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Abstract. Liquefied Natural Gas (LNG) is becoming a more crucial
source of energy due to its increased price competitiveness and environ-
mental friendliness. We consider an inventory routing problem for inland
distribution of LNG from storage facilities to filling stations. Here, an
actor is responsible for the inventory management at the storage facili-
ties and filling stations, as well as the routing and scheduling of a het-
erogeneous fleet of vehicles. A characteristic of the problem is that a
constant rate of LNG evaporates each day at the storage facilities and
filling stations. This is in contrast to maritime LNG inventory routing
problems where the evaporation is considered at the ships only. The com-
bined LNG routing and deteriorating inventory management problem is
modelled with both an arc-flow and a path-flow formulation. Both mod-
els are tested and compared on instances motivated from a real-world
problem.

Keywords: Inventory routing problem · Deteriorating inventory · Liq-
uefied natural gas · Arc-flow model · Path-flow model

1 Introduction

Inventory-routing problems (IRPs) are receiving more and more attention from
the research community due to the increasing demand for new applications.
IRPs integrate routing and inventory decisions by taking into account the trade-
off between holding costs and routing costs. For an overview of the literature of
IRPs see [4].
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A subset of the IRP literature is dedicated to maritime transportation appli-
cations that address liquefied natural gas (LNG) distribution networks due to
its fast growing market. In these networks, the natural gas is cooled down to a
temperature of approximately (−162◦C) where the gas reaches its liquid state
and turns into LNG. This also reduces the volume of the gas by a factor of 610,
which makes transportation and storage more efficient. The LNG is kept at a
boiling state in the LNG distribution networks, so some of the LNG evaporates,
and this gas, called boil-off, is used by some ships as fuel. A constant rate of
the cargo capacity of the ship cargo tanks is boiling off each day during a voy-
age at sea, so some LNG is lost during transportation. As a general rule, about
0.15 % of storage content is lost every day. However, the boil-off rate depends
on the vessel and the type of voyage [5]. This evaporation property is another
main characteristic of LNG that makes it an interesting research topic. LNG is
transported by ships from distant origins to ports close to a market from which
inland distribution starts. Examples of maritime IRP applications for LNG can
be found in [1], [8], [9], [10], [11], [13], [14], [15], and [16].

The existing literature of IRP for LNG distribution networks only addresses
ship routing and scheduling and not inland distribution of LNG (see [3], and [4]).
In addition, no evaporation of LNG in the storages at the ports are considered. In
inland distribution, evaporation persists in storage facilities and filling stations.
Current research on inland distribution operations shows that the evaporation
of LNG in storage facilities and filling stations can be higher than experienced
in LNG ships, and should be considered. However, the loss of LNG while it is
transported between storage facilities and filling stations is almost zero due to
short travelling time, and can therefore be disregarded.

In the literature, products like LNG are categorised as deteriorating inven-
tory, an item of which a percentage of on-hand inventory is constantly lost due to,
for instance, decay, evaporation, or spoilage. Reviews of deteriorating inventory
are conducted by [2], [7], and [12]. According to the deteriorating inventory liter-
ature, deterioration rate varies and it can take relatively large values depending
on the case (see [6]).

To our knowledge, no existing IRP model has considered deterioration in
the storages. From a modelling point of view, incorporating deterioration at the
storage facilities and filling stations into IRP does not add to the complexity of
the problem. However, it introduces new trade-offs in the model that may have
a large influence on the solution depending on the application.

The focus of this paper is the design of an LNG distribution network within
the Netherlands. Such a system distributes LNG from storage facilities, usually
located close to ports such as the Gate Terminal in Rotterdam, to a group of filling
stations that are geographically scattered all over the country (or a larger area).

The remainder of this paper is organised as follows. Section 2 introduces
the IRP application studied in this paper. The IRP is modelled with both arc-
flow and path-flow formulations in Sections 3 and 4, respectively. In Section 5
some computational analyses are conducted to highlight the differences between
the arc-flow and path-flow formulations for this specific application and also to
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show the effects of deterioration on the total cost function. This is followed by
concluding remarks in Section 6.

2 Problem Description

LNG is transported by tankers from its origins to storage facilities located close
to its market. The scope of the inland distribution network studied in this paper
includes these storage facilities and the downstream customers (filling stations).

