine-
acridine hemi-sulfate) on 0.8 pm black polycarbonate
filters (Millipore) to a final concentration of 0.033 %
w/v (Hass 1982). Phytoplankton, ciliates and zoo-
plankton were counted by light microscopy as de-
scribed in L. Olsen et al. (2014).
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Polymerase chain reaction (PCR) and DGGE

On Day 16 (endpoint), water samples from repli-
cate 1 of each of the 8 treatments were filtered onto
0.2 pm Isopore membrane filters (Millipore). In addi-
tion, samples were taken on Days 6 and 10 from
Treatments 4 and 6, representing medium and high
nutrient-loading rates, respectively (Table 1). On
Day 0 (d0), 1 sample was taken from the water from
10 m used for the experiment before it was distrib-
uted to the microcosms, and an additional water
sample was collected from 2 m depth. Genomic DNA
was extracted from the collected membrane filters by
using the PowerSoil DNA isolation kit (MoBio). After
extraction, DNA was suspended in 50 pl of sterile
Milli-Q water, and conserved at —80°C until used.
DNA concentration was measured with a Qubit 2.0
fluorometer, using the Qubit assay wherein a dye flu-
oresces when bound to DNA (Qubit 2.0 fluorometer
user manual).

Bacterial 16S rDNA was amplified by PCR. First,
fragments of 1500 bp were obtained with primers
Eub27F and Eub1542R (Stackebrandt & Liesack 1993).
Thereafter, DNA samples were amplified with the
eubacterial primers 341f-gc and 915R (Muyzer &
Ramsing 1995). PCR products were checked by elec-
trophoresis on 1% agarose gels and subsequently
stained with Sybersafe (0.5 mg ml™?). DGGE was
performed according to Muyzer et al. (1993) in the
D Gene System (BioRad). A denaturant gradient from
40 to 70% (100 % denaturant was 7 M urea plus 40 %
[wt/vol] formamide), increasing in the direction of
electrophoresis, was used. The gels were subjected
to a constant voltage of 200 V for 6 h at 60°C, and
after electrophoresis, they were stained for 20 min in
1.25x TAE containing 1x (final concentration) SYBR
Green (Molecular Probes) and photographed under
UV illumination. The DGGE band patterns were
analysed with the Gel2k software version 1.2.6 (de-
veloped by Svein Norland, University of Bergen,
Norway). Gel2k quantified the intensities of the bands
compared to the background of the lanes.

Depth profile sampling

On 24 January 2010, depth profile sampling was
undertaken outside of Huinay Field Station approxi-
mately in the middle of the Comau Fjord, which was
considered to be a representative location of the fjord
(Elizondo-Patrone et al. 2015), allowing deeper sam-
pling than at the pier. At selected depths (5, 10, 15,
20, 40 and 100 m) samples were taken for chl g,

inorganic nutrients (NOj3, POy, Si, NH,), pH and for
PCR-DGGE fingerprints of the bacterial community.
These were analysed with the methods described for
the main experiment. In addition, a sample from the
brackish layer at 2 m depth was taken for community
analysis at the start of the experiment on 18 January.

Statistical analysis

Dissimilarity matrices for the community samples
were calculated from band intensities in the DGGE
fingerprints from the 2 experiments and the depth
profile samples. In this study, we focussed mainly on
the difference in bacterial species composition be-
tween samples, and therefore we chose to use the
Bray-Curtis dissimilarity, which is a commonly used
measure for species counts and ignores double zero
samples (Legendre & Legendre 2012). The Bray-
Curtis dissimilarity matrices were visualized with
non-metric multidimensional scaling (NMDS) ordi-
nations. In NMDS, the stress denotes the mismatch
between the rank order of the dissimilarity in the
data and of the dissimilarity in the ordination, and
the samples are moved repeatedly until the stress
reaches a minimum. This stress value is reported.
The linear fit R? is the correlation between fitted val-
ues and ordination distances. Increasing the number
of dimensions in the ordination will reduce the stress,
but the goal is to reduce the multidimensional data to
as few dimensions as possible. Therefore, the num-
ber of dimensions was chosen for which an accept-
able stress value, i.e. below 0.1, was obtained.

