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Preface

This master thesis was written as conclusion of the student’s time with the Industrial Eco-
nomics and Technology Management program with a specialization in Managerial Eco-
nomics and Operations Research at the Norwegian University of Science and Technology,
NTNU Trondheim.

The thesis is evidently a product of the student’s academic journey, with strong el-
ements of both mathematical optimization and power system analysis, but also finance.
This because the student has not only taken the subjects and courses required for the spe-
cialization profile in Managerial Economics and Operation Research, but also taken most
of the courses offered by the department for the students with specialization in Finance and
even been helping with teaching a few of these to younger students. Moreover, the tech-
nical background of the student, as part of the Industrial Engineering program, is within
Energy and Environmental Engineering with specialization in Power Systems. Further-
more, the student has also been influenced by his exchange year at ETH, Zrich, where an
interest in complexity science and risk was sparked and the student was exposed to how
tools and techniques from one field might be able to solve unaddressed problems in other
disciplines.

Hence, the idea behind this thesis is to use optimization methods and ideas developed
in finance, a field in which dynamic and stochastic considerations have been a researched
for many years, and apply them to the problem of rising volatility and energy storage in
electrical power systems. Not only are the many methods of finance dealing with volatility
of conceptual interest when addressing renewable energy variability, but the combination
of the subjects lets the student apply and put to the test the breath of his background knowl-
edge as well as dealing with some of the critical issues related to the solution of the climate
disruption problems.

In the student’s mind, the field of Operation Research is the bridge for applying con-
cepts from finance on volatility onto power system analysis of optimal operation and sta-
bility. Specifically, methods of Stochastic Programming, Stochastic Optimization and Dy-
namic Programming is of great interest as they address the stochastic and dynamic ele-
ments related to renewable energy variability and energy storage. However, there also
exists a methodology, know as the Stochastic Quasi-Gradient (SQG) method - partly de-
veloped and implemented by the supervisor of this thesis, professor Alexei Gaivoronski
- that addresses both the dynamic and stochastic aspect, and additionally is in theory a
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faster solution approach than comparable heuristics and exact methods. This thesis is con-
sequently focused on implementing the SQG method for a simulation of a energy system
with energy storage and stochastic generation.

It might be of interest to know that the student has applied for admission to the Energy
and Environmental Engineering program at NTNU, and plans to do another master thesis
on this same topic. Hence, further work will soon be done on the topic, to provide more
examples and analysis of how the SQG method is relevant and useful for analyzing energy
storage in stochastic power systems.

Trondheim, August 30, 2017

Sondre Flinstad Harbo
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Summary

This thesis shows how the Stochastic Quasi-Gradient (SQG) method may be utilized to
analyze and optimize the use of energy storage in a power system to facilitate the inclu-
sion of more volatility in the power system and put to use increased variable production by
simulating an solving a Stochastic, Multistage Alternating-Current Optimal Power Flow
(S-MS-AC-OPF) model.

The transformation away from fossil based fuels to more sustainable energy sources
present many a challenge. One of these is that the renewable energy to be incorporated
into the power system brings with it a high volatility that has not been present in the sys-
tem before and that the grid and its physical components are not dimensioned to tackle.
The technical solution to this is to include temporary energy storage in the energy system.
Hence, for the success of the coming transition to a renewable energy system, there is a
great need to develop methods that may analysis of how to facilitate the rising variability
in the power grid using using energy storage.

From a perspective of optimization methods and power system analysis, this type of
analysis is not trivial. This is because the analysis of energy storage requires the sought
method to be of a dynamic character. It also has to be able to take heed of the uncer-
tainty that will be present, and thus should be a method that deals well with problems of
stochastic nature as well. Moreover, for the analysis to be of relevance from a electrical
engineering point of view, the problem to be solved has to be able to tackle non-linearity
and non-convexity, and hence being able to deal with local minima. This is to fully em-
ploy the constraints imposed by security, stability and physical limits of the power system.
Therefore, the problem we want to optimize becomes quite complex. Luckily, there exists
a method that may deal with all of these issues, and find a solution efficiently, namely the
SQG method.

By implementing the SQG method with a S-MS-AF-OPF, and testing it with several
approaches on several cases, we show how the SQG may serve the desired purpose. Es-
pecially the use of a gradient estimate directly from the AC-OPF solution provides a good
solution within reasonable time. To conclude, the SQG method coupled with AC-OPF
might be an effective tool for analyzing and optimizing energy systems with stochastic
and dynamic aspects.
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Sammendrag

Denne masteroppgaven viser hvordan Stokastisk Quasi-Gradient (SQG) metoden kan bli
benyttet til å analysere og optimere bruken av energilagring i et kraft system og fasilitere
en inkludering av mer volatilitet i kraftsystemet og benytte mer variable produksjon, gjen-
nom simulering av en Stokastisk, Multisteg Vekselstrøm Optimal Kraftflyt (S-MS-AC-
OPF) modell.

Transformasjonen vekk fra fossile brennstoffer til mer bærekraftige energikilder pre-
senterer flere problemer. En av disse er at den fornybare energien som skal blir tatt inn i
kraftsystemet tar med seg en stor volatilitet som ikke har vært tilstede i systemet før og som
verken kraftnettet eller dets fysiske komponenter er dimensjonert til å takle. Den tekniske
løsningen til dette er å inkludere midlertidig energilagring i energisystemet. Altså, for at
overgangen til et fornybar energi system skal bli en suksess, er det et stort behov for å
utvikle metoder som kan analysere hvordan man kan fasilitere den økte variabiliteten i
kraftnettet bed å bruke energi lagring.

Med et perspektiv fra optimerings-metodikk og kraft-system-analyse, er denne typen
analyse ikke triviell. Det er fordi en analyse av energilagring pålegger den ettersøkte meto-
den å ha en dynamisk karakter. Den trenger også å være i stand til å ta hensyn til usikker-
heten som vil være tilstede, og bør derfor være en metode som håndterer problem av
stokastisk natur bra. I tillegg, for at analysens skal være relevant fra et el-kraft-inteniørsk
synspunkt, vil problemet som skal løses også måtte være ikke-linjært og ikke-konvekst,
og derav må metoden være i stand til å håndtere lokale minimum. Dette er for virkelig
å ta hensyn til begrensingene gitt av sikkerhet, stabilitet og fysiske begrensinger i kraft-
systemet. Altså er problemet vi ønsker å løse ganske komplekst. Heldigvis finnes det en
metode som kan ta hånd om alle disse problemene, nemlig SQG metoden.

Ved å implementere SQG metoden med en S-MS-AC-OPF, og teste den for flere tilnær-
minger og flere eksempler, vi viser hvordan SQG metoden kan tilfredsstille formålet. Spe-
sielt bruken av en direkte utregnet gradient fra AC-OPF løsningen gir en god løsning på
problemet innen rimelig tid. For å konkludere, kan SQG metoden, sammen med en AC-
OPF være et effektivt verktøy for å analysere og optimere energi systemer med stokastiske
og dynamiske aspekter.

vi



Table of Contents

Preface . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . i

Acknowledgment . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . iii

Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . v

Sammendrag . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . vi

1 Introduction 3
1.1 Centrality of the topic . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3

1.2 Motivation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4

1.3 Researchers approach . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5

1.4 Contribution and methodology . . . . . . . . . . . . . . . . . . . . . . . 6

1.5 Outline of the thesis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7

2 Problem description 9
2.1 Problem statement . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9

2.2 Description of problem and scope . . . . . . . . . . . . . . . . . . . . . 10

2.3 Power System Optimization . . . . . . . . . . . . . . . . . . . . . . . . 10

2.4 Optimization Methods . . . . . . . . . . . . . . . . . . . . . . . . . . . 13

2.4.1 The use of SQG on AC-OPF problem with ESS . . . . . . . . . . 16

3 Review of related literature 17
3.1 Review of Literature . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17

3.2 Introduction to Optimization . . . . . . . . . . . . . . . . . . . . . . . . 18

3.2.1 Basics of optimization . . . . . . . . . . . . . . . . . . . . . . . 18

3.2.2 Non-linear Optimization Using Lagrangian Multipliers . . . . . . 19

3.2.3 Line Search Methods . . . . . . . . . . . . . . . . . . . . . . . . 21

3.2.4 Interior-point methods . . . . . . . . . . . . . . . . . . . . . . . 22

vii



3.3 Stochastic Programming . . . . . . . . . . . . . . . . . . . . . . . . . . 24

3.3.1 Basis of Stochastic Programming . . . . . . . . . . . . . . . . . 25

3.3.2 Recourse problem . . . . . . . . . . . . . . . . . . . . . . . . . 25

3.3.3 Multistage Stochastic Programming . . . . . . . . . . . . . . . . 26

3.3.3.1 Scenario Tree Approach . . . . . . . . . . . . . . . . . 26

3.3.3.2 Stochastic Dynamic Programming . . . . . . . . . . . 28

3.3.4 Stochastic Quasi-Gradient Methods . . . . . . . . . . . . . . . . 29

3.4 Optimization of Power Systems . . . . . . . . . . . . . . . . . . . . . . 33

3.4.1 Power System Analysis . . . . . . . . . . . . . . . . . . . . . . . 33

3.4.2 Optimal Power Flow . . . . . . . . . . . . . . . . . . . . . . . . 36

3.4.3 Multistage Optimization of Power Systems . . . . . . . . . . . . 37

3.4.4 Stochastic Programming of Power Systems . . . . . . . . . . . . 38

3.4.5 Stochastic Multistage AC-Optimal Power Flow . . . . . . . . . . 39

4 Mathematical Models 41

4.1 Basic AC-Optimal Power Flow Models . . . . . . . . . . . . . . . . . . 41

4.1.1 Assumptions . . . . . . . . . . . . . . . . . . . . . . . . . . . . 42

4.1.2 Notation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 42

4.1.3 Model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 43

4.2 Dynamic AC-Optimal Power Flow with Energy Storage . . . . . . . . . . 44

4.2.1 Assumptions . . . . . . . . . . . . . . . . . . . . . . . . . . . . 44

4.2.2 Notation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 45

4.2.3 Model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 45

4.3 Stochastic AC-Optimal Power Flow . . . . . . . . . . . . . . . . . . . . 46

4.3.1 Model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 46

4.4 Stochastic Multistage AC-Optimal Power Flow . . . . . . . . . . . . . . 47

4.4.1 Model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 48

4.4.2 Reformulation of the decision variables to SOC . . . . . . . . . . 49

4.4.3 Reformulation of the decision variables to charging policy rules . 51

4.4.3.1 Charging rules based on inherited state of energy . . . . 51

4.4.3.2 Using energy stored as the parameter . . . . . . . . . . 51

4.4.3.3 Projection of policy decision variables onto its feasible set 53

4.4.3.4 Charging rules based on state of energy and stochastic
realizations of the last step . . . . . . . . . . . . . . . 55

viii



5 Methodology and Cases 59
5.1 Cases . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 59

5.1.1 4 bus power system . . . . . . . . . . . . . . . . . . . . . . . . . 59

5.1.2 9 bus power system . . . . . . . . . . . . . . . . . . . . . . . . . 62

5.2 Methodology . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 65

5.2.1 Overview of solution methods . . . . . . . . . . . . . . . . . . . 65

5.2.2 AC-OPF solution methods . . . . . . . . . . . . . . . . . . . . . 65

5.2.3 Stochastic Quasi Gradient Method . . . . . . . . . . . . . . . . . 66

5.2.3.1 Finite Differences Approximation . . . . . . . . . . . . 67

5.2.3.2 Retrieving gradient during AC-OPF simulation . . . . . 68

5.2.4 Stochastic Dynamic Programming . . . . . . . . . . . . . . . . . 71

6 Implementation 73
6.1 AC-Optimal Power Flow . . . . . . . . . . . . . . . . . . . . . . . . . . 73

6.1.1 Algorithm for solving the basic AC-OPF problem . . . . . . . . . 74

6.2 The SQG method . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 74

6.3 Implementing the S-MP-AC-OPF for the SQG solver . . . . . . . . . . . 75

6.3.1 Expanded formulation of the upper and lower bounds on stored
energy . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 75

6.3.2 Tuning the SQG solver . . . . . . . . . . . . . . . . . . . . . . . 77

6.3.3 Algorithms for solving AC-OPF using SQG . . . . . . . . . . . . 78

6.3.3.1 Algorithm for solving AC-OPF under uncertainty for
several time steps . . . . . . . . . . . . . . . . . . . . 80

6.3.3.2 Algorithm for projection of policy point onto its feasible
set . . . . . . . . . . . . . . . . . . . . . . . . . . . . 82

6.3.4 Implementation of the cases of Stochastic, Multistage AC-OPF
using SQG . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 83

6.3.4.1 Implementation Case 1: AC-OPF of 4 bus system . . . 83

6.3.4.2 Implementation Case 2: AC-OPF of 9 bus system . . . 85

6.4 Solving stochastic, multistage AC-OPF with SDP . . . . . . . . . . . . . 86

6.4.1 Algorithm for solving the AC-OPF problem using SDP . . . . . . 87

7 Results and discussion 89
7.1 Basic AC-Optimal Power Flow . . . . . . . . . . . . . . . . . . . . . . . 89

7.1.1 Case 1: 1 time step . . . . . . . . . . . . . . . . . . . . . . . . . 90

7.1.1.1 Results . . . . . . . . . . . . . . . . . . . . . . . . . . 90

7.1.2 Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 91

ix



7.1.3 Case 2: 1 time step . . . . . . . . . . . . . . . . . . . . . . . . . 91

7.1.3.1 Results . . . . . . . . . . . . . . . . . . . . . . . . . . 91

7.1.3.2 Discussion . . . . . . . . . . . . . . . . . . . . . . . . 92

7.2 SQG solution of ACOPF . . . . . . . . . . . . . . . . . . . . . . . . . . 93

7.2.1 Case 1: 1 time step . . . . . . . . . . . . . . . . . . . . . . . . . 93

7.2.1.1 Results . . . . . . . . . . . . . . . . . . . . . . . . . . 93

7.2.1.2 Discussion . . . . . . . . . . . . . . . . . . . . . . . . 95

7.2.2 Case 1: 4 time steps . . . . . . . . . . . . . . . . . . . . . . . . 95

7.2.2.1 Results . . . . . . . . . . . . . . . . . . . . . . . . . . 95

7.2.2.2 Discussion . . . . . . . . . . . . . . . . . . . . . . . . 97

7.2.2.3 Comparison with SDP . . . . . . . . . . . . . . . . . . 98

7.2.3 Case 2: 1 time step . . . . . . . . . . . . . . . . . . . . . . . . . 99

7.2.3.1 Results . . . . . . . . . . . . . . . . . . . . . . . . . . 99

7.2.3.2 Discussion . . . . . . . . . . . . . . . . . . . . . . . . 100

7.2.4 Case 2: 24 time step . . . . . . . . . . . . . . . . . . . . . . . . 100

7.2.4.1 Results . . . . . . . . . . . . . . . . . . . . . . . . . . 100

7.2.4.2 Discussion . . . . . . . . . . . . . . . . . . . . . . . . 103

7.2.5 Finding optimal policy decision rules . . . . . . . . . . . . . . . 104

7.2.5.1 Results . . . . . . . . . . . . . . . . . . . . . . . . . . 104

7.2.5.2 Discussion . . . . . . . . . . . . . . . . . . . . . . . . 105

7.2.6 Further testing . . . . . . . . . . . . . . . . . . . . . . . . . . . 105

7.2.6.1 Different range for the random variables . . . . . . . . 106

7.2.6.2 Different mean value for the wind production . . . . . 107

8 Concluding remarks and future research 109
8.1 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 109

8.2 Further work . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 111

Bibliography 113

A Acronyms and Definitions 117
A.1 Acronyms . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 117

A.2 Definitions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 117

B Additional Information on the Models 119
B.1 Case data . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 119

B.1.1 Case 1: the 4 bus power system . . . . . . . . . . . . . . . . . . 119

B.1.2 Case 2: the 9 bus power system . . . . . . . . . . . . . . . . . . 120

x



B.2 SDP data . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 121
B.3 Figures on projection of policy rules . . . . . . . . . . . . . . . . . . . . 121

C Additional Results and Graphs from the Models 123
C.1 Further figures form the simulations . . . . . . . . . . . . . . . . . . . . 123

xi



xii



List of Figures

2.1 Peak-shaving and Valley-filling of High and Low Load Periods Galus et al.
(2012) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12

2.2 A non-convex (or really non-concave since it is about maximization) sur-
face with global and local maxima. . . . . . . . . . . . . . . . . . . . . . 13

2.3 Different starting points and paths finding local and global minima on a
non-convex line. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14

3.1 Scenario tree . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27

3.2 One-line system of four-bus network. . . . . . . . . . . . . . . . . . . . 34

5.1 Illustration of 4 bus case. . . . . . . . . . . . . . . . . . . . . . . . . . . 61

5.2 Modified IEEE nine-bus system. . . . . . . . . . . . . . . . . . . . . . . 63

5.3 Mean Production Profiles for Stochastic Generation . . . . . . . . . . . . 64

5.4 Mean Demand Profiles for Stochastic Loads . . . . . . . . . . . . . . . . 64

5.5 AC-OPF architectural flowchart . . . . . . . . . . . . . . . . . . . . . . 66

5.6 Overview of Stochastic Quasi-Gradient Architecture . . . . . . . . . . . 66

5.7 Iteration process of SQG algorithm for ACOPF . . . . . . . . . . . . . . 67

5.8 Illustration of SDP method for the AC-OPF. . . . . . . . . . . . . . . . . 72

6.1 SQG overview . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 80

6.2 SQG overview . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 82

6.3 Cost function of the 4 bus case . . . . . . . . . . . . . . . . . . . . . . . 84

6.4 Cost function of the 4 bus case . . . . . . . . . . . . . . . . . . . . . . . 86

7.1 Generator values for the 4 bus basic AC-OPF . . . . . . . . . . . . . . . 90

xiii



7.2 Load values for the 4 bus basic AC-OPF . . . . . . . . . . . . . . . . . . 91

7.3 Generator values for the 9 bus basic AC-OPF . . . . . . . . . . . . . . . 92

7.4 Load values for the 9 bus basic AC-OPF . . . . . . . . . . . . . . . . . . 92

7.5 Estimation of objective function for 4 bus system . . . . . . . . . . . . . 94

7.6 Estimation of objective function compared with SQG solution for 4 bus
system . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 94

7.7 Typical generator profiles for 4 bus case . . . . . . . . . . . . . . . . . . 95

7.8 Battery charging with Finite Differences for 4 bus case . . . . . . . . . . 96

7.9 Battery charging with direct gradient for 4 bus case . . . . . . . . . . . . 97

7.10 Battery charging with SDP for 4 bus case . . . . . . . . . . . . . . . . . 98

7.11 Estimation of objective function for 9 bus system . . . . . . . . . . . . . 99

7.12 Estimation of objective function compared with SQG solution for 9 bus
system . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 100

7.13 Generator values for SQG solution for 9 bus system . . . . . . . . . . . . 101

7.14 Generator values for Finite differences SQG solution for 9 bus system . . 102

7.15 Generator values for Gradient SQG solution for 9 bus system . . . . . . . 103

7.16 Objective function for policy rules calculations for the 4 bus system . . . 104

7.17 Normal objective function values for Gradient SQG solution for 9 bus system105

7.18 Objective function values for Gradient SQG solution for 9 bus system with
increased stochasticity . . . . . . . . . . . . . . . . . . . . . . . . . . . 106

7.19 Objective function values for Gradient SQG solution for 9 bus system with
decreased stochasticity . . . . . . . . . . . . . . . . . . . . . . . . . . . 107

7.20 Objective function values for Gradient SQG solution for 9 bus system with
increased wind generation . . . . . . . . . . . . . . . . . . . . . . . . . 108

7.21 Objective function values for Gradient SQG solution for 9 bus system with
decreased wind generation . . . . . . . . . . . . . . . . . . . . . . . . . 108

B.1 Transition matrix. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 121

B.2 Feasible space for policy projection in three dimensions. . . . . . . . . . 122

B.3 Feasible space for policy projection in three dimensions with illustrative
points. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 122

C.1 Function approximation and observations for the 4 bus case with finite
differences . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 124

C.2 Function approximation and observations for the 4 bus case with direct
gradient . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 124

xiv



C.3 Function approximation and observations for the 9 bus case with finite
differences . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 125

C.4 Function approximation and observations for the 9 bus case with direct
gradient . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 125

C.5 Variable approximation of policy rule simulation . . . . . . . . . . . . . 126

xv



xvi



List of Tables

3.1 Classification of network buses . . . . . . . . . . . . . . . . . . . . . . . 37

B.1 Given demand and generated power for the 4 bus case . . . . . . . . . . . 119
B.2 Constraints value for the buses for the 4 bus case . . . . . . . . . . . . . 120
B.3 Constraints value for the lines for the 4 bus case . . . . . . . . . . . . . . 120
B.4 Constraints value for the buses for the 9 bus case . . . . . . . . . . . . . 120
B.5 Constraints value for the lines for the 4 bus case . . . . . . . . . . . . . . 121

1



2



Chapter1
Introduction

The following introduces the thesis, by explaining how the topics are relevant, the moti-
vation for the project work and the approach that was taken in this thesis. It also explains
methods used and tries to gauge the contribution of the work. Lastly an outline for the rest
of the thesis is presented.

