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Abstract— A method for preprocessing a time series of
glucose measurements based on Kalman smoothing is
presented. Given a glucose data time series that may be
irregularly sampled, the method outputs an interpolated
time series of glucose estimates with mean and variance.
The method can provide homogenization of glucose data
collected from different devices by using separate mea-
surement noise parameters for differing glucose measure-
ment equipment. We establish a link between the ISO 15197
standard and the measurement noise variance used by the
Kalman smoother for Self Monitoring of Blood Glucose
(SMBG) measurements. The method provides phaseless
smoothing, and it can automatically correct errors in the
original datasets like small fallouts and erroneous readings
when surrounding data allows. The estimated variance can
be used for deciding at which times the data are trustwor-
thy. The method can be used as a preprocessing step in
many kinds of glucose data processing and analysis tasks,
such as computing the Mean Absolute Relative Deviation
(MARD) between measurement systems, or estimating the
plasma-to-interstital fluid glucose dynamics of continuous
glucose monitor (CGM) or Flash Glucose Monitor (FGM)
signals. The method is demonstrated on SMBG and FGM
glucose data from a clinical study. A Matlab implementation
of the method is publicly available.

I. INTRODUCTION

D IABETES is a disease suffered by close to 10% of the
world’s adult population [1].

To avoid the acute and chronic consequences of diabetes,
the blood glucose level should be controlled to a level as
close as possible to the normal range. To achieve such control,
people with diabetes need to measure their blood glucose level
frequently.

Blood glucose is most often measured using Self Monitoring
Blood Glucose (SMBG) meters. These devices provide discon-
tinuous blood glucose readings, by analyzing a drop of blood
that the user applies to a test strip. Advances in sensor tech-
nology has resulted in Continuous Glucose Monitor (CGM)
systems, which measure the interstitial fluid (ISF) glucose
continuously with a thin electrochemical sensor inserted under
the skin, and reporting a filtered measurement value usually
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every 5 minutes. A recent addition to the family of glucose
devices is the Flash Glucose Monitor (FGM) [2], that provides
data only when the sensor is scanned, but then it provides a
current glucose estimate and 8 hours of historic 15-minute
interval data, thus providing a kind of hybrid between the two
data types.

Tremendous amounts of glucose data are generated with
such devices, both in research projects, commercial product
development and by far the most data are generated in normal
use of the devices by individual users.

Errors are present in most glucose data sets, and include
sensor system errors and user errors. For SMBG systems a
common source of error is incorrect sampling procedure [3],
e.g. forgetting to clean the finger before sampling. There is also
a baseline variation caused by strip manufacturing variability.
For CGM systems, pressure induced sensor attenuation (PISA)
errors are common [4], [5], usually resulting from the patient
lying on the sensor. Fallouts, bias and latencies are other
occurences in CGM data [6], and some or all of these errors
also apply to FGM.

The primary purpose of SMBGs and CGMs is to provide
real-time information about glucose levels, allowing the user
to take informed decisions about insulin dosing, meals and
exercise, thus helping to avoid hyper- and hypoglycemia.
There are many possible secondary uses of the glucose data in
offline settings. One possibility is to estimate the parameters of
glucose-insulin metabolism models, which has been of interest
to many, see e.g. [7]–[10], thereby obtaining personalized
models of the glucose-insulin system. Such models have many
uses, for instance in model predictive control (MPC) of an
artificial pancreas (AP), see e.g. [11]. Since estimates of model
parameters will suffer from noisy or erroneous measurements
[12], data should be cleaned and smoothed before parameter
estimation commences.

Mean Absolute Relative (MARD) analysis is commonly
used to characterize and compare sensor systems. This analysis
is also sensitive to errors in the data sets, and to some
researchers it is useful to be able to detect outliers in the
reference signal, typically SMBG or laboratory measurements.
MARD analysis can also require interpolation in order to be
able to properly align data points between the different sensor
systems.