The correlation between the Bray-Curtis dissi-
milarity matrices for the phytoplankton community,
presented in L. Olsen et al. (2014), and the bacterial
community was assessed with Mantel tests. The bac-
terial matrix from Day 16 (final) was tested against
the matrices for the phytoplankton community from
Day 16, and also from Day 10 to check for possible
delayed effects of algal composition on the bacterial
composition on Day 16. The data on the abundance
of phytoplankton and other functional groups of
plankton were obtained from L. Olsen et al. (2014).
The environmental data matrix was standardized by
the formula [(n — average n)/SD] + 3 to correct for the
widely differing scales of the measured variables.

Based on the square-root transformed DGGE com-
munity fingerprints and the standardized environ-
mental variables in the main microcosm experiment,
a direct (constrained) gradient analysis with redun-
dancy analysis (RDA) was performed. Environmental
variables not presented in this article, but presented
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in L. Olsen et al. (2014), were also included in the
analysis. The significance of the constraints or axes
was assessed by permutation tests for RDA using 999
permutations (R documentation, package vegan ver-
sion 1.16-32). All statistical analyses were performed
in the R 2.9.1 platform (R Development Core Team
2008), except diversity, which was assessed with the
Shannon diversity index calculated in PAST (Ham-
mer et al. 2001). Approximate confidence intervals
for the Shannon index were computed with a boot-
strap procedure. We produced 9999 random samples,
each with the same total number of individuals as in
the original sample. For every individual in the ran-
dom sample, the taxon was chosen with probabilities
proportional to the original abundances. A 95% con-
fidence interval was then calculated (PAST manual).

RESULTS
Microcosm experiment

Data on the concentrations of the inorganic nutri-
ents, the abundance of all functional plankton groups

(¢
o
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|
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and the micro-phytoplankton community composi-
tion were presented in L. Olsen et al. (2014). Nitrate
and ammonium were almost depleted throughout the
experiment, with a slightly higher ammonium con-
centration measured in the highest addition treat-
ments. Phosphate was not depleted in any treatment.
Ammonium and phosphate were added in the same
ratio in all treatments except in Treatment 2 (see
Table 1), which mimicked natural nutrient loading.
For statistical analysis involving the nutrient-loading
gradient, ammonium was used, since it was the nutri-
ent most likely to induce a response because it was
the limiting nutrient, at least in the low addition
treatments (L. Olsen et al. 2014).

The chl a concentration responded to the ammo-
nium-loading gradient during the experiment (Fig. 2A).
From Day 6 and throughout the experiment, linear
regression showed a significant positive relationship
(p < 0.05, not shown) between chl a concentration
and ammonium-loading rate. The pH in the micro-
cosms increased with increasing ammonium-loading
rate (Fig. 2B). Bacterial abundance increased in all
treatments initially from (1-2) x 10° I"! on Day 2 to
(5-7) x 10° 1! on Day 6. On Day 10 the abundance

pH

O

Flagellates (106 I-1)

T T T T
2 4 6 8

| | T T
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Fig. 2. Development of (A) chlorophyll a (chl a) concentration, (B) pH, (C) abundance of DAPI-stained bacteria and (D)
proflavine-stained nanoflagellates from the microcosm experiment. T1-8 refer to the nutrient-loading treatments described in
Table 1. (C) and (D) modified from L. Olsen et al. (2014)
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Fig. 3. (A) Non-metric multidimensional scaling (NMDS) ordination where the distances between samples are based on the

ranks of the Bray-Curtis dissimilarities between 16S DGGE fingerprints from the 8 treatments (T1-8, Table 1) and Day 0 (d0) of

the microcosm experiment, with day (d) number denoted. The figure shows axis 1 and 2 of a 3-dimensional ordination (stress =

