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Abstract— This paper provides a novel formulation relating
underwater range measurements to body-fixed position when
several acoustic transceivers are mounted on the vehicle and
only one transponder is placed in the vehicle’s surroundings.
This formulation is used in a novel three-stage filter for aided
inertial navigation that has both global convergence and near-
optimal performance w.r.t. variance of the estimate. It estimates
both the position and velocity of the vehicle, and relies on a
globally stable attitude observer to provide estimates of the at-
titude and angular rate sensor bias. Two different formulations
of the novel three-stage filter were tested in simulations and
shown to track the true position.

I. INTRODUCTION

Underwater navigation in missions covering large under-
water areas is challenging and an important field of research.
Installing and maintaining fixed infrastructure that facilitate
positioning is expensive, and should be minimized for cost
reduction. An example of such missions is an underwater
intervention vehicle in transit between subsea oil and gas
installations. In this paper, the problem of position and
velocity estimation of a vehicle with only one available sea
floor mounted transponder is considered. It is well known
that with three or more transponders, the position can be
estimated in the inertial frame. Examples of such systems are
long baseline (LBL) and short baseline (SBL) where three
or more transponders are mounted on the sea floor or the
underside of a surface vessel, respectively. In applications
where a surface vessel is available, the ultra-short baseline
(USBL) can also be used, in which a compact array of
transducers are mounted to the underside of the surface
vessel. When only one transponder is available, however,
the vehicle either needs to collect range measurements over
time, as was studied by Batista, Silvestre, and Oliveira [1],
or have multiple transceivers mounted to it, as was done by
Batista, Silvestre, and Oliveira [2], in order for the position
estimation problem to be observable. An example of the
latter is the inverted USBL (iUSBL) system, where an USBL
transceiver is mounted on the underwater vehicle, capable of
providing range and relative attitude measurements between
the vehicle and the transponder. In this paper, a set up is
suggested in which multiple transceivers are mounted as far
as possible from each other on an underwater vehicle. This
set up is named inverted SBL (iSBL) since it shares the
property with SBL that the baseline lengths are confined by
the size of the vehicle to which it is mounted. This is contrary

1 Department of Marine Technology, University of Science and Technol-
ogy (NTNU), 7491 Trondheim, Norway.

2 Department of Engineering Cybernetics, NTNU, 7491 Trondheim,
Norway.

to iUSBL, where the baseline lengths are confined to the size
of the iUSBL apparatus in which the transducers lie. Where
the short baselines of iUSBL necessitate highly accurate
phase difference measurements, the longer baselines of the
iSBL has the potential of relaxing this accuracy requirement.
Furthermore, instead of measuring the range and relative
attitude between transponder and vehicle, the iSBL uses the
individual ranges to, or range differences between, the ve-
hicle mounted hydrophones. This facilitates tightly coupled
integration of inertial and hydroacoustic measurements. A
similar set up was studied in Batista, Silvestre, and Oliveira
[2], except the baselines between the hydrophones were short
as in iUSBL, but the range differences between hydrophones
were used as measurements, requiring highly accurate phase
measurements. The suggested set up is coined iSBL in order
to avoid confusion with iUSBL technology.

The overall goal of the presented work is the development
of a novel three-stage filter for aided inertial navigation using
an iSBL system. It builds on the work of Johansen and
Fossen [3], [4], where a non-linear model is linearized about
a suboptimal and globally stable estimate, and a Kalman
filter (KF) is implemented based on the linearized model.
The estimate from the linearized KF is shown to inherit the
stabilty properties of the suboptimal estimate while yielding
better performance w.r.t. variance. In Johansen, Fossen, and
Goodwin [5], a three-stage filter for position estimation of a
unmanned aerial vehicle provided earth-fixed radio beacons
was developed. A three-stage filter for an underwater vehicle
provided an LBL system was presented in Stovner et al. [6].
In both works, the position and velocity were estimated in
the North-East-Down (NED) frame. Morgado et al. [7] de-
veloped a globally asymptotically stable (GAS) filter fusing
iUSBL and measurements from an inertial measurement unit
(IMU). Since the iUSBL measurement can be used straight-
forwardly to find the position of the transponder relative
the vehicle in the body-fixed frame, the position estimation
is conducted in this frame as well. Unlike the iUSBL, the
iSBL measures separate ranges to all transceivers. Therefore,
the iSBL set up facilitates implementation of estimation of
the translational motion both in the NED and the body-
fixed frames. In the presented work, filters using both of
these formulations are developed and compared. Since both
formulations require an attitude estimate, a globally expo-
nentially stable (GES) non-linear attitude observer (NLAO)
is implemented.
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Fig. 1. The configuration of iSBL hydrophones (red), transmitter (blue),
and the transponder (black).