This paper proposes a preprocessing method for interpo-
lation of glucose data and suppression/removal of outliers in
an automatic and objective manner. The methods based on
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Kalman smoothing, and converts a time series of possibly
irregularly spaced blood glucose measurements to a contin-
uous time series of interpolated estimates with mean and
variance (uncertainty). The method is able to cater for different
measurement devices by using device-specific noise models.
The method can also cater for other glucose dynamics models
than those presented here, including models with person-
specific parameters.

The presented method is suitable for homogenizing glucose
data sets, which is valuable in an offline automated data
processing setting to increase data yield. The method also
provides a consistent interpolation between glucose values
without introducing interpolation artefacts like those that may
result from other methods, e.g. cubic spline interpolation.
Since the smoothing is applied in a forward-backward manner,
a phaseless smoothing and interpolation of the noise data is
achieved. Finally, the method takes into account the uncer-
tainty of the measurements, which can be used to determine
which parts of the measurement series are trustworthy and
which are not.The method was originally intended for pro-
cessing SMBG data, but is extendable to include CGM/FGM
data as well, which is demonstrated. The method is tested on
real SMBG and FGM glucose data from a clinical study. This
paper expands on ideas previously presented in [13].

The key contributions of this paper are:
• Use of Kalman smoothing applied to glucose data, result-

ing in phaseless smoothing and interpolation.
• Glucose data interpolation with realistic uncertainty esti-

mates
• Derivation of a measurement noise model from ISO

15197:2015 [14] for SMBG measurements.
• Possibility of combining glucose data sources with dif-

ferent noise characteristics

II. METHOD

In this section Kalman filtering and fixed-interval Kalman
smoothing is revisited, and their application to glucose data is
described.

A. Kalman filtering
The Kalman filter theory assumes that the signal yk to be

filtered is generated by a system on the form

xk+1 = f(xk,uk) + vk (1)

yk = h(xk,uk) + wk (2)

Here x is the system internal state, u is the input to the system,
and y is the measured output, v is the process noise, and w
is the measurement noise. These noise processes are assumed
to be white, zero mean Gaussian, with covariance given by
matrices Q and R, respectively:

vk ∼ N (0, Q) wk ∼ N (0, R) (3)

The Kalman filter computes a state estimate x̂ and a state
covariance matrix P̂ for each time step. The system model
in Eq. (1) is used to predict the state one step ahead in
time. This is called the time update, and it results in an a

priori estimate denoted by x̄ and P̄ . Then the measurement
update is performed. This updates the a priori estimate with
a measurement with known measurement noise, to produce
an a posteriori estimate x̂ and P̂ . In glucose data sets it is
commonly the case that measurements are infrequent and/or
taken with irregular intervals. The filter handles this by doing
several time updates per measurement update. In time steps
where no measurement is available, the a posteriori estimate
is set equal to the a priori estimate. The Kalman filter equations
are [15]:

x̄k = Φk−1x̂k−1 +Bk−1uk−1 (4)

P̄k = Φk−1P̂k−1ΦT
k−1 +Qk−1 (5)

Kk = P̄kH
T
k (HkP̄kH

T
k +Rk)−1 (6)

x̂k = Kk(yk −Hkx̄k) (7)

P̂k = (I −KkHk)P̄k (8)

Φ is the state transition matrix and H is the measurement
matrix. If the system and/or measurement equations are non-
linear, these matrices will in general be time-variant, and
can be found from linearizing f and h in Eqs. (1) and (2)
at each time step around the most recent estimate resulting
in the Extended Kalman Filter (EKF). Two different sets of
linear system equations have been tested in this work, and
are described in section II-D. An augmentation of the state
space for CGM-SMBG parameter estimation is described in
Sec. II-D.3, and this augmentation makes the resulting system
nonlinear, necessitating EKF.