0.054, R? = 0.98). The white arrows indicate the direction of bacterial community succession of T4 and T6 (encircled), and the

grey arrows indicate the divergence of the community structure in the samples from Day 16. (B) Bray-Curtis dissimilarity
matrix for the 16S DGGE fingerprints from all treatments on Day 16 and the Day 0 sample

increased to around 8 x 10°1* in T1 and to around 6 x
10°1'in T7 and 8, whereas it had started to decrease
since Day 6 in all other treatments. On Day 16 the
abundance was close to the initial level in all treat-
ments (Fig. 2C). The abundance of flagellates varied
between 20 and 40 million 17! on Day 2, and
remained between 20 and 30 million 1-! for the other
sampling days throughout the experiment, with the
exception of Treatments 5 and 6, which showed
slightly higher counts (Fig. 2D). We found no signifi-
cant linear relationships between the abundances of
bacteria or flagellates and the ammonium-loading
rate, except for a negative relationship with bacteria
on Day 6 (L. Olsen et al. 2014).

The NMDS ordination and Bray-Curtis dissimilar-
ity matrix (Fig. 3A,B) show how the bacterial commu-
nity composition changed during the experiment. We
have samples from Days 6 and 10 only for Treatments
4 and 6. The communities in these 2 treatments fol-
lowed a similar successional pattern from Day 0 to
Day 16 (white arrows in Fig. 3A). The other treat-
ments also had a succession and were removed from
the Day 0 community, but low and high treatments
diverged on Day 16 (grey arrows in the ordination,
Fig. 3A). RDA of the community data for all treat-
ments on Day 16 with the nutrient (ammonium)-
loading rate as the only constraint indicated that
ammonium significantly constrained the bacterial
community composition at this time (p < 0.05, not
shown). The number of DGGE bands obtained was
20 to 24 at all times in all treatments. The Shannon
diversity index varied between 2.5 and 3 in the
samples from the microcosm experiment (Fig. 4).

According to a linear regression of the Shannon
index as a function of the ammonium-loading gradi-
ent, on Day 16 there was no significant effect of the
gradient on diversity (p = 0.077). The RDA ordination
based on the DGGE band matrix from all samples
from the microcosm experiment is shown in Fig. 5.
The permutation test indicated significance of the
constraints on microbial community structure when
all constraints (environmental variables) were in-
cluded (p = 0.036). When testing for individual en-
vironmental variables as constraints, ammonium-
loading rate (Ly), pH, chl a and phytoplankton
abundance were significant (p < 0.05). The Mantel
tests for correlation between the community dissimi-
larity matrix of bacteria on Day 16 with the matrices
for phytoplankton on Days 10 and 16 did not show a
significant correlation, suggesting that neither past
nor present algal community composition had a sig-
nificant impact on bacterial community composition.

Depth profiles of environmental variables and
bacterial community fingerprints in the fjord

The depth profiles from the middle of the fjord
showed that nitrate (NOj3) and silicon (Si) were de-
pleted and phosphate (PO,) was reduced to 0.5 pM,
at 5 m depth, whereas all started to increase at 10 m
(Fig. 6). At 100 m, the concentrations of NO3, Si and
PO, were 28, 21 and 2.4 pM, respectively. The am-
monium (NH,) concentration showed a small peak of
~0.25 pM at 10 and 15 m, whereas it showed values
around 0.15 pM in deeper water (Fig. 6). The profile

Bray-Curtis dissimilarity
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Fig. 4. Shannon diversity index 31
(H') calculated from the 16S
DGGE fingerprints for the com-
munities in the main microcosm 2.9 A

experiment with Treatments 1-8
(T1-8, see Table 1) on different
experimental days (d), the depth
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for chl a followed the ammonium vertical pattern,
showing a subsurface maximum in concentration at
10 and 15 m of 0.5-0.6 pg chl a 17!, decreasing at
deeper waters (0.2 ug 17}; Fig. 6). The pH was 7.6 in
the deep water and increased to 8.2 from 10 to 5 m
depth (Fig. 6).

Bacterial community structure was similar for the
sample from 5 m in the middle of the fjord and the 2
samples from 2 and 10 m at the Huinay pier on Day 0
of the experiment. The sample from 10 m in the
mid-fjord depth gradient was 40-50 % dissimilar from
those samples, and the community composition was
increasingly different at 20, 40 and 100 m depth
(Fig. 7A,B). The sample at the surface boundary layer
had a very different bacterial community (Fig. 7A,B).
The Shannon diversity index for the bacterial DGGE
fingerprints in the depth gradient was between 2.6
and 2.9, with the lowest value for the surface bound-
ary layer (Fig. 4).

