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Abstract 

This paper presents a simplified formulation for the assessment of large deformation resistance of 

stiffened panels subjected to lateral loading. The method is based on rigid plastic material 

assumptions and the use of yield functions formulated in terms of stress resultants. The method 

considers the flexibility of the panel ends with respect to inward motion, while the rotational 

boundary conditions are free or clamped. Concentrated and distributed loads are considered, as is 

patch loading. The resistance-deformation curves predicted by the proposed method are 

compared with results from experiments and using LS-DYNA, and good agreement is obtained 

for panels that are not dominated by shear failure and tripping or local buckling of stiffeners at 

the early stage of deformation. The formulation provides a useful tool for quick estimates of 

panels subjected to abnormal or accidental static and transient lateral loads such as ship collisions, 

dropped objects, explosions, slamming, hydrostatic pressure and ice actions. 

Key words: stiffened panels; abnormal lateral loads; large deformation resistance; plastic 

analysis; axial inward motion 

1. Introduction 

Stiffened panels are widely used in ships, offshore platforms and other engineering structures. A 

typical stiffened panel structure on a ship side or bottom is shown in Fig. 1. Such structures are 

often exposed to the risk of explosions, ship collisions, violent water slamming, ice pressure and 

impacts from dropped objects. Potential consequences may vary from minor local deformation to 

major structural damage and plate rupture, causing compartment flooding or oil leakage. In 

extreme cases, the loads may cause the entire structure to collapse and put human lives in 

jeopardy. Consequently, it is crucial to estimate the resistance and damage of stiffened panels 

with good efficiency and accuracy, notably when they are loaded to their extreme performance 

limits during accidental events.  

Several methods are available for structural response analysis, including nonlinear finite element 

methods (NLFEM) [1, 2], experimental methods and simplified methods. In the design stage, a 

number of scenarios and structural configurations need to be assessed. For this purpose, nonlinear 

finite element analysis is not practical due to significant modeling efforts and computational costs. 

Experimental methods will provide accurate results if the scaling law is properly handled, but the 

disadvantages include high cost and a long period of time from test preparation to results. Thus, 

simple analytical methods that can perform a quick and realistic assessment of the resistance 

during inelastic deformations are desired. A few design standards contain simple resistance 

expressions, such as DNV RP C204 [3] and the NORSOK N004 standard [4].   
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Fig. 1. Stiffened panel 

Numerous formulations of the resistance and energy dissipation of structural components and 

subassemblies during accidental actions are available in the literature. They are typically based 

on plastic theory and the assumption of idealized deformation modes inspired by deformation 

patterns observed in actual accidents, model tests or numerical simulations. Wierzbicki and 

Abramowicz [5] presented pioneering work on the crushing resistance of thin-walled structures. 

Amdahl [6] derived simplified formulas for the crushing resistance of a ship bow. Jones [7] 

presented useful analytical models for the impact response of beams, plates and shells. Both static 

and dynamic responses were addressed. The effects of transverse shear and rotatory inertia were 

discussed. 

As for the deformation resistance of stiffened panels, a simple way to address stiffened panels 

may be to smear the thickness of stiffeners onto the attached plate, but the accuracy was shown to 

be crude [8]. Considering the confinement effect in the longitudinal and transverse directions, the 

deformation resistance models of stiffened panels under blast loads can be found in refs. [9-12]. 

For beam deformation of stiffened panels with only longitudinal confinement, Schubak et al. [13, 

14] and Yang and Peng [15] presented rigid plastic models with clamped ends and partial end 

fixity subjected to uniformly distributed blast loads. However, the neutral axis was assumed to 

coincide with the centroid axis. The resulting yield curve was asymmetric and was simplified as a 

linear piecewise curve, which is not accurate. The DNV RP C204 [3] standard presented the 

static resistance of laterally deflected stiffened frames by using a practical approximation of the 

interaction function of the bending moment and the membrane force. Amdahl [16] proposed a 

model for the resistance of stiffened panels with fixed end conditions subjected to explosions 

with more refined yield functions. Daley et al. [17] presented a model for overload response of 

simple flat bar stiffened frames subjected to ice loading, and the effect of bending and shear is 

discussed while the axial force is neglected. A series of full-scale experiments for the lateral 

indentation resistance of single stiffened frames and ship grillages were conducted and reported 



by Daley and Hermanski [18] and Kim [19], which provide valuable results for the investigation 

of the ultimate strength of stiffened frames.  

Considering the flexibility of beam ends, Jones [20] proposed an analytical formulation that 

accounted for the effect of inward flexibility of beam ends. A drawback to this method was that 

the flexibility was proportional to the square of the deflection, which made it difficult to associate 

it with the physical properties of a structure. Hodge [21] and De Oliveria [22] presented simple 

expressions for the resistance of rectangular and tubular beams respectively under lateral loading, 

and boundary translational and rotational flexibilities were accounted for. They showed that the 

translational stiffness of beam ends was crucial for the development of membrane forces in large 

deformation conditions 

This paper presents a simplified formulation for the large beam-deformation resistance of 

stiffened panels with T-profile and L-profile stiffeners. The effects of distributed loads, different 

loading positions and boundary translational and rotational stiffness are accounted for. Results 

from experiments and numerical simulations are used to verify the proposed analytical model. A 

number of cases are simulated with LS-DYNA, covering a broad range of impact scenarios. The 

shear and dynamic inertia effects are discussed as well. The proposed model may serve as design 

equations in the design standards of marine structures. 