B. Kalman smoothing
The Kalman filter described above is suitable for real-time

processing of data, as it only uses past data to produce its
estimates. In an offline setting, where the whole data set is
available, smoothing can be used to get further improvement
of the estimates. Smoothing uses all the available data before
and after time k to produce the estimate at time k. The Rauch-
Tung-Striebel (RTS) algorithm [16] accomplishes this. RTS
first makes a forward pass through the data using the normal
Kalman filter Eqs. (4-6), storing the sequences of a priori and
a posteriori estimates x̄k, x̂k and state covariance matrices P̄k

and P̂k. These are then used as input to a backward pass that
computes the smoothed estimates x̂s

k and P̂ s
k as follows [15]:

Ck = P̂kΦkP̄
−1
k+1 (9)

x̂s
k = x̂k + Ck(x̂s

k+1 − x̄k+1) (10)

P̂ s
k = P̂k + Ck(P̂ s

k+1 − P̄k+1)CT
k (11)

The filtering and smoothing process is illustrated in Fig. 1.
The error bands in this figure (and the rest of this paper) are
based on 2 standard deviations (SD), approximating a 95%
confidence interval under the Gaussian assumption. The SD
is the square root of the diagonal element in the P̂ s

k or P̂k

covariance matrix that corresponds to the glucose state. We
have used fixed-interval smoothing in all the results reported



2168-2194 (c) 2018 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/JBHI.2018.2811706, IEEE Journal of
Biomedical and Health Informatics

STAAL et al.: KALMAN SMOOTHING FOR OBJECTIVE AND AUTOMATIC PREPROCESSING OF GLUCOSE DATA 3

0 20 40 60 80 100 120 140 160 180

Time [ min ]

0

2

4

6

8

10

12

14

G
lu

c
o
s
e
 [
 m

m
o
l/
L
 ]

80

100

120

140

160

180

200

G
lu

c
o
s
e
 [
 m

g
/d

L
 ]

Fig. 1. Filtering vs smoothing in a 3-hr data set of glucose SMBG
measurements (blue points, with ISO 15197:2015 error indicated with
blue bars). The estimates are shown with solid line for the mean and
dashed lines for the 2 SD error band approximating a 95% confidence
interval. The forward pass filtering result is shown in green. This es-
timate is seen to jump every time a measurement arrives, setting a
new rate estimate. The smoothed estimate is shown in red. Note how
the error of the smoother estimate is smaller than the error bars in the
original measurements. This is possible due to the proximity in time of
the measurements. In the last hour of the recording the sampling rate
is reduced to one sample per hour, and it is seen that the error band of
the smoother estimate (red dashed line) grows with time, describing the
uncertainty of the estimate during the time of no measurements.

here, utilizing all the available data, i.e. the interval is the entire
data set. A fixed-lag smoother implementation would also be
possible, where a fixed window of data is used to estimate the
state at the start of the window, which is interesting in a near
real-time setting.

The error band could be used to determine when it makes
sense to use the interpolated values output by the smoother
for further analysis, and when the estimates are too uncertain
to be used. This could be done by applying a threshold for
maximum allowed estimated error band, for example.

C. Noise modeling
An important issue in use of Kalman filtering is the mod-

eling of the noise processes v and w, more specifically the
values of the covariance matrices Q and R.

1) Measurement noise modeling: The measurement noise
process w needs to be set according to which measurement
system has generated the data. In a highly accurate laboratory
system for blood glucose analysis it is appropriate to use a
low variance. If a more inaccurate blood gluose measurement
system like an SMBG meter is used, a higher variance on the
measurement noise should be used.

The ISO 15197:2015 standard [14] is applicable for SMBG
meters, providing limits for measurement error that SMBG
manufacturers must comply with. Let us recode these limits
into normal distribution variances to be used in the Kalman
filter. An SMBG device that conforms to the ISO 15197:2015
standard should have an error within ±0.83 mmol/L (15

mg/dL) when the real blood glucose level is less than or equal
to 5.55 mmol/L (100 mg/dL), and less than ±15% error for
higher glucose levels. The standard specifies that 95% of all
measurements shall fall within this limit. Interpreting this as
a 95% confidence interval the limits correspond to roughly 2
SDs in a normal distribution.

Therefore, to approximate the ISO 15197:2015 measure-
ment variance σ2

R we have that 2σR = 0.83, i.e. σ2
R = 0.172

[mmol2/L2] for measurements below 5.55 mmol/L, and 2σR =
0.15y, i.e. σ2

R = 0.0056y2 for measurement above the limit,
where y is the measured glucose value.