1.1 Centrality of the topic

The climate challenge is by many recognized to be one of the greatest hurdles humanity
has to tackle the coming generations. As the world tries to cope with the climate disrup-
tion it as imposed on itself, it faces numerous challenges. One of the major challenges is
the raising variability with increased incorporation of renewable energy sources into the
electric power system.

As countries, companies and people during the transition to a more sustainable society
and economy construct wind farms, install photo-voltaic systems and buy electric vehicles,
the inherent volatility of these renewable resources and green technologies will increase
the variability in the power system dramatically. Whereas the generation and consumption
of power has previously been rather stable on a short time horizon or at least predictable,
the increased amounts of Renewable Energy Sources, as well as new trends on the demand
side such as induction devices and charging of Plug-in Electric Vehicles, all makes the re-
quired energy production of controllable, dispatchable generation more unpredictable.

Moreover, the problem of rising variability in the power system is not only that of
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generating the right amount of power to meet the demand at any given time instance. It is
also one of the power system’s electrical component’s capabilities, as many of these are
developed for conditions where the power transferred, the voltage and current magnitudes,
don’t change too much from minute to minute. For instance, from any high-school science
class, one might be aware that the coils present in a transformer transfers the power from
one side to another through electromagnetic induction. Fundamental to this physical phe-
nomena is the time-delay in this process, meaning that momentary changes cannot occur
but produces extremely high current and voltage values in the transformer. Many other
physical, technical components are also sensitive to rapid change power values, and on
the system level essential issues such as voltage quality, reactive power and transmission
frequency are all critically impacted by increasing variability.

The general solution to these issues is the introduction of energy system storage to the
power system. Yet in doing so, there is still the question on how to do this in an effective
way. There is a great need for analyzing how energy storage might be utilized to incorpo-
rate more renewable energy production into the current energy system, for instance how
much wind energy could be built out in a specific area before one has to upgrade the grid,
with and without energy storage. Equally important is to find the best way to utilize the
energy storage in a most efficient way, so that as much as possible energy from the renew-
able sources may be utilized, or in other words find a method for optimal operation of the
energy storage combined with other generating sources in the power system. Yet another
issue is to facilitate the adoption of Electric Vehicles and the spontaneous charging they
demand from grid.

In sum, for the success of the transition to a renewable future, there is a great need for
methods that may facilitate an analysis of how to tackle the rising variability using in the
system using energy storage.

1.2 Motivation

As argued above, there is a great need to better understand and address the rising variabil-
ity of power generation and consumption that are a consequence of increased renewable
energy resources in the grid, and how to use energy storage to facilitate this incorporation.

One key aspect of this problem is that of optimal operation, hence optimization tech-
niques are in general of great relevance to this issue. Moreover, as we need to consider
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energy storage in the power system, the analysis needs to take on a dynamic character.
Further, to tackle the variability aspect of the problem at hand, it is essential that ours
methodology also is able to consider problems of a stochastic nature. Hence, we seek
some method that may be able to optimize the dynamic charging and discharging of some
energy storage in the electrical grid with stochastic generation and consumption.

To do this, we firstly need a way to analyze the complex power flow in the electri-
cal grid in it self. For these types of problems the object function may be complex and
non-linear, and the constraints are non-convex. There exists several approaches here and
several simplifications. However, since we are concerned about analyzing situations near
the constraints of the system, taking into account losses in the system and physical limits
of the transformers and transmission line, an alternating-current optimal power flow (AC-
OPF) framework seems to be the best. There also exists methods for solving the AC-OPF
with dynamics across multiple time periods, yet these are of deterministic character.

Conversely, we also need the solution method to be be applicable to stochastic prob-
lems. Since the consideration of the variable renewable energy sources requires a stochas-
tic or probabilistic description, the solution of the problem should be able to hedge against
some of the more extreme cases and optimize the most likely ones. Moreover, in order to
represent the variability in the most precise manner as possible, it is also beneficial for the
model to be able to handle more complex probability distribution functions.

Consequently, this thesis presents the Stochastic Quasi-Gradient (SQG) method as
stochastic optimization technique that may be used to solve problem at hand. It tackles
the aforementioned issues of stochastic variables, non-linear, non-convex and dynamic be-
haviour through simulation of an underlying AC-OPF model. In addition, it also is able to
incorporate any type of distribution function for the stochastic variables, making it much
easier to couple with real observed data.

1.3 Researchers approach

This author has focused on the implementation of the SQG method to solve a multistage
AC-OPF with dynamic and stochastic variables, through stochastic optimization of model
simulation.

In developing the underlying AC-OPF simulation model, both standard AC-OPF mod-
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els and dynamic models were considered. For the implementation, a standard solver in
Matlab R© was chosen, due to both familiarity for the author and reasonably good perfor-
mance. From this, the main focus was to use the implemented AC-OPF simulation as the
fundamental building block for the SQG-method, after a coupling with the SQG solver
developed by Professor A.A.Gaivoronski. The implementation of the full SQG approach
includes both consideration of the dynamic aspects of the problem, as well as the the
stochastic properties.

The SQG is neither a heuristic nor an exact mathematical methods, yet it has compo-
nents from both. Some parts of the SQG algorithm, has similarities to Global Optimization
methods such as SA. On the other hand it uses the concept of analytically relations, such
as gradient, and also Hessian if desired, to get to solution. Thus, it should be faster than
brute-force heuristics, yet does’t fall short due to the complexity of the problem as exact
methods does.

To test the performance of the SQG approach for the stochastic, multiplied AC-OPF
problem, two different cases was developed. One of these was a simple as possible case,
to see whether the method worked for this type of problem. This basic case was also com-
pared with an exact, yet discretized, solution. Further, a slightly bigger case model was
developed, with a bigger grid and more time steps, to see how the model performed in this
somewhat more realistic setting.

1.4 Contribution and methodology

The main contribution of this thesis is the implementation of a multistage, dynamic AC-
OPF model with stochastic parameter solved by the SQG method. In doing so, a few
developments has been made that contribute to the literature and modelling of these type
of problems.

The contribution of this thesis is:

• Implements the AC-OPF for the SQG software

• Implement simulation based SDP of AC-OPF for comparison

• Provides examples on how the SQG implementation is competitive with SDP on
small bus case
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• Tests the S-MP-AC-OPF with the SQG for a bigger case with more stochastic pa-
rameters.

– Explores different methods for estimating the stochastic quasi-gradient for the
problem

– Shows the SQG approach is capable of providing good solutions in reasonable
amount of time for larger problems with several sources of uncertainty.

• Develops a strategic decision policy version of the S-MP-AC-OPF

– Shows how to project a specific policy decision onto a hyper-plane given by
the constraints of the policy decision.

– Proposes policy decision rules that encode the aggregated value of the realized
stochastic variables adjusted for the effect of their spacial distribution has on
the grid.

1.5 Outline of the thesis

This report is divided into 8 chapters, in addition to Preface, Acknowledgements, abstract
and appendices.

Firstly, an introduction is given in this very chapter, conveying how the topic is rel-
evant, the motivation for the work, the approach take and contributions. Thereafter, a
problem description and statement is provided in the second chapter. The third presents
related literature and theory, before the forth presents the basic mathematical aspects of
the model implemented. Chapter five presents the methodology and cases used in the the-
sis. In chapter six the implementation of the model is treated further, before chapter seven
present results obtained from its simulation. The last chapter concludes the report and
provides thoughts on further research.
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Chapter2
Problem description

This chapter gives a further introduction and description of the issues this thesis addresses.
First, a precisely formulated problem statement, or research question, is presented. There-
after, a further description of the problem and scope will be given.

It should be noted that some parts of both this last section, and the beginning of chapter
3 are perhaps a little too basic in the content presented. This however, has been deemed rel-
evant to include non-the-less, as it might help provide background information and foster
comprehension for a reader with no particular background in neither non-linear optimiza-
tion nor stochastic optimization. Indeed, the reader in mind for this thesis is not only
researchers in its respective fields, but also students from the same program as the author,
for which many of the methods and methodologies of this thesis is unfamiliar.

2.1 Problem statement

In this thesis, the key concern is to asses how use energy storage optimally, given knowl-
edge on the stochastic behaviour and variability of certain energy sources and consumers,
and subject to the constrains imposed by the physical limits of the energy grid, and how
the possibility to store energy might enable more variable energy to be introduced to the
energy system. Hence, the research question for this thesis is

How might the Stochastic Quasi-Gradient method be used to analyze and op-
timize multistage power system operation with energy storage under uncer-
tainty?

9



2.2 Description of problem and scope

In the following, a more detailed problem description and background information is
given, as well as sizing up the breath of the task and what is considered outside the scope.
First, the most common and important issues of power system analysis and optimization
are presented. Thereafter, the most relevant concerns for the optimization methods will be
discussed, before a section on the combination of the to disciplines.

2.3 Power System Optimization

When dealing with power system optimization, one uses relations and phenomena from
power system engineering and power system analysis to find the optimal way to produce
energy for a system given its load and characteristics of energy energy distribution.

The energy produced and transported is subject to physical laws of energy conservation
and constrained by the physical limits of the electrical components of the power system as
well as rules set to enforce power security and stability.

To analyze this, several methods are available, such as the Economic Dispatch ap-
proach, regular Load Flow studies or Fast Decoupled Load Flow, and the standard Direct
Current Optimal Power Flow (DC-OPF). Both the Economic Dispatch, but especially OPF
methods, are readily incorporated with power market considerations as well, with power
bids for both producers and consumers.

However, these approaches does not fully consider the impact of losses and reactive
phase shift of the power in the system which is critical for a realistic analysis with respect
to the physical constraints and security of the system. All these desired properties are
characteristics unique to Alternating Current (AC) power systems, and only fully consider
in another approach called AC-OPF method. This is because elements such as coils, ca-
pacitors, and long transmission lines experience electromagnetic temporal energy storage
of power causing phase shift between the voltage and current profiles.

For DC this is not an issue, as the voltage and current are both a product of unidirec-
tional flow of electric charge. For AC systems, which is most common for power grids,
the current and voltage alternates periodically between negative and positive values as the
charge flow changes direction. Hence, the reactive electrical components cause the phase
between current and voltage to shift phase relative to the current. Since power is a prod-
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uct of the current and voltage at any given moment, a phase shift between the two means
among other things that the active power delivered is less than the apparent power from the
generators. Hence, this is critical information to consider for a optimal power flow analy-
sis with varying loads and generation, as well as for the physical constraints and stability
constraints.

For an example on how increasing volatility affects the grid, one might consider some
assessments of how EV adoption is likely to affect the Norwegian grid by NVE with the
publications Spilde and Skotland (2015) and Skotland et al. (2016). They show that the
electrification of the transportation system will pose challenges to the grids transformer
stations and voltage quality. Lines are generally not the main problem, yet some trans-
formers, especially in rural areas, are overloaded in some cases. In terms of voltage quality
and stability, there is a somewhat greater concern. For instance, measurements done by
SINTEF has showed that even the connection of one 32 A one phase charger may cause
significant reduction in voltage quality.

On a gird level, a large variation in power demand is problematic since the power
produced needs to be the same as the consumed. Thus, it does not only make it necessary
for the power producer to constantly adjust its production, which with big changes can be
costly and inefficient. It also poses a threat to a consistent frequency but also stability of
the grid. Hence the possibility to store and discharge energy lets one move load around, to
do what is called peak-shaving and valley filling. In this way the difference between peak
and trough is less which is beneficial for the grid. See figure 2.1 for an illustration.
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Figure 2.1: Peak-shaving and Valley-filling of High and Low Load Periods Galus et al. (2012)

Hence, we are also interested in analyzing the effect of providing Energy System Stor-
age (ESS) for the grid, both in terms of optimal operation, but also on how it may help
incorporate higher amounts of variable power without upgrading the physical components.
This is because Renewable Energy Sources (RES) needs a place to store the energy they
produce when their production is high, for then to be discharge into the grid when the pro-
duction from the RES is low. Therefore we need to consider a dynamic approach, where
certain decisions are made at different stages and where the system values might change
from stage to stage also based on a previous decision. To apply the dynamic aspect, ap-
proaches such as a Dynamic OPF or Dynamic Programming might be used.

However, we also desire to include uncertainty in our models. The dynamic approaches
mentioned above does not necessarily incorporate uncertainty easily and in a manner that
is solvable within reasonable time. There is the possibility to use Stochastic Dynamic Pro-
gramming, yet the solution time quickly becomes too great with this method for reasonably
complex cases. Therefore, this thesis suggests the use of the Stochastic Quasi-Gradient
(SQG) method to solve this stochastic, dynamic AC-OPF problem, through simulation of
a regular AC-OPF.

When working on this thesis, some limitations had to be imposed on what not to do,
and what was to be the main focus. Hence, when implementing the AC-OPF model we
only consider relatively simple cases, and cases with no market coupling. This is because

12



the focus of the thesis is mainly to implement and show that the SQG method is well
suited for the problem we want to analyze. Moreover, the main effort has also not been
to develop a most efficient method for running the AC-OPF model, but a method with
reasonable speed to facilitate a swift solution time for the SQG solver.

2.4 Optimization Methods

There are many ways to characterize different types of optimization problems. One aspect
is whether or not the problem is linear. A linear optimization problem, or a linear pro-
gram, has a linear objective function dependent on its decision variables and constrained
by some linear inequalities or qualities of both, as in model 3.2. There are many well
developed methods for solving linear programs, for instance the SIMPLEX method or
duality methods. A non-linear problem on the other hand is characterized by having non-
linearity present in either its objective function or constraints or both. Examples of such
non-linearity might be a quadratic cost function as objective, and a piece-wise linear func-
tion as constraint. For some types of non-linear problems, such as the ones mentioned
above, there exists efficient and exact solution methods.

The biggest trouble with non-linear optimization problems is when the non-linearity
give rise to a non-convex problem, meaning that there is the possibility of having both
local and global optima, illustrated in figure 2.2 below.

Figure 2.2: A non-convex (or really non-concave since it is about maximization) surface with global
and local maxima.

When problems are characterized by non-convex features, it thus presents a challenge
on how to find the global optimum. Intuitively, using the allusion of scaling a mountain
clouded in mist; how does one know that one has reached the top, and not just some
smaller peak on the hillside. One knows one has reached a top, since the current gradient
is zero. Moreover, one might be able to check the area directly around the current position,
and see that the curvature of the slope of the current point is negative in all directions and
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confirming that this is a top, not some edge one may walk along. Indeed, one might also
have the ability to see some area around through the air, and note that one cannot see any
other surfaces in the near proximity. However, it is still not conclusive that one has reached
the top; it might hide somewhere behind the mist. In terms of optimization methods, the
question is thus what kind of approach, strategy or algorithm should we use in order to get
to the global optimum - the peak of the mountain. One thing this is likely to depend on is
the point at where you start. Another thins, is how you decide the path you choose going
forward to find the optimum. This is illustrated in figure 2.3, where a number of different
starting positions and paths lead to different minima, but only one finds the global one.

Figure 2.3: Different starting points and paths finding local and global minima on a non-convex
line.

In tackling these type of global optimization problems, there are many different ap-
proaches, that may for instance be characterized as deterministic methods, stochastic opti-
mization methods, or heuristics and meta-heuristics. The first tries to use some exact strate-
gies to find the optimum, such as using inner and outer representations, cutting planes,
branch and bound and so on. The second, stochastic optimization methods, are more or
less exact methods that utilizes some random (hence termed stochastic) variables in their
iterative solution process in order not to be ”caught” in a local optimum. Hence, they are
often labeled as Monte-Carlo methods, which generally make use of random sampling to
generate some desired result. Examples here are stochastic approximation methods. The
third, heuristics, may generally be described as an trial-and-error approach, that tries to
find the best value using some rules-of-thumb, rules or algorithms using brute force intel-
ligently. This category often overlaps with the previous one and share common features,
especially since heuristics often also incorporate a random element in their search process,
which may thus be also be labeled as a stochastic optimization method, or a randomized
search method. Examples are Simulated Annealing, Evolutionary Algorithms and Swarm-
based optimization.
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However, the terms ”Stochastic” is not only used to describe a randomized, iterative
solution process. In the field of operations research and optimization, the term stochastic
programming is used to refer to mathematical decision making under uncertainty. That
is, some part of the problem is not fully know, for instance the realization of some vari-
ables that will affect the objective function or constraints of the problem. One approach to
solving such problems is to discretize the probability space and solve the corresponding
deterministic simplification of the problem. Examples here are scenario trees, decompo-
sition methods and Stochastic Dynamic Programming. Another would be to tackle the
probabilistic nature straight on, for instance by chance constraints and probabilistic pro-
gramming.

