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Abstract— Self-optimizing control focuses on minimizing loss
for processes in the presence of disturbances by holding selected
controlled variables at constant set-points. The loss can further
be reduced by controlling measurement combinations to con-
stant values. Two methods for finding appropriate measurement
combinations are the Null-space and the Exact local method.
Both approaches offer sets with an infinite number of solutions
that give the same loss. Since self-optimizing control is mainly
concerned with minimizing the steady-state loss, little attention
has been put on the dynamic performance when selecting
measurement combinations.

In this work, an iterative LMI approach is used to find a
measurement combination and PI controllers for the Null-space
or the Exact local method. The measurement combination and
the controllers are designed such that, the dynamic response is
improved when the process is facing disturbances.

I. INTRODUCTION

Control systems for chemical plants are large-scale sys-
tems, often consisting of hundreds or even thousands of
control loops. In theory, a single, centralized controller would
be optimal for such a large scale system, as it would allow all
information to be available for the calculation of all control
variables. In practice, however, the system is too large for the
design of such an ’ideal’ controller, and instead, the control
system is typically divided into several layers that address
different time scales. The systematic procedure for control
structure design, including what to control and how to pair
the variables is usually referred to as plantwide control [1],
[2]. Without going into any greater detail, it first requires
defining and solving a scalar cost function. The resulting
solution should give the desired steady-state operation when
using the degrees of freedom that are available. Once this
has been established, the final step is to implement the
optimal policy. This involves deciding on the pairing of
the manipulated variables (MVs) and the controlled vari-
ables (CVs), together with designing their controllers. For
processes with active constraints at the optimal operating
point, it is recommended to use some of the MVs to keep
the CVs close to these constraints. Therefore, the selection
of the remaining unconstrained MVs and CVs becomes a
reduced space problem. Determining on how to best use the
remaining unconstrained degrees of freedom is not a trivial
task but has been quite successfully addressed in the works
of [3] and [4], who coined the term self-optimizing control.
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Self-optimizing control focuses on finding controlled vari-
ables when kept at constant set-points results in near optimal
steady-state economic operation in spite of disturbances.
Besides using single measurements as the controlled vari-
ables, selecting linear combinations of measurements will
further improve the self-optimizing control performance.
Two methods that achieve this are the Exact local method
[5], [6] and the Null-space method [7]. Both the Null-space
and the Exact local method offers sets, consisting of an
infinite number of possibilities for choosing the measurement
combinations. All solutions give the same loss from a steady-
state perspective, but the dynamic response depends on how
the measurement combinations are selected. Therefore, it
would be preferable to find a combination that also improves
the dynamic performance. However, the resulting closed-
loop system is not just dependent on the measurement
combination, but also on the feedback controllers.

The proportional integral (PI) controller is by far the most
commonly used controller in the process industries due to
its simplicity and robust performance [8]. With progress
in numerical methods, new convex optimization methods
have been developed for designing controllers. However,
for restricted-order controllers (e.g., PI/PID controller) the
optimization problems tend to become non-convex in the
controller parameter space. They are usually solved by
employing heuristics or intelligent methods [9], [10]. A loop
shaping method was proposed in [11], by specifying bounds
on the phase and gain margins.

These methods often aim to minimize some common
control performance criterion, e.g., the integrated absolute
error (IAE). However, in self-optimizing control (SOC) min-
imizing IAE may not be optimal. Instead, the SOC variables
should ideally, when subjected to disturbances, drive the
process to the new optimal operating point while minimizing
deviations in variables with large economic impact (e.g., the
active constraints). Therefore, it might be better to recast
it as an optimization problem for finding, e.g., the H2

optimal static output feedback (SOF) controller. Contrary to
full state-feedback or full-order controllers, which can be
solved using Linear Matrix Inequalities (LMI), structured
static output feedback generally results in Bilinear Matrix
Inequalities (BMI) and remains an open problem [12], [13].
They are often solved to a local optimum by iteratively fixing
some variables and solving the resulting LMI.

