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Abstract— When an underwater intervention vehicle is close
to large metallic structures, e.g. subsea oil and gas facilities,
magnetic disturbances might render magnetic field measure-
ments biased or useless. This loss of information is critical
for attitude estimation, and consequently, for the safety of the
operation. In this paper, a three-stage filter for joint position
and attitude estimation is developed, replacing the magnetic
field measurements with hydroacoustic measurements. This
solution assumes a hydroacoustic sensor set up with multiple
transponders on the sea floor and 3 or more transceivers on
the vehicle. The three-stage filters is shown to yield GES error
dynamics of both the translational and rotational motion. The
three-stage filter is shown in simulations to successfully estimate
both the true position and attitude of the vehicle.

I. INTRODUCTION

Inertial navigation integrates accelerometer and angular
rate sensor (ARS) measurements to update position, veloc-
ity, and attitude estimates. When the inertial measurements
are noisy and biased, the integration leads to a growing
error in the estimates. In aided inertial navigation, other
measurements are included to eliminate the drifting error
in the inertial navigation. For the positioning, the aiding
measurements are often range measurements. In underwater
applications, these are usually provided by hydroacoustic
systems such as long baseline (LBL), short baseline (SBL),
ultrashort baseline (USBL) or inverted USBL (iUSBL) [1],
[2], [3], [4]. In LBL, one transceiver on the vehicle aqcuires
ranges from multiple transponders on the sea bed. SBL is
similar, except the transponders are mounted to the underside
of the surface vessel from which the underwater vehicle is
usually deployed. In USBL, the underside of the surface
vessel is equipped with a compact array of transceivers
which measure the relative phase angles of a signal sent
from a transponder mounted on the underwater vehicle. In
iUSBL, this is reversed, placing the array of transceivers
on the underwater vehicle and the transponder in a known
location, e.g. on a surface vessel, the sea bed, or on an
underwater structure. In this paper, the inverted SBL (iSBL)
set up suggested by Stovner, Johansen, and Schjølberg [5]
is assumed available, in which multiple transceivers are
mounted to the underwater vehicle. Contrary to the iUSBL,
the transceivers in the iSBL should be spaced out as much as
possible, thus confining the baseline lengths to the size of the
underwater vehicle and not to the size of the USBL apparatus
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in iUSBL. In addition to iSBL, it is assumed that there are
two or more transponders in the vehicle’s surroundings.

For attitude estimation, the growing error in inertial navi-
gation is eliminated by reference vector measurements. These
are vectors that are known or measured in both the body-
fixed and the inertial frame, i.e. they only differ by the
rotation between the two frames. Two reference vectors
are sufficient to uniquely determine the vehicle’s attitude.
For applications on earth, it is common to use earth’s
gravitational and magnetic fields as reference vectors. They
are known both in the inertial frame, given the approximate
location on earth, and can be measured by an accelerometer
and a magnetometer or compass in the body-fixed frame,
respectively. When using an accelerometer to measure the
gravity vector, it is sometimes assumed that the vehicle is
weakly accelerated. This is done in Hamel and Mahony [6]
and Mahony, Hamel, and Pflimlin [7]. By estimating the
specific force, i.e. the sum of gravity and acceleration of the
vehicle, in the inertial frame, this assumption can be lifted,
as was done in Hua [8], Grip et al. [9], [10].