The above value(s) for R may serve as conservative defaults
if no other information is available. Another value for R could
and should be used if more details about the measurement
variance is known. Variance information could be found from
the following:

• The 2003 version of the ISO 15197 standard has wider
limits, so to smooth data from older devices conforming
to the old standard, those limits should be used.

• Several SMBG meter manufacturers currently promote
their products as having a performance significantly better
than the IS015197:2015 limits. For some SMBG devices
a more suitable measurement variance may be available
from the device documentation.

• In other cases there may be independent analyses of
SMBG accuracy that provides information about the error
model to use, e.g. as in [17].

2) Process noise modeling: The process noise v should
account for all the noise originating from modeling errors,
as well as unknown disturbances affecting the system.

One important point in this context is whether or not meals
and insulin injections are considered as inputs or disturbances
in the model. For the application considered here, inputless
models are preferred. In other words, we treat meals and
insulin injections as unknown disturbances to the system. This
is done to make the method more generally applicable, since
many glucose data sets lack meal and/or insulin information
that is accurate enough to be of use in this context.

As a consequence, the variance of the process noise must be
set large enough to accomodate glucose excursions originating
from meals or insulin injections. Thus, the Q matrix should be
chosen such that the error band of the estimate grows quickly
enough to envelop worst case glucose excursions, like right
after a meal or an insulin injection. This method was used to
tune the process noise covariance matrix Q in this work, and
is illustrated in Fig. 2. A dataset containing a large meal is
used. Those measurements that are most informative about the
meal onset have been held back from the smoother. The error
band of the estimate (red dashed line in in Fig. 2) grows when
measurements are not available, and the growth rate depends
on the value of Q. The goal of the tuning is to make the
error band conservative enough to encompass the held-back
measurements, which represent a worst case glucose excursion
from a meal. Since the glucose lowering effect of insulin is
comparable to the glucose rising effect of meal digestion [18],
we tuned the process noise based on meal cases only.

Values for the Q matrix depend on the unit used to represent
glucose by the model, and values given in the following
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Fig. 2. Illustration of the process noise tuning. Red dots are SMBG
measurements available to the smoother, while the blue measurements
have been held back.

sections are for models using mmol/L as the unit for the
internal state of glucose. The conversion factor from mmol/L
to mg/dL is 18.02 and needs to be squared when converting
variances.

D. Glucose dynamics modeling

The Kalman filter uses a dynamic model that describes
the assumed internal dynamics of the system generating the
measurements that are to be filtered. This model is used to
provide predictions of the state between each measurement.

Several glucose metabolism models exist in the literature,
and research into such models is ongoing. The models range
from minimal [19], [20], via intermediate complexity [21]–
[24] to maximal models [25], [26]. A common trait in these
models is that they require information of the amount of
glucose and insulin entering the system, which is not always
present in a glucose dataset. When such data are present, they
are often erroneous and/or incomplete, unless they have been
recorded in strictly controlled research settings.

Another issue with the more complex glucose metabolism
models is that they are often non-observable based on glucose
measurements alone. This means that the internal state of
the model can not be computed based on the measurements.
Observability is a requirement for Kalman filtering.

To summarize, the model used in the smoother should
be observable and have no external inputs. The two models
described below satisfy both these requirements. One is a
simple rate-only model, and another is inspired by the model in
[24], but further simplified for filtering usage (central-remote
rate model). Both models operate without insulin and meal
input knowledge.

1) Model 1: Rate-only model: This model is perhaps the
simplest dynamic system that could be said to represent
glucose. The state vector consists of plasma glucose and its
rate, x = [Gp Ġp]T , and the model is ẋ = Ax with
A =

[
0 1
0 −a

]
, where a is a small number determining the decay

of an observed rate of change. a has been set to 0.05 in this

work. Larger values of a will make the rate of change decay
faster towards zero. Setting a to zero gives a system where
an observed rate of change is allowed to continue indefinitely.
This is clearly not physiological and can be detrimental for
smoothing performance in data sets where there are long
periods of missing measurements.

The system is discretized by setting Φ = eA∆t where the
time step ∆t has been set to 10 s in this work.