The present work is based on [14], [15], and a method
is proposed for simultaneously selecting the measurement
combinations and PI controller parameters for the self-
optimizing control variable. The results are illustrated on



a binary distillation column model, showing improved dy-
namic performance while maintaining the same steady-state
loss based on the self-optimizing control principle.

The paper is organized as follows. Section II quotes the
notations used in this paper together with the Elimination
Lemma. The concept of self-optimizing control is briefly de-
scribed in section III, and then the main method is presented
in section IV. The proposed method is applied to a distillation
column model in section V, and finally, a conclusion is given
in section VI.

II. PRELIMINARIES

Let Rn×m denote the set of n × m real matrices. For
a matrix A, its transpose is denoted AT , and A−1 denotes
its inverse. The symbols He{A} indicates AT +A and A⊥

denotes any matrix of maximum rank that satisfies A⊥A = 0.
The identity and the null matrix of dimension n×m are given
by In×m and 0n×m. The notation A ≺ 0, A � 0 means the
matrix is positive and negative definite respectively. Finally,
let’s recall the Elimination lemma:

Lemma 2.1: [16] For B ∈ Rn×l, C ∈ Rm×n, and Q =
QT ∈ Rn×n, the following conditions are equivalent:

1) ∃ X ∈ Rl×m such that Q+He{BXC} ≺ 0.
2) B⊥QB⊥T ≺ 0 and (CT )⊥Q(CT )⊥T ≺ 0.

III. SELF-OPTIMIZING CONTROL

Self-optimizing control is when an acceptable loss is
achieved with constant set-points without the need to reop-
timize for disturbances [3]. More precisely, the aim is to
select controlled variables rather than determining optimal
set-points. By using the available degrees of freedom (u),
the goal is to minimize the constrained cost function (J),
in order to find the optimal operating point for the process.
Typically, J defines the economic cost of the process and
can often be expressed as

J = feed cost + utilities cost− product value.

For specified disturbances (d), the optimization problem can
be formulated as,

min
x,u

J
(
x, u, d

)
(1)

subject to: f(x, u, d)) = 0 (2)
g(x, u, d)) ≤ 0 (3)
y = fy(x, u, d) (4)

where x ∈ Rnx, u ∈ Rnu, and d ∈ Rnd are the states, inputs,
and disturbances respectively. The equality constraints are
represented by f(·) and contain the steady-state model
equations; the inequality constraints in g(·) defines the limits
of the operation, and the available measurements are given by
y. The solution to the optimization problem usually results
in some of the constraints being active, i.e., gi(x, u, d) = 0.
To achieve optimal operation at steady-state, the variables
related to the active constraints should be controlled and kept
as close as possible to their optimal set-points. Stabilizing
the plant and controlling the active constraints, therefore,

requires a corresponding number of degrees of freedom. This
results in a reduced space optimization problem:

min
u
J∗
(
u, d
)

(5)

Here, the model equations and active constraints, are implic-
itly included in J∗. What remains is to determine which of
unconstrained variables (c) should be kept constant by using
the remaining degrees of freedom, in order to minimize loss.
To quantify the loss resulting from keeping the selected con-
trolled variables at constant values, methods for calculating
the worst case and average loss were derived in [5] and [17].

A. Optimal Measurement Combination

Rather than selecting single measurements for the un-
constrained optimization problem in (5), a further reduction
in loss can be obtained by selecting the control variables
as optimal linear measurement combinations c = Hy. The
matrix H ∈ Rnu×ny defines the measurement combinations,
and y ∈ Rny is a subset of the available measurements. Two
methods for computing H are the Null-space [7] and Exact
local method [5], [6].