The method of Stochastic Quasi-Gradient proposed in this thesis, might be character-
ized as a Stochastic Optimization method for solving Stochastic Programs. Hence, it is
not only able to deal with non-linearity, non-convexity and complex functions and to find
a solution within reasonable range of the global solution. It also is aimed at solving opti-
mization programs that are subject to uncertainty. Being a stochastic optimization method,
and neither a fully exact approach nor a full-blown heuristic, it should be able to get close
to the global optimum in a way that exact methods might have some difficulties with in the
same time. Moreover, it will be able to use some analytic information from the solution
process - the Stochastic Quasi-Gradient - which should aid its search so it may be faster
than a heuristic based one.

Again, it is not possible to do everything one might desire when working on a thesis,
and some restraints has been made. As mentioned, the focus of this thesis is primarily to
implement the SQG method for the multistage AC-OPF model, and show that the SQG
method is a very relevant approach to use when analyzing energy systems with storage
under uncertainty. As a quick comparison with an exact method, the author has imple-
mented a similar case with the Stochastic Dynamic Programming approach. Likewise, it
the student also considered to develop a comparative model based on a stochastic optimiza-
tion heuristic, yet after trying out some easily available solvers requiring long run times,
spending time of this was considered less of an priority. Further more, some attempts were
made to develop methods to calculate the stochastic gradient directly from the AC-OPF
solution and not using the finite difference method requiring much more time. However,
very thorough mathematical proofs of the gradient calculations proposed were considered
outside the scope of this thesis. Similarly is the case for the projection operator algorithm
developed for one of cases to be solved by the SQG solver.
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2.4.1 The use of SQG on AC-OPF problem with ESS

From these two paragraphs, it may be natural to see how the SQG approach might be a
good solution approach to deal with multistage ACOPF with energy storage under uncer-
tainty. One is that the SQG it addresses problems where it is not trivial to find the value of
the objective function given a computed solution, and hence deal well with the complex-
ity and non-convexity present in the AC-OPF models. Moreover, as the AC-OPF model
for several time stages quickly becomes quite complex with the non-convexity of the un-
derlying problem, the global optimization trait of the SQG approach is beneficial. Since
the SQG method also is able to use any type of distribution function for the stochastic
parameters, which simplifies and enables the usage for real life cases such as non-smooth
consumer patterns and rather non-descriptive wind data. Moreover the SQG method may
well be used to address multistage models of several time periods, which takes a long time
to compute for exact methods and is a problem if one is to model for instance a whole day
a head with for example a 60 minutes interval.
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Chapter3
Review of related literature

This chapter starts with a presents and some of the most important literature sources for
this thesis, as well as discussing studies related to their topic and methodology.

In addition, a review will be conducted of some of the fundamental theoretical concepts
required to understand the thesis’ models and facilitate further discussion of methodology,
implementation and results. As noted in chapter 2, some of the concept introduced here,
might be considered a little too basic, but is included to facilitate the understanding for
readers unfamiliar with these particular methods. As such, we present both some of the
seminal as well as ”state of the art” literature on these topics. This thesis utilizes concepts
from two different, yet related, fields, which will be presented in their respective sections
after an introduction to optimization is given.

3.1 Review of Literature

This work draws from several different streams of literature, as it may be placed in the
conjunction of two different fields; Power System Analysis and Operations Research.

The most important sources of information for this thesis in terms of optimization
methods in general has come from Nocedal and Wright (2006) and Birge and Louveaux
(2011). The first of these as an comprehensive guide to numerical optimization, where
also the works of Hillier and Lieberman (2010) and Lundgren et al. (2012) has been in-
sightful. The second book has been a valuable guide in understanding the fundamentals
of Stochastic Programming, but also the books by Kall and Wallace (1994), Pflug (1988)
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have been important. Especially the first two books, with Nocedal, Birge and the last two
with Kall and Pflug, are considered seminal works in the field.

On the SQG method, the works of Ermoliev (1983), Ermoliev and Wets (1988), Gaiv-
oronski (1988), Gaivoronski (2005) and Becker and Gaivoronski (2014) has all been of
great value. Where the paper, and following book of Ermoliev introduces the SQG method
theoretically, the works of Gaivoronski specifies how this method is implemented and the
many advantages it has. Additionally, the work of Peeta and Zhou (2006) together with
the Becker and Gaivoronski paper, has provided ideas and examples for what to consider
when implementing, approximating values and tuning the SQG model.

For power systems, reference may be found with Grigsby (2012) and Crow (2012).
The first provides an overview of electric power engineering and power system analysis
in general, and the second gives a more in-depth guide to computational techniques for
power systems. The works of Sperstad and Marthinsen (2016) and Castillo and O’Neill
(2013) provides comprehensive guides to optimal power flow methods and their computa-
tional performance. For the consideration of dynamic programming, the book of Bellman
(1957) is important. However, also the works of Zaferanlouei et al. (2016) and Erdal
(2017)has been of influence for this thesis.

Many other papers have also been visited that are for the concern of length not brought
up here. However the paper of importance and relevance for this thesis will be referenced
in the sections below. Lastly, the work of course draws upon concepts and work started
in Harbo (2016) with developed as a forebearer to both the ACOPF and SQG models
proposed here.

3.2 Introduction to Optimization

In this section introduces and reviews the theoretical background of the mathematical op-
timization methods that are featured in this thesis, starting from basic concepts, discussing
different classes - or basic characteristics - of optimization problems.

3.2.1 Basics of optimization

Starting from the very fundamentals, the field of optimization is one a subject with seeks to
find the best solutions to a problem, often a decision of some sort, as described for instance
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in Lundgren et al. (2012) introductory book on Optimization. More specific, it is a field
of applied maths, in which one formulates the problem in question mathematically, and
uses its models and analytic methods to find the best decisions to make from the feasible
alternatives. In the mathematical model like 3.1, one thus defines an objective function
which is sought either minimized or maximized based on some decision variables the
decision maker is in control of. Further, there are often several constrains imposed on the
variables, giving the boundaries of possible solutions. In general an optimization problem
may thus be expressed as

min f(x)

s.t. x ∈ X
(3.1)

where f(x) is the objective function and X is the set of possible solutions for the vector
of control variables x. When subject to linear constraints, the problem may be formulated
as

min z = cT x

s.t. Ax ≤ b

x ≥ 0

(3.2)

where x is the 1xM dimensional vector of control variables, c are the 1xM dimensional
coefficients of the control variables in the cost function and A is the NxM dimensional
coefficient matrix for the inequality constraints to be less or equal to theirNx1 counterpart
of constraint values b.

Then, introducing slack-variables σ to 3.2, we may express the dual problem as

max bTλ

s.t. ATλ + σ = c

σ ≥ 0

(3.3)

where λ is the Lagrangian multiplier treated in more depth in section 3.2.2.

3.2.2 Non-linear Optimization Using Lagrangian Multipliers

In many real-world cases, it is not desirable to reduce the model of the optimization prob-
lem at hand by simplified linear relationships. This is the case for instance in finance, for
which many applications are discussed in Zenios (2007). One example is when attempting
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to minimize the risk of a portfolio of some assets (calculation the deviation from the mean,
termed as volatility and measured by the standard deviation), given a lower bound on the
expected return of the portfolio. Another example of a non-linear problem of particular
interest to this thesis is the power flow of the AC-OPF model.

An optimization problem is non-linear if either the objective function or any of the
constraints contain non-linear terms. The main issue with these type of problems is that
they might give rise to non-convexity, meaning that thee might exist several local minima.

In general, non-linear optimization problems may be expressed similar to linear ones,
as in Lundgren et al. (2012) we can formulate the general problem as

min f(x)

s.t. gi(x) ≤ bi ∀i ∈ 1, 2, · · · , N
(3.4)

where some terms in the constraints gi(x) or f(x) are non-linear.

As discussed in Bertsekas (1999) in detail, depending on the specifics of the problem
formulation, the solution of such non-linear problems might be sought using methods like
quadratic programming fractional programming and - perhaps most applicable to most
nonconvex problems - branch and bound methods.

More importantly for our case in this report where we have derivable functions, the
Karush-Kuhn-Tucker (KKT) conditions provide general conditions for optimality of non-
linear problems apply, and gives rise to the technique of Lagrangian multipliers and nodal
price analysis. The conditions for the point x to be a local minimia is

∆f(x’) = vi∆gi(x’), vi ≥ 0, ∀i ∈ 1, 2, · · · , N (3.5)

gi(x’) ≤ bi ∀i ∈ 1, 2, · · · , N (3.6)

vi(bi − gi(x’)) = 0 ∀i ∈ 1, 2, · · · , N (3.7)

where the constraints in the first equation 3.5 gives the dual feasibility, the second con-
straints 3.6 defines primal feasibility and the last constraints 3.7 ensures complementary.
From this we formulate the Lagrangian function as follows

L(x,v) = f(x) +

N∑
i=1

vi(bi − gi(x)) (3.8)
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where vi ≥ 0 is now the Lagrangian multiplier for the ith constraint. From the KKT equa-
tions above we see that is necessary for the Lagrangian function to be stationary for a point
to be optimal, that is ∆L = 0 in mathematical terms.

Or restated in notation similar to section 3.2.2 the Lagrangian function may be ex-
pressed as

L(x, λ, σ) = cTx− λT (Ax− b)− σTx (3.9)

where the necessary first order optimally conditions

ATλ+ σ = c

Ax = b

x ≥ 0

σ ≥ 0

xiσi = 0 ∀i = 1, 2, · · · , n

(3.10)

Note the bold font previously used to explicitly specify the vector characteristic of a vari-
able is now left out.

3.2.3 Line Search Methods

When trying to find the best solution of an optimization problem, there are different ways
or strategies one may utilize. The simplex method mentioned earlier seeks to find the op-
timum of a linear, convex, problem by checking its vertices, that is points of intersection
between different constrains, based on the knowledge that the optimum should lie in one
of these points. It also moves from one point to the next along the line given by two con-
straints’ intersection, in a way that yields most improvement per move.

Another approach is that of line search methods. Generally, they compute a search
direction ds and a step length ρs for each iteration. That is finding the next approximation
for the solution xs+ 1 by

xs+1 = xs − ρsds (3.11)

One intuitive method is here is the gradient approach. It tries to find the the optimal
solution by figuring out the direction of the rate of improvement at its starting point, and
then move a step of a certain length in that direction. More formally, as for instance
described in Jameson (1995), if function f(x) is a smooth function where the vector x has
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a of dimension n, its gradient ξ = ∇f given as

ξi(x) =
∂f

∂xi
(3.12)

If the objective is to minimize the fiction value, then the minimum x∗ may be found
through taking a number of step of length ρ in the direction of the negative gradient. Hence,
for step s, the next approximation of the optimal value is given by

xs+1 = xs − ρsξs (3.13)

where ρ needs to be chosen small enough that it leads xs+1 to become less.

More generally then, if one requires that the direction is one of decent - meaning that
the movement in that direction yields a reduction of the fuction value, or (ds)T∇fs - the
direction ds is often has the form

ds = −(Bs)−1∇fs (3.14)

where the matrix Bs is both symmetric and non-singular. For the gradient method, a
method of steepest decent, B is simply the identity matrix.

Another line search method is Newton’s method or Newton-Raphson method known
from numerical analysis as a way to iterative find the zero’s -or roots - of some function.
In this case, the Bs matrix is the Hessian Hs = ∇f(xs) given as

Hij(x) =
∂2f

∂xi∂xj
(3.15)

producing the next step as
xs+1 = xs − (Hs)−1ξs (3.16)

3.2.4 Interior-point methods

Interior point - or barrier - methods are, together with active-set sequential quadratic pro-
gramming methods, considered the most powerful way to solve large-scale non-linear
problems. For understanding we may comparing it conceptually to the to the Simplex
method, a long time standard approach to solving linear programs and the dominating so-
lution method for more small scale linear problems. The Simplex method checks vertices
along the feasible region in searching for the optimal solution, which generally requires a
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large number of inexpensive iterations. Yet, as the problem becomes bigger, e.g. increas-
ing the number of constraints and variables, the solution time scales exponentially with
size of problem.

The Interior point methods on the other hand use another strategy. It approaches the
boundary in the limit, from interior (or exterior) of feasible region. The term ”interior
point” comes from the early development of the method that started at some initial point
x0 inside the feasible region - an interior point - and used barrier methods to make sure the
iterations stayed within the feasible region. Such barrier methods deploy a barrier function

f(x)− µ
∑
i∈I

ln
(
gi(x)

)
(3.17)

where gi(x) represents the inequality constraints, and i specifies the a specific constraint
of all the inequality constraints I. The variable µ is the barrier parameter which is a posi-
tive number that should be specified to converge to 0 during the iterating, and the operator
ln denotes the natural logarithm. As can be seen, the barrier function which prevents the
iterations from leaving the feasible region as −log()→∞ as→ 0.

Hence, interior points never actually lie on the boundary, and thus is able to tackle
non-linear cases as well. Indeed, the method has proven similarly efficient for linear as
non-linear cases. In contrast to the Simplex method it uses a small amount of iterations,
yet each iteration is more computationally expensive. Yet, for the nonlinear cases prob-
lems such as the needs to deal with non-convexity, how to update the barrier parameter
under non-linearity and convergence of the solution are an additional challenge.

Formally, we may express the method as follows. Given as slight reformulation from
the basic models expressed earlier in 3.2 and 3.4, we consider the optimization problem

min
x,σ

f(x)

s.t. h(x) = 0

g(x)− σ = 0

σ ≥ 0

(3.18)

where h(x) represents the equality constraints and g(x) are the inequality constraints of the
problem, which may or may not be of linear character, we may express the approximate
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barrier problem as
min
x,σ

f(x)− µ
∑
i∈I

log
(
gi(x)

)
s.t. h(x) = 0

g(x)− σ = 0

(3.19)

where the slack variables σ no longer needs to be specified greater than 0 as the minimiza-
tion of the barrier function prevents the elements of σ to move too close to 0.

The approximate problem given in equation 3.19 is then simpler to solve than the exact
problem, and the Matlab R© fmincon solver utilized in this thesis solves the problem pri-
marily by using the line search Newton method of equation 3.16 discussed in section 3.2.3.

A further, full treatment of the interior point is not given here, as it would instill the
needed to introduce a lot more theoretical concepts, and out focus here is the SQG method.
For more information on this technique, see for instance Nocedal and Wright (2006) for a
comprehensive presentation.

3.3 Stochastic Programming

A demanding issue when dealing with optimization problems is how to tackle uncertainty
in the mathematical formulation and solution of optimization models. This is the focus for
a group of optimization methods on stochastic optimization.

When speaking of Stochastic programming, there are two main approaches. One of
these is what is called robust optimization, for which one is interested in finding some
solution that satisfies all the specified constraints for all probabilities. The second is the
approach of chance constraints, where the constraints are to be valid from some specified
probability. There are a number of different approaches to solving stochastic optimiza-
tion problems, for instance decomposition methods such as the L-shaped Decomposition
Method, Benders Decomposition and Stochastic Decomposition, as well as Stochastic-
Dynamic programming and the Scenario Tree approach that are briefly introduced in this
thesis.

Yet most of these have in common that they require the problem have a certain degree
of convexity. Neither do they deal well with non-linearity, and methods such as the La-
grangian multiplier approach that does may not easily tackle stochastic features. Equally
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critically, these other approaches often become computational demanding when introduc-
ing several time steps or stages. For instance does an expanded scenario tree becomes quite
huge, and quickly very computational demanding. A method better suited to tackle these
issues - issues that are key characteristics of the Optimal Power Flow models of interest
that are non-convex and multistage - is the Stochastic Quasi-Gradient method that is the
focus of this thesis.

3.3.1 Basis of Stochastic Programming

These models have historically emerged from recourse problems and probability con-
strained models, as Higle (2005) mentions in a brief and informal introduction to stochas-
tic programming. These models arise when one of more variables of the model is best
described by random variables. A more thorough presentation of Stochastic Programming
is given in the books of Kall and Wallace (1994) and Birge and Louveaux (2011). As
stated in their works, a stochastic problem can generally be formulated as

min
x∈X

Eωf0(x, ω)

s.t. Eωfi(x, ω) ≤ 0, ∀i ∈ 1, 2, · · · ,M.
(3.20)

where one seeks to minimize the expected value (the E operator) of the objective function
f0 by choosing the right values for the control variables x given some constrains fi and
the realization of the random variables ω.

3.3.2 Recourse problem

In the case of an aforementioned recourse problem, we try to make some optimal decision
on x with a corresponding cost c, called fist-stage decisions. These must be made before
we have information about some uncertain events in the future, represented by ξ, often
defined by specific events or scenarios s or represented through some underlying stochastic
variable ω, specified as ξ(s) and ξ(ω) respectively. After these random events are realized,
we are able to make some corrective measures y with corresponding costs q. A stochastic
linear formulation may be expressed as in Birge and Louveaux (2011) by
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min
x

cTx+ EξQ(x, ξ)

s.t. Ax = b

x ≥ 0

(3.21)

where

Q(x, ξ) = min
y

{
qT y|Wy = h− Tx, y ≥ 0

}
(3.22)

and the boldface characters symbolizes vectors that are subject to randomness, and ξ is
a vector formed by the variables in qT , h and T. W , T and h specifies the constraints of the
second-stage corrective measures of y. The Eξ operator is the mathematical expectation
subject to ξ.

3.3.3 Multistage Stochastic Programming

The book by Pflug and Pichler (2010) give a comprehensive treatment of multistage stochas-
tic optimization. As before, Stochastic problems are characterized with uncertainty in the
parameters describing them. Multistage problems, are problems that reach over several
periods of time, in which one tried to find a optimal policy or strategy for solving the
problem for all the desired stages. Hence they may also be called multi-period problems,
yet for a multistage stochastic optimization problem the execution of the strategy or policy
should allow for reactions to what previously has happened and react to the new situation,
in a manner that optimizes the overall objective.

Multistage Stochastic problems arise in many real world cases, where one in to make
several decisions over a period and where unforeseen events happen during the course of
time. A common solution approach for discrete probability events is the use of Scenario
Trees, where one weights the different outcome and decisions according to their proba-
bility. Another approach, arisen from dynamic programming where one solves a discrete
problem for several time steps, is that of Stochastic Dynamic Programming.

3.3.3.1 Scenario Tree Approach

Scenario Trees may be applied after discretizing the random events into specified scenar-
ios, s, and estimate (or assume) some probability for each of them. This is then used to
calculate the expected value of the recourse function. As such, we may let pt,s be the prob-
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ability associated with scenario s occurring at time step t, and xt be the decision variable
at the same time step. See figure 3.1 for an illustration.