Storage facilities receive LNG in large quantities from tankers and hold the
commodity to meet the filling stations’ demand. These replenishments induce
large fixed costs to the distribution system due to the high fixed cost of operating
tankers and also costly loading and unloading operations. In order to keep LNG
in its liquid state, the temperature of storage facilities and filling stations should
be held at a very low level which results in a variable holding cost. LNG is subject
to constant evaporation while kept in tank (storage facility or filling station).
Filling stations place orders to storage facilities for LNG quantities and incur a
fixed ordering cost.

The infrastructure of LNG distribution network in the Netherlands is at its
early stage and currently there are only a few operating filling stations. There are,
however, industrial customers who use LNG as the main fuel for their business.
From a modelling point of view these customers are the same as filling stations
with a demand rate that should be met by the same distribution network.

In this distribution network two modes of transportation are used, namely
road, and sea that can deliver LNG from storage facilities to filling stations.
Accessibility and flexibility make road by far the dominating mode for trans-
portation in this distribution network. Apart road, a large network of water
canals all over the country makes sea (short-sea shipping) an efficient mode
for transportation in this network. Due to limited accessibility, rail has not yet
been part of this distribution system. In order to benefit from the low trans-
portation cost that rail can offer, there is an ongoing research on containerised
LNG. Only after the establishment of this concept, intermodal transportation
will be an option for this distribution network where containers of LNG could
be transferred from one mode to another.

We consider a group of vehicles that belong to road or sea. The distance
between each pair of nodes in this network can be traversed with different costs
since the two vertices may be connected by more than one vehicle. Due to acces-
sibility limits, not all vehicles can operate between each pair of vertices in this
network. In this case, the travel cost between the two nodes is considered to
be suitably large. Each time that a filling station or storage facility is visited
by a vehicle, a fixed cost is incurred due to loading and unloading operations.
No boil-off gas is assumed when LNG is being transported by a vehicle between
storage facilities and filling stations. Figure 1 depicts an example of an LNG
inland distribution network in the Netherlands.

The goal of this LNG inland distribution problem is to maximise the total
profit of the system by setting the inventory and routing policies for pick-up
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Fig. 1. LNG inland distribution network in the Netherlands

(storage facilities) and delivery (filling stations) points using the fleet of hetero-
geneous vehicles. The revenues of the network are earned by the filling stations
that meet the demand of the final customers. The cost function of the system
includes fixed purchasing cost at the filling stations and at the storage facili-
ties, variable purchasing cost at the storage facilities, holding cost at all nodes,
routing cost, and vehicle fixed visiting cost.

It should be noted that the variable purchasing cost paid by the filling stations
is a revenue for the storage facilities, hence in the total profit function of the
integrated system they cancel out. It is assumed that the demand at the filling
stations is known and shortages are not allowed. This means that the revenue
function of the system (earned at the filling stations) is independent of the
decision variables. It then seems logical to discard the revenue functions and
replace the profit maximisation objective with a cost minimisation objective.

3 Arc-Flow Model

In this section we use an arc-flow formulation to model the problem described in
Section 2. LNG is delivered from a set of storage facilities (pick-up points), N P =
{1, ...,m} to a set of filling stations (delivery points), N D = {m + 1, ...,m + n},
using a set of vehicles, V = {1, ..., k}. It is assumed that these vehicles belong to
a set of vertices defined as N V = {m + n + 1, ...,m + n + k}. Depending on the
mode used for transporting LNG, the distance between two vertices may vary.
The set of all storage facilities and filling stations in the network is given by
N ′

= N P ∪ N D. A percentage (θi) of LNG constantly evaporates while being
kept in node i (i ∈ N ′

). It is assumed that there is no evaporation while LNG
is being transported by vehicles.
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In order to model this IRP with an arc-flow formulation we consider a graph
G = (N ,Av), where N = N P ∪ N D ∪ N V is the set of all vertices in the
distribution network and Av = {(i, j) : i, j ∈ N , i �= j, v ∈ V} is the arc set
using a specific vehicle. The set of periods in the planning horizon is given by
T = {1, ...,H}.

In each period we define a route as follows. A vehicle starts its trip from its
parking place towards a storage facility. After loading LNG, it visits a series of
filling stations on the route to unload some quantities of LNG and eventually
returns to its parking place. Each vehicle can visit a maximum of one storage
facility on a route, whereas one storage facility can be visited by multiple vehicles
during one period. We define binary variables wivt equal to one if and only if
vehicle v visits vertex i (i ∈ N ′

) during period t to load (or unload) LNG. In
its visit to vertex i during period t, vehicle v loads (unloads) a quantity of qivt.
To construct a route we define binary variables xijvt ((i, j) ∈ Av) equal to one
if and only if vehicle v visits vertex j immediately after vertex i in period t.