2. Yield functions based on generalized forces 

The object of this study is a stiffened panel with a vertically asymmetric I-profile, as shown in 

Figs. 1 and 2 (a). The areas of the plate flange, the top flange and the stiffener web are denoted 

pA , tA  and wA , respectively. wh  denotes the height of the web. It is presupposed that the area of 

the plate flange is larger than or equal to the area of the small flange and the web such 

that p w tA A A . This assumption is valid for most stiffened panels used in ships and offshore 

installations. The material is assumed to be rigid perfectly plastic with a yield strength of y  . 
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Fig. 2.  Stiffened panel cross section subjected to bending and tension 

First, pure bending of the cross section is considered. The stress distribution in the fully plastic 

state is shown in Figure 2(b). The plastic neutral axis is located such that it divides the cross 

section into two equal areas. This implies that the axis is initially located in the plate flange, 

given by the coordinate
1z  : 
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2 2

p w t e

p p p

A A A Az

t A A
                                                                               (1) 

where pt is the thickness of the plate flange and 
eA  is the total area of the stiffened panel cross 

section, i.e. e p w tA A A A . As the area relation of p w tA A A  is assumed, 
1z  must always 

be smaller than
2

pt
; i.e. 12 pz t . 

The following approximations are introduced in the calculation of the plastic bending moment: 

 The contribution from the large bottom plate is small because the plastic neutral axis is 

located in the plate flange. 

 The distance to the neutral axis, 1z , in the plate flange is neglected. 

 The thickness of the stiffener top flange is assumed to be small compared to the web 

height, wh   and is neglected. 

The fully plastic bending moment is approximately: 

2

w
p y w t w

h
M A A h                                                                                                    (2) 

In deriving the interaction functions, the effect of shear deformation is assumed to be negligible. 

If the cross section that is fully plasticized in bending is subjected to an increasing membrane 

tension force, as shown in Figure 2(c), a part of the compression field below the plastic neutral 

axis, 1z , has to change to yielding in tension. An equal area of the tension field above the plastic 

neutral axis will be “occupied” by the axial force, N  . The total area “occupied” by the tension 

force is indicated by the shaded area in Figure 2(c). Depending on the magnitude of the axial 

force, the stiffened panel response may be classified into four different stages. 

Stage 1: Tension force in the plate flange only 

As long as the tension force occupies the plate flange only, the bending moment is not affected. 

The limiting axial force *N  is given by: 

*
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                                                                                (3) 

where pN  is the plastic collapse force of the cross section in tension; p y eN A . 



Hence, the following interaction applies: 

*
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An approximation of this interaction could be used: 

*

1 0, 0

n

P p P p

M N N N
F

M N N N
                                                             (5) 

where n  takes a large value. 

Stage 2: Tension force in the plate flange and web 

In this stage, the axial force reaches such a level that it also occupies a part of the web in addition 

to a part of the plate flange, i.e., *N N  .  The height of the zone “occupied” by the axial force is 

denoted 2z  , as shown in Fig. 3.  

The plastic interaction relationship becomes: 
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The yield function in Eq. (6) is valid as long as 2 wz h  , which gives: 

* **

P p P

N N N

N N N
                                                                                                             (7) 

where **N  represents the axial force when the tension force ‘occupies’ the entire stiffener web, 

as shown in Fig. 3(c).  This gives: 
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Fig. 3. Plastic stress distribution in stage 2 

Stage 3: Tension force in the plate flange, web and top flange 

In this stage, the plastic interaction function becomes: 

**

** **
1 0

P

M N N
F

M N N
                                                                                          (9) 

where **

y t wM Ah is the maximum plastic bending moment from the top flange. The interaction 

is linear and holds true as long as: 

**

1
P p

N N

N N
                                                                                                               (10) 

Stage 4: Pure tension force 

In this stage, the tension force ‘occupies’ the entire cross section and the bending moment 

vanishes. The axial force is constant and is: 

pN N                                                                                                                         (11) 

Fig. 4 shows the non-dimensional interaction functions of bending moments and axial forces for 

given /p sA A  and /w tA A   ratios.  sA  is the sum area of the web and the top flange cross section, 

i.e. s w tA A A  . The /p sA A ratio plays a dominant role in determining the shape of the 

interaction curves, while the effect of the /w tA A ratio is smaller. The interaction curve 

asymptotically approaches that of a rectangular cross section when / 1p sA A  and /w tA A . 

The interaction becomes more linear for symmetric I-profiles. The present DNV RP C204 [3] 

expresses the static resistance of laterally deflected stiffened panels by assuming a practical 
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approximation of the interaction function of bending moment and membrane forces as 

 
1.2

/ / 1p pM M N N  . The approximation will introduce errors especially when /p sA A  is 

large. The interaction function will be updated in the new version DNVGL-RP-C204 standard 

(version 2018, to be released), and the proposed method in this paper is expected to be included. 

 

Fig. 4. Non-dimensional interaction functions of bending moment and axial forces   

3. Resistance of stiffened panels at finite deformation 

3.1 Resistance with fixed boundaries 

The large deformation resistance of stiffened panels with T-profile stiffeners in fixed conditions 

was studied by Amdahl [16]. The formulation is described briefly. The procedure will later be 

extended to more general scenarios considering different loading positions, distributed loads and 

translational flexibilities at the boundaries.  

 

Fig. 5. Beam collapse mechanism for cases with clamped ends 



When the lateral load increases, the beam will first collapse via a three-hinge bending mechanism. 

Subsequently, the membrane force starts to develop and interacts with the bending moment. 

When the tension force ultimately occupies the entire cross section, the beam behaves like a 

catenary. 

By applying the virtual work principle, the total lateral resistance, P , contains one contribution 

from bending and the other from the axial force: 

8
4

M w
P N

L L
                                                                                                                        (12) 

where  w  is the crushing displacement.  

The lateral displacement is assumed to be small compared to the total length of the beam. The 

angle of rotation,  , and the elongation e  ,  of one half of the beam become: 

22
;

w w
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L L
                                                                                                                       (13) 

It is further assumed that the elongation e  is distributed equally among the plastic hinges; thus, 

the virtual elongation and rotation are related by: 

2
;

2

2 2

w e w w

L L

e w
                                                                                                        (14) 

Drucker’s postulate (the normality criterion) for plastic flow states that the instantaneous virtual 

elongation and rotation of the plastic hinges should satisfy:  

;
2

e F F

N M
                                                                                                 (15) 

This gives: 
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F

e N
F

M

                                                                                                                             (16) 

F is the interaction functions. 