DISCUSSION

Bacterial community structure in the nutrient-
loading gradient

Treatments 4 and 6 showed a similar succession in
the structure of the bacterial community, whereas in
treatments with higher or lower nutrient-loading

T6d6
T5d16
T4d16
T4d10

T4d6
T3d16
T2d16
T1d16
d010m
100m
40m
20m
10m
5m
SBL
do2m

16S DGGE sample

rates, the communities diverged on Day 16, as seen in
the NMDS ordination (Fig. 3A). The high Bray-Curtis
dissimilarity between the Day 0 bacterial community
and the communities in all samples from Day 16, in-
cluding the low nutrient-loading treatments (Fig. 3B),
suggested that the experimental conditions, including
the pumping and re-distribution of the water from
10 m depth to the microcosm containers, contributed
to drive the succession initially. On Day 16, the
loading rate was a significant constraint on community
structure according to the RDA direct gradient ana-
lysis. This suggests that the community dissimilarity
between the treatments on Day 16 (Fig. 3A,B) was pri-
marily caused by the different nutrient-loading rates.

A time series study from a coastal site in California
(USA) showed that the bacterial community at 5 m
depth studied with automated ribosomal intergenic
spacer analysis, another fingerprinting method,
could change by about 50 % in a month, measured as
Bray-Curtis dissimilarity (Fuhrman et al. 2015). The
maximum dissimilarity was found between winter
and summer, with approximately 60 % change. Over
10 yr, the average change in community structure
was 60%. Thus, the highest dissimilarity of 78 %
observed in our nutrient-loading gradient of the
microcosm experiment on Day 16 (Fig. 3B) was
higher than the difference between summer and
winter samples and the average 10 yr change
reported by Fuhrman et al. (2015). The maximum
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Fig. 5. Redundancy analysis (RDA) plot based on the square root-transformed
DGGE band intensity matrix and standardized environmental variables (NHy:
ammonium, NOg: nitrate, Si: silicon, Ly: ammonium-loading rate, chl a: chloro-
phyll a and abundance of bacteria, flagellates and phytoplankton) from all sam-
ples from the microcosm experiment. The environmental variables are shown as
vectors. The samples are represented by treatment number (T1-8, see Table 1)
and day number (d); dO is the Day 0 sample. Small circles indicate DGGE bands
representing bacterial species. Of the variance, 89% was constrained by the
components (axes), i.e. environmental variables. The proportion of the total vari-
ance explained by the first 2 axes was 41 %, and of the constrained part of the
variance, the first 2 axes covered 46 %. The permutation test for RDA indicated
significance of the constraints on microbial community structure when all con-
straints (environmental variables) were included (p = 0.036). When testing for in-
dividual environmental variables as constraints, ammonium-loading rate (Ly),
pH, chlorophyll a (chl a) and phytoplankton abundance were significant (p < 0.05)

dissimilarity between the communities
from surface and deep water in the
Comau Fjord at the time of the experi-
ment was 75 %, whereas the dissimilar-
ity between the communities at 10 m
depth close to the shore and in the mid-
dle of the fjord several days apart was
55% (Fig. 7B). It seems that the surface
bacterial community of the fjord can be
quite dynamic with around 50 % change
on short temporal or spatial scales. In
comparison, the coastal surface com-
munity studied by Fuhrman et al. (2015)
changed 30 to 40 % in a few days. More
stable environmental conditions in deeper
waters lead to more stable community
composition and is presumably the rea-
son for the bigger difference between
surface and deeper waters observed by
us and by others (Ghiglione et al. 2008,
Fuhrman et al. 2015, Yu et al. 2015).
The nutrient-loading gradient in our
experiment caused a variation in com-
munity structure of the same magnitude
as the maximal natural depth variation
in the fjord, and higher than the varia-
tion in the top 10 m of the water column.
The bacterial diversity was not signifi-
cantly affected by the ammonium-loading
rate on Day 16 according to linear re-
gression (p = 0.077). It was comparable
to the diversity of the natural commu-
nity, which was similar between depths
(Fig. 4). Our finding that the diversity
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Fig. 6. Depth profiles of (A) phosphate (POy,), silicon (Si) and nitrate (NOj3), (B) ammonium (NH,), (C) chlorophyll a (chl a) and
(D) pH at a mid-fjord site close to the experiment site in the Comau Fjord, Chile
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Fig. 7. (A) Non-metric multidimensional scaling (NMDS) ordinations based on the ranks of the Bray-Curtis dissimilarities

