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Abstract. We consider a real fuel supply vessel routing and scheduling problem 
faced by a Hellenic oil company with a given fleet of fuel supply vessels used 
to supply customer ships outside Piraeus Port. The supply vessels are loading 
fuel at refineries in the port area before delivering it to a given set of customer 
ships within specified time windows. A customer ship may place orders of more 
than one fuel type, and all orders placed by a customer ship do not have to be 
serviced by the same vessel, meaning customer splitting is possible. Fuel trans-
ported to the customer ships is allocated to compartments on board the supply 
vessels, and fuels of different types cannot be mixed in the same compartment. 
The objective is to design routes and schedules for the supply vessels while 
maximizing the company’s profit. We propose a mixed-integer programming 
(MIP) model for the problem and provide a computational study based on real 
instances. 
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1 Introduction 

Maritime transportation planning problems have attracted considerable attention in 
the literature in the last decades; see the surveys by Christiansen et al. (2013). How-
ever, even though fuel refilling is an important task for ships entering ports, the plan-
ning problem considered in this paper, where incoming customer ships are supplied 
with fuel by a given fleet of specialized fuel supply vessels, has, to the authors’ 
knowledge, not been studied previously in the Operations Research literature. As a 
case study, we consider a Hellenic oil company operating in the broader area of 
Pireaus Port illustrated in Figure 1. The figure also shows where incoming customer 
ships anchor, waiting to be supplied by the company’s fuel supply vessels within 
given agreed time windows. The supply vessels load at refineries in the inner part of 
the port before supplying the customer ships. The refineries offer different types of 
fuel, and a customer ship can order quantities of several fuel types to be delivered 
within the same time window. Fuel transported to the customer ships is allocated to 
compartments on board the supply vessels, and fuels of different types cannot be 



mixed in the same compartment. Some customer ships are mandatory to service, 
while other customer ships are optional and can be supplied if the company has the 
available capacity. The planning problem consists of determining routes and sched-
ules for the fleet of supply vessels such that the profit is maximized and all mandatory 
customer ships are serviced within their time windows. The vessels can perform more 
than one voyage during the planning horizon. The problem also includes determining 
which optional customers to service, as well as allocating the different types of fuel to 
separate compartments within the supply vessels, which add substantial complexity to 
the problem. The problem can be considered as a version of the multi-trip vehicle 
routing problem with time windows, see for example Nguyen et al. (2013) and Cat-
taruzza et al. (2014). In addition, we have a multi-compartment routing problem, see 
for instance Mendoza et al. (2010).  
 

 
Fig. 1. Map of Piraeus port area 

The fuel supply business in Piraeus Port has long traditions, and the business is to a 
large extent characterized by manual efforts in determining routes and schedules for 
the fuel supply vessels. However, many complicating factors and the large amount of 
money involved indicate that some decision support could be of good use.  

The objective of this paper is to introduce this planning problem to the research 
community, and to propose a mixed-integer-programming (MIP) model for the prob-
lem that can support decision-making.  

The outline of the remaining of the paper is as follows: Section 2 presents the 
planning problem in more detail followed by a MIP model in Section 3. Computa-
tional results are reported and discussed in Section 4, while concluding remarks are 
provided in Section 5.  



2 Problem description 

A given heterogeneous fleet of supply vessels is used to supply customer ships an-
chored in a port area. The customer ships place orders of different fuel types. The 
supply vessels load all fuel types at refineries. Since the distances within the refineries 
are almost negligible for this particular case study, we assume that the refineries can 
be modeled as a single depot. In the start of a planning horizon, some vessels may not 
be available for loading until some specified time. After finishing loading at the de-
pot, the supply vessels start sailing to the customer ships. The sailing time between 
the depot and the customer ships is dependent on the hour of the day because sailing 
is not allowed in the area of the navy dock at night time, and vessels that would like to 
sail between the inner and outer port area in this period must sail around Salamina 
Island (Figure 1). The sailing times between different customer ships are assumed 
independent of time and which customer ships the vessels sail between. Loading time 
at the depot is assumed independent of vessel and loading quantity. The depot has a 
berth capacity, which implies that a maximum number of vessels may load simultane-
ously at a time. Figure 2 illustrates the customer ships, the supply vessels and the 
depot. The vessels may wait at a customer ship or at the depot before operation starts.  