A. Scope and Outline

The main contribution of this paper is a globally expo-
nentially stable three-stage filter for position and velocity
estimation using iSBL and IMU measurements. Two differ-
ent formulations of the novel three-stage filter are tested and
verified in simulations. The use of such a filter for position
and velocity estimation is highly relevant for underwater
applications where installing fixed infrastructure is expensive
and demanding. The estimation error dynamics is shown to
be GES for weakly accelerated vehicles, which makes the
estimation strategy rather insensitive to initialization errors.

II. MODELS AND PRELIMINARIES

A. Notation

The position, velocity, and angular rate of a vehicle are
denoted pabc, vabc, and ωa

bc, respectively, where pabc denotes
the position of c relative b decomposed in the coordinate
frame {a}. A rotation matrix expressing the rotation from
the frame {b} to {a} is denoted Ra

b .
In this notation, we define the body-fixed translational

state vector

x ,

[
pbtb
vbnb

]
(1)

where pbtb is the position of the vehicle relative to the
transponder t decomposed in the body-fixed frame {b}.
Furthermore, vbnb is the velocity of the vehicle relative
the North-East-Down (NED) frame {n} decomposed in the
body-fixed frame.

We also define the inertial translational state vector

χ ,

[
pnnb
vnnb

]
(2)

Lastly, we denote by z the vector of variables (Rn
b , b

b
ars)

where Rn
b is the rotation matrix from NED to the body-fixed

frame {b}, and bbars is the angular rate sensor (ARS) bias.

B. Model

1) Measurements: Let there be M transceivers on the
vehicle. Let pbbcj be the position of transceiver cj relative
the origin of the body-fixed frame. Assume a transmitting
transducer is mounted next to transceiver cm, which is re-
sponsible for contacting the transponder. Further assume that
the vehicle moves slowly relative to the speed of sound. Now,
when hydrophone cm detects the time-of-arrival (TOA), it
measures the travel from transmitter to transponder and back
in addition to noise: 2‖pbtb + pbbcm‖2 + εy + ε∂,m. Therefore,
we model the range measurement ym by

ym = hm(x) , ‖pbtb + pbbcm‖2 +
1

2
εy +

1

2
ε∂,m (3)

where it is assumed that εy ∼ N (0, σ2
y) is a noise term

common for all hydrophones, and ε∂,j ∼ N (0, σ2
∂), j =

(1, ...,M) is a noise term unique for hydrophone cj . The
TOA at hydrophone cj = (1, ...,M)\m measures the dis-
tance plus noise ‖pbtb+pbbcm‖2+‖pbtb+pbbcj‖2+εy+ε∂,j , from
which the range measurement yj can be found by subtracting
ym:

yj = hj(x) , ‖pbtb + pbbcj‖2 +
1

2
εy + ε∂,j −

1

2
ε∂,m (4)

Since σy is typically much larger than σ∂ , we find the range
difference measurements in which εy vanish

∂yj =∂hj(x) , hj(x)− hm(x) (5)

= ‖pbtb + pbbcj‖2 − ‖pbtb + pbbcm‖2 + ε∂,j − ε∂,m
Now, we define the vectors of range and range difference

measurement vectors

y =
[
y1 · · · ym · · · yM

]>
h(x) =

[
h1(x) · · · hm(x) · · · hM (x)

]>
∂y =

[
∂y1 · · · ym · · · ∂yM

]>
∂h(x) =

[
∂h1(x) · · · hm(x) · · · ∂hM (x)

]>
Note that the measurement models also can be expressed in
the NED frame through the equality

‖pbtb + pbbcj‖2 ≡ ‖pnnb − pnnt +Rn
b p

b
bcj‖2 (6)

and thus, h(x) ≡ h(χ, z) and ∂h(x) ≡ ∂h(χ, z).
The angular rate ωb

nb and acceleration abnb are observed
through the ARS and accelerometer measurements modelled
as

ωb
ars = ωb

nb + bbars + εars (7)

f bacc = abnb −R>(qnb )gn + εacc (8)

respectively. εars and εacc are assumed to be unbiased, Gaus-
sian noises with εars ∼ N (0, σ2

ars) and εacc ∼ N (0, σ2
acc).