1) The Null-space method: Under the assumption that
implementation error (e.g., measurement noise) can be ne-
glected and that ny ≥ nu + nd independent measurements
are available, then [7] proposed the Null-space method for
selecting a measurement combination. This results in a zero
local loss by choosing H such that,

HF = 0 (6)

where F is the sensitivity matrix for the optimal deviations
in the measurements (∂yopt) with respect to changes in the
disturbances (∂d):

F =
∂yopt

∂d
(7)

The matrix F can be obtained analytically, but it is often
easier to compute numerically, by optimizing the nonlinear
steady-state model of the plant for selected disturbances.

2) The Exact Local method: Besides the assumption of
having no measurement noise is unrealistic in practice; it
also requires that the number of measurements used exceeds
the sum of inputs and disturbances, which can become
very large. Based on the Exact local method, an explicit
solution which gives an optimal trade-off between rejecting
disturbances and implementation errors can be found using:

H∗ = (Gy)T (Y Y T )−1 (8)

Where Y =
[
FWd Wn

]
with Wd and Wn representing the

magnitudes of the disturbances and implementation errors
respectively. The optimal solution H∗ in (8) was shown in
[4] to be non-unique and for any non-singular matrix D,

H = DH∗ (9)

results in the same loss as the solution given by (8). There-
fore, both the Null-space and the Exact local method have
an infinite number of solutions for H that satisfies (6) or (9)
and thus gives the same steady-state operation.



IV. STATIC OUTPUT FEEDBACK CONTROL

In this section, the method for selecting the measurement
combination and designing the PI controllers is presented.
The method is based on the two-step procedure for static
output feedback controller design proposed by [14]. While
their method has been used in several applications [18],
[19], it has to the authors’ knowledge not been used for
simultaneous measurement selection and controller design.

A. Process model

Consider a system described by the continuous linear time-
invariant state-space model,

ẋ(t) = Axx(t) +Buu(t) (10)
y(t) = Cyxx(t) (11)

where x ∈ Rnx, u ∈ Rnu and y ∈ Rny are the states, inputs,
and measurements respectively. The aim is to find a mea-
surement combination matrix H and design decentralized PI
controllers of the form:

u(t) = kp H y(t) + ki H

∫ t

0

y(τ) dτ (12)

The system in (10) and (11) can be augmented to include
the integrating states from the decentralized PI controllers:

Āx =

[
Ax Bu

0nu×nx 0nu×nu

]
, B̄u =

[
Bu 0nx×nu

0nu×nu Inu×nu

]
,

C̄yx =
[
Cyx 0ny×nu

]
The closed loop system with self-optimizing control and
decentralized PI controllers can thus be given by,

˙̄x(t) = Āxx̄(t) + B̄uū(t) + B̄dd̄(t)

z̄(t) = C̄zxx̄(t) + D̄zuū(t)

ȳ(t) = C̄yxx̄(t)

(13)

where x̄ ∈ R(nx+nu), ū ∈ R2nu, ȳ ∈ Rny , d̄ ∈ Rnd,
and z̄ ∈ Rnz are the augmented state, control input, mea-
surement output, disturbance, and controlled output vectors
respectively. The control input ū(t) can thus be given by,

ū(t) = K ΓH C̄ x̄(t) (14)

where

K = diag(kp1
, · · · , kpnu

, ki1 , · · · , kinu
, ), (15)

Γ =

[
Inu×nu
Inu×nu

]
(16)

B. Stabilization

A new parametrization for static output feedback control
was introduced in [14] by including slack variables to reduce
the conservativeness. By defining the linear function,

M(P ) =

[
02nu×2nu B̄T

u P
PB̄u ĀT

xP + PĀx

]
(17)

a necessary and sufficient condition for determining if a
controller for a measurement combination is stable can thus
be given by the following theorem.