A vessel’s voyage starts with loading at the depot, continue with sailing to and ser-
vicing the customer ships before returning empty to the depot. Within the planning 
horizon, a vessel may perform more than one voyage. Hence, every time a vessel 
loads at the depot, it also starts a new voyage. In Figure 2, vessel 1 executes two voy-
ages, while vessel 2 performs only one. 

 
Fig. 2. Illustration of the customer ships, vessels and the depot. The customer ships’ demands 
range from one to three different orders. One of the customer ships is serviced by both vessels, 
while the other customer ships are operated by only one vessel. Vessel 1 sails two voyages, 
while vessel 2 only sails one voyage. 



A customer ship may place orders of different fuel types to be delivered at the 
same time. Each customer ship states a time window in which all its orders must be 
serviced. All orders at a customer ship do not need to be serviced by the same supply 
vessel, but if they are, the operation of the orders must happen continuously. If several 
vessels are servicing different orders at the same customer ship, there is an upper time 
limit between starting the first and the last order operations. In addition, only one 
vessel may service a customer ship at a time. The supply vessels are obliged to ser-
vice contract customers, while spot customers can be serviced if the supply vessels 
have sufficient capacity. There are given quantities for the contract orders, while the 
spot orders’ quantities are flexible within given upper and lower limits specified by 
the customers. The company must operate either all or none of a given spot custom-
er’s orders.  

The supply vessels have a different number of compartments with given capacities 
where the fuels are loaded. A compartment may carry several fuel types, but it may 
only contain one fuel type at a time. The same fuel type may be carried in several 
compartments at the same supply vessel, and large orders may be split between com-
partments. Moreover, if different customer ships order the same fuel type, the orders 
may be allocated to the same compartment. 
The planning problem consists of determining routes and schedules for the fleet of 
supply vessels such that the profit is maximized and all mandatory customer ships are 
serviced within their time windows. The profit equals the revenue through operation 
of contract and spot customers subtracted fixed daily costs and variable sailing costs. 
The problem also includes determining which optional customers to service, as well 
as allocating the different types of fuel to separate compartments within the supply 
vessels. 

3 Mathematical model 

In this section, we propose a MIP model for the problem. Section 3.1 introduces some 
modelling choices and definitions that are used in the mathematical model. Section 
3.2 describes the notation used, while the objective function and the constraints of the 
mathematical model are presented in Section 3.3.  

3.1 Modeling approach 

We have chosen to develop a discrete time model due to the time dependent sailing 
time between the inner and outer port area. With discrete time representation, the 
planning horizon is divided into time periods of equal lengths.  

Nodes are introduced to describe the orders placed by the customer ships. A node, 
a customer node and an order represent the same, and the terms may be used inter-
changeably. In addition to the nodes representing the orders, we include a depot node 
and a dummy end node. The depot node represent both refineries, while the dummy 
end node represent a fictive node where the vessels end up after operating all sched-
uled nodes in the planning horizon.  



The vessel may execute multiple voyages during the planning horizon. In the 
mathematical model the numbering of voyages is related to each supply vessel. 

The time window of a customer ship is defined by two parameters. One parameter 
represents the start of the time window and is the first time period a vessel may start 
servicing one of the customer ship’s nodes. The other parameter represents the end of 
the time window, meaning that this is the last possible time period for servicing the 
customer ship. Notice that the end of the time window here is defined as the time 
period where operations must be finished, while in most relevant literature the time 
windows are defined as time periods which service may start.  

3.2 Notation 

Indices  
𝑣  supply vessel 
𝑖, 𝑗  Node 
0  the depot node 
𝑑  the dummy end node 
𝑢  customer ship 
𝑓  fuel type 
𝑐  Compartment 
𝑚  Voyage 
𝑡  time period 

Sets  
𝒱  supply vessels 
𝒩  customer nodes 
𝒩𝑇   Nodes (total), 𝒩 ∪ {0} ∪ {𝑑} 
𝒰  customer ships 
𝒰𝐶 ⊆ 𝒰  contract customer ships 
𝒰𝑂 ⊆ 𝒰  spot customer ships  
𝒩𝑢 ⊆ 𝒩  nodes that belong to customer ship 𝑢 
ℱ  fuel types 
ℱ𝑐 ⊆ ℱ  fuel types allowed on compartment 𝑐 
𝒞𝑣  compartments on supply vessel 𝑣 
ℳ𝑣  voyages for vessel 𝑣 
𝒯  time periods 
𝒯𝐷𝐷𝐷 ⊆ 𝒯  time periods that represent a day’s first time period. For example, 

when the planning horizon starts with time period 0 and one time 
period represent one hour, time periods 0, 24, 48 etc. are time peri-
ods in the set.   