The normalized magnetometer measurement vector mb is
modelled as

mb = Rn
b
>mn + εmag

where mn is a known NED reference vector at the location
and the magnetometer noise is assumed given by εmag ∼
N (0, σ2

mag).



2) Dynamics: The dynamics of Rn
b and bbars are

Ṙn
b = Rn

b S(ωb
nb) (9a)

ḃbars = 0 (9b)

where S(·) is the skew-symmetric matrix

S(ω) =

 0 −ω3 ω2

ω3 0 −ω1

−ω2 ω1 0


The dynamics of the body-fixed translational motion state

is

ṗbtb = −S(ωb
ars − bbars)pbtb + vbnb (10a)

v̇bnb = −S(ωb
ars − bbars)vbnb + abnb (10b)

Inserting (7)–(8) into (10) and writing it in matrix form yields

ẋ = Ax(t, z)x+Bx(z)u+Gx(x)εx (11)

where

Ax(t, z) =

[
−S(ωb

ars − bbars) I
0 −S(ωb

ars − bbars)

]
Bx(z) =

[
0 0
I Rn

b
>

]
, u(t) =

[
f bacc
gn

]
Gx(x) =

[
−S(pbtb) 0
−S(vbnb) −I

]
, εx =

[
εars
εacc

]
The dynamics of the inertial translational motion state is

ṗnnb = vnnb (12a)

v̇nnb = Rn
b (−bbars + f bacc) + gn (12b)

Inserting (8) into (12) yields

χ̇ = Aχχ+Bχ(z)u+Gχεχ (13)

Aχ =

[
0 I
0 0

]
, Bχ(z) =

[
0 0
Rn

b I

]
Gχ(z) =

[
0
Rn

b

]
, εχ = εacc

III. THREE-STAGE FILTER DEVELOPMENT

The filter to be developed consist of three stages. In the
first stage, an algebraic non-linear transformation (ANT)
gives a new, globally valid, and linear measurement model
from the non-linear one. In the second stage, a linear time-
varying (LTV) Kalman filter (KF) is implemented, based
on the linear measurements model found by the ANT and
the linear dynamics. GES of the LTV KF follows from the
uniform complete observability (UCO) of the LTV model.
However, the ANT neglects the effect of measurement noise,
and consequently, the estimate from stage 2 is far from
optimal w.r.t. variance. This performance loss is recovered in
stage 3, where a KF based on a linearization of the non-linear
measurement model about the estimate from the second stage
is implemented. This cascade of stages, seen in Figure 2,
preserves the stability properties while giving near-optimal
estimation performance w.r.t. variance [3].

Estimates and variables associated with stage 1, 2, and 3
are marked with

¯
(·), (̄·), and (̂·), respectively.

Algebraic
Non-linear

Transformation

LTV
Kalman
Filter

Linearized
Kalman
Filter

Non-linear
Attitude
Observer

ž

¯
r

x̄

x̂

y1, ..., yM

ωb
ars, f

b
acc

mb

Stage

1
¯
(·)

2 (̄·)

3 (̂·)

Fig. 2. In this figure, the three stages of the body-fixed three-stage filter
are depicted. The stage number and the associated notation can be seen on
the right-hand side.

A. Non-linear Attitude Observer

For attitude estimation, we use in this paper the NLAO
from [8]. The estimate ž is found by

˙̌Rn
b̌

= Řn
b̌
S(ωb

ars − b̌b̌) + σKpJ (14a)
˙̌bb̌ = −Proj(b̌b̌,−kIvex(P(Řn′

b̌
KpJ))) (14b)

where

J =

3∑
k=1

(νnk − R̂n
b̂
νbk)νbk

>

νn1 =
gn

‖gn‖ νn2 =
S(gn)mn

‖S(gn)mn‖ νn3 =
S2(gn)mn

‖S2(gn)mn‖

νb1 =
f bacc
‖f bacc‖

νb2 =
S(f bacc)m

b

‖S(f bacc)m
b‖ νb3 =

S2(f bacc)m
b

‖S2(f bacc)m
b‖

and kI , Kp, and σ are tuning parameters. The func-
tion P(X) = 1

2 (X − X>) for square matrices X , and
vex(S(x)) = x for x ∈ R3. Proj(b̌b̌ars, β) is a projection
function designed to keep the estimate b̌b̌ars within a ball of
radius Mb in which we assume the true ARS bias bbars to lie
[8]. Notice that the use of gn assumes a weakly accelerated
vehicle, i.e. f bacc ≈ R>(qnb )gn.