When an underwater intervention vehicle is near a subsea
oil and gas facility, magnetic disturbances from the facility
might render magnetic field measurements biased or useless.
This is critical for the attitude estimation, as two non-parallel
reference vectors are needed. In this paper, the magnetometer
measurements are replaced by hydroacoustics, using iSBL
with two or more transponders. A body-fixed three-stage
filter is developed for estimation in this circumstance. It
is conceptually similar to the three-stage filters in Stovner
et al. [11], Johansen, Fossen, and Goodwin [12], both of
which build on the theory of the exogenous Kalman filter
(XKF) and the double Kalman filter (DKF) of Johansen and
Fossen [13], [14]. Contrary to these works, which estimate
the vehicle’s position in the inertial frame, the body-fixed
three-stage filter estimates the vehicle’s position relative
each transponder decomposed in the body-fixed frame. This
was done in Stovner, Johansen, and Schjølberg [5] with
one transponder when magnetic field measurements were
available. This work is an extension of [5] to multiple
transponders for estimation of both the translational and
angular motion when magnetic field measurements are not
used. When multiple transponders are available, the magnetic
reference vector can be replaced by the baselines between
the transponders. These are known in the inertial frame, and
can be found by subtracting one of the body-fixed position
states from an other. The same idea was presented in Batista,
Silvestre, and Oliveira [15] except using only transponder
baselines as reference vectors in the attitude estimation, and



not the gravitational field and accelerometer measurement
vectors as is done here. Also, the estimation technique is
different, as [15] relies on state augmentation to deal with
non-linearities, while this work uses a three-stage filter that
avoids augmentation. Both works, however, achieve globally
exponentially stable (GES) estimates.

A. Contribution and Outline

In this paper, a novel GES three-stage filter is developed
that achieves joint attitude and position estimation using an
iSBL set up with two or more transponders in the vehicle’s
surroundings in the absence of magnetic field measurements.

In Section II, the dynamic model and measurement model
are given. In Section III, the body-fixed three-stage filter
is developed, before its stability is analyzed in Section IV.
Simulation results and discussions follow in Section V and
VI, respectively.

II. MODELS AND PRELIMINARIES

A. Notation

The vectors denoting the position, velocity, and angular
rate of {c} relative {b} decomposed in frame {a} are denoted
pabc, vabc, and ωa

bc, respectively. A rotation matrix expressing
the rotation from the frame {a} to {b} is denoted Ra

b .
Using this notation, we define the translational state vector

x ,


pbt1b

...
pbtNb

vbnb

 (1)

where pbtib is the position of the vehicle relative to the
transponder ti, i ∈ [1, N ] decomposed in the body-fixed
frame {b}. vbnb is the body-fixed velocity of the vehicle
relative the North-East-Down (NED) frame {n}.

We denote by z = (Rn
b , b

b
ars) the collection of variables

Rn
b and bbars, which are the rotation from the NED to the

body-fixed frame and the ARS bias, respectively.
The matrices 0n, 0n×m and In denote an n×n matrix of

zeroes, an n×m matrix of zeroes and the identity matrix of
dimension n × n, respectively. The vector ln ∈ Rn denotes
a vector of ones.

B. Model

1) Measurements: On the vehicle, a transmitter s is
placed, responsible for contacting the transponders. The
transponders reply, and a hydrophone cm, placed next to the
transmitter, detects the time-of-arrival (TOA). From this, the
distance plus noise 2‖pbtib+pbbcm‖2+εy,i+ε∂,im is measured.
Now, the range measurement yim is found

yim = him(x) , ‖pbtib + pbbcm‖2 +
1

2
εy,i +

1

2
ε∂,im (2)

There are in total M hydrophones. The hydrophones cj , j =
(1, ...,M)\m also detect the TOA, but since the transmitter
was placed next to hydrophone cm, the distance measured by
the TOA is ‖pbtib+pbbcm‖2+‖pbtib+pbbcj‖2+εy,i+ε∂,ij . From

this, yim can be subtracted, yielding the range measurement
model for yij

yij = hij(x) ,‖pbtib + pbbcj‖2 +
1

2
εy,i + ε∂,ij −

1

2
ε∂,im

(3)

Here, we assume that εy,i ∼ N (0, σy)2 is a white noise
term common for the range measurements from transponder
ti to all hydrophones, while ε∂,ij ∼ N (0, σ∂)2 is unique for
each hydrophone cj . Since σy normally is much larger than
σ∂ , it can be eliminated by considering the range difference
measurements ∂yij , j = (1, ...,M)\m

∂yij = ∂hij(x) , hij(x)− him(x) (4)

= ‖pbtib + pbbcj‖2 − ‖pbtib + pbbcm‖2 + ε∂,ij − ε∂,im

Concatenating the above, we get

y =
[
y>1 · · · y>N

]>
yi =

[
yi1 · · · yim · · · yiM

]>
∂y =

[
∂y>1 · · · ∂y>N

]>
∂yi =

[
∂yi1 · · · yim · · · ∂yiM

]>
and similarly for h(x), hi(x), ∂h(x), and ∂hi(x), respec-
tively.