𝒮𝑥  possible combinations of (𝑣, 𝑖, 𝑗,𝑚, 𝑡) for variable 𝑥𝑣𝑣𝑣𝑣𝑣  



𝒮𝑦  possible combinations of (𝑣, 𝑖,𝑚, 𝑡) for variable 𝑦𝑣𝑣𝑣𝑣  
𝒮𝑤  possible combinations of (𝑣, 𝑖,𝑚, 𝑡) for variable 𝑤𝑣𝑣𝑣𝑣 

Parameters  
𝑇𝑣𝑣𝑣𝑣𝑆𝐷  sailing time when vessel 𝑣  sails directly between nodes 𝑖  and 𝑗 

when arriving at node 𝑗 in time period 𝑡 
𝑇𝑣𝑣𝑣𝑣𝑆𝐷  sailing time when vessel 𝑣 sails directly between node 𝑖 and 𝑗 when 

departing node 𝑗 in time period 𝑡 
𝑇𝑣𝑣𝑂 vessel 𝑣’s operating time at node 𝑖 

𝑇𝑢 start of time window of customer ship 𝑢 
𝑇�𝑢 end of time window of customer ship 𝑢 
𝑇𝑢𝐷 maximum time difference between start of operation of the first and 

last node at  customer ship 𝑢 
𝑇𝑣𝑀 the minimum time a vessel may use on any voyage 
𝑇𝑣𝐸  the earliest time vessel 𝑣 is available for operation 
𝐻 number of time periods within 24 hours 
𝐵 berth capacity of the depot 
𝐷𝑣𝑖 

demanded quantity of fuel type 𝑓 for contract node  𝑖 
𝐷𝑣𝑖 

minimum accepted quantity of fuel type 𝑓 for spot node  𝑖 

𝐷𝑣𝑖 
maximum accepted quantity of fuel type 𝑓 for spot node  𝑖 

𝑄𝑐𝑣  load capacity of compartment 𝑐 on vessel 𝑣 
  𝐶𝑣𝐹  fixed daily cost of using vessel 𝑣 

𝐶𝑣𝑆 sailing cost per time period with vessel 𝑣 
𝑅𝑖 revenue per quantity delivered of fuel type 𝑓 

Variables  

𝑥𝑣𝑣𝑣𝑣𝑣   1, if vessel 𝑣 starts sailing in time period 𝑡 from node 𝑖 directly to 
node 𝑗 on voyage 𝑚/ 0, otherwise 

𝑦𝑣𝑣𝑣𝑣   1, if vessel 𝑣 starts operating node 𝑖 in time period 𝑡 on voyage 𝑚 / 
0, otherwise 

𝑤𝑣𝑣𝑣𝑣   1, if vessel 𝑣 is waiting in time period 𝑡 at node 𝑖 on voyage 𝑚/   
0, otherwise 

𝛾𝑣𝑢𝑣  1, if vessel 𝑣 operates all nodes at customer ship 𝑢 on voyage 𝑚/ 
0, otherwise 

𝑧𝑢  1, if spot customer ship 𝑢 is operated/ 0, otherwise 
𝛿𝑣𝑣  1, if vessel 𝑣 is utilized the day that start with time period 𝑡/  