B. Stage 1

Stage 1 consists of an algebraic non-linear transformation.
In the further derivations in this section, noise is neglected.
First, the body-fixed formulation is treated before the formu-
lation in NED.

1) Body-fixed formulation: By algebraic manipulation of
(4), Yx is constructed:

y2
j =‖pbtb‖2 + 2pbbcj

>pbtb + ‖pbbcj‖2, j ∈ (1, ...,M) (15)

⇒ Yx − lrx = Cxpp
b
tb (16)



where

Yx =

 y2
1 − ‖pbbc1‖2

...
y2
M − ‖pbbcM ‖2

 , Cxp =

 2pbbc1
>

...
2pbbcM

>

 , l =

1
...
1


(17)

and rx = ‖pbtb‖2. Assuming M ≥ 3 and rank(Cxp) = 3, we
can find cx = C†xpl and wx = C†xpYx, where † denotes the
Moore-Penrose pseudo-inverse, which gives us

pbtb = −rxcx + wx (18)

Inserting this into rx = ‖pbtb‖22 yields

r2
x‖cx‖22 − rx (2c>x wx + 1)︸ ︷︷ ︸

hx

+‖wx‖22 = 0

which has two solutions
¯
rx and

¯̄
rx

¯
rx,

¯̄
rx =

hx ±
√
h2
x − 4‖cx‖22‖wx‖22
2‖cx‖22

(19)

when ‖cx‖ 6= 0 and the solution
¯
rx =

‖wx‖22
hx

when
‖cx‖ = 0. Assuming this ambiguity can be resolved when
‖cx‖ 6= 0, and the correct solution, which we denote

¯
rx,

can be selected, we have successfully constructed a linear
measurement equation

Yx + l
¯
rx = Cxpp

b
tb = Cxx (20)

where Cx =
[
Cxp 0

]
.

Remark 1: If we insert the two solutions
¯
rx and

¯̄
rx

into (18), we will get two estimates
¯
pbtb and

¯̄
pbtb of pbtb,

respectively. In selecting the correct solution
¯
rx, one can

be helped by e.g. comparing the z-values of R(qn
b̌

)
¯
pbtb and

R(qn
b̌

)
¯̄
pbtb with depth measurements.

2) NED formulation: The derivation of the ANT for the
NED formulation will be similar to that in Section III-B.1,
but starting with the measurement model (4) expressed by
the right hand side of (6):

y2
j = ‖Rn

b p
b
bcj − pnnt‖22 + 2(Rn

b p
b
bcj − pnnt)>pnnb + rχ

where rχ = ‖pnnb‖22. Now we form

Yχ =

 y2
1 − ‖Rn

b p
b
bcj
− pnnt‖22

...
y2
M − ‖Rn

b p
b
bcM
− pnnt‖22


Cχp(z) =

 2(Rn
b p

b
bc1
− pnnt)>

...
2(Rn

b p
b
bcM
− pnnt)>


and we get the linear measurement model

Yχ − l
¯
rχ = Cχ(z)pnnb (21)

where Cχ(z) =
[
Cχp(z) 0

]
and

¯
rχ is found in the same

way as
¯
rx.

C. Stage 2

In stage 2, an LTV KF is implemented based on the linear
measurement equation from the ANT in stage 1. First, the
body-fixed LTV KF is developed, and then the NED LTV
KF.

1) LTV KF with body-fixed formulation:

˙̄x , Ax(t, ž)x̄+Bx(ž)u(t) + K̄x(t)(Yx + l
¯
rx − Cxx̄)

(22)

where K̄x(t) is the standard time-varying KF gain matrix.
The process noise covariance matrix is

Qx = E(εxε
>
x ) = diag(σ2

arsl3, σ
2
accl3) (23)

where l3 ∈ R3 is a vector of ones, and the G-matrix is
Gx(x̄).