between 16S DGGE fingerprints from the depth profile including the surface boundary layer (SBL) in the Comau Fjord and

samples from 10 and 2 m depth at Huinay pier taken on Day 0 of the microcosm experiment. The figure shows axis 1 and 2 of
a 3 dimensional ordination (stress = 0.006, R% = 1). (B) Bray-Curtis dissimilarity matrix for the DGGE fingerprints

was maintained suggests that the bacterial commu-
nity remained healthy, following the theory that
diversity ensures stability and functional resilience
(Girvan et al. 2005).

PCR-DGGE detects all populations constituting more
than 1% of the bacterial community (Muyzer &
Smalla 1998, Fromin et al. 2002), potentially leaving
rare species undetected (Torsvik et al. 2002). For
this reason, DGGE is best suited for studying the
composition of the dominant bacterial community.
We were able to separate 20 to 24 different DGGE
bands in our samples. Similar numbers have been
found in natural seawater in other studies (Murray et
al. 1998, Olsen et al. 2013). With our general bacteria-
specific primer, the 16S DGGE bands represent bac-
terial species, but some bands can originate from
chloroplasts from eukaryotic algae, which also have
16S ribosomal DNA.

Bacterial community structure and environmental
variables

According to the RDA analysis, the ammonium-
loading rate was a significant constraint on bacterial
community structure, but the concentration of the
nutrients was not. Testing with individual environ-
mental variables revealed that phytoplankton abun-
dance, chl a and pH were significant constraints. All
of these variables had a positive response to the
ammonium-loading gradient, and chlorophyll and
pH are closely linked to phytoplankton abundance.
Photosynthesis in phytoplankton can induce a pH
increase in seawater if not totally counteracted by
respiration in phytoplankton and grazers (Falkowski
& Raven 1997). The uptake of inorganic carbon
during a bloom can be faster than the resupply by

diffusion, and the pH can increase to >9 during
blooms in eutrophic natural waters (Hansen 2002).
Therefore, the pH increase we observed was not
an experimental artefact of our microcosms, but
probably represents a maximum situation with very
little mixing of the water column. Because the
increase in pH is a direct consequence of increased
per volume photosynthesis, it is difficult to distin-
guish the pH effect from the effects of increased
phytoplankton abundance in our analysis. Not many
studies have investigated how the bacterial com-
munity associated with phytoplankton responds to
changes in the pH, but according to laboratory
studies with phytoplankton and bacteria, there was
a response in the bacterial community composition
due to a photosynthesis-induced pH increase (Olsen
2005). Krause et al. (2012) concluded that a small
reduction in pH due to ocean acidification resulted
in an altered bacterial community, suggesting that
some seawater bacteria are indeed sensitive to
changes in pH. According to this, pH can have a
direct influence on the community composition of
bacteria.