0, otherwise 
𝑘𝑣𝑖𝑐𝑣  1, if compartment 𝑐 on vessel 𝑣 is allocated to fuel type 𝑓 on voy-

age 𝑚/ 0, otherwise 
𝑙𝑣𝑣𝑣𝑖𝑐𝑣   quantity of fuel type 𝑓 in compartment 𝑐 of vessel 𝑣 when sailing 



directly from node 𝑖 to 𝑗 on voyage 𝑚 
𝑞𝑣𝑣𝑖𝑣  delivered quantity of fuel type 𝑓 to spot node 𝑖 by vessel 𝑣 on voy-

age 𝑚 

3.3 Model 

Objective function 
The objective function (1) represents the company’s profit. It comprises the reve-

nue from operating spot orders, variable sailing costs and daily fixed costs of using 
the vessels. The revenue from the contract orders is not included in the objective func-
tion since they can be considered as fixed. By including daily fixed costs in this way, 
the model will strive towards solutions where the vessels are busy some days, and are 
doing nothing other days. This is assumed to be practical in the real case problem, as 
long breaks in the utilization of a vessel allow for necessary repairs and time off.  
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Flow constraints 
The flow or routing constraints are given as follows: 
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𝑥𝑣𝑣𝑣𝑣𝑣 ∈ {1,0}  
 

∀(𝑣, 𝑖, 𝑗,𝑚, 𝑡) ∈ 𝒮𝑥 (11) 

𝑦𝑣𝑣𝑣𝑣 ∈ {1,0}  
 

∀(𝑣, 𝑖,𝑚, 𝑡) ∈ 𝒮𝑦 (12) 
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∀(𝑣, 𝑖,𝑚, 𝑡) ∈ 𝒮𝑤 (13) 

𝑧𝑢 ∈ {1,0}  
 

∀𝑢 ∈ 𝒰𝑂 (14) 

𝛿𝑣𝑣 ∈ {1,0}  
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Constraints (2) ensure that every contract node is serviced only once, by one vessel on 
one voyage. The constraints also control that the customer nodes are serviced within 
their time windows. Constraints (3) hold for the nodes at the spot customer ships. If 
these nodes are serviced, each node can only be serviced by one vessel on one voyage 
within its time window. They also ensure that either all or none of the nodes for a 
given spot customer ship are serviced. Furthermore, constraints (4) make sure that the 
vessels operate at the depot at most once on each voyage. Constraints (5) control that 
a vessel cannot start a new voyage if it has not ended the previous voyage. The con-
straints also ensure that the previous voyage takes at least time 𝑇𝑣𝑀, which is the min-
imum time any vessel may use on a voyage. In constraints (6), it is described that 
when a vessel has finished servicing a node, it must start sailing to a customer node, 
the depot node or the dummy end node. Even when the same supply vessel is servic-
ing two different nodes belonging to the same customer ship, it must start sailing after 
operating the first node. The sailing times between the nodes will in that case be zero. 



Since the sailing time between nodes at the same customer ship is zero, sailing varia-
bles and operating variables may equal 1 in the same time periods. Constraints (7) 
make sure that a vessel either starts waiting or operating at a customer node when the 
vessel arrives at the node. Moreover, if a vessel waits at a node in a time period, it is 
restricted to either operate or wait at the node in the following time period. Con-
straints (8) are equivalent to the previous constraints, but concern the depot node. 
They make sure that when a vessel arrives at the depot, it must either start loading at 
the depot for a new voyage or wait at the depot on the current voyage. If a vessel 
waits at the depot in a time period, it may start operating on a new voyage or keep 
waiting on the current voyage in the next time period. Constraints (9) control that 
every vessel, if it is used at all, executes the fictive sailing to the dummy end node 
once during the planning horizon. Constraints (10) ensure that the variable 𝛿𝑣𝑣 equals 
1 if a given vessel is utilized the day which starts with time period 𝑡. Waiting is not 
included, since it is possible to wait at the depot which in practice corresponds to not 
utilizing the vessel. Finally, the binary restrictions for the variables are given in (11)-
(15).  