Utilizing the interaction functions, the kinematic relationship in Eq. (14) and the normality 

criterion in Eq. (16), a closed-form solution for the resistance versus deformation can be achieved. 

For stage 1, it is particularly observed that the interaction function in Eq. (4) does not give a 

relationship between rotation and elongation using the normality criterion. If Eq. (5) is used, we 

obtain: 
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This means that * / 1pN N  . Therefore, we assume 0w  for stage 1, and the resistance is equal 

to 0 8 /pP M L , which is identical to the plastic collapse load in pure bending. 

In stage 2, the following resistance-deformation relationship is obtained: 
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                                                            (18) 

It is found that consistency with stage one is automatically satisfied by Eq. (18) when 0w  . By 

satisfying the right side of Eq. (7), we obtain: 

  1
w

w

h
                                                                                                                                            (19) 

In stage 3, the resistance is constant and is equal to: 

0 2

e

w t

AP

P A A
                                                                                                                      (20) 

Eq. (20) in stage 3 applies at only one point, ww h , and the resistance is consistent with stage 2. 

In stage 4, the entire cross section yields in tension. Eq. (12) applies with 0; pM N N  . The 

resistance, which is given by:  

0 2

e

w t w

AP w

P A A h
                                                                                                              (21) 

increases linearly with / ww h  . 

Normalized resistance-deformation relationships are plotted in Fig. 6 for various ratios of the 

plate-stiffener area /p sA A  and the web-top flange area /w tA A . It is observed that the resistance 

increases with increasing ratios of /p sA A and /w tA A ; the collapse in bending is governed by the 

plastic section modulus, where the area of the top flange is crucial, but it is the total area that 

governs the catenary action. 



 

Fig. 6. Non-dimensional resistance versus deformation   

3.2 Resistance with finite end restraints 

Boundaries with finite end restraints are analyzed. Both clamped and free rotational boundaries 

are considered. For cases with finite rotational stiffness, it should be distinguished whether or not 

plastic hinges occur at the supports. In practice, the duration of the elastic rotation stage at the 

support is short and can be neglected. Consequently, finite rotational restraints will not be 

considered. A detailed derivation of the effect of rotational restraints on the resistance to lateral 

deformation of a circular beam can be found in De Oliveria [22]. 

The stiffened panel is assumed to have a finite stiffness, k  , to inward motion at both ends; see 

Fig. 7. It is loaded with a point load P  in the middle. The rotational degree of freedom is 

assumed to be fixed.  

 

Fig. 7. Beam collapse mechanism with finite translational stiffness 



As the deflection, w , is small compared to the beam length, L , the force and moment equilibrium 

gives: 

;N N M M                                                                                                                          (22)  

The following geometrical relationships apply:  

2 2
2

2 2

L L w
e u w u

L
                                                                                            (23) 

2w

L
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This gives: 

2 2 2 2 2
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                                                                               (25) 

where the nondimensional translational spring stiffness factor is defined by: 

22 w

p

kh
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In stage 1, Eq. 4 will not provide a solution to the development of the membrane forces as a 

function of the displacement. In lieu of that, the interaction equation for stage 2, Eq. 6 is used, 

but the bending moment remains equal to pM  until the membrane force N reaches *N  . This 

means that the expression for the membrane force in stage 2 shall pass the point  0, 0w N  .  

In stage 2, the normality criterion gives: 

2
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                                         (27) 

By combining Eqs. (25) and (27), the governing differential equation for the axial forces in stage 

2 reads: 

*
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                                                                                 (28) 



The axial force N  shall vanish for 0w  . This gives: 

2 2* *
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The solution is valid for: 

**

0
p P

N N
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                                                                                                                                (30) 

By substituting Eq. (29) into Eq. (6), the bending moment M is determined for
* **

p p p

N N N

N N N
  . 

For
*

p p

N N

N N
 , we have pM M  according to Eq. (4). 

In stage 3, the kinematic relationship, Eq. (25), and the normality criterion give the following 

differential equation: 
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with solution: 

2
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  is a constant that is determined from the continuity of Eqs. (29) and (32) at **N N  . 

/ pN N  should be less than or equal to 1 and gives the upper limit of the lateral deflection for 

stage 3. By substituting Eq. (32) into Eq. (9), the corresponding bending moment M  can be 

found. 

In stage 4, the entire cross section fully yields in tension, and the stiffened panel behaves like a 

catenary. This gives 0; pM N N   .  

It is straightforward to extend the procedure to a beam with rotationally free ends, and the major 

difference is that the plastic hinges only occur in the mid-section.    

If the beam is subjected to a uniform patch load over a distance B  , two deformation modes may 

be considered. If the distributed action is “strong” (e.g., ship collision), the middle hinge will be 

split into two. The problem may be simplified as a beam with an effective length of effL L B     

subjected to a concentrated force equal to the resultant of the distributed action.  



If the distributed action is “softer”, e.g., hydrodynamic loads and ice loads, the middle hinge may 

not be split. If the pressure is a uniformly distributed pressure, p, over the entire beam length, the 

resistance may be estimated with an effective concentrated force 0.5P pL in accordance with 

the DNV rules [23] for ice loading. For patch loading, P pL may be assumed, with  varying 

from 0.5 to 1 depending on the patch loading area. 