The measurement noise covariance matrix is

R̄ = Cov(Y, Y ) = E
[
(Y − E(Y ))(Y − E(Y ))>

]
(24)

whose elements are given by

Cov(Yj , Yj) = y2
j (σ2

y + σ2
∂) +

1

8
σ4
y +

5

4
σ2
yσ

2
∂ +

25

8
σ4
∂

Cov(Yj , Yi) = yiyj(σ
2
y + 5σ2

∂) +
1

8
σ4
y +

1

4
σ2
yσ

2
∂ +

9

8
σ4
∂

Cov(Yj , Ym) = yjym(σ2
y − σ2

∂) +
1

8
σ4
y +

1

8
σ4
∂

Cov(Ym, Ym) = y2
m(σ2

y + σ2
∂) +

3

16
σ4
y +

3

8
σ2
yσ

2
∂ +

3

16
σ4
∂

2) LTV KF with NED formulation:

˙̄χ , Aχχ̄+Bχ(ž)u+ K̄χ(Yχ + l
¯
rχ − Cχ(ž)χ̄) (25)

where K̄χ(t) is the standard time-varying KF gain matrix.
The process covariance matrix is

Qχ = E(εχε>χ) = I3σ
2
acc (26)

and the G-matrix is Gχ(ž). The measurement noise covari-
ance matrix is R̄.

An implicit assumption that has been made here, is that

¯
rx and

¯
rχ is noise-free, which is not true. Modelling the

noise from the r-term is difficult and not regarded here,
but would yield better performance. The work of Jørgensen,
Johansen and Schjølberg [9] improved on the three-stage
filter of Stovner et al. [6] by modelling the noise in the r-term
by a numerical method. A similar strategy could have been
used here, which is assumed to improve the performance of
the LTV KFs.

D. Stage 3

The third stage consists of a KF based on the linearization
of the non-linear measurement model about the estimate from
stage 2. As before, we derive the linearized KF with the
body-fixed formulation before the linearized KF with the
NED formulation.



1) Linearized KF with body-fixed formulation: The lin-
earization is found by the Taylor expansion

∂hj(x) = ∂hj(x̄) +Hxp,j(x̄)(x− x̄) + ϕj(x, x̄) (27)

where ϕj(x, x̄) represents higher order terms. We write the
vector Hx,j(x̄) =

[
Hxp,j 0

]
and find

Hxp,j(x̄) =
d∂hj(x)

dpbtb

∣∣∣∣
x=x̄

=
(p̄b̌tb + pbbcj )>

‖p̄b̌tb + pbbcj‖2
− (p̄b̌tb + pbbcm)>

‖p̄b̌tb + pbbcm‖2
Concatenating for j ∈ (1, ...,M) gives us the linearized
measurement matrix H(x̄)

Hxp(x̄) =

Hp1(x̄)
...

HpM (x̄)

 , Hx(x̄) =
[
Hxp(x̄) 0

]
Now, we define the estimator

˙̂x =Ax(t, ž)x̂+Bx(ž)u(t) (28)

+ K̂x(t)(∂y − ∂h(x̄)−Hx(x̄)(x̂− x̄)) (29)

where K̂x is the standard time-varying KF gain matrix, and
the G-matrix Gx(x̂). The covariance matrix Qx is the same
as in (23) while the elements of R̂ are given by

Cov(∂yj , ∂yi) = E[(ε∂,j − ε∂,m)(ε∂,i − ε∂,m)]

= E(εy,jεy,i) + E(εy,mεy,m)

=

{
2σ2

∂ , i = j
σ2
∂ , i 6= j

(30a)

Cov(∂yj , ym) = E[(
1

2
εy +

1

2
ε∂,m)(ε∂,i − ε∂,m)]

= −1

2
σ2
∂ (30b)

Cov(ym, ym) = E[(
1

2
εy +

1

2
ε∂,m)2] =

1

4
(σ2

y + σ2
∂) (30c)

2) Linearized KF with NED formulation: We perform the
Taylor expansion of (4) expressed by the right-hand side of
(6) about the estimate from stage 2

∂hj(χ, ž) = ∂hj(χ̄, ž) +Hχ,j(χ̄)(χ− χ̄) + ϕj(χ, χ̄, ž)
(31)

where ϕj(χ, χ̄, ž) represents higher order terms and

Hχ,j(χ̄, ž) =
d∂hχ,j(χ, ž)

dpnnb

∣∣∣∣
χ=χ̄

=
(p̄nnb +Rn

b̌
pbbcj − pnnt)>

‖p̄nnb +Rn
b̌
pbbcj − pnnt‖2

−
(p̄nnb +Rn

b̌
pbbcm − pnnt)>

‖p̄nnb +Rn
b̌
pbbcm − pnnt‖2

Stacking this yields

Hχp(χ̄, ž) =

Hχ,1(χ̄, ž)
...