Time constraints 
The time or schedule constraints are as follows:  
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Constraints (16) and (17) force the 𝛾𝑣𝑢𝑣 variables to 1 if all nodes at the same cus-
tomer ship are serviced by the same vessel. Constraints (18) further control that the 
nodes at such customer ships are operated continuously. Note that the constraints 
assume that the nodes are serviced in a specific order, which reduces symmetry. 
When a vessel services all nodes at a customer ship, this must happen on the same 
voyage, since continuous operation by the same vessel will never happen on two dif-
ferent voyages. If a customer ship is serviced by more than one vessel, constraints 
(19) narrow the time span where the nodes at the customer ship can be operated. It is 
desirable that the nodes of a customer ship are operated continuously without any 
waiting in between. Since the operating times vary with vessel and the fact that the 
operating sequence of the nodes are not known a priori, these constraints give some 
possibilities for waiting in between. All operation of nodes at a given customer ship 
must start within an interval, 𝑇𝑢𝐷, calculated from the vessels’ operating times at the 
customer ship. Constraints (20) ensure that in any time period, the company cannot 
have more than B vessels loading at the depot. In addition, a customer ship can only 
be operated by one vessel at the time. Constraints (21) take care of this. Finally, the 
binary requirements for the 𝛾𝑣𝑢𝑣 variables are given in (22). 

Load constraints 
The load management on board the ships is taken into account by the following 

constraints:  
 
� � 𝑙𝑣𝑣𝑣𝑖𝑐𝑣 −�𝐷𝑣𝑖𝑦𝑣𝑣𝑣𝑣

𝑣∈𝒯𝑣∈𝒩∪{0}𝑐∈𝒞𝑣

− � � 𝑙𝑣𝑣𝑣𝑖𝑐𝑣 = 0
𝑣∈𝒩𝑇𝑐∈𝒞𝑣

 

 

 
∀𝑣 ∈ 𝒱, 𝑖 ∈ 𝒩𝑢 , 

𝑢 ∈ 𝒰𝐶 , 
𝑓 ∈ ℱ,𝑚 ∈ ℳ𝑣  

(23) 
 

� � 𝑙𝑣𝑣𝑣𝑖𝑐𝑣 − 𝑞𝑣𝑣𝑖𝑣 − � � 𝑙𝑣𝑣𝑣𝑖𝑐𝑣 = 0
𝑣∈𝒩𝑇𝑐∈𝒞𝑣𝑣∈𝒩∪{0}𝑐∈𝒞𝑣

 

 

 
∀𝑣 ∈ 𝒱, 𝑖 ∈ 𝒩𝑢 , 

𝑢 ∈ 𝒰𝑂, 
𝑓 ∈ ℱ,𝑚 ∈ ℳ𝑣  

(24) 
 

�𝐷𝑣𝑖𝑦𝑣𝑣𝑣𝑣
𝑣∈𝒯

≤ 𝑞𝑣𝑣𝑖𝑣 ≤�𝐷𝑣𝑖𝑦𝑣𝑣𝑣𝑣
𝑣∈𝒯

 
 
∀𝑣 ∈ 𝒱, 𝑖 ∈ 𝒩𝑢 , 

𝑢 ∈ 𝒰𝑂, 
𝑓 ∈ ℱ,𝑚 ∈ ℳ𝑣  

(25) 

 

� � 𝑙𝑣𝑣𝑣𝑖𝑐𝑣 −�� 𝑄𝑣𝑐𝑥𝑣𝑣𝑣𝑣𝑣
𝑐∈𝒞𝑣

≤ 0
𝑣∈𝒯𝑖∈ℱ𝑐𝑐∈𝒞𝑣

 

 

 
∀𝑣 ∈ 𝒱, 𝑖 ∈ {0}, 
𝑗 ∈ 𝒩,𝑚 ∈ ℳ𝑣 

 
 

(26) 

� � 𝑙𝑣𝑣𝑣𝑖𝑐𝑣 −�(� 𝑄𝑐𝑣 − � 𝐷𝑣𝑖
𝑖∈ℱ𝑐

)𝑥𝑣𝑣𝑣𝑣𝑣
𝑐∈𝒞𝑣𝑣∈𝒯𝑖∈ℱ𝑐𝑐∈𝒞𝑣

≤ 0 
 

𝑣 ∈ 𝒱,𝑢 ∈ 𝒰𝐶 , 
𝑖 ∈ 𝒩𝑢 , 

𝑗 ∈ 𝒩𝑇 ,𝑚 ∈ ℳ𝑣 

(27) 