Theorem 4.1: There exists stabilizing PI controllers with
the measurement combination H ∈ Rnu×ny iff there exists
a stabilizing state feedback matrix KSF ∈ R2nu×(nx+nu),
a diagonal matrix X = K−1 ∈ R2nu×2nu and a matrix
P = PT ∈ R(nx+nu)×(nx+nu) � 0 such that

M(P ) +He

{[
I2nu×2nu
−KT

SF

] [
X −ΓHC̄yx

]}
≺ 0 (18)

Proof: Similar to the proof in [15], the closed-loop
system is stable if the matrix Āx + B̄uKΓHC̄yx is Hurwitz,
i.e., there exists a matrix P = PT � 0 satisfying the
inequality,

(Āx + B̄uKΓHC̄yx)TP + P (Āx + B̄uKΓHC̄yx) ≺ 0
(19)

This can be formulated as:[
C̄T

yxH
T ΓTKT I2nu×2nu

]
M(P )

[
KΓHC̄yx

I2nu×2nu

]
≺ 0 (20)[

I2nu×2nu
−C̄T

yxH
T ΓTKT

]⊥
M(P )

[
I2nu×2nu

−C̄T
yxH

T ΓTKT

]⊥T
≺ 0

(21)

According to Lemma 2.1, the above expressions can be
shown to be equivalent to,

M(P ) +He

{[
Z1

Z2

] [
I2nu×2nu −KΓHC̄yx

]}
≺ 0

(22)

with the matrices Z1 ∈ R2nu×2nu and Z2 ∈ R(nx+nu)×2nu.
Factorizing Z1 gives,

M(P ) +He

{[
I2nu×2nu
Z2Z

−1
1

] [
Z1 −Z1KΓHC̄yx

]}
≺ 0

(23)

which is equal to (18) with Z1 = X (or Z1 = K−1) and
KT

SF = −Z2Z
−1
1 . Finally, it can be shown that pre- and post-

multiplying (18) with
[
KT

SF I2nu×2nu
]

and its transpose
respectively satisfies:[

KT
SF I2nu×2nu

]
M(P )

[
KSF

I2nu×2nu

]
≺ 0 (24)

(Āx + B̄uKSF )TP + P (Āx + B̄uKSF ) ≺ 0 (25)

C. H2 Optimal Control Synthesis

As previously mentioned, self-optimizing control does not
take the dynamic performance into account. Therefore, the
aim is not only to stabilize the closed-loop system but also
to reduce the dynamic impact disturbances have.

The H2 optimal control problem consists of minimizing
the H2 norm of the closed-loop system from exogenous
disturbance signals d̄(t) to the controlled output signals z̄(t).
This can be done by re-parametrizing (17) as in [14]:

N(P ) = M(P ) +
[
D̄zu C̄zx

]T [
D̄zu C̄zx

]
(26)

The globally optimal solution for the following theorem gives
the H2 optimal K and H that satisfies the self-optimizing
control solution for the Null-space or the Exact local method.



Theorem 4.2: The H2 optimal solution for a PI controller,
with the parameters given by K = X−1 and the measure-
ment combination H for the SOC variable, is given by:

Jk,1 = min
KSF ,P,X,H

trace(B̄T
d PB̄d) (27)

subject to: P � 0 (28)

N(P ) +He

{[
I2nu×2nu
−KT

SF

] [
X −ΓHC̄yx

]}
≺ 0 (29)

X = diag(x1 . . . x2nu) (30)
HF = 0 (Null-space method) (31)
H = DH∗ (Exact local method) (32)

This results in a non-convex BMI, and thus an optimal global
solution can’t be guaranteed. However, an iterative algorithm
can be used to find a local optimum:
Algorithm

1) Initialize, choose a stabilizing state feedback gain
KSF .

2) For a fixed KSF solve the LMI:

Jk,1 = min
P,X,H

trace(B̄T
d PB̄d) (33)

subject to: (28), (29), (30) and (31) or (32)
3) Fix X and H at the values obtained in step 2 and solve

the LMI:

Jk,2 = min
P,KSF

trace(B̄T
d PB̄d) (34)

subject to: (28) and (29)
4) If Jk,1 − Jk,2 < ε stop, else update KSF and repeat

step 2 and 3
The controller parameters can be obtained from K = X−1.