Hχ,M (χ̄, ž)

 , Hχ(χ̄, ž) =
[
Hχp(χ̄, ž) 0

]
Now, we define the estimator

˙̂χ ,Aχχ̂+Bχ(ž)u

+ K̂χ(t)(∂y − ∂hj(χ̄, ž)−Hχ(χ̄, ž)(χ̂− χ̄)) (32)

where K̂χ(t) is the standard time-varying KF gain matrix
and the G-matrix is Gχ(ž). The process covariance matrix
is Qχ from (26) and the elements of the measurement
covariance matrix are the same R̂ as in (30).

IV. STABILITY ANALYSIS

Assumption 1: The reference vectors gn and mn are non-
parallel.

Proposition 1: Define the errors R̃ , Rn
b −Řn

b̌
and b̃ars =

bbars− b̌b̌ars. For any given choise of Kp and kI , there exists
a σ∗ > 1 such that for all σ > σ∗, the origin R̃ = 0 and
b̃ars = 0 of the dynamics of R̃ and b̃ars is GES.

Proof: For proof, it is referred to [8].
Assumption 2: There are at least 3 non-colinear

transceivers on the vehicle.
We state a useful corollary

Corollary 1: Consider the block triangular matrix

M =

[
D 0
E F

]
where D, E, and F are matrices of arbitrary dimensions.
Now, if D and F have full rank, then M has full rank.

Proof: The proof follows directly from Theorem 4.2 of
Meyer [10].

In the following, the stability of the three-stage filter is
analyzed. We begin by analyzing the stability of the LTV
KFs in stage 1. Then we use XKF theory from [3] to show
that the cascade of filters is GES.

Proposition 2: The equilibrium points ˜̄x , x− x̄ = 0 and
˜̄χ , χ − χ̄ = 0 of the error dynamics ˙̄̃x = (Ax(t, ž) −
K̄x(t)Cx)˜̄x and ˙̄̃χ = (Aχ − K̄χ(t)Cχ(ž))˜̄χ are GES,
respectively.

Proof: Kalman and Bucy [11] proves that a linear
time-varying system is UGES if the pair (A(t), C(t)) is
uniformly completely observable (UCO) and (A(t), G(t)) is
uniformly completely controllable (UCC), where A(t), C(t),
and G(t) are general process, measurement, and process
noise matrices, respectively. Further, we use Theorem 6.O12
in Chen [12], which proves that the pairs (Ax(t, ž), Cx) and
(Aχ,Cχ(ž)) are UCO if the observability co-distribution
formed by Ax(t, ž) and Cx and Aχ and Cχ(ž), respectively,
have full rank. Forming the top 2M rows of the observability
co-distribution of the body-fixed and NED filters yields

dŌx =

[
Cxp 0
? Cxp

]
(33)

dŌχ =

[
Cχp(ž) 0
? Cxp(ž)

]
(34)

respectively. ? denotes a matrix that does not influence the
analysis, and is therefore unimportant. Under Assumption 2,
we know that Cxp and Cχp(ž) have full rank. By Corollary
1, we know that when Cxp and Cχp(ž) have full rank,
then dŌx and dŌχ have full rank, and thus, the observ-
ability co-distributions have full rank. The proof for UCC
of (Ax(t, ž), Gx(x̄)) and (Aχ,Gχ(ž)) follows a similar
procedure, and is straight-forward to show. This concludes
the proof.