� � 𝑙𝑣𝑣𝑣𝑖𝑐𝑣 −�(� 𝑄𝑐𝑣 − � 𝐷𝑣𝑖
𝑖∈ℱ𝑐

)𝑥𝑣𝑣𝑣𝑣𝑣
𝑐∈𝒞𝑣𝑣∈𝒯𝑖∈ℱ𝑐𝑐∈𝒞𝑣

≤ 0 
 

𝑣 ∈ 𝒱,𝑢 ∈ 𝒰𝑂, 
𝑖 ∈ 𝒩𝑢 , 

𝑗 ∈ 𝒩𝑇 ,𝑚 ∈ ℳ𝑣 

(28) 

� 𝑘𝑣𝑖𝑐𝑣
𝑖∈ℱ𝑐

≤ 1 

 

 
𝑣 ∈ 𝒱, 𝑐 ∈ 𝒞𝑣 , 
𝑚 ∈ ℳ𝑣 

(29) 

𝑙𝑣𝑣𝑣𝑖𝑐𝑣 − min {𝑄𝑣𝑐 , � 𝐷𝑘𝑖
𝑘∈𝒩𝑢|𝑢∈𝒰𝐶

+ � 𝐷𝑘𝑖
𝑘∈𝒩𝑢|𝑢∈𝒰𝑂

} 𝑘𝑣𝑖𝑐𝑣 ≤ 0 

 

 
∀𝑣 ∈ 𝒱, 

𝑖, 𝑗 ∈ 𝒩 ∪ {0}, 
𝑓 ∈ ℱ𝑐 , 𝑐 ∈ 𝒞𝑣 , 

𝑚 ∈ ℳ𝑣 
 

(30) 

� � � 𝑙𝑣𝑣𝑣𝑖𝑐𝑣
𝑣∈𝒩

= 0
𝑖∈ℱ𝑐𝑐∈𝒞𝑣

 

 

 
∀𝑖 ∈ {0} ∪ {𝑑}, 

 𝑣 ∈ 𝒱,𝑚 ∈ ℳ𝑣 
(31) 

𝑘𝑣𝑖𝑐𝑣 ∈ {1,0}  
 

∀𝑣 ∈ 𝒱, 𝑓 ∈ ℱ𝑐 , 
𝑐 ∈ 𝒞𝑣 , 𝑚 ∈ ℳ𝑣 

(32) 

𝑙𝑣𝑣𝑣𝑖𝑐𝑣 ≥ 0  
 

∀𝑣 ∈ 𝒱, 
𝑖 ∈ 𝒩 ∪ {0}, 

 𝑗 ∈ 𝒩 ∪ {0}, 
𝑓 ∈ ℱ𝑐 , 𝑐 ∈ 𝒞𝑣 , 

 𝑚 ∈ ℳ𝑣 

(33) 

𝑞𝑣𝑣𝑖𝑣 ≥ 0  
 

∀𝑣 ∈ 𝒱, 𝑖 ∈ 𝒩, 
𝑚 ∈ ℳ𝑣 , 𝑓 ∈ ℱ 

(34) 

 
The difference in load within a supply vessel’s compartments before and after operat-
ing a customer node equals the demanded fuel quantity of the node. This is ensured 
by constraints (23) and (24) for contract and spot nodes, respectively. Constraints (25) 
ensure that the quantity delivered to the spot nodes are within the upper and lower 
limits. The load variables, 𝑙𝑣𝑣𝑣𝑖𝑐𝑣 , can be denoted as arc-load flow variables. Agra et 
al. (2013) describe the advantages of having arc-load flow variables instead of more 
common load variables, where the latter do not include a destination node 𝑗. They 
state that using the arc-flow load variables strengthen the model. Constraints (26)-(28) 
control that the 𝑙𝑣𝑣𝑣𝑖𝑐𝑣 variables are assigned non-zero values only if the given vessel, 
𝑣, sails directly between nodes 𝑖 and 𝑗, and that the compartments’ capacity limits are 
not exceeded. Constraints (29) ensure that only one fuel type is allocated to a com-
partment on each voyage. The constraints also make sure that a compartment is only 
loaded with a fuel type that it is allowed to carry. Constraints (30) control that the arc-
flow load variables only take values for combinations of fuel type and compartment if 
the fuel type is actually allocated to that compartment. To facilitate the reading, we 



introduce constraints (31) to ensure that the vessels do not carry any load when re-
turning to the depot or the dummy end node. Finally, the binary and non-negativity 
requirements for the variables related to loading are given in (32)-(34). 