The ARS and accelerometer measurements are modelled
as

ωb
ars = ωb

nb + bbars + εars (5)

f bacc = abnb −Rn
b
>gn + εacc (6)

respectively, where ωb
nb and abnb are the rotation and accel-

eration of the vehicle relative NED. The white noise terms
εars and εacc are assumed Gaussian with εars ∼ N (0, σ2

ars)
and εacc ∼ N (0, σ2

acc).
2) Dynamics: The dynamics of the rotational state is

Ṙn
b = Rn

b S(ωb
nb) (7a)

ḃbars = 0 (7b)

where

S(ω) =

 0 −ω3 ω2

ω3 0 −ω1

−ω2 ω1 0


The dynamics of the translational motion state is

ṗbtib =− S(ωb
ars − bbars − εars)pbtib + vbnb (8a)

v̇bnb =− S(ωb
ars − bbars − εars)vbnb + abnb (8b)

+ f bacc +Rn
b
>gn − εacc (8c)

Concatenating (8) for N transponders yields

ẋ = A(t, z)x+B(z)u+G(x)εx (9)
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Fig. 1. The configuration of iSBL hydrophones (red), transmitter (blue),
and LBL transponders (black)

where

A(t, z) =

[
Ap(t, z) LN

03×3N −S(ωb
ars − bbars)

]
(10)

Ap(t, z) =

−S(ωb
ars − bbars) · · · 03N×3

...
. . .

...
03N×3 · · · −S(ωb

ars − bbars)


Ap(t, z) ∈ R3N×3N , LN =

I3...
I3

 ∈ R3N×3

B(z) =

[
03N×3 03N×3

I R>(qnb )

]
, u(t) =

[
f bacc
gn

]
(11)

G(x) =


−S(pbtib) 03

...
...

−S(pbtib) 03

−S(vbnb) −I3

 , εx =

[
εars
εacc

]
(12)

III. THREE-STAGE BODY-FIXED FILTER

The structure of the three-stage filter can be seen in Figure
2. On the left-hand side, the estimation of the translational
motion is done in three stages as in [12] and [14]. First,
the range measurements go through an algebraic non-linear
transformation (ANT), yielding a linear time-varying (LTV)
measurement model from the non-linear in (2) and (3).
This is used with the LTV dynamics to implement an LTV
Kalman filter (KF) in the second stage. In the third stage, the
non-linear measurement model in (2) and (4) is linearized
about the estimate from the second stage. The linearized
measurement model is used along with the linear dynamics
to implement a linearized Kalman filter (KF). Through this
cascade, the three-stage filter achieves the global stability of
the LTV KF and the near-optimal performance associated
with the linearized KF [13].

Stages two and three of the translational motion estimation
described above rely on an attitude estimate to remove the
gravity component from the accelerometer measurement (6).
Since no magnetic field measurements are assumed in this
paper, we are instead using the transponder baselines as
reference vectors for attitude estimation. These are known
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Fig. 2. In this figure, the three different stages of the body-fixed three-
stage filter are depicted. The stage number and the associated notation can
be seen on the right-hand side.

in NED and estimates of them in the body-fixed frame
are found in each stage. Therefore, as can be seen on the
right-hand side of Figure 2, the body-fixed three-stage filter
implements three non-linear attitude observers (NLAO), i.e.
one in each stage. While implementing three NLAOs instead
of one may seem redundant, it is done in order to always use
the best available transponder position estimates to estimate
the attitude.