Since this algorithm only ensures convergence towards a
local minimum, it is heavily dependent on the initial choice
of the state feedback gain KSF . However, choosing KSF

as the H2 optimal state feedback gain often seems to give
satisfactory solutions. Otherwise, e.g. [20] can be applied to
generate a set of stabilizing state feedback gains.

V. CASE STUDY: DISTILLATION COLUMN
The proposed method was applied to the ”column A”

distillation column model [21], where a binary mixture is
separated that has a relative volatility of α = 1.5. The
distillation column has 41 stages, which includes the reboiler
and the condenser. The stages are counted from the bottom
with the reboiler as stage 1 and with the feed at stage 21.
For the distillation column, the feed is assumed to be given.
Thus it has four degrees of freedom; bottoms flow rate (B),
distillate flow rate (D), reflux flow rate (L) and vapor boilup
(V ). The distillate boilup and bottom flow rate are used
to stabilize the two liquid levels in the condenser and the
reboiler. This results in the LV configuration shown in Fig.
1 where the two remaining degrees of freedom are:

u =
[
L V

]T
(35)

The objective is to get a top product with 99% light com-
ponent (1% heavy) and a bottom product with 1% light
component, i.e., the cost function is,

Fig. 1: A typical distillation column with LV configurations.

J =

(
xtopH − xtop,sH

xtop,sH

)2

+

(
xbtmL − xbtm,s

L

xbtm,s
L

)2

(36)

where the specifications are denoted with the subscript, s.
As composition often is difficult to measure, they will

be controlled indirectly using the temperatures inside the
column. It is assumed that the temperatures Ti(oC) on each
stage i can be calculated using the linear function [21]:

Ti = 0xL,i + 10xH,i (37)

The main disturbances considered are changes in feed flow
rate (F ), feed composition (zF ) and feed liquid fraction (qF ).

The controlled variable cref,1 is used as a reference for
the simulations, where xD and xB are controlled directly, re-
sulting in zero steady-state loss. The PI controllers presented
in [21] are used for cref,1, which has been demonstrated to
have good disturbance rejection properties.

A. Case 1: Exact local method

The selection of controlled variables for indirect control of
the compositions for the distillation example was investigated
in [22]. Based on the Exact local method, a Mixed Integer
Quadratic Programming (MIQP) approach was used to select
the best subsets of the available measurements (T1 · · ·T41).
This resulted in the following controlled variable when using
three measurements:

cref,2 = H∗

T12T30
T31

 , H∗ =

[
−0.0369 0.6449 0.6572
−1.2500 0.2051 0.1537

]
To illustrate, the ease of controlling cref,2, the author of
[22] implemented two PI controllers, that were tuned using
the SIMC method [23]. However, it should be possible
to find a different measurement combination together with
PI controllers that further improves the transient response,
without affecting the steady-state loss.

By using the proposed algorithm for the Exact local
method, a new controlled variable and PI parameters are
obtained with the new measurement combination H = DH∗.
This resulted in the controlled variable, cEL which can be
seen in Table I together with its PI parameters.