We have tested several types of valid inequalities to strengthen the linear relaxation 
of the model. Neither clique nor cover inequalities improved the solution process, so 
they are not included. Instead we include the promising valid inequalities (35) ensur-
ing that a spot node 𝑖 cannot be operated by a vessel 𝑣 if the vessel is not utilized the 
day the node has its time window. 

 
𝑞𝑣𝑣𝑖𝑣 − 𝐷𝑣𝑖𝛿𝑣𝑣 ≤ 0 ∀𝑣 ∈ 𝒱, 𝑖 ∈ 𝒩𝑢 , ,𝑢 ∈ 𝒰𝑂, 𝑓 ∈ ℱ,𝑚 ∈ ℳ𝑣 , 

𝑡 ∈ 𝒯𝐷𝐷𝐷|𝑡 ≤  𝑇𝑢 < (𝑡 + 𝐻) 
 

(35) 

4 Computational study 

This section presents a computational study performed on a number of test instances 
generated from real data from the company. The model described in the previous 
section has been implemented in Mosel and solved using the commercial optimization 
software Xpress v7.3 64-bit on an HP DL 165 G6 computer with two AMD Opteron 
24312 4.0 GHz processors, 24 GB of RAM and running on a Linux operating system. 
Section 4.1 describes the test instances, while computational results are presented and 
discussed in Section 4.2. 

4.1 Test instances 

The test cases are generated based on data regarding customer ships and their fuel 
orders provided by the company. The shipping company’s vessel fleet consisted of 
three vessels. Information regarding the vessels’ compartments, load capacities, costs 
and pumping rates was also given. The vessels have between 5 and 7 compartments 
and the total load capacities are in the range of approximately 1300 to 3000 m3. The 
pumping rates vary between 180 to 320 m3/h.  

Since the sailing times for this problem are small compared to the operating times 
at the customer ships and the depot (3 to 12 hours), we have approximated the sailing 
times between customer ships and between the depot and the customer ships to one 
hour. Exceptions are the sailing time between the depot and the customer ships during 
night time, which is four hours because of the navy dock closure, and the time to the 
dummy end node, which is set to 0. Taking these sailing times into account, we have 
chosen to use a time discretization of 1 hour. 

The customer ships had between one and three different orders each. Most custom-
er ships had a wide time window specifying service within a given day (i.e. during a 
period of 24 time periods). However, some of the ships had requested morning deliv-
eries where the deliveries had to be made between 7 am in the morning and 2 pm on 
the given day. 



The number of time periods to include in the planning horizon was set to the end 
time of the latest time window of the customer ships: |𝒯| = max(i∈𝒩) 𝑇�𝑢. This varied 
between 48 and 96 hours (i.e. two to four days). The start of the planning horizon was 
set to 𝑡 = 0. Since the vessels were already engaged in fuel deliveries (from the pre-
vious planning period), they were given different times for when they became availa-
ble. Vessel 1 became available for loading at the depot from time period 𝑡 = 17, 
meaning 𝑇1𝐸 = 17, while vessels 2 and 3 were available from 𝑡 = 7 and 𝑡 = 0, respec-
tively.  

Table 1. Test cases with varying number of customer ships that have placed orders on different 
days 

Test Case # Ships 
day 1 

# Ships 
day 2 

# Ships 
day 3 

# Total 
ships 

# Time 
periods 

4_4_0 4 4 0 8 72 
3_3_2 3 3 2 8 96 
10_0_0 10 0 0 10 48 
5_5_0 5 5 0 10 72 
6_6_0 6 6 0 12 72 
4_4_4 4 4 4 12 96 

 
Table 1 shows the different test cases used in the computational study. Since we 

did not have any data whether the customer orders were mandatory or optional, we 
assumed all were the latter in our tests. 

4.2 Computational experiments and results 

Table 2 shows the best obtained solutions within a time limit of 10,000 seconds run-
ning time. The table shows the results from running the model without and with the 
valid inequalities (35). 