The process noise was set to Q =
[

0 0
0 qm1

]
∆t for this model,

where qm1 is a tunable value, set to 0.005 mmol2/L2 in this
work. It has been found using the worst case analysis described
in Sec. II-C.2 and illustrated in Fig. 2. The presence of ∆t
in the Q matrix is a convenience to automatically adjust the
process noise if the discretization time step interval changes.

2) Model 2: Central-remote rate model: In this model, the
glucose rate from model 1 is divided into two states, Cc

and Cr, where Cc occupies a central compartment, and Cr

occupies a remote compartment. In this model, any input
(meal/insulin) first affects a central compartment and then with
a first order delay diffuses over to the remote compartment
where it takes effect on the blood glucose. Another interpreta-
tion of the Cc and Cr states is that they describe meal effects
when positive, and insulin effects when negative. The effects of
any other blood glucose increasing or decreasing phenomena
are lumped into the same states.

The state vector of this model is x = [Gp Cc Cr]T . The
state transition equations are

Ġp = Cr (12)

Ċc = − 1

Td
Cc (13)

Ċr =
1

Td
(Cc − Cr) (14)

where Td is a parameter of the model, a time constant that
describes the rapidness of flow between compartments.

The process noise is set to only directly influence the
central compartment, i.e. Q =

[
0 0 0
0 qm2 0
0 0 0

]
∆t. Here qm2 is

again a tunable parameter, set to 0.02 mmol2/L2 in this work,
using the same method for finding the process noise level
as previously described. The parameter Td also affects the
variance development; the lower the Td, the faster the process
noise on state Cc propagates to Cr. Thus, Td needs to be tuned
together with the process noise, and was set to 600 s in this
work. Unless otherwise stated, figures and results in this paper
are generated using model 2 as the glucose dynamics model.

3) Plasma-ISF glucose dynamics: An interesting extension
to the method presented is possible when both SMBG and
CGM measurements are present in the data set to be smoothed.

The smoother described above can be expanded to provide
sensor fusion of the two measurement types. Some usage
scenarios for such processing include:

• With sparse SMBG and dense CGM data, bias correction
of the CGM data is possible

• With dense SMBG and dense CGM data, estimation
of person-specific plasma-ISF dynamics is possible in
addition to bias

• Improved outlier detection and removal by combining
SMBG and CGM data
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If SMBG and CGM measurements are both to be used by
the smoother, a model describing the plasma-ISF dynamics is
needed. Plasma-ISF dynamics has been investigated by several
groups, see e.g. [10], [27]–[30]. Preference is here again
given to a simple model that do not require other information
than the blood glucose and the CGM measured glucose, for
observability reasons and for the method to be more generally
applicable.

The dynamics between the SMBG and CGM measurements
can be modeled by augmenting the glucose dynamics systems
described in above sections with a new state Gisf , having a
first order dynamics relationship to the blood glucose, as in
[10]:

˙Gisf (t) =
1

Tisf
(Gp −Gisf ) (15)

where Gisf is interstitial glucose, Gp is plasma glucose, and
Tisf is the time constant governing the diffusion process.
This differential equation can be added to any model that
describes the dynamics of Gp (e.g. the ones described in
previous sections) to augment them with the ability to use
CGM measurements in combination with blood glucose mea-
surements (e.g. SMBG).

To be able to use the CGM measurements, the Kalman filter
needs to be expanded to accomodate the extra measurement.
One way to do this is to use a two-row measurement matrix H ,
where the second row measures Gisf . In the likely situation
that both measurements are not available at the same instant,
a better strategy is to only use scalar measurements in the
Kalman filter, switching to the appropriate H single-row
matrix depending on which measurement is available in a
given instant.

A commonly occuring error in CGM measurements are bias
errors. This bias can be included in the Kalman filter and es-
timated as part of the smoothing procedure. The measurement
equation becomes:

ycgm,k = Gisf,k + bcgm + wcgm,k (16)

where bcgm is an unknown bias to be estimated, by including
bcgm in the state space of the Kalman filter, using zero
derivative, zero process noise and a non-zero initial variance
that is large enough to describe biases that may be encoun-
tered. The zero process noise indicates that the parameter is
modeled as an unknown constant. Adding a small noise on
the parameter allows it to have some drift; this may also
be beneficial for mathematical/numerical reasons to avoid
degenerate covariance matrices in the smoothing operation.