Figure 3.1: Scenario tree

One may choose to formulate the optimization problem of this in a so-called extensive
form, as for instance

min
x

cTt=1xt=1 +

3∑
s=1

ps,t=1

(
qTt=1y + cTt=2xt=2 +

3∑
s=1

ps,t=2

(
qTt=2y

))
s.t. Wy = h− Tx

y ≥ 0

(3.23)

where W defines the constraints parameters for the y corrective actions, T defines how the
x’s are related to y and each other, and h is some constants that may or may not, as all the
boldface vectors, be subject to stochastic changes.
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3.3.3.2 Stochastic Dynamic Programming

Stochastic Dynamic Programming, often abbreviated as SDP, is a method of stochastic
optimization with roots in dynamic programming. It uses discretized probability distribu-
tions through Markow Chains and specifically Markow Decision Process to calculate the
optimal policy for a specific problem, which all might be found in described Hillier and
Lieberman (2010).

From dynamic programming, we may utilize its method for systematic evaluation of
the optimal combination of some interrelated decisions. This approach discretizes the
states and the time steps. Central to dynamic programming is the Bellman Optimality

Principle, see for instance Bellman (1957) which says that for any given current state, an
optimal policy for the following states is independent of policy decisions made in the pre-
vious states. Then, if we may somehow find the optimal policy and its value for the last
stage, we may recursively calculate the optimal policy for each stage back to the beginning.

As stated in Hillier and Lieberman (2010), unlike for linear programs, there is no gen-
eral formulation for dynamic programming, as the specific formulation used must be cus-
tomized specifically to fit the problem in question. However, we may state this recursive
relationship in mathematical notation as

f∗n(Sn) = m
xn

in{csxn
+ f∗n+1(xn)} (3.24)

where f∗n(S), the objective function of the optimal decision at stage n with state sn, is
a result of the cost for going between the states and the optimal objective function at the
next stage. When starting from the last step N , the optimal policy at the current step n
will always be of the form

f∗n(Sn) = m
xn

in{fn(sn, xn)} (3.25)

and can be used to calculate the optimal policy for all stages back to the initial stage.

Another feature of Bellman’s Optimality Principle, is that the current state contains all
relevant information of the previous states. When considering a stochastic version of the
dynamic problem, one thus couple this with a definition of the stochastic process as an
Markov Chain. These processes have the feature of what is called the Markovian Prop-
erty, which means that the future events are independent of the past events. Thus, when
considering the joint distribution of some events X0, X1, ..., we may formally express this
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as
P{Xt+1 = j|X0 = k0, X1 = k1, ..., Xt−1 = kt−1, Xt = i}

= P{Xt+1 = j|Xt = i}

for t = 1, 2, ... and i, j, k0, k1, ..., kt−1

(3.26)

hence, to be able to calculate backward recursively the optimal expected value of the tran-
sition from the step n + 1 to n, we only need to know the probability of transitioning
between those two states. Thus, if one would be calculating forward, the probability dis-
tribution in this step connecting it to the next, is only dependent on its current state, not
how it got there. Therefore we take in use transition probabilities of going from one stage
to another, which is ordered in a transition matrix. It contains the probability from going
the state in row n to state in column n

Pt =


pt00 pt01 · · · pt0N
pt10 pt11 · · · pt1N

...
... · · ·

...
ptN0 ptN1 · · · ptNN .

 (3.27)

This then let us formulate the expected value of time step t as

Ef∗(Sn, t) = m
xn

in{csxn(t) +

N∑
k=1

(
ptn,kfn+1(xk, t+ 1)

)
} (3.28)

3.3.4 Stochastic Quasi-Gradient Methods

The Stochastic Quasi-Gradient (SQG) methods were introduced in Ermoliev (1976), de-
veloped in Ermoliev (1983) and Ermoliev and Wets (1988), and early implemented by for
instance Gaivoronski (1988). They are characterized as both a Monte-Carlo approach and
an iterative sampling algorithm, and are designed to tackle nonlinear stochastic program-
ming problems with continuous random distributions. They are numerical techniques with
background in stochastic approximation, gradient projection and mathematical, algorith-
mic programming. In essence, instead of using exact values, they employ asymptotically
consistent estimates to evaluate the functions in question and their derivatives. They are
aimed at solving stochastic problems where both objective function and constraints may
be of complex nature, for instance non-linear and non-convex. When applied to determin-
istic cases, they may be considered random search techniques (Ermoliev (1983)).

Within the field of Stochastic programming, SQG methods are considered a com-
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plement to the large scale linear stochastic programming methods(Gaivoronski (1988)).
Such linear stochastic programs has been put quite an effort into and are often repre-
sented by discrete Scenario Trees and solved using Benders Decomposition. The linear
approach solves the stochastic programming problem of 3.21 and 3.22 by its deterministic
equivalent after discretizing the probability function of ω into a finite number of points,
ωi ∀ i ∈ 1, ...,K where k is the number of discrete points, and replacing the spacial prop-
erty of the original problem with sums, see equation 3.23. This approach is well suited for
linear problems with large dimension for which the random variables are well described
by discretizations of only a few points and where high precision is required and possible
from these. Yet, these deterministic methods often encounter computational difficulties
when the number of stages or required points of dicretization becomes moderate. This
since the solution time scales with KT (Gaivoronski (2005)), where K is the number of
discrete points of the approximated probability distribution and T is the number of stages.

The SQG approach on the other hand, is well suited for problems with a smaller dimen-
sion, but where the number of stages are greater. Hence problems of dynamic character,
especially stochastic dynamic optimization problems, are suitable cases for the SQG ap-
proach which solution time only scales linearly with T . The SQG approach also is well
suited when the probability distributions are either complex or best described by con-
tinuous distributions, problems with many stochastic variables or problems of non-linear
nature. However, due to its iterative, approximate nature, the convergence to a final, super
precise solution often takes many more iterations that just coming well within the vicinity
of the solution. Non-the-less this approach is of particular interest when optimizing simu-
lation models depending on some finite number of parameters which may be challenging
to pose as a linear or even non-linear programming model, and where the estimation of the
underlying stochastic functions does not have high precision them self.

In the Stochastic Quasi-Gradient methodology, one solves the problem of minimizing

min
x∈X

F 0(x) = Eω[f(x, ω)]

from the objective equation in 3.20. where ω ∈ Rk is a vector of random parameters and
the decision variables are x ∈ X ⊂ Rn. Here, X defines the set of feasible solutions. This
is usually convex and simple to allow more easy computation of projection onto the set,
yet more complex inequalities may in principle be used. They may for instance given by
upper and lower bounds or linear constrains defined by Ax ≤ b like in 3.21 and 3.2. More
generally the constraints may be expressed as
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s.t. F i(x) = Eωfi(x, ω) ≤ 0, ∀i ∈ 1, 2, · · · ,M.

as in 3.20.

As a general illustrative description, the iterative nature of the SQG approach start
from an initial point x0 and makes a step of size ρs in the direction opposite (in the case
of a minimization problem) to the current estimate ξs of the gradient of F 0(x) at point xs.
A more detailed description follows.

Choosing step direction

The most important part of implementing this problem is to calculate the step direction
given by the estimate of the gradient, ξs, or the Stochastic (Quasi-)Gradient.

In notation inspired by Peeta and Zhou (2006) and Ermoliev (1983), then for a problem
like 3.20 with x ∈ X ≤ Rn we may assume that functions fv(x), v = 0, ...,m are convex.
Then

F v(z)− F v(x) ≥ (F̂ vx (x))T (z − x) ∀z ∈ X (3.29)

where T denotes the transpose of the vector resulting in an euclidean inner product and
F vx is a generalized gradient, or subgradient when the function has has several group of
variables it depends on. For such problems, i.e. min-max problems or two stage stochas-
tic problems, deterministic iteration methods would approximate the solution with a se-
quence, x0, x1, ..., xs, ... using precise evaluations of the function F v(x) and its subgradi-
ent F̂ vx (x) at the points of x = xs.

Conversely in the Stochastic Quasi-Gradient approach, the sequence of approxima-
tions at iteration s, that is x0, x1, ..., xs is constructed from statistical estimates of F v(x)

and F̂ vx (x). These estimates are random numbers represented as φv(s) and random vectors
represented as ξv(s), instead of the precise values of the function F v(x) and the subgradi-
ent F̂ vx (x). These estimates may well use information from the iterations process path and
history and is defined by

E(ξs|As) = F v(xs) + av(s) (3.30)

E(ξs|Bs) = F vx (xs) + bv(s) (3.31)

where As and Bs are the σ-fields of the process history of the function and subgradient
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estimates and as and bs are a bias terms that is to vanish asymptotically. That is

av(s)→ 0 and ||bv(s)|| → 0 (3.32)

In the cases where this gradient is difficult to compute or does not exist in the classical
manner, that is, if bv(s) 6≡ 0, the random vector ξs will be an gradient estimate of the
appropriate generalization and is called the Stochastic Quasi-Gradient.

The resulting function value for a given iteration is found by exponential smoothing
approximation, limiting the impact of previously found solutions on the current estimate
whilst still letting their trace guide the value. The estimated function value is then set as

F̂ 0
s = (1− γs) · F̂ 0

s−1 + γs · F 0
s . (3.33)

Such a smoothed estimate for the current value can also be effective for the stochastic grad
as well.

When computing the Stochastic Quasi-Gradient in practice, there are two common
methods. One is the use of finite differences approximation as for instance explained in
Peeta and Zhou (2006) and Becker and Gaivoronski (2014). The second is to return a
estimate of the gradient during the simulation process of the sub-problem. For a further
discussion on this, see section 5.2.3.1 and 5.2.3.2 respectively, in chapter 5 on Methodol-
ogy.

Choosing step length

Another critical task when performing the algorithm is the selection of step size ρs.
How this is to be set is an issue that has been discussed by for instance both Pflug (1988)
and Gaivoronski (1988) in the book of Ermoliev and Wets (1988). The latter proposes in-
teractive and adaptive approaches that may utilize information from the solution process.
Another approach that often is successfully in practice as noted by Becker and Gaivo-
ronski (2014) is the use of piece-wise updated step size which changes the step size by
multiplying with a predetermined factor according to

ρs+1 =

r · ρs if s ∈ Υ

ρs otherwise
(3.34)

where Υ is the schedule for when to update the step size. For further description of
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such a schedule, see chapter 5 on Methodology. To facilitate the convergence of the solu-
tion though the SQG iterations, one must let the step size tend to null.

Projection on feasible set

When the estimate xs is out of bounds, it is projected from the resulting point on to the
set of X by the projection operator π so that

xs+1 = πX(xs + ρs · ξs). (3.35)

Thus, the projection operator π generates a series of points which may transform an arbi-
trary x′ to the point πX(x′) ∈ X by projecting it the shortest distance onto the feasible set
X:

||x′ − πX(x′)|| = min
x∈X
||x′ − x||. (3.36)

As noted, when implementing and applying the the SQG method in practice, for in-
stance as Becker and Gaivoronski (2014) has done in combination with simulation of
complex dynamic network, the set of X is often a convex set of simple structure. This
because the projection will possibly have to be done a great number of times during the
iteration of the solution process.

3.4 Optimization of Power Systems

In this section, an basic description of Power System Analysis and Optimal Power Flow is
given, as an background for the models and cases considered later in this report.

3.4.1 Power System Analysis

From the fundamentals of electrical engineering, we are well familiar with Ohm’s and
Kirchhoff’s laws on voltage U = I · R and current

∑
I = 0. Further more, we assume

known that in alternating current (AC) systems for instance described in Grigsby (2012),
complex power may be expressed as the sum of active and reactive power S = P +

Q = VI* and also as the the multiplication of the phasors of voltage and the conjugate of
current.

For ease of analysis we often transform all values to per unit [p.u.] numbers and
represent the system through one-line diagrams thus simplifying it to one phase instead of
three, as seen in figure 3.2 from Grigsby (2012).
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Figure 3.2: One-line system of four-bus network.

When developing the basic power flow equations for such a system, we need to con-
sider the network topology and the characteristics (impedance, resistance) of the power
lines and components. This is most often expressed in matrix notation, as with an n-bus
system
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where Yij = G+ B is the admittance matrix of the network. Thus, the expression for
power flow becomes

Si = Vi

( n∑
i=1

Y ∗ij · V ∗ij
)

(3.37)

and

Pi =

n∑
j=1

|Vi||Vj |
(
Gij cos δij +Bij sin δij

)
=

n∑
j=1

|Yij ||Vi||Vj | cos(δi− δj−θij) (3.38)

Qi =

n∑
j=1

|Vi||Vj |
(
Gij sin δij +Bij cos δij

)
=

n∑
j=1

|Yij ||Vi||Vj | cos(δi−δj−θij) (3.39)

where δ is the voltage angle and θ is the lag. As presented in Crow (2012) , one of the most
common way to solve these problems are through iterations useing the NewtonRalphson
Method and calculation the Jacobian[

J1 J2

J3 J4

]
=

[
∂∆P
∂δ

∂∆P
∂V

∂∆Q
∂δ

∂∆Q
∂V

]
(3.40)

for the power flow equations, solving for the know power injections P and Q by[
∆P

∆Q

]
=

[
J1 J2

J3 J4

][
∆δ

∆|V |

]
(3.41)

and finding the converging values of δ and |V | through iteration.

The power flows equations from load flow studies expressed here are used as base for
calculating the Optimal Power Flow of a system. Moreover, these equations clearly ex-
presses the non-linear, non-convex physical properties that are required of our optimization
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methods when solving them.

3.4.2 Optimal Power Flow

The technique of Optimal Power Flow (OPF) is in essence an optimization of how power
shall flow through a grid with respect to some objective function and by choosing the
best values for the control variables. In many cases the objective is to minimize some
cost or loss function dependent on the state variables and control variables defined in the
formulation of the problem.

As seen in the previous section 3.4.1, and in for instance Cain et al. (2012), one way
of formulating the OPF problem in a general manner is the following:

Maximize f(P )

subject to g(x, P ) = 0

hmin ≤ h(x, P ) ≤ hmax
Pmin ≤ P ≤ Pmax,

(3.42)

where f(P ) is the objective function. The equality constraints, g(x, P ), of the system
expresses the physical law of power balance, or the conservation of energy, as stated in
the equations 3.38 and 3.39 for active and reactive power respectively. The inequality
constraints, h(x, P ), represents the physical limitations of the system that often are opera-
tional rules set by the operator so that power system components are not over- (or under-)
loaded. Examples for such constraints are voltage limits, current limits of the transmission
lines. The input and output variables P , is typically the generator values for the slack
generator, and possibly other generator or buses. The variables x are the state variables.

Additionally, one has to classify the buses in the network as seen in table 3.1, to decide
which variables are given in the OPF and which are used as control variables. Many books
in power system analysis will cover this topic extensively, for in the book Power Systems

by Grigsby (2012).

In the simplest version of the Optimal Power Flow problem, one assumes direct current
(DC) and sett all bus voltage to 1pu. Yet, the more realistic case is an alternating current
(AC) power flow, in which we also have to treat the phases of the system voltages and
currents. Further detail on how these parameters and variables may be expressed is found
in section 4.1 on the AC-OPF.

One of the most common ways for solving OPF problems is through the use of La-
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Table 3.1: Classification of network buses

Bus type Fixed quantities Variable quantities
Physical
interpretation

PV
real power, voltage
magnitude

reactive power, voltage
angle generator

PQ
real power, reactive
power

voltage magnitude,
voltage angle

load, or generator with
fixed output

Slack
voltage magnitude,
voltage angle

real power, reactive
power

an arbitrarily chosen
generator

grangian multiplier discussed in section 3.2.2, which readily give insight on the price at
the different nodes in the system.

3.4.3 Multistage Optimization of Power Systems

Power systems are a natural application in which to consider several time steps, and de-
velop a multistage model for. This is especially due to the rise of increasingly more Energy
Storage Systems (ESS) to be able to store variably generated renewable energy. Hence,
one is interested in using this stored energy in some optimal manner, which make the mod-
els take on a dynamic character.

Other applications is a deterministic, dynamic ACOPF, often labeled DOPF, in which
one solves the power flow for all time steps simultaneously coupled together by the en-
ergy storage in the power system. A review of such models may be found in Sperstad and
Marthinsen (2016), as well as a comparison of the different solution methods implemented
for this and their performance.

One article develop the AC-OPF to a dynamic problem, the article of Zaferanlouei
et al. (2016) who presents a formulation of this problem where AC-OPF power flow with
constraints as given in 3.42, 3.38 and 3.39 over a T step time period coupling the periods
thought the dynamic equations of the battery, that

EST,i(t) = EST,i(t− 1) + ∆t · ηchrg · PCh(t)−∆t · PDch(t)

ηdischrg
(3.43)

whereEST,i(t) is the energy stored at bus i at the end of time step t, PCh,i(t) andPDch,i(t)
are the active charging and discharging power of a certain energy storage at bus i during
time step t, ηCh,i and ηDch,i is the charging and discharging efficiency of the energy stor-
age at bus i, and ∆t is the amount of time between the time step increments.
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Additionally, the energy stored is also clearly subject to some capacity constraints,
such as

0 ≤ EST,i(t) ≤ EmaxST,i . (3.44)

and so may the discharge and charging values be too

0 ≤PCh(t) ≤PmaxCh

0 ≤PDch(t) ≤PmaxDch

(3.45)

setting bounds on the dynamics of the problem and transfer of energy between states.

3.4.4 Stochastic Programming of Power Systems

The inclusion of stochastic variables in the AC-OPF, lets one directly model uncertainty
as part of the problem, to find some solution that hedges against unwanted realizations.

From the notation introduced in the expressions 3.21 and 3.22 we may formulate this
as

min
Pst

EξQ(t, Pst, ξ)

s.t. Est(t− 1) ≥ Pst(t) ≥ Est(t− 1)− Emaxst

(3.46)

where Q(t, Pst, ξ) is the ACOPF model given the specific data at stage t given by 4.1,
the storage policy Pst and the realization of the stochastic variables ξ at stage t.

Moreover, in this model we want to have the possibility to include generators and
loads that are described by stochastic functions. For instance with a wind generator is well
estimated to provide power over time according to a Weibull distribution. In such a case,
we may express

PGWind(V, t) = K · V (t)3 (3.47)

where K is a constant and the wind velocity V at t is given thought the Weibull distribution

f(V ) =
k

c

(V
c

)k−1

e−(V/c)k . (3.48)

Additionally we may want to add stochastic PV generation and house hold energy con-
sumption, eg as fluctuations around a base production curve or load curve respectively.
For instance as

PL(t) = Pavg ± Prnd(ω) (3.49)
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where Pavg is the average power for given time period (eg at noon) over the last week
and Prnd(ω) is some random realization for instance based on a normal distribution with
= Pavg and σ(t) is calculated or assumed somehow. To make things relatively simple in
this thesis, uniform distributions around some mean have been used for all the stochastic
variables.