Table 2. Test results from testing the basic mathematical model on test cases with spot nodes. 
The numbers in front of the’/’ show the results obtained without the valid inequalities (35), 
while the numbers after the ‘/’ are with. 

Test Case 
After 10,000 seconds 
Objective 

Function Values 
Best 
Bounds 

Gaps (%) 

4_4_0 2492/2492 2513/2514 0.8/0.9 
3_3_2 2483/2490 2498/2505 0.6/0.6 
10_0_0 2659/2950 2989/2990 11.0/1.3 
5_5_0 2329/777 2990/2987 22.1/74.0 
6_6_0 1011/1032 2490/3488 59.4/70.4 
4_4_4 2148/3257 3476/3476 38.2/6.3 

 



As shown in the table, we were not able to find proven optimal solutions within the 
given time limit. This gives a good indication of the problem’s complexity. However, 
for four of the six test cases, we are able to find solutions with reasonably small gaps 
of 6.3 % and less. We may also note that the model with the valid inequalities yields a 
better solution to four of the test cases, while the one without provides a better solu-
tion only on test case 5_5_0. The model without the valid inequalities is however best 
at finding better upper bounds on four of the six test cases.  

Since we experienced large difficulties in solving the problem, we also tested two 
simplified versions of the model. In the first version, denoted NoCS, we remove the 
possibility of customer splitting. The motivation behind this is that there are only very 
few cases where the company actually performs a customer splitting (which is some-
thing that our results also showed). Furthermore, reducing this possibility will reduce 
the model’s complexity, and one might actually obtain better solutions within the 
given time limit despite that the feasible space is reduced.  

In the second simplified version of the model, denoted ES50_NoCS, we additional-
ly eliminated the complicating stowage of orders to separate compartments in the 
vessels. This means that we assume in the model that all orders can be mixed in a 
single compartment only considering the total capacity. Because of this we risk that 
the solutions obtained are not feasible with respect to the real stowage problem. 
Therefore, we have tested this with running the simplified model with reduced ship 
capacities, which makes it easier to find feasible stowage plans for the solutions ob-
tained. Actually, tests showed that we had to reduce the capacity of the ship to as little 
as 50 % of the original capacity to achieve solutions that always where feasible with 
respect to the real allocation requirements. This feasibility check was done by solving 
a stowage model for the given route of each ship, which becomes a much simpler 
problem to solve.  

 
Fig. 3. Comparing the objective values after 10,000 seconds for the basic model (BM), without 
customer splitting (NoCS), and without stowage and customer splitting  (ES50_NoCS)  

Figure 3 compares the objective values for the two simplified model versions with 
the original one (without the valid inequalities). We can see that for the two smallest 
test cases, the three model versions gave similar results. However, for the four other 
test cases both simplified models gave better results. The model without both custom-



er splitting and stowage (ES50_NoCS) gave best results for all test cases except for 
10_0_0. If we compare the best results obtained with the simplified model version 
with the best upper bound provided in Table 2, it can be shown that these solutions 
are in fact very close to the optimal solutions. This indicates that these simplification 
strategies can be a good way to provide good decision support to a decision maker in 
a real planning situation when limited time is available. To respond to spot order in-
quiries, there is typically need for a solution within approximately 10 minutes. The 
ES50_NoCS model with neither stowage nor customer splitting provided solutions 
within this time limit. In addition, the model can be solved during the night to produce 
a schedule for the next days. The other two models can be useful for this purpose.  

5 Concluding remarks 

We have proposed a mixed integer programming model for a combined fuel supply 
vessel scheduling and fuel allocation problem. Three versions of the model have been 
evaluated using data for a real-life problem; a basic model which comprises all rele-
vant aspects as shown in Section 3, a simplified version of the model without custom-
er splitting, and another simplified version without stowage and customer splitting.  

Test results showed that the two simplified models provided significantly better so-
lutions within a time limit of 10,000 seconds compared to the basic model.  

The fuel supply vessel routing and scheduling problem is important for the ship-
ping industry and includes several challenges for the research community. In order to 
solve even larger instances of the problem in limited time, interesting future research 
could be to integrate some heuristic elements to the solution method presented, devel-
op advanced metaheuristics for the problem or methods based on branch-and-price 
(see e.g. Barnhart et al., 1998).   
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