A. Stage 1

Stage 1 consists of an algebraic non-linear transformation
and an NLAO. The former also calculates position estimates
which the latter uses for attitude estimation.

In the derivation of the ANT, noise is neglected. By the
algebraic manipulation, similar to that of Bancroft [16] and
many others,

y2
ij =‖pbtib‖2 + 2pbbcj

>pbtib + ‖pbbcj‖2 (13)

we find the almost-linear model in pbtib

Yi − lMri = Cpp
b
tib (14)



where

Yi =

 y2
i1 − ‖pbbc1

‖2
...

y2
iM − ‖pbbcM ‖2

 , Cp =

 2pbbc1

>

...
2pbbcM

>

 (15)

ri = ‖pbtib‖2, and lM ∈ RM is a vector of ones. Next, we
find ri explicitly in order to achieve a linear model from
(14). Assuming that M ≥ 3 and rank(Cp) = 3 we find

pbtib = −ric+ wi (16)

where c = C†plM , wi = C†pYi, and † denotes the Moore-
Penrose pseudo-inverse. Now, inserting (16) into ri =
‖pbtib‖22 yields

r2
i ‖c‖22 − ri (2c>wi + 1)︸ ︷︷ ︸

hi

+‖wi‖22 = 0

This is recognized as a scalar second-order equation with the
two solutions

¯
ri,

¯̄
ri =

hi ±
√
h2
i − 4‖c‖22‖wi‖22
2‖c‖22

Inserting
¯
ri and

¯̄
ri into (16) will yield two positions, and

the correct one can be found by auxilliary measurements or
environmental knowledge. For example, one can rotate the
two calculated positions to a local horizontal plane with roll
and pitch angles directly calculated from the accelerome-
ter measurements. The two resulting z-values can now be
compared with depth measurements in order to determine
the correct position, and thereby finding the correct value
of ri. Assuming we can solve this ambiguity, we select the
correct solution and denote it

¯
ri. Using this in (14), we have

successfully constructed the linear measurement equation

Yi − lM
¯
ri = Cpp

b
tib (17)

Concatenating (17), we get the constructed linear measure-
ment equation

Y = Cx (18)

where

Y =

 Y1 − l
¯
r1

...
YN − l

¯
rN

 , CNp =

 Cp · · · 0M×3

...
. . .

...
0M×3 · · · Cp


and C =

[
CNp 0NM×3

]
.

We also find an estimate of pbtib to be used in the attitude
observer

¯
pbtib =

¯
ric+ w (19)

For attitude estimation in stage 1, we use the NLAO from
Grip et al. [17]. The angular state estimate

¯
z = (Rn

¯
b ,¯
b̄
b
ars)

is found by

˙
¯
Rn

¯
b =

¯
Rn

¯
b S(ωb

ars −¯
b̄
b
ars) +

¯
σ

¯
KpJ (20a)

˙
¯
b̄bars = −Proj(

¯
b̄
b
ars,−

¯
kIvex(P(

¯
Rn′

¯
b ¯
KpJ))) (20b)

where

J =

N−1∑
i=1

3∑
k=1

(νnk,i − ¯
Rn

¯
b ν

b
k,i)ν

b
k,i
> (21a)

νn1,i =
gn

‖gn‖ νb1,i =
f bacc
‖f bacc‖

(21b)

νn2,i =
S(gn)pntitN
‖S(gn)pntitN ‖

νb2,i =
S(f bacc)

¯
pbtitN

‖S(f bacc)
¯
pbtitN ‖

(21c)

νn3,i =
S2(gn)pntitN
‖S2(gn)pntitN ‖

νb3,i =
S2(f bacc)