The storage facilities and filling stations have an inventory capacity of S̄i and
a minimum allowed inventory level Si (i ∈ N ′

). The inventory level at storage
facility or filling station i at the end of period t is given by the variable sit. The
initial inventory level at the beginning of the planning horizon at storage facility
or filling station i is given by Si0. At the beginning of period t, storage facility
i ∈ N P places an order quantity of yit to its upstream supplier and instantly
receives the replenishment. We define binary variable zit equal to one if and only
if storage facility i replenishes its inventory at time period t. Storage facility i
dispatches a total quantity of

∑
v∈V qivt to filling stations at the beginning of

period t. Having dealt with upstream suppliers and filling stations at the start of
period t, storage facility i is left with the remaining inventory that gets depleted
with rate θi due to deterioration throughout period t before ending with an
inventory level of sit.

At the start of period t, filling station i ∈ N D receives a total amount of∑
v∈V qivt after which the inventory level decreases throughout the period due

to the demand rate Dit and deterioration rate θi.
Vehicle v ∈ V has a capacity of V̄v and costs CT

ijv to operate between vertices
i and j ((i, j) ∈ Av). A suitably large value is assigned to CT

ijv whenever vehicle
v cannot travel on arc (i, j). A fixed cost of CFV

v is incurred when vehicle v
visits a vertex. In each trip, due to practical limitations, vehicle v can visit a
maximum number of N̄D

v filling stations.

3.1 Inventory Level at Vertices

The inventory level at filling station i ∈ N D at the beginning of period t is the
sum of the inventory level at the end of the previous period and the quantities
delivered by the vehicles at the start of the period:

sD
it (t

′ = 0) = si(t−1) +
∑

v∈V
qivt. (1)
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This inventory level is depleted throughout the period due to demand and evap-
oration. The evaporation results in a continuous loss of θi percent of on-hand
inventory. The following differential equation represents the changes in the inven-
tory level during period t:

dsD
it (t

′)
dt′

= −θis
D
it (t

′) − Dit. (2)

Solving this differential equation leads to the following inventory level at the
filling station i in period t. Note that t is the unit of time of which we analyse
the inventory level and t′ is the time parameter of which the value changes from
t′ = 0 (the start of the period) to t′ = 1 (the end of the period):

sD
it (t

′) = −Dit

θi
+ K e−θit

′
, (3)

where K is a positive constant. Considering the initial inventory of filling station
i at period t presented in (1) as the boundary condition, the inventory level of
this station throughout period t is obtained as

sD
it (t

′) = −Dit

θi
+

[

si(t−1) +
∑

v∈V
qivt +

Dit

θi

]

e−θit
′
. (4)

Equation (4) gives the exact inventory level of the filling station at any moment
during period t. The inventory level at the end of period t (t′ = 1) is hence given
by

sit =

[

si(t−1) +
∑

v∈V
qivt

]

e−θi − Dit

θi

(
1 − e−θi

)
, ∀i ∈ N D, t ∈ T . (5)

In storage facility i ∈ N P the inventory level changes according to a different
pattern since the demand is realised in batches at the beginning of each period.
Since all inventory transactions are performed at the start of each period, the
inventory level decreases over the period due to evaporation only. The inventory
level at storage facility i at the beginning of period t after the above-mentioned
transactions is given by

sP
it(t

′ = 0) = si(t−1) + yit −
∑

v∈V
qivt. (6)

The changes of inventory level at this storage facility over period t is shown by
the following differential equation:

dsP
it(t

′)
dt′

= −θis
P
it(t

′). (7)

Considering the boundary condition shown in (6), solving differential equation (7)
results in the following inventory level for storage facility i over time period t:

sP
it(t

′) =

[

si(t−1) + yit −
∑

v∈V
qivt

]

e−θit
′
. (8)
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The inventory level at the end of this time period is hence given by

sit =

[

si(t−1) + yit −
∑

v∈V
qivt

]

e−θi , ∀i ∈ N P , t ∈ T . (9)

In the following section, we derive the objective function and the constrains
using inventory levels of storage facilities and filling stations.