In this thesis, we seek to solve a multistage, stochastic program of a power system with
ESS. In many regards this is a difficult problem to solve as it in principle quickly becomes
rather heavy computationally. One common approach is the use of Scenario Trees and
especially for the linear version of the problem - an economic dispatch problem. Another
approach, is that of calculating water values using dynamic programming, or Stochastic
Dynamic Programming.

However, many of these approaches scale exponentially in running time according to
their level of discretization and the number of time steps, and soon become intractable.
In this thesis we propose the use of the SQG method to solve the stochastic, multistage
program.

3.4.5 Stochastic Multistage AC-Optimal Power Flow

In this section seeks to provide a somewhat through mathematical framework of the prob-
lem at the heart of the thesis; solving an AC-OPF for several time periods under the influ-
ence of stochastic variables. As this is a quite complex problem, containing non-linearity,
non-convexity, dynamic and stochastic variables, it is not an abundance of literature that
has implemented and tested this type of formulation.

We may borrow some of the notation and principles from the recourse problem in 3.21
and the scenario representation in 3.22, as we both have some first-stage decisions that we
make before knowing the realization of the stochastic variables and cannot change, and
corrective actions made after knowing the realization. However, we also have multiple
steps as in 3.23 that we need to take into account.

Here a mathematical specification is given in a compact and general form, in the frame-
work of the recourse problem. This is not a necessary framework for the problem formula-
tion, but is included as it might aid the reader to conceptually understand how this formu-
lation is constructed based on the previous discussion in 3.21. From this formulation will

39



be expanded to more specific ones in 4.4, which one may base a SQG implementation of
the problem on or expand the problem into suitable extensions. The details of the AC-OPF
are simplified and left out for now, but will be stated in more depth in for instance Chapter
4. Generally we may say that our objective is to minimize the total cost of the energy sys-
tem, by charging (negative PBattery(t)) and discharging (positive PBattery(t)) the battery
optimally. It may be expressed as

min
PBattery

T∑
t=1

cBPBattery(t) + EξC(t, PBattery, ξ)

s.t. Est(t− 1) ≥ PBattery(t) ≥ Est(t− 1)− Emaxst

(3.50)

where the constant cB represents the cost of utilizing the battery and C represents the
cost of the energy production and loss in the grid. The bounds on PBattery(t) is for the
charging restricted by how much energy, Est(t − 1), is stored at the end of the last time
step t − 1, and for discharging how much energy is available left to disperse during time
step t, Est(t− 1)−Emaxst .To find the energy stored in the battery at a given time step, we
calculate

Est(t) = Est(t− 1)− PBattery(t) (3.51)

and haveEst(0) as a given value. Note, that we have left out the distinction between active
and reactive power here, and only represented power production by P .

The decision is then to solve the deterministic AC-OPF minimizing the cost of a gas
generator given the decided discharging of the battery PBattery(t) and realization of the
stochastic variables in ξ.

The problem for this case may in a very simplified manner be formulated as

min
PGas

EξcG
(
PGas(t, PBattery, ξ)

)
s.t. PLoad + Ploss(t, PBattery, ξ)−

∑
g⊂G

Pg(t) = ...

PGas(t, PBattery, ξ) | PBattery(t), ξ(t)

PGas(t, PBattery, ξ) ≥ 0

(3.52)

where g is the subset of power producing units G except the gas generator. The energy
balance constraint here is thus a simple representation of the whole AC-OPF problem, with
all its equities and inequality constraints.
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Chapter4
Mathematical Models

In this chapter, the problems sought to solve in this report are presented mathematically,
with assumptions, notation and the optimization model. Where relevant, alternative or ex-
tended formulation is also considered.

The chapter starts by presenting the fundamental AC-OPF formulation used in this
thesis, which lays the foundation for the simulations of the energy system with both en-
ergy storage and stochastic variables to be analyzed later. Thereafter a model in which the
energy storage is included follows; a discrete dynamic AC-OPF. This is then contrasted
with a formulation of a AC-OPF with uncertainty, but without the dynamic aspect, be-
fore another model is presented combining the two. Under the consideration of the last
model with both a stochastic and dynamic aspect, a couple of alternative formulations are
also considered, and a algorithm for a special case for the projection operator is developed.

Here, only the general mathematical models are presented. For a further discussion on
the specific models for the different cases and their implementation, see chapter 5 and 6
respectively.

4.1 Basic AC-Optimal Power Flow Models

The technique called an Alternating Current Optimal Power Flow (ACOPF) is used to
calculate how generators best produce their power given cost and losses due to resistance
in the transmission grid, accounting for both active and reactive power.

First we introduce a general deterministic model for AC-Optimal Power Flow.
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4.1.1 Assumptions

As standard for most Power Flow studies we assume as earlier that:

1. A balanced loading of the three phases in the power system.

2. The power system operates in steady-state.

3. Constant system frequency.

4. Power demand and production except in the slack bus is assumed known.

5. No energy storage is allowed in the system.

6. Prices is assumed to be constant for the basic model, but may be dynamic in ex-
tended formulations, for instance a reaction to the shadow prices of the power bid-
ding of the different producers.

The first assumption here, allows us to simplify the parts using π-diagrams and construct-
ing a single-line model of the system. This makes it simpler when building the mathe-
matical model of transmission lines with corresponding impedance, buses, generators and
loads. The second means that we disregard transient and dynamic behavior of the system,
for instance in the case of lost loads, generator tripping, short circuits or other contin-
gencies. This is also a pre-requisite of the third assumption, which also lets us disregard
generator drooping and frequency response here.

4.1.2 Notation

The following general notation is applied in the mathematical model:

Indicies:

i, j Bus, or node, indicies

Sets:
G Distributed generators in the network
L Distributed loads in the network
N Number of buses in the network
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Parameters:
Iline,rated Rated capacity for current in the lines.

QminG,i , Q
max
G,i Minimum and maximum reactive power capacity of the

generators.

Vmin, Vmax Minimum and maximum voltage amplitude.

δmin, δmax Minimum and maximum voltage angle.

PLi , Q
L
i Demand, or load, for active and reactive power at a given

bus i.

Yi,j , θi,j The admittance and angle for the line between bus i and

bus j in the system.

CGi Price of production with generator at bus i.

Vslack = 1p.u., δslack = 0 Voltage amplitude and angle of a bus.

Variables:
PGslack, Q

G
slack Active and reactive power production from the slack bus

generator.

Vi, δi Voltage amplitude and angle of a bus.

4.1.3 Model

A general AC-Optimal Power Flow model is presented below, minimize cost of all gener-
ator, whilst upholding energy balance and physical constraints for all buses.

min
∑
i∈G

CG · PGi

s.t. PGi − PLi =

N∑
j=1

|Vi||Vj||Yi,j| cos(δj − δi + θi,j)

QGi −QLi =
N∑
j=1

|Vi||Vj||Yi,j| sin(δj − δi + θi,j

Qmini ≤ Qi ≤ Qmaxi

Vmin ≤ Vi ≤ Vmax
|Iline,(i,j)| ≤ Iline,rated
δmin ≤ δi ≤ δmax
i, j ∈ N.

(4.1)
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In this model, the objective function is to minimize the cost of running the generators for
a given production cost. The first two equality constraints are the power flow equations
in this Alternating Current Network. It is derived from Kirchhoff’s current law, which
says that current in and out of every bus has to be equal The inequality constraints that
follow represents physical limits in the power network. The firs inequality, states the
upper and lower limits of reactive power that is possible to produce or consume at the
different distributed generators. The second inequality, are the limits on how high or low
voltage can be. This is usually within 0.95 and 1.05 p.u. - that is, within 95-105%. The
line constraints are the line current between bus i and j being derived from Ohm’s law
U = RI and here expressed by

Iline,(i,j)(t) =
Vi −Vj

Yi,j
. (4.2)

This model may be solved by many approaches, such as Lagrangian Multipliers or an
iterative Newton-Raphson method, or the Interior Point Method that we use here.

4.2 Dynamic AC-Optimal Power Flow with Energy Stor-
age

When one is to consider energy storage in power system optimization, such as letting the
models incorporate batteries or pump-hydro power plants, the mathematical formulation
takes on a dynamic character. This is an effect of the energy storage equations needed to be
introduced, as seen in 3.43. For this thesis, the time increments will almost always being
1 hour, and thus left out. Moreover, one needs to constraint the minimum and maximum
power of the battery as seen in 3.44, and possibly also it upper and lower charging and
discharging values.

Such equations will be introduced in the following dynamic models, to connect the
AC-OPF solution of each time step though the storage dynamics.

In this section a model is formulated which includes the possibility to store some en-
ergy in for instance a battery or a hydro power dam, and hence the model undertakes a
dynamic character.

4.2.1 Assumptions

First we make some new assumptions.
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1. The power demand and production except in the slack bus is assumed known by its
stochastic distribution functions.

2. Energy storage is allowed in the system, but only supplies active power.

3. Prices is assumed to be constant for a certain time period for this model, and are not
dependent on the dynamics of the model.

4.2.2 Notation

We now update the general notation from the previous model to having the possibility to
be different for different time periods, and include the following new notation:

New indicies:

t Time instance

New sets:

T Time intervals

New parameters:

PmaxCh,i , P
max
Dch,i

Maximum active charging and discharging power of a certain
energy storage at bus i.

EmaxST,i Rated energy capacity of the energy storage at bus i.

ηCh,i, ηDch,i
Charging and discharging efficiency of the energy storage at bus
i.

∆t Time step increment.

New variables:

PCh,i(t), PDch,i(t)
Active power charging and discharging from the energy storage
at bus i for time instance t.

EST,i(t)
Energy stored at time step t, which is given by the charge and
discharge during t.

4.2.3 Model

Incorporating these new assumptions and variables into the model, we have:
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min
T∑
t=1

∑
i∈G

CGi (t) · PGi (t) ·∆t

s.t. PG,i(t)− PL,i(t) + PDch,i(t)− PCh,i(t) = ...

N∑
j=1

|Vi(t)||Vj(t)||Yi,j(t)| cos(δj(t)− δi(t) + θi,j(t)

QG,i(t)−QL,i(t) =

N∑
j=1

|Vi(t)||Vj(t)||Yi,j(t)| sin(δj(t)− δi(t) + θi,j(t)

QminG,i ≤ QG,i(t) ≤ QmaxG,i

Vmin ≤ Vi(t) ≤ Vmax
|Iline,(i,j)(t)| ≤ Iline,rated
0 ≤ PCh(t) ≤ PmaxCh

0 ≤ PDch(t) ≤ PmaxDch

EST (t) = EST (t− 1) + ∆t · ηchrg,i · PCh,i(t)−∆t · PDch,i(t)
ηdischrg,i

∀t ∈ [0, t, 2t, ..., T ] and i, j ∈ N.

(4.3)

In this model, the objective function is to minimize the cost of running the generators, for
a given production cost and over all time periods.

4.3 Stochastic AC-Optimal Power Flow

When introducing uncertainty to the AC-OPF, some of the variables in the system will
be represented by stochastic variables. Information on how these variables might be in-
cluded, and thus a general formulation of the problem, might be found in section 3.4.4 and
in model 3.46.

4.3.1 Model

With power production and loads given by some stochastic realization, the problem may be
formulated in the same manner as in the deterministic case, only where the power values
are random and the method tries to minimize the expected value of the objection func-
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tion. In the model below, the random values are denoted as depending on the stochastic
realization ξ.

min
PB ,PG

EC
(
PG(t, ξ) | PB(t)

)

s.t. Pi(t, ξ) =

N∑
j=1

|Vi(t)||Vj(t)||Yi,j(t)| cos
(
δj(t)− δi(t) + θi,j(t)

)
Qi(t, ξ) =

N∑
j=1

|Vi(t)||Vj(t)||Yi,j(t)| sin
(
δj(t)− δi(t) + θi,j(t)

)

Pmini ≤ Pi ≤ Pmaxi

Qmini ≤ Qi ≤ Qmaxi

Vmin ≤ Vi ≤ Vmax
δmin ≤ δi ≤ δmax
|Iline,(i,j)| ≤ Iline,rated

∀i ∈ [1, .., N ].

(4.4)

4.4 Stochastic Multistage AC-Optimal Power Flow

In this section seeks to provide a somewhat through mathematical framework of the prob-
lem at the heart of the thesis; solving an AC-OPF for several time periods under the in-
fluence of stochastic variables. An introduction and general formulation to this type of
problem might be found in 3.4.5.

Note that a very important assumption for this model is that after deciding how much
power to charge or discharge at the start of the period before the realized wind energy is
known, this decision cannot be altered. Thus, PBattery(t) is fixed during the time step,
in which the wind generation is realized and gas generator supplies the remanding energy
demanded. Hence, it is not possible to suddenly decide to charge more if the wind power
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generated is realized to be in the upper range of its possible values. The power balance for
each time step is assured by the gas generator, and not to be influenced by sudden change
in charging policy during the time step.

4.4.1 Model

The decision variable for each singe time step is to determine how much power the dis-
patchable gas generator has to supply in order to make up for the remaining demand are
are not met by the other power sources as well as covering all physical losses Ploss of
power in the system. We assume that using the generator cG is much more costly than
the other power sources. We therefore seek how to optimally charge the battery so that it
charges when energy is in abundance, and discharges when it is in shortage.

A model for this may be formulated as follows:

min
PB ,PG

E
T∑
t=1

C
(
PG(t, ξ) | PB(t)

)

s.t. Pi(t) =

N∑
j=1

|Vi(t)||Vj(t)||Yi,j(t)| cos
(
δj(t)− δi(t) + θi,j(t)

)
Qi(t) =

N∑
j=1

|Vi(t)||Vj(t)||Yi,j(t)| sin
(
δj(t)− δi(t) + θi,j(t)

)

Pmini ≤ Pi ≤ Pmaxi

Qmini ≤ Qi ≤ Qmaxi

Vmin ≤ Vi ≤ Vmax
δmin ≤ δi ≤ δmax
|Iline,(i,j)| ≤ Iline,rated

EST (t− 1)− EmaxST,2 ≤ PB(t) ≤ EST (t− 1)

EST (t) = EST (t− 1)− PB(t)

∀t ∈ [1, 2, ..., T ] and ∀i ∈ [1, .., N ].

(4.5)
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4.4.2 Reformulation of the decision variables to SOC

Where the implementation of the energy storage constrains in the S-MS-AC-OPF formu-
lation from 4.5 is not as simply bounded as might be thought at first, another approach
would be to reformulate the model in terms of SOC. That means, in stead of letting the
decision parameter be how much to charge at a given time step, one lets it be the decision
of what state of charge, or stored energy, one is to have at each time step.

In effect this becomes the same decision, as the charging or discharging of the battery
for each time step is the difference of the energy levels of the battery at the current and the
previous time steps. That is

PBattery(t) = EmaxST ∗
(
SOC(t− 1)− SOC(t)

)
= EST (t− 1)− EST (t) (4.6)

where
SOC(t) =

EST (t)

EmaxST

. (4.7)

The benefit of this formulation is that the constrains on the decision variable becomes very
simple, it reduces to only upper and lower bounds of no energy storage and maximum
energy storage - the battery capacityEmaxST . This it should be very easy for the SQG solver
to project a step that is out of the feasible area, down onto the set X of feasible values for
x as described in equations 3.35 and 3.36.

We may express the reformulated version of the stochastic, multistage AC-OPF opti-
mization as

min
SOC

T∑
t=1

Eξ
(

min
PG

cG
(
PG(t, PB , ξ)

))
s.t. PL + Ploss(t, PB , ξ)−

(
SOC(t)− SOC(t− 1)

)
− PG(t, ξ)

= PG(t) | PB(t), ξ(t)

0 ≤ SOC(t) ≤ SOCmax

(4.8)

where the aim is to find the power to compensate with using the generators PG, given
the decided battery policy and all the other variables and realizations for that time step.

The equality in the formulation 4.8 above is a simple representation of the AC-OPF
problem constraints. The reformulated, fully expanded version of the stochastic, multi-
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stage AC-OPF model becomes

min
EST ,PG

E
T∑
t=1

C
(
PG(t, ξ) | EST (t), EST (t− 1), ξ(t)

)

s.t. Pi(t) =

N∑
j=1

|Vi(t)||Vj(t)||Yi,j(t)| cos
(
δj(t)− δi(t) + θi,j(t)

)
Qi(t) =

N∑
j=1

|Vi(t)||Vj(t)||Yi,j(t)| sin
(
δj(t)− δi(t) + θi,j(t)

)

Pmini ≤ Pi ≤ Pmaxi

Qmini ≤ Qi ≤ Qmaxi

Vmin ≤ Vi ≤ Vmax
δmin ≤ δi ≤ δmax
|Iline,(i,j)| ≤ Iline,rated

PB(t) = EST (t− 1)− EST (t)

0 ≤ EST (t) ≤ EmaxST

∀t ∈ [1, 2, ..., T ] and ∀i ∈ [1, .., N ].

(4.9)

The SQG solver here starts by deciding the states for the battery for all the time steps,
before the resulting charging is calculated given a initial state of charge and passed to the
AC-OPF simulation. Again the objective results are added up, and sent back to the SQG
solver for further iterations.
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4.4.3 Reformulation of the decision variables to charging policy rules

We now reformulate the decision variables to be some type of charging policy.

4.4.3.1 Charging rules based on inherited state of energy

One approach is again to use Energy level at the time steps as the focus of the decisions,
whereas the second is to use the energy to charge.

4.4.3.2 Using energy stored as the parameter

We define the following variables:
Variables:
x0,1...x0,n Decided state of charge to go to

x1,1...x1,n−1

Threshold value for deciding to go to a corresponding state,
given the energy level at the start of the period.

zt−1 Energy level at the end of last period

n Level of discretization

NBuses The number of buses

which have the following relations

x0,1 State to go to if 0 ≤ zt−1 < x1,1

...

x0,k State to go to if x1,k−1 ≤ zt−1 < x1,k

...

x0,n State to go to if x1,n−1 ≤ zt−1 ≤ 1

(4.10)

as well as

0 ≤ xi,j ≤ 1 ∀i = 1, j = 1, ..., n and i = 2, j = 1, ..., n− 1

x0,j ≤ x0,j−1 ∀i = 1, j = 2, ..., n

x1,j ≤ x1,j+1 ∀i = 1, j = 1, ..., n− 2

(4.11)

Moreover, the charging will then be decided as the difference between the x0,l decided
on for that time step given the zt−1. That is

PB = Emaxst · (x0,l − zt−1) (4.12)
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and the new state of charge at the end of the time step will be given by the chosen policy.
Thus zt = x0,l, where subscript l denotes the chosen policy for that times step.