For cases with different translational stiffnesses at each end, i.e., 1 2k k , an equivalent 

translational stiffness eqk should be used: 

1 2

1 1 1

eqk k k
                                                                                                                        (33) 

For a general case with non-central loading as shown in Fig. 8, the non-dimensional translational 

stiffness factor should be: 
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where: 

 1 2; (1 )eff effL L L L                                                                                                 (35) 

Applying the principle of virtual work, an approximate resistance is obtained: 

    
1 free rotation1 1

( ) ;
2 fixed rotation1eff eff

P M Nw
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                                                      (36) 

The plastic collapse force in pure bending is: 

                    0
(1 )

p

eff

M
P

L
                                                                                                                         (37) 

By substituting the obtained axial force N  and the bending moment M into Eq. (36), the 

resistance-displacement curve is readily obtained. 

 



Fig. 8. Beam collapse mechanism in a general loading condition 

In summary, the non-dimensional resistance for a general loading case reads:  
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where: 
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The development of the membrane force is determined by: 
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        c     is the non-dimensional stiffness factor; refer to Eq. (34).  

           is a constant that should be determined by the continuity of axial forces at **N N  . 

From Fig. 4, the slope of the interaction curve in stage 2 does not change much compared to that 

in stage 3. Therefore, it is reasonable to extend Eq. (29) for the development of axial forces in 

stages 1 and 2 to stage 3 as well, with insignificant loss of accuracy. Eq. (40) then becomes: 
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The development of the bending moment is calculated from:    

22

2
1; 1: 1

2 2 21 1
1 1 ; 2 : 1 1

4
1 2

2
1 ; 3:1

1 2

p

p p e

p pe t

tp w p e e p e

w

e

w t

tp p e p

w

AM N
stage

M N A

A AA AM N N
stage

AM A N A A N A

A

A

A AM N N
stage

AM N A N

A

1

0; 4M stage

       (42) 

The resistance versus deformation is plotted in Fig. 9 for stiffened panels with cross section T6 

(see section 5.1) and various degrees of axial stiffness. When c  approaches infinity, the solution 

converges correctly to the solution for fixed ends in the entire deformation range. For all values 

of c , when the deformation becomes sufficiently large, the resistance converges to the pure 

tension solution for fixed ends.   

In an actual structure, the stiffness of the structural boundary k could be measured by removing 

the stiffened panel and applying an inward pulling force. The tangent to the force displacement 

curve is the required boundary stiffness. To reduce the influence of the adjacent structures during 

measurement, adjacent stiffened frames should also be removed. From Fig. 9, a non-dimensional 

stiffness factor c of 1.0 yields quite strong boundaries close to fixed ends. Typical values of c  

range from 0 to 1 for conditions from no axial fixity to virtually fixed boundaries. 

 



 

Fig. 9. Resistance-displacement curves for the fixed-end T6 stiffened panel given different translational stiffnesses 

4. Comparison with experiments 

A few experiments have been carried out on the resistance of stiffened panels subjected to large 

lateral deflections. Most of the experiments are not directly relevant to the proposed model 

because the boundaries were fixed in both longitudinal (along the stiffeners) and transverse 

(perpendicular to the stiffeners) directions, and deformations were significant with respect to the 

span in both directions. The stiffened panels in such cases cannot be treated as beams. The 

present model may be further developed to account for the transverse contributions in future 

work. 

Daley and Hermanski [18] conducted an experimental study of single stiffened panel indented 

laterally by a rigid steel block. Kim [19] reported experimental data of full scale ship grillages 

subjected to lateral ice indentation. The purposes of the experiments were to check the resistance 

of ship stiffened panels loaded beyond plastic bending limits. The results from both experiments 

are used to verify the proposed model. 

4.1 Single frame experiments subjected to lateral indentation, by Daley and Hermanski [18] 

In the experiment by Daley and Hermanski [18], single frames stiffened with a T stiffener or a 

flat bar stiffener were loaded at the frame middle span. Dimensions of the frame cross sections 

are shown in Fig. 10(a) and (b). The frames were 2 meters long, and were held rigidly at the ends. 

The load was applied through a ‘102 102 mm’ rigid square steel block mounted on the load jack. 

The experimental setup is shown in Fig. 10(c). Tensile tests were performed to obtain the stress-

strain curve. The material curve is shown in Fig. 11 and the yield stress is 340 MPa. The load-



displacement curves predicted by the proposed model are compared to the experimental curves in 

Fig. 12. For the simplified method, the lateral displacement is adjusted by adding the elastic 

displacement to the plastic value.  

For the flat bar stiffened frame, good agreement is obtained. The frame was loaded to a lateral 

deflection of 100 mm in the experiment, which is 0.5 times the web height. Tripping was not 

observed from the experiment (refer Fig. 13, right), and local buckling occurred at the frame ends. 

For the T stiffened frame, the proposed model captures the initial bending capacity of the frame, 

but then slightly overestimates the resistance due to tripping of the T stiffener (refer Fig. 13, left). 

The T stiffener trips over its attached plate at an indenter displacement of 50 mm (including the 

elastic displacement) accompanied with a force drop. The level of the drop is, however, not 

significant. 

Daley and Hermanski [18] found that T stiffened frames were more susceptible to tripping than 

flat bar stiffened frames. Two major effects may contribute to tripping of a T stiffened frame. 

One is that the top flange of the T stiffener is far above the plastic neutral axis (within the 

attached plate), and is stretched the most. The tension force imposes significant compression on 

the web, and small deformation induced asymmetry will finally lead to instability and tripping. 

The other influencing factor of tripping is the web strength. A stiffener web with small web 

height or large thickness will preserve large capacities to resist compression imposed by the top 

flange without tripping. Note that the effect of tripping will be limited when the axial membrane 

forces predominate. 