The presence of a Gaussian white noise process wcgm,k

can be debated. Some researchers have claimed that the CGM
measurement noise in CGMs is non-Gaussian, e.g. Breton et
al. [28] found that a Johnson distibution was more appropriate.
Others argue that inferring the error distribution is confounded
by modelling inaccuracies in the plasma-ISF dynamics and/or
calibration errors, [31]. As stated in [32], not all CGM systems
are equal. Along the lines of the SMBG measurement noise
modeling of Sec. II-C.1, we consider the model given by Eqs.
(15) and (16) a useful default when no more information is

available, and if more detailed information about the CGM
errors are available for the data to be smoothed, e.g. as given
in [28], [32], [33], these models can be used instead.

The time constant Tisf affects the bias estimation, so
simultaneous estimation of the bias and the time constant is in
order. Thus Tisf is also added to the state space in the same
fashion as the bias, and estimated by the smoother.

E. Outlier suppression and removal

The method described above works well as is to suppress
outliers in the data, due to the smoothing introduced by nearby
points.

In some applications outlier suppression is not enough, and
it is more desirable to remove the outliers altogether. The
described method lends itself to this task, too. The process
noise tuning described in Sec.II-C.2 ensures that the error band
of the estimate grows rapidly enough to encompass meals and
insulin injections. Thus, the error band of the estimate can
be used to determine which measurements are likely outliers.
This criterium is then well-founded, as it will reject only those
measurements that are unlikely based on surrounding data,
and taking worst-case, but possible, glucose fluctuations into
consideration. We can base such a removal algorithm both on
the filter (forward pass) estimate and the smoother (backward
pass) estimate.

Outlier detection based on the filter estimate error band is
only capable of detecting gross outliers. As discussed above,
the process noise used is set relatively high in order to
give correct variance development under the assumption that
meals/insulin injections may occur at any time. This makes
the filter estimate develop a large variance quite quickly after
a measurement, as seen in Fig. 1.

Outlier detection based on the smoother estimate error band
is more promising. This is intuitively a more sound approach,
since also data after the suspected outlier is used to determine
if it is an outlier. An example of outlier suppression and
removal in a dataset containing a likely outlier is shown in
Fig. 5. A block diagram showing the process of filtering and
smoothing used for outlier detection is shown in the left side
of Fig. 3.

F. Replicate handling

Another case related to outlier removal is a situation that
is common in SMBG data sets, where there are two or more
measurements close together in time. This may be specified in
the study protocol the data has been recorded under, or may
be the result of the normal behaviour of some users when they
get measurements they believe might be incorrect, repeating a
measurement immediately. One such dataset is shown in Fig.
4, where the smoother output is compared to a cubic spline
interpolation of the same data. Cubic spline is often used to
provide interpolation between points, and the motivation for
this comparison is to showcase how risky this can be in an
automated setting.
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Fig. 3. A block diagram of the interpolation and outlier removal
processing (left side) and the data fusion and CGM-SMBG parameter
estimation processing (right side)
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Fig. 4. Automatic handling of triplicates. The smoother estimate (red
curve) goes through the mean of the triplicate measurements at t=172
min. A cubic spline interpolation of the same data is shown in green for
comparison, where a bad reaction to the proximity in time of the triplicate
measurements is seen.

G. Implementation
A Kalman smoother for SMBG measurements and a CGM-

SMBG dynamics parameter estimator have been implemented
in Matlab, and is publicly available [34]. The estimator uses
the smoother individually on the SMBG and CGM mea-
surements, and then uses the resulting smoothed and outlier
removed curves to estimate the CGM bias and time constant,
as illustrated in the right side of Fig. 3.

H. Testing
The smoother was tested on data sets recorded as reference

measurements in a study of BioMKR®, a novel non-invasive
glucose sensor being developed by Prediktor Medical, Fredrik-
stad, Norway. The study was approved by the regional ethical
comittee, Study ID: REK Midt 2016/1127.