¯
pbtitN

‖S2(f bacc)
¯
pbtitN ‖

(21d)

and
¯
kI ,

¯
Kp, and

¯
σ are tuning parameters. The function

P(X) = 1
2 (X−X>) for a square matrix X , vex(S(x)) = x

for a vector x ∈ R3, and Proj(
¯
b̄
b
ars, β) is a projection function

that ensures that the ARS bias estimate
¯
b̄
b
ars is kept inside a

ball or radius Mb, in which the true ARS bias is assumed to
lie. Notice that the use of gn as a reference vector assumes a
weakly accelerated vehicle, i.e. f bacc ≈ R>(qnb )gn. We have
here arbitrarily chosen that the baseline from transponders
(1, ..., N−1) to transponder N are used as reference vectors.
The NED and body-fixed baseline vectors are found by
pntitN = pnntN − pnnti and

¯
pbtitN =

¯
pbtib − ¯

pbtNb, respectively.

B. Stage 2

For the translational motion estimation in stage 2, we
define the estimator

˙̄x , A(t,
¯
z)x̄+B(

¯
z)u(t) + K̄(t)(Y − Cx̄) (22)

where K̄(t) is the time-varying Kalman gain matrix. The
tuning matrix R̄ is chosen as

Q̄ = E(εxε
>
x ) = diag([σ2

arsl
>
3 , σ

2
accl
>
3 ]) (23)

and the elements of the measurement covariance matrix for
the measurements from transponder i, R̄i, is given by

Cov(Yik, Yij) =

{
yikyij(σ

2
y + σ2

∂), k 6= j
yikyij(σ

2
y + 5σ2

∂), k = j
(24a)

Cov(Yij , Yim) = yijyim(σ2
y − σ2

∂) (24b)

Cov(Yim, Yim) = y2
im(σ2

y + σ2
∂) (24c)

The full covariance matrix is given by R̄ =
blkdiag(R̄1, ..., R̄N ), where blkdiag() creates a block-
diagonal matrix from its input matrices. The G-matrix in
the KF is G(x̄).

For the angular motion estimation in stage 2, we imple-
ment the NLAO as in (20)–(21), except that

¯
Rn

¯
b ,

¯
b̄
b
ars,

¯
σ,

¯
kI ,

¯
Kp, and

¯
pbtitN are replaced by R̄n

b̄
, b̄b̄ars, σ̄, k̄I , K̄p, and

p̄¯
b
titN = p̄¯

b
tib
− p̄¯btNb, respectively.

C. Stage 3

In the third stage, the non-linear measurement model (2)
and (4) is linearized about the estimate from stage 2. A KF
is implemented, based on the linearized measurement model



and linear dynamics (9). The linearization of hij(x) is found
by the Taylor expansion

∂hij(x) = ∂hij(x̄) +Hij(x̄)(x− x̄) + ϕ(x, x̄) (25)

Hij(x̄) =
d∂hij(x)

dpbtib

∣∣∣∣∣
pb
tib

=p̄p̄
tib

=
(p̄b̄tib + pbbcj )>

‖p̄b̄tib + pbbcj‖2
(26)

where ϕ(x, x̄) is the sum of higher order terms. Concatenat-
ing Hij(x̄) into a matrix yields

H(x̄) =

 H1 · · · 0N×3 0N×3

...
. . .

...
...

0N×3 · · · HN 0N×3

 , Hi =

 Hi1

...
HiM−1


where the argument has been left out to simplify notation.

Now, we define the estimator

˙̂x =A(t, z̄)x̂+B(z̄)u(t)

+ K̂(t)(∂y − ∂h(x̄)−H(x̄)(x̂− x̄)) (27)

where K̂(t) is the time-varying Kalman gain matrix. Since
the dynamics of the LTV KF and the linearized KF of stage 2
and 3 are identical, we choose the process uncertainty matrix
identically, i.e. Q̂ = Q̄. The elements of the measurement
uncertainty matrix for measurements ∂yij , j = (1, ...,M)\m
and yim, R̂i, is given by

Cov(∂yij , ∂yik) = E[(ε∂,ij − ε∂,im)(ε∂,ik − ε∂,im)]

= E(εy,ijεy,ik) + E(εy,imεy,im)