 

 

Fig. 10. The setup of the experiment, from Daley and Hermanski [18] 



 

Fig. 11.  The measured material stress-strain (engineering) curves from the experiments, Daley and Hermanski [18] 

 

Fig. 12.  Force-displacement curves from the experiments and predicted by the proposed model 



 

Fig. 13. The deformed frames after the tests, from Daley and Hermanski [18] 

4.2 Experiments of full scale ship grillages subjected to ice indentation, from Kim [19] 

In the experiments reported by Kim [19], a full scale ship grillage was loaded with a cone shaped 

ice indenter. The grillage consisted of a plate (6.756 m long and 1.460 m wide), three continuous 

T stiffeners (web 200 x 8 / flange 75 x 10), two supporting transverse stringers (325 x 18 / 120 x 

18) and two heavy side bars (100 x 30). The stringer spacing was 2 m and the stiffener spacing 

was 350 mm. The stiffeners ran through the stringers and stiffener web plates were supported by 

the sides of the stringer. The structural dimensions and the experimental setup are shown in Fig. 

14. The ends of the longitudinal grillage and the ends of the transverse stringers were held rigidly; 

refer Fig. 15. The ice indenter was cone-shaped with the bottom diameter of 1000 mm and the 

cone height of 289 mm; refer Fig. 16(a). The cone inclination angle was 30o. The ship grillage 

was loaded quasi-statically (0.5 mm/s) at the center (red region in Fig. 14) with a hydraulic ram. 

Because of the limitation of the ram stroke, the structure was loaded twice to obtain a large 

indentation. 

During the loading process, the contact area increased continuously with the deformation of both 

the ice and the structure from an initial contact diameter of 50 mm, to a contact diameter of 500 

mm at the end of the first loading period and 714 mm at the second period end; refer Fig. 17. It is 

observed that the two side stiffeners deflected approximately 0.6 times the displacement of the 

central stiffener at the end of both loading periods.  

To apply the proposed simplified model, it is convenient to divide the structure into several part 

(refer Fig. 14, section A-A), including one central single stiffened frame with the characteristic 

displacement of the structure, two side stiffened frames with 0.6 times the displacements of the 

central frame. The rest of the grillage cross section is considered as a sum of the contributions 

from several rectangular beams with 0.6 times the displacements of the central frame. The 

governing equations for fixed-end rectangular beams are simple and can be found in Jones [7]. 



Little deformation was found for the stringers after the experiments. It is therefore reasonable to 

assume rigid supports at the frame ends. 

 

 

 

Fig. 14. Dimensions of the ship grillage and the experimental setup, from Kim [19] 



 

Fig. 15. Boundary conditions of the grillage, from Kim [19] 

 

Fig. 16. The ice indenter before and after the test 

      



 

Fig. 17. Deformation of the ship grillage after the first and second loading, from Kim [19] 

The stress-strain curve of the steel in the grillage obtained from experiments is shown in Fig. 18, 

and the yield stress is 410 MPa. The resistance-displacement curves predicted by the proposed 

model are compared to the experimental curve in Fig. 19. The green, black and blue curves 

represent the analytical curves for the central frame, the resultant contribution of the central and 

side frames and the entire grillage, respectively. For the curves by the simplified method, the 

lateral displacement is adjusted by adding the elastic displacement to the plastic value. Results 

show that the proposed model predicts well the ultimate strength of the ship grillage regardless of 

stiffener tripping. The effect of tripping seems limited because tripping occurs at a large panel 

lateral deflection and membrane forces predominates over bending. Further decrease of bending 

moment due to tripping leads to insignificant change of the overall resistance.  

From the experimental curve, the grillage starts with deformation of the central frame. As lateral 

indentation continues, the contact area increases with the deformation of both the ice and the 

structure, and side frames get involved in the deformation. Therefore, there is a gradual change of 

the force-displacement curve from the initial bending limit of the central frame to the ultimate 

strength of the entire grillage. The good agreement of experimental and analytical curves at large 

deformations demonstrates the applicability of the proposed method. 



 

Fig. 18. Material stress-strain curves obtained from tensile tests, Kim [19] 

 

Fig. 19.  Force-displacement curves from the experiments and predicted by the proposed model 

5. Comparison with nonlinear finite element analysis 

Nonlinear finite element analysis (NLFEA), often considered as ‘virtual experiments’, is used to 

verify the proposed analytical model comprehensively. 



5.1 FE models 

Numerical simulations of 5 m long stiffened panels struck by a flat indenter with a constant 

velocity of 0.2 m/s at mid-span were conducted with the nonlinear finite element code LS-DYNA 

971. The selected stiffened panels are long so that all the four deformation stages will exhibit 

before fracture. The panels were fixed against rotation at both ends and had different degrees of 

axial flexibilities. Discrete beam elements were used to model axial springs. The panels had 

different /p sA A  and /w tA A ratios and stiffener area s w tA A A  ; refer to Table 1. The geometry 

was modeled with four-node Belytschko-Lin-Tsay shell elements with five integration points 

through the thickness. At least six elements were used over the stiffener web and the top flange 

such that possible tripping and local buckling could be well captured. The typical FE mesh is 

shown in Fig. 20. A friction coefficient of 0.3 was employed. 

     

Fig. 20. An example of a stiffened panel model 

Two different materials were used, with stress-strain curves plotted in Fig. 21. Because the 

simplified method is based on a rigid perfectly plastic material, material 1 had small, linear 

hardening. Moderate hardening is needed to avoid excessive concentrations of plastic strains in 

narrow regions, which would yield imprecise response predictions. Material 2 had a more 

realistic hardening, which was represented with the power law model with a yield plateau. The 

material properties are given in Table 2. Fracture was not considered for material 1, whereas the 

Rice-Tracey-Cockcroft-Latham (RTCL) damage criterion [24] was used for material 2. 