3.2 Objective Function and Constraints

Replenishment at filling station i in period t incurs a fixed purchasing cost of
CF

i . The sum of all these costs over the planning horizon is given by

FCD =
∑

i∈ND

∑

v∈V

∑

t∈T
CF

i wivt. (10)

At the start of period t, storage facility i receives a quantity yit for which it
pays a unit price of CP

it . This replenishment also results in a fixed cost of CF
i

for the storage facility. The total (fixed and variable) purchasing cost incurred
by all the storage facilities over the planning horizon is as follows:

FCP =
∑

i∈NP

∑

t∈T
(CF

i zit + CP
it yit). (11)

The cost of routing includes fixed and variable costs. The total value of all
fixed costs of vehicle v in period t is

∑
i∈N ′ CFV

v wivt. The variable cost of a route
is obtained by summing up the transportation cost between each two nodes on
the route:

∑
i∈N

∑
j∈N ,(i,j)∈Av

CT
ijvxijvt. The total routing cost is hence given

by
RCA =

∑

v∈V

∑

t∈T

∑

i∈N

∑

j∈N ,(i,j)∈Av

CT
ijvxijvt

+
∑

v∈V

∑

t∈T

∑

i∈N ′
CFV

v wivt.
(12)

In order to obtain the total holding cost at filling station i ∈ N D over the
planning horizon, the holding cost of each period is first calculated using the
inventory level presented in (4). It is assumed that a unit holding cost of CH

i is
incurred per unit of time when keeping LNG at vertex i ∈ N P :

HCD
it =

∫ 1

0

CH
i sD

it (t
′)dt′

=
CH

i

[
1 − e−θi

]

θi

[

si(t−1) +
∑

v∈V
qivt +

Dit

θi

]

− CH
i Dit

θi
.

(13)

The total holding cost of all filling stations is hence given by

HCD =
∑

i∈ND

∑

t∈T
HCD

it . (14)
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The inventory holding cost at the storage facilities is obtained in a similar way
to filling stations. Using the inventory level at storage facility i ∈ N P presented
in (8), the inventory holding cost over period t at the storage facility is

HCP
it =

∫ 1

0

CH
i sP

it(t
′)dt′

=
CH

i

[
1 − e−θi

]

θi

[

si(t−1) + yit −
∑

v∈V
qivt

]

.

(15)

The total holding cost incurred at all the storage facilities is then

HCP =
∑

i∈NP

∑

t∈T
HCP

it . (16)

Considering all the costs obtained in this section, the objective function of
the model is

Minimise TCARC = FCD + FCP + RCA + HCD + HCP . (17)

The constraints on the inventory levels at the filling stations and the storage
facilities are presented in (5) and (9), respectively. The remaining constraints
are as follows:

si(t−1) +
∑

v∈V
qivt ≤ S̄i, ∀i ∈ N D, t ∈ T , (18)

si(t−1) + yit −
∑

v∈V
qivt ≤ S̄i, ∀i ∈ N P , t ∈ T , (19)

sit ≥ Si, ∀i ∈ N ′
, t ∈ T , (20)

∑

i∈NP

wivt ≤ 1, ∀v ∈ V, t ∈ T , (21)

∑

i∈ND

wivt ≤ N̄D
v , ∀v ∈ V, t ∈ T , (22)

yit ≤ (S̄i − Si)zit, ∀i ∈ N P , t ∈ T , (23)
∑

i∈NP

qivt =
∑

j∈ND

qjvt, ∀v ∈ V, t ∈ T , (24)

qivt ≤ min{S̄i − Si, V̄v}wivt, ∀i ∈ N ′
, v ∈ V, t ∈ T , (25)

∑

j∈V,j �=v

w(m+n+j)vt = 0, ∀v ∈ V, t ∈ T , (26)

x(m+n+v)ivt = wivt, ∀i ∈ N P , v ∈ V, t ∈ T , (27)
∑

i∈NP

wivt =
∑

j∈ND

xj(m+n+v)vt, ∀v ∈ V, t ∈ T , (28)
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∑

j∈N ,(j,i)∈Av

xjivt +
∑

j∈N ,(i,j)∈Av

xijvt = 2wivt, ∀i ∈ N , v ∈ V, t ∈ T , (29)

∑

i∈M

∑

j∈M,i �=j

xijvt ≤
∑

i∈M
wivt − wkvt, ∀M ⊆ N D, k ∈ M, v ∈ V, t ∈ T ,

(30)
qivt ≥ 0, ∀i ∈ N ′

, v ∈ V, t ∈ T , (31)

yit ≥ 0, ∀i ∈ N P , t ∈ T , (32)

zit ∈ {0, 1}, ∀i ∈ N P , t ∈ T , (33)

wivt ∈ {0, 1}, ∀i ∈ N ′
, v ∈ V, t ∈ T , (34)

xijvt ∈ {0, 1}, ∀(i, j) ∈ Av, v ∈ V, t ∈ T . (35)