=

{
2σ2

∂ , k = j
σ2
∂ , k 6= j

(28a)

Cov(∂yij , yim) = E[(
1

2
εy +

1

2
ε∂,im)(ε∂,ij − ε∂,im)]

= −1

2
σ2
∂ (28b)

Cov(yim, yim) = E[(
1

2
εy +

1

2
ε∂,im)2] =

1

4
(σ2

y + σ2
∂)

(28c)

and the full uncertainty matrix is given by R̂ =
blkdiag(R̂1, ..., R̂N ). The G-matrix used in this KF is G(x̄).

For the angular motion estimation in stage 3, we imple-
ment the NLAO as in (20)–(21), except that

¯
Rn

¯
b ,

¯
b̄
b
ars,

¯
σ,

¯
kI ,

¯
Kp, and

¯
pbtitN are replaced by R̂n

b̂
, b̂b̂ars, σ̂, k̂I , K̂p, and

p̂b̄titN = p̂b̄tib − p̂b̄tNb, respectively.

IV. STABILITY ANALYSIS

The stability analysis of the body-fixed three-stage filter
is conducted as follows: First, the stability of the NLAO
states

¯
z, z̄, and ẑ is collectively analyzed provided exact

transponder baseline estimates
¯
pbtib, p̄¯btib, and p̂b̄tib, respec-

tively. Second, the translational motion estimator in each
stage is analyzed. Lastly, the stability of the entire cascade
is analyzed. This is a deterministic analysis, meaning we
analyze the stability without noise. Before the analysis, we
need to state two assumptions:

Assumption 1: There are at least M ≥ 3 non-collinear
transceivers on the vehicle.

Assumption 2: There are at least N ≥ 2 transponders in
the vehicle’s surroundings, and the baseline between them is
not parallel with the local gravitational field.

Proposition 1: Define ˜
¯
z , (Rn

b − ¯
Rn

¯
b , b

b
ars − ¯

bbars), ˜̄z ,

(Rn
b − R̄n

b̄
, bbars− b̄bars), and ˜̂z , (Rn

b − R̂n
b̂
, bbars− b̂bars). Let

ż = (Ṙ, ḃ) and z = 0 only when z = (R, b) = (0, 0).
1) Assuming

¯
pbtib = pbtib, we have that the equilibrium

point ˜
¯
z = 0 of the noise-free dynamics ˙̃

¯
z is GES under

Assumption 2.
2) Assuming p̄¯

b
tib

= pbtib, we have that the equilibrium
point ˜̄z = 0 of the noise-free dynamics ˙̄̃z is GES under
Assumption 2.

3) Assuming p̂b̄tib = pbtib, we have that the equilibrium

point ˜̂z = 0 of the noise-free dynamics ˙̃
ẑ is GES under

Assumption 2.
Proof: The proof for points 1–3 in Proposition 1 follows

directly from Grip et al. [17].
Proposition 2: Assume the rotation matrix and ARS bias

estimates in stage 1 are exact, i.e. Rn

¯
b = Rn

b and
¯
b̄
b
ars =

bbars. Under Assumption 1, the equilibrium point ˜̄x = 0 of
the second stage noise-free error dynamics ˙̄̃x = (A(t,

¯
z) −

K̄(t)C)˜̄x is GES.
Proof: For a general linear time-varying system with

the process and measurments matrices A(t) and C(t), respec-
tively, Kalman and Bucy [18] proves that the error dynamics
of an LTV KF based on A(t) and C(t) is uniformly globally
asymptotically stable (UGAS) (which is equivalent to GES
for LTV systems) if and only if the pair (A(t), C(t)) is
uniformly completely observable (UCO). The pair is UCO if
and only if the observability co-distribution formed by A(t)
and C(t) has full rank, Theorem 6.O12 of Chen [19]. The
top 2NM rows of the observability co-distribution formed
by A(t, z) and C is

dŌ =

[
C

CA(t,
¯
z)

]
=

[
CNp 0NM×3

CNpAp(t,
¯
z) N · Cp

]
From Theorem 4.2 of Meyer [20], we know that the block-
triangular matrix dŌ has full rank if the matrices on the
block diagonal have full rank. Since the block diagonal
matrices only consists of Cp, we need that M ≥ 3 and
rank(Cp) = 3, both of which follow from Assumption 1.
When the partial observability co-distribution dŌ has full
rank, then the full observability co-distribution has full rank
as well. This concludes the proof.