                                Table 1. Dimensions of different stiffened panel cross sections                 (Unit: mm) 

Cross section type Ap/As Aw/At Ap Aw At 

T1 1 1 600 x 8 240 x 10 200 x 12 

T2 1 2 600 x 8 200 x 16 160 x 10 

T3 1 3 600 x 8 300 x 12 100 x 12 

T4 2 1 600 x 8 150 x 8 120 x 10 



T5 2 2 600 x 8 160 x 10 100 x 8 

T6 2 3 600 x 8 180 x 10 100 x 6 

T7 3 1 600 x 8 160 x 5 100 x 8 

T8 3 3 600 x 8 120 x 10 50 x 8 

 

Table 2. Material properties for stiffened panels 

Material 
Hardening 

type 
σy (MPa) E (GPa) K (MPa) N Et (MPa) εplateau 

Material 1 Linear 355 207 - - 400 - 

Material 2 Power law 355 207 780 0.22 - 0.026 

 

Fig. 21. Stress-strain curves for the two materials 

5.2 Resistance with axially fixed ends 

A 50 mm wide rigid indenter was crushed into fixed-end stiffened panels with eight different 

cross sections as defined in Table 1. The obtained resistance-displacement curves from LS-

DYNA are compared with predictions by the simplified method in Figs. 22 and 23. For the 

simplified method, the lateral displacement is adjusted by adding the elastic displacement to the 

plastic value. 

The results agree well. Good accuracy is found especially when the soft hardening material 1 is 

used. When material 2 is used, the simplified method tends to underestimate the resistance as the 

lateral deflection increases, and the difference is especially obvious in the pure tension stage. 

This is because, in the pure tension stage 4 where plastic hardening is significant, the yield 

stress y is still used in the simplified model instead of the flow stress flow . Thus, there is a slope 

difference of /flow y  between the predicted and simulated resistance curves. 



 

Fig. 22. Nondimensional resistance curves for fixed-end stiffened panels with cross section T1-T4  

 

Fig. 23. Nondimensional resistance curves for fixed-end stiffened panels with cross section T5-T8  



Local buckling of stiffeners may occur during deformation accompanied by a force drop. An 

example of a buckled stiffened panel is shown in Fig. 24. Stiffener buckling has limited influence 

on the prediction accuracy of the proposed simplified model because it mainly reduces the 

bending moment M  and has little influence on the membrane force N . Buckling usually occurs 

after a displacement of several times the stiffener web height wh . The stiffened panel develops 

quickly into the full tension stage, with little bending moment remaining after a displacement of 

wh , and the resistance is thus only slightly influenced by stiffener buckling. Fracture occurs early 

for cases with small / wL h  ratios. 

 

Fig. 24. Local buckling of a stiffened panel  

5.3 Resistance with finite translational stiffness 

Resistance curves for stiffened panels with finite translational stiffness, obtained with the 

simplified method and numerical simulations using material 2, are compared in Figs. 25, 26 and 

27 for fixed rotation conditions at the ends and in Fig. 28 for free rotation conditions at the ends.  

The results agree well, notably when the axial stiffness is moderate. In the pure tension stage, the 

simplified model has a smaller slope due to missing hardening. The small force drops in the 

numerical simulation curves are due to local buckling. The influence of stiffener local buckling 

on the prediction accuracy is limited. 

 



 

Fig. 25. Nondimensional resistance for the T2 stiffened panels with fixed rotation conditions at the ends 

 

Fig. 26. Nondimensional resistance for the T6 stiffened panels with fixed rotation conditions at the ends 



 

Fig. 27. Nondimensional resistance for the T8 stiffened panels with fixed rotation conditions at the ends 

 

Fig. 28. Nondimensional resistance for the T6 stiffened panels with free rotation conditions at the ends 



A simple expression for tension fracture prediction in yield hinges is given in the NORSOK 

N004 standard [4]. In Table 3, the corresponding critical deflections are compared with the 

results of the numerical simulation presented in Figs. 25-27. Reasonable prediction is obtained. 

The NORSOK criterion for rupture is conservative for stiffened panels with the T2 and T6 

profiles, but the fracture deflection is overestimated to some extent for the T8 profile. Note that 

the RTCL criterion is used in numerical simulations, which does not necessarily represent the 

“true” behavior. 

Table 3. Normalized critical fracture deflections for stiffened panels with different cross sections  

 Profile T2 Profile T6 Profile T8 

c-factor 0.014 0.14 1.4 14 0.018 0.18 1.8 18 0.011 0.11 1.1 11 

Predicted wcri/hw 3.8 3.6 3.2 2.7 4.7 4.4 3.7 3.2 10.7 9.6 7.4 5.9 

Simulated wcri/hw >5.0 4.3 3.3 3.3 >5.2 4.2 3.8 3.8 >7.0 6.4 5.6 5.4 

 

5.4 Resistance of stiffened plates with non-central and patch loads 

The lateral deformation resistance of stiffened panels for various indenter widths B , impact 

positions   (refer to Fig. 8), and uneven axial stiffness is simulated, and material 2 is used. 

The resistance curves for small axial stiffness and varying patch load, shown in Fig. 29, generally 

agree well with numerical simulations. A major cause for the differences is the effect of 

hardening. The results confirm that a “hard” patch load reduces the effective beam length and 

thus increases the resistance. Fig. 30 shows the resistance for uneven axial stiffness, i.e., 1 2k k  . 

Disregarding hardening, the agreement is quite good. The resistance plots for non-central impacts, 

shown in Fig. 31, demonstrate again that the simplified method yields good results in view of the 

hardening effect. The resistance is larger for non-central impacts, but at the same time, fracture 

occurs earlier due to increased shear forces at the closest support. 



 

Fig. 29. Nondimensional resistance for the T2 stiffened panel with α=0.5, c=0.07 and various contact lengths 

 

 

Fig. 30. Nondimensional resistance for the T6 stiffened panel with α=0.5, B=50 mm and uneven axial stiffness 



 

Fig. 31. Nondimensional resistance for the T8 stiffened panel with B=50 mm and different α. The stiffness at both 

ends is 4.3 107 N/m, yielding c = 0.11, 0.12 and 0.14 for α=0.5, 0.33 and 0.25. 