Proposition 3: The respective KF tuning parameters Q,
R, and P (0) are chosen positive definite and symmetric in
the two approaches. The equilibrium points ˜̂x , x − x̂ = 0

and ˜̂χ , χ− χ̂ = 0 of the error dynamics

˙̃
x̂ = (Ax(t, ž)− K̂x(t)Hx(x̄))˜̂x (35)
˙̃
χ̂ = (Aχ − K̂χ(t)Hχ(χ̄, ž))˜̂χ (36)

respectively, are GES.
Proof: Using GES estimates x̄ and χ̄ to linearize

about, we know from Theorem 2.1 in [3] that the cascades
of equilibrium points ˜̄x = ˜̂x = 0 and ˜̄χ = ˜̂χ = 0
of the error dynamics (35) and (36) are GES if the ma-
trix pairs (Ax(t, ž), Hx(x̄)) and (Aχ,Hχ(χ̄, ž)) are UCO
and (Ax(t, ž), Gx(x̂)) and (Aχ,Gχ(ž)) are UCC, respec-
tively. We form the top 2M rows of the observability co-
distributions which become

dÔx =

[
Hxp(x̄) 0
? Hxp(x̄)

]
(37)

dÔχ =

[
Hχp(χ̄, ž) 0

? Hχp(χ̄, ž)

]
(38)

From Corollary 1, we know that the observability co-
distributions dÔ1 and dÔ2 have full rank when Hxp(x̄) and
Hχp(χ̄, ž) have full rank. Furthermore, both matrices have
full rank under Assumption 2. Therefore, dÔx and dÔχ have
full rank, and consequently, the observability co-distributions
have full rank. Since the dynamics of the filters in stage 2 and
3 are similar, UCC of (Ax(t, ž), Gx(x̂)) and (Aχ,Gχ(ž))
are straight-forward to show. This concludes the proof.

V. SIMULATIONS

Two different three-stage filters are implemented in the
simulations. Stage 1 and 2 of the two filters are identical,
using the body-fixed formulations in Section III-B.1 and
III-C.1, respectively. In the third stage, one filter uses the
body-fixed formulation of Section III-D.1, while the other
uses the NED formulation of Section III-D.2. This means
that the NED formulations of stage 1 in Section III-B.2 and
stage 2 in Section III-C.2 are left out entirely. Using the
NED formulations in stage 1 and 2 was avoided because
they showed poor performance. This likely stems from
Cχp becoming badly conditioned when far away from the
transponder, in addition to the measurement noise being
amplified in the ANT. The linearization point for the NED
formulation linearized KF in stage 3 is now instead found
by χ̄ = [(pnnt + Řn

b̌
p̄b̌tb)

>, (Řn
b̌
v̄b̌nb)

>]>.
Although the KFs are stated earlier as continuous-time

Kalman-Bucy filters, they are implemented as discrete-time
KFs. Furthermore, they are updated at 100 Hz, the same
frequency with which IMU measurements are assumed avail-
able. iSBL measurements are assumed retrieved at 1 Hz.

In the simulated scenario, the vehicle is box-shaped, 1.2
metres long, and has a breadth and height of 0.6 metres. In
six corners of the vehicle, a transceiver is placed, i.e. M = 6

and

[pbbc1 , ..., p
b
bcM ] =

0.6 0.6 0.6 −0.6
0.3 0.3 −0.3 0.3
0.3 −0.3 0.3 0.3

−0.6 −0.6
−0.3 −0.3
−0.3 0.3


In practice, one can only assume that the transceivers with
line-of-sight to the transponder will measure the range. Here,
we assume that the six hydrophones always receive the
signal. Furthermore, the sixth hydrophone has the transmitter
attached to it, i.e. m = M . The transponder is placed at
pnnt = [−500,−500, 0]>.

The initial conditions are

pnnb(0) =

0
0
0

 , vnnb(0) =

0
0
0

Rn
b (0) = I

and consequently

pbtb(0) =

500
500
0

 , vbnb(0) =

0
0
0


The ARS bias is bbars = [0.012,−0.021, 0.014]>, and the

noise standard deviations are

σacc = 0.01
m

s2
σars = 0.01

rad

s
σmag = 0.01

σy = 1m σ∂ = 0.01m

Lastly, the NLAO tuning parametres were chosen as Kp =
10, kI = 0.01, and σ = 1. In the first minute of simulations,
kI were set to 0.1 to speed up convergence.