The concentration of inorganic nutrients did not
have a significant impact on the bacterial community
structure (Fig. 5). Nitrogen limitation in the low-addi-
tion treatments (L. Olsen et al. 2014) might have
selected for bacteria that are good competitors for
the nutrient, whereas in the high-addition treatments,
the selection was stronger for other traits such as
predator resistance (Bohannan & Lenski 2000, Horner-
Devine et al. 2003). The ammonium was nearly
depleted in all microcosms because it was immedi-
ately taken up by the cells, so these effects might
have been undetectable by our RDA analysis of en-
vironmental variables, but were indirectly reflected
in the significant effect of ammonium-loading rate.
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In addition to inorganic nutrients, heterotrophic
bacteria depend on organic matter for growth, and
can also exploit organic forms of the nutrients.
Because fish release almost all their organic waste in
particulate form, i.e. faeces, they contribute little to
dissolved organic matter in the upper water column,
although the particulate waste may eventually dis-
solve from the sediments (Wang et al. 2012). Without
an allochthonous source of organic matter, hetero-
trophic bacteria depend on organic matter from
phytoplankton and organisms at other trophic levels
in the food web, i.e. directly or indirectly from the
primary producers. Different bacteria have different
preferences for organic substrates (Cottrell & Kirch-
man 2000, Gémez-Consarnau et al. 2012), and phyto-
plankton blooms can modify the bacterial community
by the production of different types of organic sub-
strates (Buchan et al. 2014, Taylor et al. 2014).

In our microcosm experiment, the micro-phyto-
plankton community structure changed throughout
the nutrient-addition gradient and was significantly
constrained by the loading rate (L. Olsen et al. 2014).
As revealed by the Mantel test, no significant corre-
lation was found between bacterial community struc-
ture on Day 16 and the phytoplankton community
structure on Day 16 or Day 10. Different phyto-
plankton species have different associated bacterial
satellite communities (Schafer et al. 2002, Sapp et al.
2007), but those were laboratory studies with single
phytoplankton species in culture. In a mixed natural
community with many phytoplankton species, as
observed in our experiment, such species-specific
effects may be difficult to detect.

We did not find that flagellate abundance had a
significant impact on the bacterial community struc-
ture. That the bacterial abundance was reduced to
the initial level after an initial increase indicates that
it became predator-controlled. The increase in bacte-
rial abundance was similar in all treatments, includ-
ing T1 with no nutrient addition, suggesting that the
initial increase could be due to a container effect of
the microcosms. Lebaron et al. (1999) observed a
similar response in bacterial abundance in nutrient-
addition experiments. In seawater mesocosms, those
authors observed a 10-fold increase in the number of
heterotrophic protozoans followed by a decrease in
bacterial numbers, i.e. predator—prey dynamics. Our
counts of proflavine-stained flagellates included all
autotrophic, mixotrophic and heterotrophic cells (L.
Olsen et al. 2014). This may have obscured a possible
abundance response in the bacterivorous fraction of
the flagellates. Lebaron et al. (1999) concluded that
the observed changes in bacterial community struc-

ture measured by DGGE fingerprinting was a com-
bined effect of bottom-up effects on bacterial produc-
tivity, coupled with top-down effects of predation. It
is not unlikely that predation also had some impact in
our experiment along with other unmeasured vari-
ables, such as virus infection (Topper et al. 2013) and
allelopathy (Long & Azam 2001).

Concluding remarks

The nutrient-loading rate had a significant effect
on the bacterial community structure of the Comau
Fjord, and the increase in phytoplankton abundance,
and pH increase as a consequence, were the strongest
forcing factors. However, the bacterial diversity was
not significantly affected. According to rough calcula-
tions in L. Olsen et al. (2014), the maximum theoretical
ammonium loading from salmon aquaculture in the
Comau Fjord, based on the number of fish-farm con-
cessions, is approximately 1 pmol1"! d7!, i.e. the mid-
dle value in our experimental gradient. The answer
to our question whether nutrients from fish farms can
change the bacterial community is yes, but since the
diversity of the community was maintained, it appears
to be a healthy response to increased primary produc-
tion. In this study, we only investigated the response
of the bacterial community. Other environmental im-
pacts, such as increased sedimentation of organic
matter and subsequent anoxia in the bottom sedi-
ments, may be more appropriate for determining the
limits for sustainability. Our experiment covered the
time period of an algal bloom caused by an increased
nutrient-loading rate, i.e. short-term effects of eutrophi-
cation. Fish aquaculture is a long-term activity contin-
uously releasing nutrients to the fjord. Therefore,
long-term effects should be studied to account for e.g.
changing environmental conditions due to seasons
(Y. Olsen et al. 2014).
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