Controlled variables PI Parameters H2 norm

cref,1 =

[
xD

xB

]
kp = 26.1, ki = 6.94
kp = −37.5, ki = −11.33

0.0152

cref,2 =

[
0.0369 T12 − 0.6449 T30 − 0.6572 T31

1.2500 T12 − 0.2051 T30 − 0.1537 T31

]
kp = 0.59, ki = 0.074
kp = 0.73, ki = 0.091

0.0135

cEL =

[
0.2669 T12 − 0.5106 T30 − 0.5097 T31

1.0000 T12 − 0.3018 T30 − 0.2636 T31

]
kp = 2.12, ki = 0.46
kp = 1.32, ki = 0.29

0.0125

cNS,1 =

[
0.3481 T11 − 0.2482 T12 + 0.5944 T30 − 0.8111 T31

1.0000 T11 − 0.7548 T12 − 0.1458 T30 + 0.1817 T31

]
kp = 17.00, ki = 1.66
kp = 19.91, ki = 2.81

0.0059

cNS,2 =

[
0.0804 T11 − 0.0065 T12 − 0.0320 T14 + 0.3007 T30 − 0.4057 T31

0.9872 T11 − 1.0000 T12 + 0.1721 T14 − 0.2087 T30 + 0.2504 T31

]
kp = 36.01, ki = 3.89
kp = 46.20, ki = 10.10

0.0046

cNS,3 =

[
0.4723 T11 − 0.4653 T12 + 0.0779 T14 − 0.0886 T30 + 0.1209 T31 − 0.3957 T37

0.7826 T11 − 0.6552 T12 + 0.0439 T14 + 0.6016 T30 − 0.8721 T31 + 1.0000 T37

]
kp = 31.09, ki = 10.81
kp = 35.06, ki = 6.17

0.0027

TABLE I: Controlled variables and PI parameters.
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Fig. 2: Case 1: deviations in xD and xB , for a +10% filtered
( 1
25s+1 ) step change in F after 1 min and a −20% filtered

( 1
10s+1 ) step change in qF after 200 min.

To demonstrate the improvements in the transient re-
sponse, dynamic simulations were performed. The distur-
bances are a +10% filtered ( 1

25s+1 ) step change in F at
1 min and a −20% filtered ( 1

10s+1 ) step change in qF at 200
min. The result can be seen in Fig. 2 which shows a clear
improvement in the transient behavior for the proposed cEL

compared to cref,2. Furthermore, both cEL and cref,2 have
the same steady-state loss since their respective xD and xB
converges to the same values.

B. Case 2: Null-space method

The Null-space method requires that the number of inde-
pendent measurements is greater or equal the sum of the
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Fig. 3: Case 2: deviations in xD and xB , for a +20% filtered
( 1
15s+1 ) step change in zF after 10 min and a −20% filtered

( 1
100s+1 ) step change in zF after 200 min.

number inputs and disturbances. Out of the three distur-
bances F , zF and qF , changes in feed flow F have no
steady-state effect on the cost, and thus four independent
measurements are required. Adding more measurements can
minimize the effect of measurement noise and thus further
reduce the steady-state loss [24]. This often comes at the
expense of a more complex control structure and can make
the controller design more challenging. However, this also
has the potential to improve the dynamic response when
using the proposed algorithm, since extra measurements are
just treated as additional degrees of freedom.
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Fig. 4: Case 2: deviations in xD and xB , for a −5% filtered
( 1
25s+1 ) step change in qF after 10 min and a +5% filtered

( 1
75s+1 ) step change in qF after 200 min.

To illustrate this, following controlled variables are used,

cNS,1 =H1

[
T11 T12 T30 T31

]T
cNS,2 =H2

[
T11 T12 T14 T30 T31

]T
cNS,3 =H3

[
T11 T12 T14 T30 T31 T37

]T
where H1, H2, H3, and controller parameters are to be deter-
mined. The controlled variables (cNS,1, cNS,2 and cNS,3) and
their PI parameters obtained using the proposed algorithm are
shown in Table I together with their corresponding H2 norm.
The H2 norm gets reduced when more measurements are
added, which should indicate improvements in the dynamic
response. This is confirmed by the simulation shown in
Fig. 3 and 4, where the controlled variables with more
measurements achieve better disturbance rejection.

More measurements can easily be implemented using the
proposed method and further improves the dynamic perfor-
mance. However, the increased risks of sensor failure and the
cost of obtaining the measurements have to be considered.

VI. CONCLUSION

In this work, the transient behavior in the concept of self-
optimizing control was considered. The main idea is to find
measurement combinations together with PI controllers that
minimize the dynamic impact from disturbances while sat-
isfying the self-optimizing control conditions. The proposed
method iteratively solves an LMI where the measurement
combinations and controller parameters are computed simul-
taneously. The method was tested on a distillation case study,
where simulations for the resulting control system showed an

improved transient response, while maintaining the desired
steady-state performance.
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