The scenario was simulated with two different initial
estimates: One with small initial errors in order to view
the steady state behaviour of the three-stage filters and one
with large initial errors to view the transient behaviour. The
estimates in the former case are initialized perfectly except
for the ARS bias which is b̄̄bars(0) = b̂b̄ars(0) = [0, 0, 0]>. In
the latter case, the initial estimates are

p̄¯
b
nb(0) = p̂b̄nb(0) =

[
30 20 40

]
v̄¯
b
nb(0) = v̂b̄nb(0) =

[
1 −1 0.5

][
φ θ ψ

]
=
[
45◦ 45◦ 80◦

]
where φ, θ, and ψ are the roll, pitch, and yaw angles,
respectively. The initial ARS bias estimate is once again zero.
The initial body-fixed estimates are found from the initial
NED estimates. The initial covariance matrix for all filters
in both simulation scenarios is P (0) = diag(l>3 , 10−3l>3 ).

The simulations last 600 seconds, the first 200 of which
the vehicle stands still in order to let the estimators converge.
The rate with which IMU measurements are retrieved, and
consequently the update rate of the estimators, is 100 Hz.
The iSBL measurements were gathered with 1 Hz.

The results of the simulations can be seen in Figure 3–6.
Note that the estimates originally described in the body-fixed



Fig. 3. True and estimated trajectories of the vehicle with small initial
errors.

Fig. 4. The north, east, and down position estimate errors with small initial
errors.

frame have been rotated by the true attitude to NED. The true
attitude was used such that the position estimates could be
compared without adding the effect of attitude estimate noise
to either position estimate.

VI. DISCUSSION

In Figure 3, the trajectory of the vehicle can be seen
along with the LTV KF estimate and the linearized KF
implemented with the body-fixed (subscript bf ) and NED
(subscript ned) formulation. From Figure 3–4, it is seen that
the body-fixed filters are less accurate during the transient
phase of the ARS bias estimate, seen in Figure 5 to last
about 60 seconds. This is not surprising as it is part of

Fig. 5. The ARS bias estimate in the simulation with small initial errors.

Fig. 6. The north, east, and down position estimate errors with large initial
errors.

the body-fixed dynamics (10). The NED position estimate
seems not to suffer much from this, as it both converges
faster and deviates less than the body-fixed estimates. This
is confirmed in Figure 4, where it can clearly be seen that the
NED formulated linearized KF outperforms the body-fixed
counterpart in steady-state.

In Figure 6, the position estimation errors in the case
with large initial estimation errors is shown. Here, it can be
seen that the body-fixed position estimates converge faster
than the NED position estimate. This may explained by the
observation

Hxp,j(x̄) ≈
(pbbcj − pbbcm)>

‖p̄b̌tb + pbbcj‖2

Hχp,j(χ̄, ž) ≈

(
Rn

b̌
(pbbcj − pbbcm)

)>
‖p̄nnb +Rn

b̌
pbbcj − pnnt‖2

From the above, we see that an error in the attitude estimate
affects the NED formulated linearized KF more that the
body-fixed one. In practice, it might make sense to let
the NLAO converge for some time before turning on the
translational motion estimators. This would be beneficial to
both the body-fixed filters when there are small initial errors
and the NED filter when there are large initial errors. Note
that the difference in initial position estimate in Figure 6 is
due to the large initial error in the attitude estimate. Since
the true attitude was used to convert the body-fixed position
estimate to NED position instead of the attitude estimate, the
initial estimate appears more erroneous than it truly is.

In most applications of path planning, guidance, and
control of the vehicle, the NED estimate will be preferred,
and it will be better to use the linearized KF with the NED
formulation. In addition to the NED esimate showing better
performance in steady state, one would also get the benefit
of not having to rotate the position estimate with a noisy
attitude estimate.

VII. CONCLUSION

Two different three-stage filter solutions have been devel-
oped for the integration of IMU and iSBL measurements.



Two different three-stage filter solutions have been devel-
oped for the integration of IMU and iSBL measurements.
The difference between the two solutions was the frame
in which the last stage KF was formulated: in the body-
fixed or the NED frame. Both solutions were implemented,
simulated and compared. In the simulation study that was
conducted, the three-stage filter with NED formulation in the
last stage seemed to give better performance w.r.t. variance
of the position estimate in steady-state, while showing slower
convergence in the presence of large initial estimation errors.
The latter could likely be improved by letting the NLAO
converge for some time before turning on the translational
motion estimator.
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