Proposition 3: Assume that the KF tuning matrices R̂, Q̂,
and P̂ (0) are symmetric and positive definite. Further assume
that the rotation matrix and ARS bias estimates in stage 2
are exact, i.e. Rn

b̄
= Rn

b and b̄b̄ars = bbars. Under assumptions
1 and 2, the equilibrium point ˜̂x = 0 of the third stage noise-
free error dynamics ˙̃

x̂ = (A(t, z̄)− K̂(t)H(x̄))˜̂x is GES.
Proof: Then, Theorem 2.1 of Johansen and Fossen

[13] states that provided with a GES linearization point
x̄, the equilibrium point ˜̂x = 0 of the dynamics of ˙̃

x̂ =
(A(t, z̄) − K̂(t)H(x̄))˜̂x is GES if and only if the pair
(A(t, z̄), H(x̄)) is UCO. By the same strategy as in Propo-



sition 2, it is straigh-forward to show that the observability
co-distribution formed by A(t, z̄) and H(x̄) has full rank if
the matrices H1(x̄), ...,HN (x̄) has full rank. This follows
from Assumption 1, which concludes the proof.

Proposition 4: The equilibrium point ˜
¯
z = ˜̄x = ˜̄z = ˜̂x =

˜̄z = 0 of the cascade of the respective noise-free error
dynamics is GES.

Proof: Under Proposition 1, we know that the NLAOs
in stage 1–3 are GES assuming they are provided with perfect
baseline estimates. Under Proposition 2–3, we know that
the translational motion estimation errors ˜̄x and ˜̂x converge
uniformally, globally, and exponentially to zero provided
perfect attitude estimates. In the noise-free case, the ANT
provides perfect baseline estimates to the NLAO in stage 1,
meaning the NLAO in stage 1 is proven GES by Proposition
1. It is proven in Loria and Panteley [21] that a cascade of
GES systems is GES. This can be used iteratively to prove
that the cascade of estimators up until any of the estimators
in stage 2 and 3 is GES, and thus, the whole cascade is GES.
This concludes the proof.

V. SIMULATIONS

In the simulations, a vehicle with the dimensions (L×H×
W ) = (1.2 × 0.6 × 0.6)m is assumed to be used. In four
corners of the vehicle, a hydrophone is placed, i.e. M = 4
and

[pbbc1
, ..., pbbcM ] =

0.6 0.6 0.6 −0.6
0.3 0.3 −0.3 0.3
0.3 −0.3 0.3 0.3


Furthermore, a transmitter is placed next to cM , i.e. m = M .

The initial conditions are

pnnb(0) =

0
0
0

 , vnnb(0) =

0
0
0

Rn
b (0) = I3

the ARS bias is bbars = [0.012,−0.021, 0.014]>, and the
noise standard deviations are

σacc = 0.01
m

s2
σars = 0.01

rad

2
σmag = 0.01

σy = 1m σ∂ = 0.01m

There are two transponders, i.e. N = 2, which are placed
at pnnt1 = [50, 50, 0]> and pnnt2 = [−50,−50, 0]>.

The estimate of the initial state of the vehicle is

p̌nnb =
[
10 −10 5

]>
, v̌nnb =

[
0 0 0

]>[
φ̌ θ̌ ψ̌

]
=
[
5◦ 10◦ 20◦

]
b̌b̌ars(0) =

[
0 0 0

]>
from which the estimates of all estimators are derived. The
initial covariance matrices of the LTV KF and the linearized
KF are P̄ (0) = P̂ (0) = blkdiag(10I3, 10I3, 0.1I3), respec-
tively.