Constraints (18) and (19) keep the inventory level at vertex i at the start of
period t less than or equal to the available capacity, while constraints (20) impose
the minimum acceptable inventory level at vertex i during period t. Constraints
(21) and (22) limit the number of storage facilities and filling stations visited
by vehicle v in period t to one and N̄D

v , respectively. Constraints (23) guarantee
that order quantities received by storage facilities stay within the allowed limits.
Constraints (24) control that the sum of the amounts delivered to filling stations
by a vehicle equals the amount picked up by the vehicle from assigned storage
facility. Constraints (25) link the routing variables to the quantities delivered to
the filling stations. Each vehicle has a designated parking place, which is imposed
by constraints (26). Constraints (27) and (28) ensure that a vehicle (if assigned)
starts its route from its parking place and at the end of the route traverses an
arc from one of the filling stations to it parking place. Constraints (29) and (30)
represent degree constraints and subtour eliminations constraints, respectively.
Constraints (31)–(35) impose non-negativity and integrality conditions to the
relevant decision variables.

4 Path-Flow Model

In order to model this distribution system with a path-flow formulation, we
consider all sets defined in Section 3 except for arc set Av which is replaced
with path set Rv. Here a path is defined as the shortest route that consecutively
connects a parking place of a particular vehicle, a storage facility, a group of
filling stations and finally the same parking place.

In this formulation all the feasible paths are generated a priori. In order to
generate a feasible path for a specific vehicle in the path-flow model, it should
visit one storage facility, and a maximum number of filling stations, and eventu-
ally its parking place from which it starts the trip. To do so we generate all the
subsets of N D that include a maximum of N̄D

v filling stations. We then com-
plete each generated path by adding different combinations of “vehicle-storage
facility”. In order to guarantee the shortest path, we optimise the order of the
filling stations on the path.
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Binary parameter Aivr equals to one if and only if vehicle v ∈ V visits vertex
i ∈ N ′

on path r ∈ Rv. We define binary variable λvtr equal to one if and only if
vehicle v traverses path r in period t. Parameter CT

vr includes the transportation
cost (CT

ijv) and a fixed visiting cost (CFV
v ) incurred when vehicle v follows path

r. This parameter also includes the set-up cost that each filling station should
pay when visited by a vehicle (CF

i , i ∈ N D).
In the path-flow model the inventory level calculations of storage facilities

and filling stations stay the same as presented in Section 3.1.

4.1 Objective Function and Constraints

In this section, we include the same costs in the objective function as in Section
3.2, however due to changes in the decision variables the cost formulations are
modified accordingly.

The sum of all fixed and variable transportation costs and set-up costs at the
filling stations is obtained as follows:

RCP =
∑

v∈V

∑

t∈T

∑

r∈Rv

CT
vrλvtr. (36)

This cost function is equivalent to the sum of costs presented in (10) and (12).
The cost functions (11), (14), and (16) remain unchanged. The objective function
of the path-flow formulation is hence given by

Minimise TCPATH = FCP + RCP + HCD + HCP . (37)

The constraints of the path-flow formulation are as follows. The inventory
levels at the filling stations and storage facilities are as presented in (5) and (9),
respectively. Constraints (18) and (19) define upper bounds on the inventory
levels at vertices while constraints (20) set lower bounds. Constraints (23) are
to limit the batch sizes that are received by storage facilities while constraints
(24) guarantee the sum of delivered quantities in a trip is equal to the amount
picked up from the storage facility. The following constraints link the routing
and quantity variables:

qivt ≤
∑

r∈Rv

min{S̄i − Si, V̄v}Aivrλvtr, ∀i ∈ N ′
, v ∈ V, t ∈ T . (38)

We define the following constraints to ensure that in time period t, vehicle v can
travel on at most one path:

∑

r∈Rv

λvtr ≤ 1, v ∈ V, t ∈ T . (39)

Finally, non-negativity and integrality conditions are imposed by constraints
(31)–(33) together with the following:

λvtr ∈ {0, 1}, ∀r ∈ Rv, v ∈ V, t ∈ T . (40)
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Having all the paths determined a priori, there is no need for the routing
constraints (21)–(22) and (26)–(30).

In the next section we analyse two numerical examples to compare the two
formulations when the size of an instance changes and also to study the effect
of deterioration on the objective function.