The study recruited 39 type I diabetes subjects. A calibration
session was performed for each subject, where reference
glucose was collected every ten minutes with an SMBG meter

(Freestyle Freedom Lite, Abbot). A Flash Glucose Monitor
(FGM; Freestyle Libre, Abbot), worn on the upper right
or left arm, was scanned at the same time as the SMBG
measurements were taken. Glucose increase was achieved
by sugary drinks, and decreased by insulin injections. The
calibration session data sets ranged from 2.6 to 5.8 hours,
with a mean duration of 4.6 hours. The SMBG measurements
glucose data ranged from 3 to 26 mmol/L, with a mean of 8.5
mmol/L. Only the SMBG and FGM data from the calibration
sessions in this study were used as test sets in this paper. The
SMBG data were used for testing the smoothing/interpolation
and outlier removal.

The approach for combining SMBG measurements and
CGM measurements with simultaneous estimation of Tisf and
bcgm as described in Sec. II-D.3 was tested with synthetic data
sets with known time constant and bias. These were generated
by simulating the system and measurement Eqs. (15) and
(16), using the real SMBG measurements from the calibration
sessions as the Gp state and varying Tisf (1, 5, 10 and 20
min) and bcgm (-2 to 2 in steps of 0.5). Thus, 36 simulated
CGM curves were generated for each of the 39 calibration
sessions, resulting in more than 1400 synthetic data sets for
testing the parameter estimation, and comparing the estimate
with the known true values for the parameters. After using
these data sets to determine the smoother’s ability to find the
parameters, the SMBG-CGM estimator was also tested on the
39 real Freestyle Libre data sets.

III. RESULTS

A. Outlier suppression and removal
Using model 2, the smoother automatically found three

outliers in the 39 data sets. One is the dataset shown in
Fig. 5, where the point at t=161 min is too high by about 4
mmol/L. The others were too high by about 3 and 2 mmol/L,
respectively, and are shown in Fig. 6. Removal of these outliers
resulted in a change of MARD between CGM and SMBG
measurements of 0.3, 0.7 and 1.5 percentage points for the
sets, respectively. This illustrates the impact such outliers in
the reference signal can have for subsequent analyses like a
MARD computation.

Manual inspection of the other data sets found measure-
ments that could be regarded as more moderate outliers, these
are suppressed by the smoother, but not removed.

If instead model 1 was used in the smoother, the result was
the same except for one case: the outlier shown in the top
panel of Fig. 6 was not removed. It is clear from the figure
that this point is just barely outside the error band when using
model 2. Model 1 has a slightly faster variance development
compared to model 2, making this point fall inside the error
band instead of outside, and that is the reason for this point not
being labeled an outlier by the smoother when using model
1. This shows that the choice of glucose dynamics model and
its process noise parameters can determine the outcome of the
outlier removal to some extent.

B. CGM measurement parameter estimation
The SMBG-CGM parameter estimation was run on the

synthetic test sets. It estimated the bias to within 0.1 mmol/L
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Fig. 6. Two other outliers detected by the method. Legend as in Fig. 5

of the true bias in 95% of the cases with a maximum error
of 0.14 mmol/L, and the time constant to within 1 min of the
true value in 81% of the cases with a maximum error of 1.8
min.

When run on the real Freestyle Libre data from the 39 data
sets from the clinical study, the smoother estimated biases
ranging from -1.8 to 1.5 mmol/L and time constants ranging
from 1 to 24 min. Parameter estimations are shown for three
selected runs in Fig. 7.

IV. DISCUSSION

The Kalman smoothing methods presented here are useful
for various tasks in automatic processing of glucose data for
research and commercial purposes. The smoother presented
is model based, and two simplistic glucose dynamics models
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Fig. 7. Parameter estimation of the CGM-SMBG dynamics in three
runs from the calibration sets. The three runs display different SMBG-
CGM dynamics; the two first sets have clear bias effects in different
directions, whereas the last set shows a clear latency effect. Biases and
time constants found by the smoother are given in the plots. The black
curves are bias corrected CGM signals, produced by retrieving the Gisf

state after smoothing

were investigated for use in the smoother. The more plau-
sibly the model describes real glucose dynamics, the more
confidence we can have that the smoother will give realistic
estimates and variances. On the other hand, the model must
be observable with glucose as the sole measurement, which
limits the complexity of the models that may be used. The
choice of model and noise parameter settings gives room for
some subjectivity, but it provides a way to be explicit about
the assumptions made, which helps provide reproducability.