Even though the analysis was conducted in continuous-
time, the KFs are implemented as discrete-time KFs.

The NLAO tuning parametres are chosen as
¯
σ = σ̄ =

σ̂ = 1,
¯
Kp = diag(1, 1, 8), K̄p = diag(1, 1, 4), K̂p =

Fig. 3. The simulated trajectory of the vehicle.

Fig. 4. This figure shows the north, east, and down position estimate errors
from stage 2 and 3, found by transforming the position estimates to NED
positions, i.e. to pnnb, and averaging them. The attitude estimate from the
respective stages were used to rotate the body-fixed position estimates to
the NED frame.

diag(1, 1, 10),
¯
kI = .01 = k̄I = .01, and k̂I = 0.015. In

order to speed up convergence, the tuning parameters Kp

and kI are set to 10I3 and 0.1 in stages 1, 2, and 3 for the
first 60, 120, and 180 seconds, respectively.

In the simulations, the vehicle stands still for the first 180
seconds to let the estimators to converge. Then, it descends
and moves in a lawnmower pattern for 400 seconds, after
which it stops. In the remainder of the 1000 seconds long
simulation, the vehicle stands still. The results can be seen
in Figure 3–6.

Fig. 5. Here, the attitude error in Euler angles are shown. They are found by
extracting the Euler angles from Rb

b̌
= Rn

b
>Rn

b̌
, where (̌·) is a placeholder

for (
¯
·), (̄·), and (̂·).



Fig. 6. Here, the ARS bias estimates of the three NLAOs are shown along
with the true ARS bias.

VI. DISCUSSION

In Figure 3, the trajectory that the vehicle follows is
shown, along with the estimated positions. The position
estimates from both the LTV KF and the linearized KF
converge rapidly and track the true trajectory satisfyingly.
This is confirmed in Figure 4 which clearly shows that both
filters converge almost instantaneously. In Figure 4, we can
also see that the linearized KF position estimate tracks the
true value when the LTV KF position estimates deviates from
it for some time. This is especially seen in the north and east
position estimates.

In Figure 5, the roll, pitch, and yaw angle errors for
the three NLAOs are shown. The roll and pitch angles are
virtually identical for the three NLAOs, which is expected
since all use the graviational field and accelerometer mea-
surement reference vectors which are available at 100 Hz.
The yaw angle, on the other hand, is only observed through
the baseline vectors that are measured at 1 Hz. While the
NLAOs in stage 2 and 3 have available baseline estimates
from the LTV and linearized KFs at 100 Hz, new information
that improve the baseline estimates are only available at 1 Hz.
For this reason, we see a significantly slower convergence
of the yaw estimate than of the roll and pitch estimates.
Eventually, the three NLAOs successfully track the yaw
angle. The same observation is made about the ARS bias
estimates shown in Figure 6. While the three filters converge
to the true value in all three directions, the yaw rate estimates
converge significantly slower.

An observation about the body-fixed three-stage filter is
that it is sensitive to the tuning of the NLAOs. This means
that there probably is potential for tuning choices that yield
better performance, and tuning them identically is probably
not optimal. However, this is done here for simplicity and
since the goal of this paper is not to show the optimal
performance of the body-fixed three-stage filter, but rather
to verify its usefulness.

VII. CONCLUSION

In this paper, a novel body-fixed three-stage filter for
joint position and attitude estimation was developed. It
relies on a hydroacoustic sensor network providing range
measurements from 3 or more transceivers on the vehicle

to two or more transponders in the vehicle’s surroundings.
Along with accelerometer and ARS measurements, this was
shown to provide enough information for the estimation of
both the body-fixed position of the vehicle relative to each
transponder, the body-fixed velocity and the attitude of the
vehicle, and the ARS bias. The stability of the filter was
analyzed and it was shown to have GES error dynamics.
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