The model then becomes:

min
x,PG

E
T∑
t=1

C
(
PG(t, ξ) | PB(t, x)

)

s.t. Pi(t) =

NBuses∑
j=1

|Vi(t)||Vj(t)||Yi,j(t)| cos
(
δj(t)− δi(t) + θi,j(t)

)
Qi(t) =

NBuses∑
j=1

|Vi(t)||Vj(t)||Yi,j(t)| sin
(
δj(t)− δi(t) + θi,j(t)

)

Pmini ≤ Pi ≤ Pmaxi

Qmini ≤ Qi ≤ Qmaxi

Vmin ≤ Vi ≤ Vmax
δmin ≤ δi ≤ δmax
|Iline,(i,j)| ≤ Iline,rated

∀t ∈ [1, 2, ..., T ] and ∀i ∈ [1, .., NBuses].

(4.13)

To implement this in the SQG solver, one needs to represent the inequalities in simple
matrix form, such as
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−1 1 · · · 0 0 0 0 · · · 0 0
...

...
...

...
...

...
...

...
...

...
0 0 · · · −1 1 0 0 · · · 0 0

0 0 · · · 0 0 1 −1 · · · 0 0
...

...
...

...
...

...
...

...
...

...
0 0 · · · 0 0 0 0 · · · 1 −1


·



x0,1

x0,2

...
x0,n−1

x0,n

x1,1

x1,2

...
x0,n−2

x0,n−1



≤


0
...
0

 (4.14)

4.4.3.3 Projection of policy decision variables onto its feasible set

For the SQG process, we often want the decision variables to be constrained in a very
simple manner, as discussed in 3.3.4. The reason we are so concerned about the form
of the constraints of the decision variables, x, that the SQG method is to optimize with
respect to, has to do with the projection onto the feasible solution space. When one takes
a step that is outside the feasible space of X , the algorithm should project the point onto
the feasible region given by the constraints on x. In general terms, that means to find the
point on the surface of the feasible region that is shortest distance from end point of step
s, xs+1. Thus, one straight forward way to find this would be to solve a quadratic program
where on minimizes the distance squared:

min
x

(xs+1 − x)2

s.t. Ax ≤ b

0 ≤ x ≤ 1

(4.15)

However, if the feasible region is complex, finding projection point that gives the short-
est distance might take a little time and slow down the overall solution time. Thus it is of
interest to see if one have a more explicit way to project an estimated point from the gra-
dient step onto the feasible set.

In our case, it should be possible to do so very simply. Consider a point defined by
a vector v consisting of n different numbers specifying its coordinates in the Rn solution
space. For it to be a feasible solution it should be constructed in such a manner that
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v1 ≥ v2 ≥ v3 ≥ ... ≥ vn, as it is for variables x0,j above. Then, to find the shortest way
onto the hyper-plane surface in dimension Rn given by

v1 ≥ v2

v2 ≥ v3

...

vn−1 ≥ vn

(4.16)

to the point specified by v, we may start by considering a case in which only one of the
constraints 4.16 are breached. In other terms, where some coordinate in the lth dimension,
vl, is greater than vl−1, yet all vl+1, ..., vn are smaller or equal to vl−1. Then one would
project the point v onto the surface of Rn−1Rn that is given by vl ≤ vl−1. This is done
by finding the first constraint it violates, that is the first number vm that vl is greater than.
Here, being the ”first” number refers to the first number of a coordinate of v when going
though the coordinates vi from i = 1 to i = n. Once the first number that vl violates
is found, the point on the surface of minimum distance to v is given by the point in the
middle of vi = vm∀i ∈ m, ..., l and vi = vl∀i ∈ m, ..., l where the rest of v is unchanged.

Now, consider that the point of v violates the two of the constraints 4.16, as described
above. That is, where all other coordinates are less than the previous ones except for two.
Call these vl1 and vl2, where vl1 is the first of the two. We then project this point onto
the surface of Rn−2Rn given by the constraints corresponding to the two numbers who
are outside bounds. This time, it depends on which of the two numbers that violates the
constraints are the greatest. If the second of those two, vl2, is the greatest, the smallest
distance will as before be found as the half-way point in the feasible region that lies be-
tween vi = vm2∀i ∈ m2, ..., l2 and vi = vl2∀i ∈ m2, ..., l2, where vm2 is the first number
vl2 is greater than. However, if the first of the two violating points, vl1, is greater, then
point in the feasible region with shortest distance to v, is given as follows. The value of
coordinates m1, ..., l1 are equal to (vm1 + vl1)/2 where vm1 is the first number that vl1
is greater than, and the values of coordinates m2, ..., l2 are equal to (vm2 + vl2)/2 where
vm2 is the first number that vl2 is greater than after the values of coordinates m1, ..., l1 are
changed.

Similarly, if a point v has k coordinates that all are bigger than the constraint imposed
by any of the former coordinates, they are projected with shortest distance onto the sur-
face in Rn−kRn defined by their corresponding inequalities, by the logic from the section
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above. Any violating coordinate of the point v that comes before the greatest number of
vl,greatest will be affected when all points between vm,greatest and vl,greatest are changed
to the half-way point. Any points following vl,secondgreatest will be affected when it finds
half-way point between it and vm,secondgreatest. Moreover, if any of the coordinates of
v happens to be outside some upper or lower bound specified for all vi, then a simple
projection onto those bounds could be done either before the projection process onto the
constraints 4.16 or after.

Thus, the projection of policy x of the model defined by 4.13, may use the projection
method described above. However, to make things simpler, we let the state to go to for
the different thresholds only be constrained by upper and lower bounds. Even though it
would be relative easy making the values x0,j decreasing as j goes from i to n, a relaxed
approach may make more sense, allowing the states of the thresholds to be more or less
than each other. This because it might not always be so that you should charge the most
when you are on lowest energy. The reason you might be low on energy might be because
it is a time where energy from other sources than the dis-patchable generator might be
low and it would be costly then to charge a lot. Instead, it might be wiser to charge a
little, or stay in the same state until the shortage passes. Then the constraints of ?? instead
becomes:

0 ≤ xi,j ≤ 1 ∀i = 0, j = 1, ..., n and i = 1, j = 1, ..., n− 1

x1,j ≤ x1,j+1 ∀i = 1, j = 1, ..., n− 2
(4.17)

Yet, it should also be noted that for the policy decision model treated here, any given
policy will give a deterministic path of state of charges between the different time steps
given an initial energy state. This because the inherited energy z is not affected by any
of the stochastic realizations during the process, since the charging of the battery is set at
the start of a time step and only generation from the generator is allowed to change during
the time step in the current formulation. However, this could be changed, for instance by
making the decision variable of the SQG iterations should be the power produced by the
despicable generator.

4.4.3.4 Charging rules based on state of energy and stochastic realizations of the
last step

Another approach would be to formulate the policy decisions in a manner so that the
thresholds depend on the random variables realized in the previous step. Yet it should also
reflect the state of energy of the battery. This could be done in a combinatory manner
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eg. by defining a two-dimensional matrix which holds the desired state to go to given a
combination of current energy state and stochastic realizations. This would in many ways
assimilate the concepts of transition matrix and cost-to-go matrix of the SDP approach.

Another, more straight forward manner to to this, would be to let the value of z rep-
resent the summation of some aggregate of the stochastic realization and the inherited
energy from last step. More explicitly, we add the generated power of last step PGen of
the dispatchable generator, and add the energy inherited from last step. Formally this is:

z = PGen(t− 1)− Est(t− 1) (4.18)

Since the realization of the stochastic variables, either it is energy production or con-
sumption or both, is more or less directly reflected in the energy produced by the dispatch-
able generator that time step. The only difference by taking a sum of the realized variables
and the resulting dispatchable energy generation is the losses of the gird and the energy
discharged or charged by the battery. The first is only handy to have as part of the z value,
since the losses indirectly encodes the distribution of the stochastic sources and consumers
in the grid and adjust it according to the impact their geographical - or topological - place-
ment in the grid has on the total power balance.

The energy Est(t − 1) of the end of time step t − 1, says something about the abil-
ity to charge or discharge in this time step t, and is one reason for why it makes sense
to include it in the summation. The summation between the two is there since a higher
generated power PGen(t − 1) should indicate that it is desirable to discharge the battery,
and a higher Est(t − 1) indicates that the state to go to should be lower. Moreover, by
subtracting the energy at the end of the last time step from the energy produced by PGen,
we effectively eliminate the effect the charging or discharging done in time step t− 1 has
on the energy produced by PGen. To see this, consider a battery had a energy level of 50

at the end of time step t−2, discharging either 10 or 20 resulting in a energy level of 40 or
30 respectively. Then, assuming losses are not present, say the energy produced by PGen
with these discharges was 90 and 80, respectively, where the lower energy production of
the second results form the higher discharge in this case. Then the value of z in both cases
is z = 90− 40 = 80− 30 = 50. This then satisfies the second concern mentioned in the
paragraph above, making z directly represent an aggregated value of the realization of the
stochastic variables, favorably adjusted for the effect of their spacial distribution has on
the grid.

The model from 4.13 remains the same, however the definition of the variables are
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somewhat altered.

New variable definitions:

x1,1...x1,n−1

Threshold value for deciding to go to a corresponding state,
given the energy level at the start of the period and energy
production of last time step.

zt−1

An aggregate measure of the realizations of the stochastic
variables in last time step.

The relation between the threshold values and policy decisions expressed in 4.10 stays
the same, and we also here the relaxed constraints of 4.17. However, the bounds on the
threshold values x1,j needs to be changed to

0 ≤ x1,j ≤ PmaxGen i = 1, j = 1, ..., n− 1

x1,j ≤ x1,j+1 ∀i = 1, j = 1, ..., n− 2
(4.19)

and the the discharge of the battery must be updated to

PB = Emaxst · (x0,i)− Est(t− 1) (4.20)

where x0,i is the decided level of charge to go to for times step t dependent of the z of that
time step.
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Chapter5
Methodology and Cases

Here, an overview of the methodology and test cases is presented, to aid the further dis-
cussion of the models in chapter 4, implementation of these in chapter 6 and their results
in chapter 7.

5.1 Cases

To show how relevant the SQG method might be in solving the AC-OPF for several stages
and under uncertainty, the implemented models were tested with two cases. The first of
these was specifically constructed to be as simple as possible whilst still maintaining the
key aspects of interest. This was then chosen to be a fully connected four bus system with
only one source of uncertainty. The second case was intended to be a little more com-
plex and with several sources of uncertainty, to fully investigate the capability of the SQG
method. For this case a standard IEEE case was chosen and modified to obtain the desired
properties.

Specific data for the cases is found in appendix B.2.

5.1.1 4 bus power system

For the implementation of the AC-Optimal Power Flow (ACOPF) model described in 4.1,
we need a power grid network on which to model the energy system. This should be a sys-
tem in which all physical properties, er resistance and impedance of lines, voltage levels
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and maximum current of lines, are probable and provides realistic results when solved.

In the 4 bus case - with four network nodes - which we consider first, we try to keep
the problem as simple as possible. In that manner, we for instance let both the possible
cost of wind generation, but more importantly for our formulation, the battery cost to be
null. Note here, that neither the wind or the battery generates or consumes reactive power
QL,4(t). Thus the generator has only to supply reactive power QG,1(t) according to the
demanded reactive power and the phase changes across the network cables during the spe-
cific solution. The wind power generated is what is under stochastic influence in this case,
and is given as by a uniform distribution with a specific range around a given mean wind
energy for the time step.

The author constructed a trial case of a 4 bus system as presented in figure 5.1 below,
to be used as an example case for initial implementation and testing.
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Figure 5.1: Illustration of 4 bus case.

Each power bus, or busbar, is represented by a node, and all buses are connected. Each
bus is also connected to a power generator, consumer or storage.

• Bus 1 is connected to a generator (e.g. coal, gas), and is the slack bus in the opera-
tion. That means it will produce the required amount of power to meet the demanded
load, given the wind energy production and charging or discharging of the battery.

• Bus 2 is connected to a battery park, that stores energy. It may charge or discharge
its energy from or to the power grid. How much to charge or discharge is the policy
decision to be made in the SQG-solved problem.

• Bus 3 is connected to a wind park. It produces wind energy, but the exact amount is
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uncertain. It is as of now considered to be given as a random number in a uniform
distribution.

• Bus 4 is connected to households and industry consumers, which represents the
power demand in the system. It is considered known and not stochastic in this
specific case.

The data for the specified case can be found in the tables ??, B.2 and B.3 in appendix
B.1.1.

5.1.2 9 bus power system

The benefit of the SQG method was also to be tested more thoroughly by implementing
it for a more complex case with an increased amount of stages. Setting up such a system,
it was also thought to be desired in a manner that also is comparable to other researchers
modelling results, we use data provided from the IEEE nine-bus system, as described in
for instance Ariyo (2013) and presented in the figure 5.2 from the paper. However, we
adjust the system so that its loads are stochastic, and it also has variable generation in PV
and wind power.

In the 9 bus case, where the network has 9 nodes, we let three of the buses be trans-
formers like in the original case, three of them be power generating buses, two be load
buses ant the last be the energy storage EST that may discharge (or charge) power to the
grid with PBattery . Of the generating buses, one is a slack bus with a dis-patchable gas
generator PGas that will compensate for what ever energy demanded that is not met by the
production at any given instance. The two others will be a wind generator park, PWind

as before, and a PV plant PPV , which both will have stochastic production. As for the
loads, we let one represent households PHousehold and the other businesses or industry
PBusiness, both with stochastic demand. In this case take note that the cost function for
the generator here is a quadratic function cG = a ∗P 2

Gas + b ∗PGas + c with no minimum
point in the upper right quadrant, and hence the optimal solution should try to reduce the
peak generation of the gas generator, by filling some of the throughs. The question is again
how much the and let battery shall charge and discharge during the simulation horizon:
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Figure 5.2: Modified IEEE nine-bus system.

The data for the 9 bus case can be found in the tables B.4 and B.5 in appendix section
B.1.2.

For this case the mean wind and PV generation follows the curves presented in figure
5.4, and the mean power load from the Business and Household is presented in 5.4. For
simplicity, the values they may realize to for each time step are all assumed to have a
uniform distribution around their mean for that time step. The range of these distribution
has for this case been chosen as±25% for wind,±10% for PV whenever the mean is more
than null, ±5% Business and ±10% for Household.
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Figure 5.3: Mean Production Profiles for Stochastic Generation

Figure 5.4: Mean Demand Profiles for Stochastic Loads

Note here, that neither the wind or the battery generates or consumes reactive power
QL,4(t). Thus the generator has only to supply reactive power QG,1(t) according to the
demanded reactive power and the phase changes across the network cables during the spe-
cific solution. The wind power generated is what is under stochastic influence in this case,
and is given as by a uniform distribution with a specific range around a given mean wind
energy for the time step.
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5.2 Methodology

In the following section the solution methods will be given an overview, discussing some
details of their methodology and presenting figures of their architecture or illustrative
flowcharts.

5.2.1 Overview of solution methods

Matlab R© was used to implement the theoretical concept and test the methods proposed in
chapter 3 to tackle the problems described in chapter 2.

The basic AC-Optimal Power Flow model were solved using the fmincon solver of
the Optimization Toolbox that is readily available in Matlab, which uses uses the interior
point method. Both the SDP model and the SQG method utilizes this ACOPF model in
their solution approaches.

For the stochastic approaches, the SDP model was developed from scratch in Matlab R©,
yet inspired by Erdal (2017) and Grillo et al. (2016). The SQG method was developed
using the SQG solver of professor Alexei A. Gaivoronski (2016), with the specific case
and framework built on top of this as required for the full model to ran.

5.2.2 AC-OPF solution methods

Where the non-linear AC-OPF might be hard to solve, there are some options in lineariz-
ing the AC-OPF problem, that is using the DC-power flow formulation and a linearity
cost function. The Power Flow version on this model, where one focuses on the phys-
ical solution of the power flow in the system, is often solved with an iterative Newton-
Raphson method, Lagrangian Multipliers using a gradient solution method, or other meth-
ods that may deal with a non-linear, non-convex problem of substantial size, see for in-
stance Kirschenm (2011) for an informal presentation of the topic.

This thesis on the other hand, uses the full AC-OPF model with non-linearity and non-
convexity and solvers it with the Interior-point method. In Castillo and O’Neill (2013) we
find a study which presents a comparison of the computational performance of different
non-linear optimization methods that are commonly applied to the ACOPF problem. Their
study finds that the interior-point method is one of the methods that provide relatively fast
and reliable solutions. Hence, we may chose to use Matlab’s built-in optimization solver
fmincon when solving the ACOPF problem, which uses the interior point method. The
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implementation of a faster interior point solver is possible, yet has not been prioritized in
this thesis.

Figure 5.5: AC-OPF architectural flowchart

5.2.3 Stochastic Quasi Gradient Method

The SQG approach as discussed in 3.3.4 uses a privately implemented solver developed
by Alexei Gaivoronski (2016) and for instance utilized in Gaivoronski (2005) and Becker
and Gaivoronski (2014). An overview of the SQG approach, as presented in his 2005 pa-
per, is displayed below in figure 5.6. As can be seen from the figure, both the optimized
model, user interface and underlying AC-OPF simulation model is also developed to be
run together with the SQG optimization engine.

Figure 5.6: Overview of Stochastic Quasi-Gradient Architecture

Key question of the SQG method is how to retrieve the stochastic quasi-gradient, which
is used to determine in which direction the iteration algorithm is to make its next step. A
more detailed overview of how this process works is found in figure 6.2, divided into three
main parts; initialization, the SQG iterations and the post-analysis. It may also be observed
that for the SQG iteration, the AC-OPF is solved for all the time steps, before extracting
the stochastic gradient.
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Figure 5.7: Iteration process of SQG algorithm for ACOPF

In order to find the gradient for the problem at each iteration, this thesis applies two
different methods. One of these is the use of finite differences, explained in more detail
in section 5.2.3.1. The other is to calculate the gradient in from some analytic expression.
This secound approach is presented in 5.2.3.2.

The reason for the interest in different approaches in calculating the gradient is not
only to compare different solutions and see if they come up with the same answer. It is
also because a directly calculated gradient will speed up the solution process a great deal.
From a conceptual perspective, the finite difference approach imposes a small perturbation
of the system, and observes the gradient from the values this perturbation induces. To do
this, it runs the system anew from the point of the latest gradient step, where only one
decision variable is altered and the rest NSQG decision variables are kept unchanged.
Since the AC-OPF model takes a little time to calculate the resulting power flow even
with only small deviations, the finite difference calculations take about NSQG + 1 times
as much time.