5.5 Resistance with uniformly distributed loads  

The ends of the panel are clamped against rotations and fixed against inward motion, i.e., c= 

infinity. The force displacement curves for the four different cross sections in Fig. 32 show that 

the simplified method captures the response quite well, but the capacity is somewhat 

underestimated. This may be because the assumption of using 0.5pL to approximate uniform 

distributed loads is derived based on the similarity of plastic bending collapse, but is not exactly 

satisfied in the membrane stage. The neglect of the material hardening may also contribute to the 

difference. 

It is observed that fracture occurs much earlier in cases with uniformly distributed pressure loads 

compared to those with point loads. This is because uniform loading gives much reduced central 

deflections if the same total force is applied, but the shear forces at the supports are equal for both 

scenarios being 0.5pL  at each end (see Fig. 33). Based on the plastic hinge theory assuming a 

linear displacement field, for the same lateral deflection, the shear force at the support with 

uniform loading is twice the force with point loading, and fracture thus occurs early at the support 

under the combined action of bending, tension and the significant shear forces. 



 

Fig. 32. Resistance curves for stiffened panels subjected to uniformly distributed pressure loads 

 

Fig. 33. Strain distribution of deformed stiffened panels under (a) point loads and (b) uniform pressure loads 

5.6 The effect of inertia forces on the resistance 

The influence of inertia forces is studied for the T6 stiffened panel by varying the indenter speed. 

Material 1 is used, and any strain rate effects are not considered. The ends are fixed against 

inward motion. Fig. 34 shows that the resistance oscillates in the initial stages, noticeably for the 

highest impact speed. The effect increases with increasing impact speed. The force tends to 

become stable as the indentation increases. The simplified method appears to be quite accurate as 

far as the average resistance is concerned, and the total dissipated energy is close to the static 

solution despite force oscillations.  



 

Fig. 34. Resistance curves of the T6 stiffened panel for different impact velocities 

5.7 The influence of transverse shear on the resistance  

For a stiffened panel with clamped boundaries, the static transverse shear force transferred to the 

support in the plastic bending phase is 4 /s pQ M L . The shear force is assumed to be carried by 

the stiffener web only, and the yield force in pure shear is 0 0

1

3
wQ A . The shear force-yield 

shear force ratio becomes: 

0

2 3( 2 ) 1
1

/

s w t

w w

Q A A

Q A L h
                                                                                                     (43) 

The shear force has a relatively small effect on the plastic bending moment as long as the shear 

force ratio does not approach close to unity, i.e., for panels with large length/web height ratios. 

For cross section T2, the ratio becomes
0

4 3

/

s

w

Q

Q L h
 . The effect of shear force is studied by 

varying the beam length such that / wL h  equals 12, 10, 8 and 5, giving 0/sQ Q  being 0.58, 0.69, 

0.87 and 1.38. The resistance curves are plotted in Fig 35.  



 

Fig. 35. Nondimensional resistance-deformation curves for L/hw=12, 10, 8 and 5 

For cases with / 12 and10wL h  , the simplified model is in good agreement with numerical 

simulations. When / 8wL h  , i.e., when the shear force is 87% of the yield shear force, there is a 

small effect from the shear force on the initial collapse load. When / 5wL h  , the web yields in 

shear, the cross section cannot develop the fully plastic bending moment, and the collapse load is 

reduced. Material 2 provides a somewhat larger resistance in all cases with stronger hardening. 

The resistance curves for speeds of 0.2 m/s and 5 m/s are virtually identical and demonstrate that 

the inertia forces play a small role in this velocity range. The shorter the panel becomes, the 

earlier the predicted fracture is with the RTCL criterion. 

5.8 Panels stiffened with L-profiles 

Asymmetric stiffeners, such as L-profiles, will be more susceptible to warping or tripping, which 

will reduce the load carrying capacity. Three different L-profiles were investigated. The profiles  

‘L1’, ‘L2’ and ‘L6’, as defined in Table 4, have the same plate flange, web and top flange areas 

as cross sections ‘T1’, ‘T2’ and ‘T6’. The width and speed of the indenter are as in the base cases: 

50 mm and 0.2 m/s. Material 1 was used. The effect of a bracket at the mid-section to prevent 

tripping was also studied; refer to Fig. 36. 

Table 4. Stiffened panel cross sections with L-profile stiffeners   (Unit: mm) 

Stiffener type Ap/As Aw/At Ap Aw At 

Type L1 1 1 600 8 240 10 80 30 

Type L2 1 2 600 8 200 16 80 20 



Type L6 2 3 600 8 180 10 60 10 

 

 

Fig. 36. Impact scenario of a stiffened panel with L-profile stiffeners and a middle bracket  

Resistance-deformation curves are plotted in Fig. 37. Stiffener L1 has a large top flange/web area 

ratio, and tripping causes a noticeable reduction in the resistance. With the mid-span bracket, this 

is ameliorated, and the simplified method is in good agreement with the simulations. The tripping 

effect is not observed for stiffened panels with ‘L2’ and ‘L6’ stiffeners, which have a large web - 

top flange area ratio. The web has sufficient bending strength to counteract the asymmetrical 

bending stresses of the top flange. Tripping occurs at a late stage and has limited influence on the 

resistance.  

When the beam length is reduced to 2.5 m, the panel with ‘L2’ stiffeners and no bracket 

experiences tripping early, and the resistance is moderately reduced. When the middle bracket is 

modeled, tripping and buckling are much delayed, and the simplified method is well applied. 



 

Fig. 37. Nondimensional resistance curves for stiffened plates with L-profile stiffeners 

6. Application to structural damage prediction in accidental actions  

The proposed formulation provides a useful tool for quick assessment of the structural response 

of stiffened panels subjected to abnormal or accidental loads such as ship collisions, dropped 

objects, explosions, slamming, hydrostatic pressure and ice actions. The expressions may also be 

used in combination with the Monte Carlo method for structural reliability assessments. 