5 Computational Results

In this section we present two numerical examples. In the first one we conduct
a comparison between the two formulations introduced in this paper to see how
they perform when the size of the network increases. In the second example we
show how deterioration rate can influence the optimal solution.

5.1 Example 1

The two formulations described in Sections 3 and 4 were implemented in Java
using CPLEX. The code was run on a personal computer with Intel V 2.00GHz
processor and 8.00 GB RAM. In the computational analysis, one storage facility
is assumed to serve a group of filling stations using a fleet of four vehicles over
a two-day period.

In order to construct all feasible paths in the path-flow model, we first gen-
erate all the subsets of N D. In the next step we assign one vehicle and one
storage facility to the subsets. Since all the nodes of the path are determined,
we have a travelling salesman problem. We solve this problem using the tabu
search algorithm, coding in Java, to minimise the travelling cost of the path.

Having all the paths generated, we run the two models for different instances.
The result of this analysis is reported in Table 1. It should be noted that for
the path-flow formulation, the runtime does not include the time used for path
generation.

The initial results show that the path-flow formulation solves the same prob-
lem much faster than the arc-flow formulation. Enumerating paths can take a
relatively long time, however, it is a one-off task to perform. This means for

Table 1. Computational results when the number of filling stations varies

n m k H
Arc-flow Path-flow

Runtime
Number of

Runtime
Number of

Variables Constraints Nodes Variables Constraints Nodes

5 1 4 2 0.4 865 822 176 0.3 313 78 487
7 1 4 2 2.0 1237 3802 414 1.0 1101 98 1263
9 1 4 2 109.2 1673 18686 2719 5.5 4193 118 2705

10 1 4 2 1025.1 1915 41232 8546 94.0 8299 128 37739
11 1 4 2 18111.2 2173 90402 21958 716.9 16501 138 215330
12 1 4 2 100418.3 2447 196916 23269 9751.0 32895 148 1384076
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a given number of filling stations we need to generate the paths once and the
path-flow model could be solved very frequently (i.e. on a daily basis) using
these generated paths. This can continue until a new filling station is added to
the network which necessitates generating the new set of all paths. This how-
ever is not applicable to the arc-flow model as we should include all the subtour
elimination constraints each time that we run the model.

5.2 Example 2

The deterioration rate for LNG in deep-sea shipping is around 0.15%. LNG
inland distribution networks are evolving. Therefore, it is hard to give a specific
rate for the boil-off. However, based on the current practices, we can say that
the rate is higher than what is the case in sea shipping operations. Here we run
the IRP developed in this paper for deterioration rate changing from 0 to 2%.

In order to illustrate the effect of the evaporation we analyse two different
networks and obtain the change in the objective function when the deterioration
is taken into account. The results of this analysis are illustrated in Table 2.

Table 2. The effects of the deterioration on the total cost function

Deterioration rate (%)

0.0 0.5 1.0 1.5 2.0
Total Increase in

n m k H cost total cost* (%)

4 1 3 6 9239 1.03 1.67 2.27 2.91
6 1 3 6 14063 2.99 3.88 4.54 5.23
*Compared with the case with no deterioration

Table 2 shows that a network of four filling stations, one storage facility, and
three vehicles over a six-day planning horizon incurs a total cost of 9239 when no
deterioration is taken into account. This experiment shows that if for instance
the real deterioration rate is as high as 2%, the accurate total cost is 2.91% more
than the case when the deterioration is not modelled.

We examine the same network with an increase in the number of the filling
stations while the number of vehicles remains unchanged. The initial results
show that in cases where the transportation resources are tight the model tends
to keep more inventory in filling stations which results in more deterioration.
The analysis of this network shows that for example the total cost of the system
increases by 5.23% when there is a deterioration rate of 2%.

6 Conclusion

We have analysed an IRP for LNG inland distribution network taking into
account the evaporation property of the item. We have modelled the distribu-
tion network with both arc-flow and path-flow formulations. The basic variant
of each formulation has been derived and solved by CPLEX.
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The results of the computational analysis conducted in this paper show that
the path-flow formulation can solve the problem faster compared with the arc-
flow model. Moreover, the analysis indicates that disregarding the deterioration
rate even in a small instance of this model could result in a relatively large
underestimation in the total cost. These initial results suggest that the deteri-
oration property should be incorporated into the model as the underestimation
may be significant depending on the instance. The computational analysis also
shows that including deterioration in the model does not add to the complexity
of the problem.
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