There are many examples of Kalman filtering applied to
glucose in the literature, largely applied in online settings,
e.g. for denoising CGM data in real time [35], or for state
estimation in MPC settings [11]. Our approach differs in that it
uses Kalman smoothing. This implies that the method is usable
only in offline settings, where all the data is available. Such
retrospective settings are common, at least in research, and
especially in research related to glucose-insulin metabolism
models. One commonly encountered task in metabolism model
research is parameter estimation in the models. The importance
of smoothing measurement data before attempting state or
parameter estimation is acknowledged in [12], where different
methods for smoothing glucose data are evaluated. Their
optimal segments method is comparable to ours in the resulting
curve of smoother estimate means, but lacks the information
about the uncertainty in the interpolated signal that our method
provides through the estimated variance. This measure of
uncertainty is directly useful in a state/parameter estimation
setting.

A noteable feature of the output from our smoother is how
rapidly the variance grows in periods of no measurements.
However, due to the tuning done to encompass worst case
glucose fluctuations, this rapid uncertainty development is
realistic when meal and insulin inputs are considered to be un-
known. This feature of our method is useful in SMBG datasets
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to get a measure of the uncertainty between measured points,
as illustrated in Fig. 1. This enables an informed decision about
which interpolated values to include in subsequent analyses.

The strengths of the method include a minimum of as-
sumptions made and high customizability. No person-specific
parameters or information about meal and insulin inputs are
needed to use the smoother. The method does encode some
information about glucose variability and glucose sensor error
modeling that could be useful as defaults when no more
information is available, and if more detailed information
about sensor error, patient glucose dynamics or meal/insulin
inputs are available, the method can include this. This includes
the use of models with person-specific parameters.

One could also envision clinical use where methods as de-
scribed here are used to clean and correct SMBG and/or CGM
data before they are displayed to users and their caretakers.
This could potentially reduce the burden on the users and
caretakers in having to know about common errors in the data
and trying to mentally correct for them.

The CGM-SMBG parameter estimation implemented as an
extended test case in this work finds the correct bias and
time constant in synthetic data sets. It finds parameter values
in real FGM data sets that are plausible and comparable to
those found by other groups for other CGM systems [32],
[33] showing that simultaneous estimation of these parameters
can be done as part of the smoothing. This is an important
preprocessing step when using CGM data, as using biased
data could influence downstream processing. For instance in
metabolism model parameter estimation, where bias correction
and knowledge of the plasma-interstitial fluid time constant
is needed to prevent CGM device-specific dynamics affecting
the estimation of person-specific parameters. Our SMBG and
FGM data does not allow us to conclude whether the biases
we observed originate from the SMBG or the FGM measure-
ments, but we assume the latter, since bias/calibration error is
commonly found to be the largest error in CGM systems [32],
[33], whereas SMBG measurement errors have been found to
be uncorrelated in time [17]. It should be noted that glucose
data sets with both CGM and frequent SMBG measurements
as those analysed here, rarely occur outside research settings.

This work has considered glucose data sets, but the method
should be applicable for other biomedical measurements that
behave similarly, e.g. lactate. Some of the parameters (e.g.
measurement and process noises) will need altering, but the
general method should be applicable.

V. CONCLUSION

A Kalman smoother for automatic and objective prepro-
cessing of glucose data has been presented, providing inter-
polation, outlier removal, replicate handling and uncertainty
estimation in glucose data. Properties of the method have
been discussed, and its performance on human glucose data
sets containing SMBG and FGM measurements has been
demonstrated. The method is recommended over some other
methods that may be used for such tasks, e.g. linear or cubic
spline interpolation, due to its noise suppression properties and
its ability to estimate realistic variance (uncertainty) at each

interpolated point. A Matlab implementation of the described
method is publicly available [34].
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