5.2.3.1 Finite Differences Approximation

One much used and relative general way of approximating the Stochastic Quasi-Gradient
ξs is by the use of finite differences. This method seeks to find the direction of the gradient
at a given point, by noting the difference of the value function when changing the decision
variables sightly and checking this one by one.
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Formally, the finite differences approximation of the subgradient F vx at a given point
xs during SQG iteration s for non-convex, differentiable functions may be expressed as

F vx (xs) ∼
n∑
j=1

F v(xs + ∆se
j)− F v(xs)

∆s
ej (5.1)

where ej is the unit vector of the j-th axis, and ∆s > 0 is the step size of the perturbations
away from xs of the finite differences calculation. If the function is non-differentiable,
the finite differences approximation may yield convergence, and a modified, somewhat
randomized, version may be used where

F vx (xs) ∼ ξv(s) =

n∑
j=1

F v(x̄s + ∆se
j)− F v(x̄s)

∆s
ej (5.2)

and the subgradient F vx (xs) is approximated using x̄s = (xs1 + hs1 + ... + xsj + hsj +

...+ xsn + hsn) and hsj are small, independent, random values uniformly distributed in the
interval

[
− ∆s

2 ,
∆s

2

]
. The Stochastic Quasi-Gradient for iteration s is then given as

ξs = {ξ1(s), ξ2(s), ..., ξj(s), ..., ξn(s)} (5.3)

5.2.3.2 Retrieving gradient during AC-OPF simulation

Another possibility when running an SQG-solution algorithm is to use some internal in-
formation from the simulation on the gradient of the sub-problem to estimate the step
direction for the SQG algorithm.

The challenge when estimating the gradient for the battery, is that it would be beneficial
to discharge at all the time steps considered in isolation since it reduces the generator cost
due to the strictly increasing cost function in the feasible space for Pfor the 9 bus case.
Yet, for some time steps to discharge, other need to charge so that energy is available. How
to calculate the gradient then?

Firstly we need to have a notion for how the individual time steps can be improved
by changing the discharged or charged energy from or to the battery. However it may be
observed that one more unit of energy discharged by the battery at a time step, is equivalent
to reducing the total demand of the loads in the power system by one unit and thus also the
necessary power for compensation, given negligible power loss in the system, as expressed
in equation 5.5 below. Hence, the gradient of the battery discharging is directly linked to
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the gradient of the gas generator. Using some of the general notation on the recourse
problem from 3.52 may be also be expressed formally as

dQ(t, PBattery, ξ)

dPBattery
=
dCG

(
PGas(t, PBattery, ξ)

)
dPBattery

=
dCG

(
PGas(t, PBattery, ξ)

)
dPGas

· dPGas
dPBattery

(5.4)

and since
dPGas

dPBattery
= −1 | PLoss ≈ 0 (5.5)

we get

dQ(t, PBattery, ξ)

dPBattery
=
dCG

(
PGas(t, PBattery, ξ)

)
dPGas

=− C ′G
(
PGas(t, PBattery, ξ)

)
| t, PBattery, ξ.

(5.6)

Not only may we assume that the losses in these simple systems are not too great, but
they would also generally scale approximately linearly with greater power in the system.
We may therefor take the gradient of the objective function with respect to PGas and the
constraints of the AC-OPF to be a good indication for how much there would be to gain
from discharging the battery one more unit at an isolated time step.

It may also be noted that the derivation in equations 5.4-5.6 above, and indeed for all
the implemented cases in this thesis, the efficiency of the battery charging and discharging
is assumed to be the same, and equal to 1 for simplicity. If they are not, one has to adjust
the equations for the deficiencies, which might also for instance be dependent of the power
- that is rate of energy transfer - of the charge or discharge.

With regards to the implementation of these models, it is of interest to note that the
Matlab R©function fmincon used to solve the AC-OPF second-stage problems reaily re-
turns the gradient of its decision parameters. Hence it is very easy to extract the informa-
tion on C ′G

(
PGas(t, PBattery during the iterations without any loss in computational time.

Moreover, the statement in 5.8 may also be assessed and confirmed through this function-
ality of the fmincon solver, by letting PBattery be able to change minusculely. When
doing so, one may observe that the gradient returned is almost identical for PBattery and
PGas.

Despite having a good indication on how the objective function of the separate time
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steps might be improved by alternating the battery charging policy, this does not necessar-
ily translate directly into gradients for the first stage decision parameters. As noted in the
introduction paragraph of this section, there is the problem that the gradient for all time
steps indicate that it is beneficial to charge more, if the cost function is strictly increasing.
Hence, all gradients will tell the solver to try increase their values. However - and this
also holds true for whatever form the cost function has - to be able to discharge the battery
at one point, it will have to be charged at an earlier point. Thus, when reaching the max-
imum energy level, the energy stored for a certain time step cannot be increased further
to improve the function value. Instead, the energy levels of previous time steps has to be
reduced.

In other word, since the battery discharging for time step t is given by 4.6, or in short
as

PB,9(t) = EST (t− 1)− EST (t), (5.7)

it is equivalent increase EST (t− 1) as to decrease EST (t) in order to achieve a change in
PB,9(t). More formally,

dQ(t, PBattery, ξ)

dPBattery
=

dQ(t, PBattery, ξ)

d
(
EST (t− 1)− EST (t)

)
=− C ′G

(
PGas(t, PBattery, ξ)

)
| t, EST (t), ξ

= C ′G
(
PGas(t, PBattery, ξ)

)
| t, EST (t− 1), ξ,

(5.8)

or in short and with respect to the decision on how much energy to store in a certain time
step,

dQ(t, PBattery, ξ)

dEST
= C ′G

(
PGas(t, PBattery, ξ)

)
| t, EST (t− 1), ξ. (5.9)

In those cases that the cost function is a second order polynomial centered around a
minimum point at some preferred point of operation (eg. due to efficiency-loss in the
generator when deviating from this point), the gradient calculated as in 5.9 will be able
to produce negative values, indicating that the battery should charge up. Yet, when the
cost function is strictly increasing, it will not be able to produce a negative gradient for
Q(t, PBattery, ξ) by utilizingC ′G

(
PGas(t, PBattery, ξ)

)
directly. Indeed, wee need to ma-

nipulate the gradient of C ′G
(
PGas)

)
somehow. More specifically, it is needed to shift the

gradient values in such a manner that the need for discharging for those time steps at which
the gas generator has to produce a lot of energy, in one way manages to push down the
need for other time steps to discharge at all and those with least production start to charge
instead to facilitate discharging where the gradient is the greatest.
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To achieve this, it would for instance be possible to shift the gradient values with re-
spect to stored energy at each time step so that they are centered around the mean of the
gradients of the related AC-OPF solutions. However, since the cost function is a polyno-
mial of second degree, the use of the regular mean would produce artificially high gradient
values with respect to energy storage. Thus, it is needed to shift the values with regards to
a weighted mean of second degree, such as the Root-Mean-Squared value of the gradient
number series.

For a set of n numbers, x1, x2, ... , xn, we calculate the Root Mean Square as

RMSx,n =

√
1

n
(x1 + x2 + ...+ xn), (5.10)

and the gradient with respect to energy storage at a specific time step may be approximated
by

dQ(t, PBattery, ξ)

dEST (t)
) = C ′G

(
PGas(t, PBattery, ξ)

)
−RMSC′

G(PGas),n (5.11)

The use of this approach to calculate the gradient with respect to the energy stored at
a time step has been implemented and provides sensible results for the 9 bus case for 24
time periods.

5.2.4 Stochastic Dynamic Programming

To be able to compare the SQG method with an exact method for the same case, the
simplest case was also solved with a Stochastic Dynamic Programming approach. An
overview of how this process works is displayed in figure 5.8, where a backward recur-
sion method is applied. The model was developed from scratch in Matlab R©, and will be
discussed further in 6.4.1.
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Figure 5.8: Illustration of SDP method for the AC-OPF.
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Chapter6
Implementation

This chapter lays forth how the method, models and cases from previous chapters were im-
plemented. Everything this thesis presents is implemented in the programming language
Matlab R©.

The first hurdle for the thesis work was in developing the underlying AC-OPF simula-
tion model. For the SQG method to be of interest, it is necessary that the underlying model
does not take too much time to run, as it is to be simulated a great number of times during
the optimization process. Both standard AC-OPF models and dynamic models were con-
sidered, starting with the former as it requires simpler implementation.

Thereafter, the focus was to develop and implement the solution of a stochastic, mul-
tistage, AC-OPF model using the SQG method. In doing so, it was necessary to develop
both the simulation model further to be fed to the SQG solver, though another layer of
code for the optimization of the simulation of all the time steps.

Moreover, the simplest case was also implemented using a simulation based SDP with
discretization, to compare it with the SQG solution.

6.1 AC-Optimal Power Flow

A significant portion of the work in the initial phase were used to implement the basic AC-
OPF model, find and tune a good solution method for it. Here, the fmincon solver of
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Matlab R© was used, but faster solvers should be commercially available. For the fmincon
solver, there are several options available, not only for which optimization technique it is
to use, but also on what parameter values the chosen algorithms should have. The Interior
Point method was chosen, since research like Castillo and O’Neill (2013) and ?? has indi-
cated that this method works particularly well for the AC-OPF problem.

Also some effort was put into tuning this the Interior Point algorithm, but often the
default values of the solver generated the best results. Furthermore, a few other standard
global optimization solvers were implemented and tested, but did not show immediate
promise. Examples here are Global Search and Particle Swarm from the Global Opti-

mization Toolbox if Matlab R©. Indeed, the attempt of the other solvers to solve the same
problem took longer time. As neither the closer manipulation of the Interior Point Method,
nor the implementation of other global solvers, gave any benefits in terms of quickened
solution time, they are not treated more in depth here.

6.1.1 Algorithm for solving the basic AC-OPF problem

Algorithm 1 shows how the AC-OPF solution is found.

Algorithm 1 Solving the basic AC-OPF problem

1: Initialization:
a) Load the power system for the desired case from a specified excel file.
b) Use the data to directly and the defined base values to construct the required
matrices for all the buses, such as generation, PG,i and QG,i, load, PL and QL,i,
their minimum and maximum values, as well as that of voltage V maxi , V mini .
c) Construct matrices with the line data from the file, and use these to construct
the Y-bus matrix for the specified case. Also load the flow limits.
d) Construct matrices for buss voltages and angles from the from the file.

2: Calculate bounds on decision variables according to the limits for the generators,
PmaxG,i , P

min
G,i and QmaxG,i , Q

min
G,i , as well as and bus voltages.

3: Define constraints, that is the equality matrix if desired, and load the non-linear
equality and inequality constrains and the cost function

4: Run optimmization utilizing the interior point method using Matlab R© built-in func-
tion fmincon.

6.2 The SQG method

When implementing the solution approach with the SQG method, the student has been
fortunate to be able to utilized an optimization engine developed and implemented in
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Matlab R© by Alexei Gaivoronski (2016). On top of this, the student has implemented code
that lets the SQG optimize the simulation model for the specific problem, as well as code
that specifies how the simulation of the AC-OPF is to be treated by the SQG iterations.

Two different cases, discussed in 5, was developed and implemented to test the per-
formance of the SQG approach for the stochastic, multistage AC-OPF problem. Further
efforts was made in tuning the SQG model by changing its algorithm parameters, running
simulation upon simulation of the different cases for different values of the parameters.
Moreover, several methods to find the gradient of the problem was developed and imple-
mented, as was the use of different type of decision variables.

6.3 Implementing the S-MP-AC-OPF for the SQG solver

Solving the stochastic, multistage AC-OPF problem with the SQG solver, is an iterative
process. One first decides how much the battery is to charge or discharge for each of
the time steps within the model horizon. Then the AC-OPF is solved for all the time
steps, calculating the the cost of using compensating power from the costly gas generator
given the decided battery charging policy and the realization of wind generation. It returns
the sum of the objective values of the AC-OPFs for the time steps, being the total cost
of running the generator during the time horizon. After that, the SQG calculates a step
direction and length in which to change the charging policy - the decision variables -
either by the use of a classical calculated gradient returned from the ACOPFs somehow, or
by the stochastic quasi-gradient calculated through use of finite differences in the solver.

However, as noted in the last section, it is preferable to have the constraints of the deci-
sion variables of the SQG to be simple, we may choose to reformulate the aforementioned
problem to be of simpler structure.

6.3.1 Expanded formulation of the upper and lower bounds on stored
energy

Looking at the model formulation proposed in 3.50 and dynamics given from 3.51, one
may take notice that the bounds given on the decision variable, changes over time depend-
ing over what the decision variable was in the last time step. Thus, they are for one thing
don’t lend them self to be directly implemented into a runable optimization program. Fur-
ther more, they are are also not as well suited as regular bounds to perform the projection
described in 3.35 and 3.36. Hence, we need to do some arithmetic manipulation to turn
these bounds in to a matrix of suitable inequalities. To do so, we may start with equation
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3.51,
Est(t) = Est(t− 1)− PBattery(t).

As we see here there is a backward dependency, where the energy stored at end of time
step t is given by the energy at the end of previous time step t − 1 and the discharging
during the time step t. For the previous time step this would have been

Est(t− 1) = Est(t− 2)− PBattery(t− 1). (6.1)

and if consider this dynamics across two time steps, we have

Est(t) = Est(t− 2)− PBattery(t− 1)− PBattery(t). (6.2)

Indeed, we may follow this logics all the way back to the first time step and the energy
specified for the battery at the start of the time horizon.

Hence, given a certain amount of energy at the start of the period, Est(0), and that
we know the charging policy for all steps until a certain time step, we may calculate the
energy stored in the battery at the end of that time step. More formally, for any time step
t, we may find the energy stored as

Est(t) = Est(0)−
t∑

τ=1

PBattery(τ). (6.3)

Comparing this to the upper and lower bounds posed in 3.50,

Est(t− 1) ≥ PBattery(t) ≥ Est(t− 1)− Emaxst (6.4)

and first looking at the upper bound, we have that

PBattery(t) ≤ Est(t− 1) = Est(0)−
t−1∑
τ=1

PBattery(τ). (6.5)

Rearranging for PBattery which are the decision variables, we have that

PBattery(t) +

t−1∑
τ=1

PBattery(τ) ≤ Est(0) (6.6)
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or that
t∑

τ=1

PBattery(τ) ≤ Est(0). (6.7)

Similarly for the lower bound we have

PBattery(t) ≥ Est(t− 1)− Emaxst = Est(0)−
t−1∑
τ=1

PBattery(τ)− Emaxst (6.8)

and get that
t∑

τ=1

PBattery(τ) ≥ Est(0)− Emaxst . (6.9)

This may easily be adopted into matrices of inequalities. Such a matrix, for all time
steps T , may be written as



1 0 0 0 · · · 0

−1 0 0 0 · · · 0

1 1 0 0 · · · 0

−1 −1 0 0 · · · 0
...

...
...

...
...

...
1 1 1 1 · · · 1

−1 −1 −1 −1 · · · −1


·



PBattery(1)

PBattery(1)

PBattery(2)

PBattery(2)
...

PBattery(T )

PBattery(T )


≤



Est(0)

Emaxst − Est(0)

Est(0)

Emaxst − Est(0)
...

Est(0)

Emaxst − Est(0)


(6.10)

and may readily be implemented into code.

6.3.2 Tuning the SQG solver

To make the SQG method preform well, it is beneficial to tune the solution algorithm.
As noted in Becker and Gaivoronski (2014) the parameters of most relevance is to set the
initial step and its sequence ρ,Υ discussed in 3.3.4, the sequence and size of the finite dif-
ferences steps ∆s as discussed in 5.2.3.1, and the sequence of multipliers γs for estimating
the objective function from equation 3.33.

For the step size sequence, it is really only necessary to specify the initial step size ρ,
as the rest of the sequence can be given from this based on some default schedule. In ad-
dition, both values ∆s and γs may well be chosen to be constant, or given by some initial
value then to be changed by a predefined default schedule of the solver. Thus, the testing
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is left to only three parameters, which may be simply be done by trial and error.

However, some more insight may also be used when tuning these. For the initial
step size ρ, it is beneficial if this does not put the iteration far out of bounds for every
decision parameter and every step, not should it make the steps too small. For the step
size of the finite differences ∆s, there is no point in making it too small, since the error
caused by the stochastic parameters often is considerable. Hence it may for instance be
between 0.01 − 0.0001 times the size of the initial step size. The value of the averaging
parameter γs has to be between 0 and 1, where a larger value means that less of the history
is incorporated in the current solution.

As a note on the nature of stochasticity, it might be mentioned that the theoretical
precision of the solution increases roughly inversely to the square root of the observations
of the objective function. This means that in order to get a relative precision of 0.01, it is
needed about C · 1000 iterations, where C is some constant specific to the problem.

6.3.3 Algorithms for solving AC-OPF using SQG

The aim of the master thesis is to develop and implement a program in which we solve
an AC-OPF problem with stochastic generation and load for several time periods. The
procedures for the implemented code up to now is presented in this section. More in detail
on the mathematics of these problems are found in chapter 3, 5 and 4.

Figure 6.1 may serve as an illustration of this process, in which the SQG optimizes a
simulation.
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Algorithm 2 Simulation of AC-OPF with stochastic wind generation for one time step

1: Initialization:
a) From the TrySimulateAC-OPFwSQGv02.m file:
- Decide the maximum energy of the battery, EmaxST,2, the mean wind production in
the simulation, P̄W,3 and the range of the random realization around this mean
value, ωrange ∈ [0, 1].
- Calculate the initial guess for how much battery charging is to be done for all
time steps, x0 = PL,4 − P̂G,1 − P̄W,3
b) From SimulateAC-OPF Opt v02.m:
- Load case data with getProblemDataACPOF.m.
c) Let the initial battery level be half of the maximum energy stored.

2: Generic step, s of the simulation:
a) Calculate bounds for the AC-OPF decision variables ordinarily.
b) Calculate the realized wind generation, PW,3,

ω = PW,3 = P̄W,3 ∗ (1− ωrange) + 2 ∗ ζ ∗ P̄W,3 ∗ ωrange (6.11)

where ζ is a random number between one and zero, that is ζ = U
(

0, 1
)

c) Update the generator data, AC-OPF upper and lower bounds and AC-OPF
initial guess values with the realized wind generation PW,3 = ω.
d) For the battery, the value of load (or generation) is fixated with the charging
policy of the current step, xs. That is PBattery = xs

e) Define constraints, that is the equality matrix if desired, and load the non-linear
equality and inequality constrains and the cost function
f) Run optimization utilizing the interior point method using Matlab R© built-in
function fmincon.
g) Return the resulting value of the object function, Φ(s), as well as the power
flow solution, where one of the variables is the battery level decided by the
AC-OPF calculation.

3: Iteration with SQG software:
a) If the optimization engine has run for the desired number of steps, it is to
terminate and finalize. If not, the algorithm will continue with iteration s+ 1
b) The observed value for Φ(s) is sent to the SQG optimization engine, and uses
it to generate updated values of the policy parameters xs+1 which is to be PBattery
for the new iteration
c) Return to 2.
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Figure 6.1: SQG overview

6.3.3.1 Algorithm for solving AC-OPF under uncertainty for several time steps

Algorithm 3 displays the optimization of the AC-OPF simulation model using the SQG
method for several time steps, and SOC or stored energy, Est(t), at the different time
steps, as the decision parameters of the SQG optimization.