In the analysis of ship collisions and dropped objects, the problem is often decoupled into 

external dynamics and internal mechanics. External dynamics deal with global motions of the 

striking and struck bodies before, during and after collisions, and predicts the demand for 

structural energy dissipation. The commonly used external dynamic models are the 3DOF model 

by Pedersen and Zhang [25] and the 6DOF model by Liu and Amdahl [26]. The inputs of the 

external dynamic models are the masses and moments of inertia, the relative positions and the 

velocities of the striking and struck objects before impact, while the outputs are the velocities 

after the collision and the dissipation energy. This energy should be dissipated through structural 

deformations in the analysis of internal mechanics. The maximum deformation of the stiffened 

panel is obtained when the area under the force-displacement curve with the proposed model 

meets the demand for energy dissipation estimated in the external dynamics. 

For stiffened panels subjected to transient impulsive loads, e.g. explosions and violent water 

slamming, a practical analysis method is to use the Single Degree Of Freedom (SDOF) analogy 

suggested by Biggs [27]. The approach is also adopted in DNV RP C204 [3]. The equivalent 

system is selected so that the deflection of the SDOF system is the same as that for some 

representative point on the structure, e.g. the midspan of a beam. It is convenient to assume that 



the structure exposed to the dynamic pressure pulse ultimately attains a deformed configuration 

comparable to the static deformation pattern. Using the static deformation pattern as displacement 

shape function, i.e. 

                            ,w x t x y t                                                                                       (44) 

where  ,w x t is the structural displacement at any point of the structure at any time,  x  is the 

displacement shape function and  y t  is the displacement of the characteristic point with time. 

The dynamic equations of equilibrium can be transformed into an equivalent SDOF system: 

                        my ky f t                                                                                        (45) 

The generalized mass:                     
2

2

i i
l

i

m m x dx M                                                                (46) 

The generalized load:                         i i
l

i

f q t x dx F                                                                (47) 

where, m  is the distributed mass, iM  is the ith concentrated mass, q  is the distributed pressure, 

iF  is the ith concentrated load and  i ix x   . 

The equivalent stiffness of the system k  is the tangent of the resistance-displacement curve, 

where the resistance equals to total load acting on the structures given the load distribution and 

magnitude and the displacement is the deflection of the characteristic node. k can be obtained 

from the resistance-displacement curve by the proposed model, but some modifications are 

necessary to account for the load distribution according to the definition. When  , ,m k f t are 

known, the SDOF system can be solved analytically or numerically, and the maximum 

deformation of the stiffened panel can be readily found. For the present case of stiffened panels, it 

may be convenient to simplify the response curves into three linear stages with stiffnesses of 

1 2 3, ,k k k  as shown in Fig. 38, where ely is the displacement at the end of the initial linear 

resistance domain and elR represents the maximum resistance of the structure due to bending. 1k is 

determined by the elastic bending stiffness of the panel, while 2k and 3k should be determined 

from the proposed equations.  

If 2k is assumed to be zero and the load acting on the structures can be approximated by a 

triangular load with maximum value maxF and duration dt , the maximum deflection of the SDOF 

system max / ely y  can be directly read from the curve provided by DNV RP C204 [3] as shown in 

Fig. 39. T is the eigenperiod of the structure in the initial linear resistance domain given by: 

2
m

T
k

                                                                                         (48) 



In Fig. 39, the solid lines were provided by Biggs [27] and represented the response of the SDOF 

system for the linear elastic-perfectly plastic bending behavior without consideration of the  

membrane effect. The dashed and dotted lines were developed in the DNV RP C204 [3] to 

account for the membrane effects with different 3k stiffness. 

From Fig. 39, the maximum structural deflection depends on the duration of the load impulse 

versus the structural natural period ( /dt T ), the maximum bending resistance versus the 

maximum load (
max/elR F ) and the structural stiffness. Depending on the /dt T  ratio, the response 

of a structural component may be classified into three categories: impulsive domain ( / 0.3dt T  ), 

dynamic domain ( 0.3 / 3dt T  ) and quasi-static domain ( / 3dt T  ). For stiffened panels in the 

quasi-static domain and slow loading rate, the proposed formulations can be directly applied. For 

other cases, the SDOF analogy in combination with the proposed static resistance formulation 

should be used, which simplifies the problem significantly but still provides reasonable accuracy 

for structural design. 

 

Fig. 38. Representation of the response curve of stiffened panels by an equivalent tri-linear system 

 

Fig. 39. Dynamic response of a SDOF system to a triangular load (rise time=0.50td), from DNV RP C204 [3] 



7. Conclusions 

Plastic methods have been used to derive a simplified formulation for the large deformation 

resistance of stiffened panels subjected to concentrated loads, uniformly distributed loads or 

patch loads. The panels may be simply supported or clamped against rotations at the ends, with 

various degrees of restraints against inward motion. Experiments and nonlinear finite element 

analysis with LS-DYNA were used to verify the formulations.  

Comparison with the results of experiments and numerical simulations showed that the simplified 

formulation is capable of predicting the large deformation resistance with high accuracy, 

provided that the profile is compact and not subjected to tripping at the early stage of deformation 

or to very high utilization of the web in shear. 

Care should be exercised in using the formulations for very asymmetric profiles, which could be 

subjected to tripping depending on the strength of the web. A tripping bracket at mid-span was 

found to ameliorate the situation in these cases. The simple method is based on the assumption of 

a perfectly plastic material, so it underestimates the capacity of stiffened plating with realistic 

materials considering hardening. Static resistance curves were found to apply very well for 

average resistance with impact speeds up to 5 m/s. For stiffened panels subjected to highly 

dynamic or transient impulsive loads, the SDOF analogy can be used in combination with the 

proposed static resistance curve. 

The method may be a useful tool for quick assessment of the resistance of stiffened panels 

subjected to abnormal/accidental loads, such as ship collisions, dropped objects, explosions, 

slamming and ice loads.  
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