The problems that are sought to solve here are defined in ?? for the simple four bus
system with stochastic wind generation, and 4.9 for the nine bus system where both wind
and PV generation, as well as household and business consumption, are stochastic. For
the sake of briefness, an algorithm for each is not presented separately, but are gener-
ally outlined here. Also, the iteration of the SQG optimization engine may use either a
Quasi-Gradient calculated using finite differences or a gradient returned directly from the
simulation in order to decide the next xs. Again, they will not be posed in separate algo-
rithms here, but be presented though a general one.
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Algorithm 3 Optimization of Simulation Model

1: Initialization:
a) From the TrySimulateAC-OPFwSQGv0M.m file:
- Decide the maximum energy of the battery, EmaxST,2, number of time steps in the
simulation, T , the mean generation and load of the buses for all time steps and

their
corresponding range of stochastic realized values.
- Set the initial guess for how much battery charging is to be done for all time steps
x0(t)
b) From SimulateAC-OPF Opt v0M.m:
- Load case data with getProblemDataACPOF.m.

2: for generic AC-OPF simulation step, s: do
- Set the battery level of the first period to be half of the maximum energy stored,
and the objective value for all the time steps ΦtotT (s) to 0.

3: for time step t = 1, ..., T do
a) Calculate bounds for the simulation decision variables ordinarily.
b) Calculate the realized load and generation, in the same manner as in

equation 6.11.
c) Update the generator data, AC-OPF upper and lower bounds and AC-OPF
initial guess values with the realized wind generation and loads.
d) For the battery, the value of load (or generation) is fixated with the
charging policy of the current step, xs. That is PBattery(t) = xs(t−1)−xs(t)
e) Define constraints, that is the equality matrix if desired, and load the non-
linear equality and inequality constrains and the cost function
f) Run optimization utilizing the interior point method using Matlab R©

built-in function fmincon.
g) Return from simulation the resulting value of the object function, Φ(s, t),
as well as the power flow solution, where one of the variables is the battery
level decided by the AC-OPF calculation. If a direct gradient is used to
calculate the next step xs+1, this is also returned.
h) Add the value of the solution, Φ(s, t), for time step t to the total value of
the solution ΦtotT (s) of the T time steps. That is ΦtotT (s) = ΦtotT (s) + ΦtotT (s).
i) If t = T , Return the resulting value of the object function, ΦtotT (s), as well
as the power flow solutions, where one of the variables is the battery level
decided by the AC-OPF calculation. If relevant, return the gradient
with respect to energy level as defined in 5.11.

4: end for t
5: Iteration with SQG software:

a) If the optimization engine has run for the desired number of steps, it is to
terminate and finalize. If not, the algorithm will continue with iteration s+ 1
b) The observed value for ΦtotT (s) is sent to the SQG optimization engine, and uses
it to generate updated values of the policy parameters xs+1 which is to be Est(t)
for the new iteration, either by using finite differences, or gradients passed from
the iterations with respect to t.

6: end for s
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Note that in the Matlab R©files referred to above, M here denotes which case the file is
running. For the 4 bus case, M is 2, for the 9 bus case M is 3.

This process is illustrated in figure 6.2.

SQG-op'mizer	

Power	Flow	
AC-OPF	Simula'on	

XS	 φ	

ω	

t=1	 t=T	

Figure 6.2: SQG overview

6.3.3.2 Algorithm for projection of policy point onto its feasible set

An algorithm for a projection of point v onto the feasible set defined through the con-
straints that vi ≥ vi+1∀i = 1, ..., n− 1 could be as follows:

Algorithm 4 Projection of policy point onto feasible set

1: Initialization: find the number of elements in the vector v by n =length(v) and make
a duplicate vnew = v.

2: for i = 2, ..., n do
3: if vi−1 < vi then
4: for k = 1, ..., i do
5: if vi < vk and vnewi < vnewk then
6: vnewi = (vi + vk)/2
7: vnewk = vi
8: for l = k, ..., i do
9: vnewl = vnewi

10: end for
11: end if
12: end for
13: end if
14: end forreturn vnew
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Intuitively, this approach makes sense in the following way. Since the first value of v,
v1, puts a constraint on all following values to be less than it, it makes it more likely that
all values following are within these constraints if v1 is relatively close to the upper bound
on v. Thus, for each value that violates the constraints posed by earlier values, it makes it
easier for the rest to be within bounds if some value before the violation would be higher.
Thus, for all violations, we find the minimum distance to project them back to the feasible
space. The greatest violations will need to be prioritized, and moves back onto the feasible
space by changing the first - and thus most effectually for the rest - value it violates. A
further proof of this will not be given here, yet figures B.2 and B.3to illustrate this is found
in appendix.

6.3.4 Implementation of the cases of Stochastic, Multistage AC-OPF
using SQG

6.3.4.1 Implementation Case 1: AC-OPF of 4 bus system

For this model to make sense, we make a few assumptions.

1. The power generation from the wind park is assumed to be given. We here use an
expected value based on the designed uniform distribution.

2. The optimal operation point of the generator is known, as is the load demanded.

3. The charging or discharging of the battery is set as the power demand minus the
power produced from the wind and the power of the favored generator operation
point. Note that this does not take into account the losses and phase shifts, which is
what the AC-OPF method is to calculate.

4. Generator cost is given as a parabolic equation with lowest cost at the favored oper-
ation point.

5. The efficiency of the battery charging and discharging is assumed to be the same,
and equal to 1 for simplicity

6. The model considers several time steps, in which the values as for instance minimum
and maximum wind power may vary.

7. Energy storage is allowed in the system within the battery pack, but only supplies
active power.
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The model is much the same as in 4.5, except that the wind power production is given
as a stochastic value distributed uniformly between PminW,3 and PmaxW,3 . The objective is still
to minimize the cost of running the generator. However, the decision variable for the SQG
optimization is now how much power to charge or discharge the battery using the basic
AC-OPF model as the simulation. That is, to find an optimal chairing policy for the battery
given the stochastic wind production, simulating the OPF of the system with the decision
variable for the simulation in the SQG is now how much power produce by the generator.

Assumption number four here means that we further assume that the only cost is related
to utilizing the generator, and the cost is lowest close to a desired operation point. Hence
we use a cost function of the following form

C(PGas) = c · (PGas)2 + b · PGas + a (6.12)

where this implementation has used the specific values of a = 323000, b = −8000 and
c = 50 resulting in a favorable operation point at PGas = 80 as illustrated in figure 6.3
below

Figure 6.3: Cost function of the 4 bus case

In this model, the decision variable is how power to produce in the generator. The
generator at bus 3 will supply the remaining power after the battery has decided how much

84



to charge or discharge, and the wind energy has been realized.

In the development of the codes, we first implement this model as a simple case with
only one time step, before developing it further with energy storage. In the simplest case,
where the wind energy is assumed to be a specific value, this this system may be solved
as basic AC-OPF problem. With the wind as a stochastic variable, we utilize the SQG
approach to find a solution under uncertainty. After that we develop a model with energy
storage over several time-steps.

6.3.4.2 Implementation Case 2: AC-OPF of 9 bus system

For the 9 bus case the implementation, the increased number of stochastic sources and
loads in the system, as well as the increased number of time steps require some more
consideration about the exact implementation of the system. One of these is whether to
use a cost function as in 6.3 around an assumed operation point, or whether to use a strictly
increasing cost function for all generator values greater than 0 as illustrated in 6.4. This is
further discussed in chapter 7.
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Figure 6.4: Cost function of the 4 bus case

6.4 Solving stochastic, multistage AC-OPF with SDP

To have something to compare the SQG method to, a SDP solution was implemented for
the problem at hand.

In implementing this model, two main things was done to keep the solution time from
becoming far too great even for low levels of discretization. The first of these, were to
store previously calculated solutions during the run. Since the model operates with fully
discrete values, and only a limited number of these, many of the specific value combi-
nations reoccur during the simulation. Hence, by checking whether a previous solution
exists, the algorithm is able to run through all the instances in much less time.

Another measure taken to reduce the running time, was to only use limit the upper and
lower iteration value for wind energy by the maximum and minimum wind energy at that
step.
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6.4.1 Algorithm for solving the AC-OPF problem using SDP

Algorithm 5 shows how the Stochastic, Multistage AC-OPF solution is found thought the
use of SDP.

Algorithm 5 SDP algorithm for AC-OPF

1: Initialization:
a) Load the power system for the desired case from a specified excel file.
b) Set algorithm parameters.
c) Calculate transition matrix from all Nwind to all Nwind for time t

d) Initialize transition cost, cost-to-go and path matrices
2: Calculate possible and optimal cost of last time step.
3: for t = T − 1, ..., 1 do
4: for soct = 1, ..., NSOC do
5: for windt = 1, ..., Nwind do
6: for soct+1 = 1, ..., NSOC do
7: Check for earlier solutions. If found, use and skip running AC-OPF.
8: Run AC-OPF model with charging as ∆SOC and Pw as windt
9: for windt+1 = 1, ..., Nwind do

10: Calculate transition cost from equation 3.28
11: end for
12: end for
13: Find optimal SOC and corresponding cost.
14: end for
15: end for
16: end for
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Chapter7
Results and discussion

This chapter presents some of the results generated in thesis work.All along brief discus-
sions are made on the observations in each case.

First presented is the solution of the basic AC-OPF model which lies the foundation
of all simulations later in this thesis, for both the 4 bus and the 9 bus case. Thereafter the
results from the SQG solution of the stochastic, multistage AC-OPF is put forward, illus-
trating how the object function is estimated, and how the model performs for both cases,
one oer several time steps, and different formulations. A brief comparison with the SDP
method is made, as is further testing illustrating the benefit of the SQG method for this
stochastic problem.

The computer used for all simulations and computations is a MacBook Air from mid
2013 with a 1, 3GHz Intel i5 core and 4GB1600MHz ram.

7.1 Basic AC-Optimal Power Flow

In this section, the results from he underlying AC-OPF model is presented. It is here only
implemented for one time step, but for both the 4 bus and the 9 bus case. In modelling the
AC-OPF for several time steps, this model has been run consecutively and updating the
energy stored at each step.
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7.1.1 Case 1: 1 time step

In the following, the results from the 4 bus AC-OPF solution is presented and discussed.

7.1.1.1 Results

Figure 7.1 shows the generated active and reactive power at the different buses in the 4
bus constructed power system of case 1. Here, the blue bars represent the active power
delivering usable effect to the system, whereas the yellow bars are the reactive power
being present in the system without contributing to any actual consumption. Figure 7.2
shows the corresponding loads.

Figure 7.1: Generator values for the 4 bus basic AC-OPF
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Figure 7.2: Load values for the 4 bus basic AC-OPF

7.1.2 Discussion

As can be seen from figures 7.1 and 7.2 together, the generator supplies a little more then
120MW in order to meet the demand of 120MW from the household loads. We also
see that the battery has chosen to charge during this time step, and that it is the same
as the wind energy of 30MW . The generator is also supplying reactive power to meet
the reactive power load from the load. It should also be noted that we here see the total
supplied power by the generator is greater that the sum of the other generation and losses.
Hence, the power balance is satisfied after losses in the system is accounted for.

7.1.3 Case 2: 1 time step

The 9 bus AC-OPF results is presented and discussed here.

7.1.3.1 Results

The figure 7.3 displays the values of generated energy of the three power sources in the 9
bus system. Again, the blue bars represent the active power, and the yellow the reactive
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power. Figure 7.4 presents the load values.

Figure 7.3: Generator values for the 9 bus basic AC-OPF

Figure 7.4: Load values for the 9 bus basic AC-OPF

7.1.3.2 Discussion

Again, we see that the generator has the produce more produce more power in total, active
and reactive, that is used by the different system loads, minus the energy produced by other
generators.
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7.2 SQG solution of ACOPF

This section presents the most important results when solving the stochastic, multistage
AC-OPF using the SQG method. It starts by presenting the solutions for one time step for
the 4 bus case, then several time steps. Comparisons are also made between the gradient
and finite difference approaches, and with the SDP solution. Thereafter, much the same
is presented for the 9 bus case, except that the SDP is left out due to its computational
burden.

7.2.1 Case 1: 1 time step

First, the 4 bus case is presented with the results from the one time step simulation on
estimating the objective function.

7.2.1.1 Results

In figure 7.5 we see how the SQG algorithm estimates the objective function for the AC-
OPF model. The different lines represent the number of simulations ran for each of the
estimates, where the SQG algorithm solves for the optimal value for a set of discretizised
decision variables along the x-axis. Figure 7.6 shows the same graph essentially, however,
with a greater resolution at the proximity of the optimal point. The vertical stippled line
shows the value of the decision variable at the optimal solution, whereas the horizontal
stippled line shows the objective function value at the same solution.

Estimating the objective function
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Figure 7.5: Estimation of objective function for 4 bus system

Figure 7.6: Estimation of objective function compared with SQG solution for 4 bus system
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7.2.1.2 Discussion

From the graphs it is clear that the more simulations used, the better estimate of the solu-
tion is found. Another point to notice about these graphs is that it is quite similar to figure
6.3 with the actual cost function. Indeed, it is almost the same, just shifted leftwards as the
decision parameter is how much to charge or discharge the battery, not the generator.

7.2.2 Case 1: 4 time steps

Here the four time step solution of the AC-OPF model is presented with battery and
stochastic wind generation. Both the finite differences approach and the gradient approach
will be discussed.

7.2.2.1 Results

A standard profile for the generator values is seen in figure 7.7. The only thing that is
different in this figure from solution to solution is the values for the generator in blue,
resulting from the charging of the battery. Yet, during the simulation, the value for wind,
the yellow line, changes

Figure 7.7: Typical generator profiles for 4 bus case

Figure 7.8 shows the battery charging policy profiles found by using the finite differ-
ence version of the SQG method for the four time steps with uncertainty. In figure 7.9 one
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sees the same graph, ony solved with the directly calculated gradient from the AC-OPF
simulation.
Finite differences

Figure 7.8: Battery charging with Finite Differences for 4 bus case

Direct gradient
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Figure 7.9: Battery charging with direct gradient for 4 bus case

7.2.2.2 Discussion

From the figures it is evident that the solution found is different for the two methods. I the
finite difference case, the battery is not used in the first time step, only to be substantially
discharged during the following step. In the gradient solution, the policy found requires
charging in the first step, but does not discharge as much during the second. This seems
to be a wrong approach, as it should be beneficial to discharge so that the generator is at
about 80MW after wind production. Indeed the charging profile should in many ways
mimic that of the wind production profile so that the generator is as stable as possible.

A close look on the solution function values is found in appendix C.1. Here figure C.1
shows the function value and observations for the finite difference calculations, ending at
a value of 2871. The gradient solution end at a value of 4185 as indicated by C.2, showing
that the finite difference solution has found a better value. On the other hand, the gradient
solution is takes much shorter time to compute. It is able to compute 500 iterations of the
SQG solution process in about 400 seconds on the MacBook Air of the student, whereas
the finite difference approach needs about 1700 seconds, scaling to about T times as much
time due to the calculation of the perturbations.
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7.2.2.3 Comparison with SDP

Figure 7.10 shows the SDP solution of the same problem as above. For this graph, a
discretization level of 101 has been used.

Figure 7.10: Battery charging with SDP for 4 bus case

It is to note that this solution is not identical to neither the finite difference solution in
figure 7.8 nor the direct gradient in figure 7.9, yet bears most resemblance to the former.

In regards to the performance of the SDP model, the solution time rapidly becomes
quite long, especially if one is to have a level of discretization that is able to return a
seemingly logic solution. For an approach which only uses a total discretization level for
both SOC and wind energy of 11, the solution time is about 40 seconds. Yet, since here
most of the possible wind energy energy realizations is only represented by two or three
outcomes here (see figure B.1 in the appendix), the resulting solution seems not to make
that much sense. For a discretization level of 51, the solution is seems better, yet the
solution takes much longer time, 1300 seconds.

scales further.
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7.2.3 Case 2: 1 time step

In the following subsection, the results from the solutions of the second case is presented,
showing how the SQG algorithm is able to estimate the objective function and optimal
policy value.

7.2.3.1 Results

Figure 7.11 shows the estimated objective function value for a given number of SQG
iterations, where 7.12 shows a close up near the solution point given by the stippled lines.
Estimating the objective function

Figure 7.11: Estimation of objective function for 9 bus system
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Figure 7.12: Estimation of objective function compared with SQG solution for 9 bus system

7.2.3.2 Discussion

In these figures, it is clearly shown that there is a lot of uncertainty present in the simula-
tions, yet that the SQG method is able to approximate a good solution to these after enough
iterations. It also shows that the deviations from the later found value can be substantial
for the initial cases and for different parts of the solution space.

7.2.4 Case 2: 24 time step

Here the results from the 9 bus system for a 24 hour period is presented. First by showing
a general profile for the generators, before the charging profiles for the finite differences
and direct gradient calculations are dislpayed.

7.2.4.1 Results

In figure 7.13, a standard profile for the system generators is shown, where the randomness
is kept out. The red line denotes the mean wind production, which during the simulations
are random. The yellow line shows the mean PV production, also realized as a stochastic
variable in the simulations. The blue and the purple lines represents the generated active
and reactive power from the gas generator for the specific solution this graph is extracted
from.
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Figure 7.13: Generator values for SQG solution for 9 bus system

The figures 7.14 and 7.15 shows the energy consumption and charging profiles for the
finite differences and the directly calculated gradient. The yellow line in these graphs is
the charging policy.

Finite differences
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Figure 7.14: Generator values for Finite differences SQG solution for 9 bus system

Direct gradient
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Figure 7.15: Generator values for Gradient SQG solution for 9 bus system

7.2.4.2 Discussion

This time around, it is the finite difference methodology that is not able to produce any
sensible result. We see that it only suggests to utilize the battery in the first part of the time
period, and only does marginal charging and discharging thereafter. The gradient solution
of 7.15 on the other hand, produces what seems a more sensible. It discharges during the
times of high demand, and charges in the times of lower demand. One thing that might
not seem that logic is that it ends the simulating with a full battery; since the energy in the
battery at the start of the period can be considered free power, it would make sense to use
it all. Yet, this solution is actually more clever, since it charges in the last step by knowing
that it now is in a time period with unusually low demand.

Looking at the objective value approximations from the figures C.3 and C.4 in the
appendix, we see that the firs graph for the finite difference approach approaches a lower
value than the second graph from the direct gradient calculation. With regards to solution
time, the gradient approach is able to solve the 9 bus system with 250 iterations in about
450 seconds, whereas the finite differences approach requires about 5000 seconds for the
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same case and number of SQG iterations. A reason for the gradient method to perform
better here, is that the author spent more time tuning the models of the 9 bus case compared
to the 4 bus case.

7.2.5 Finding optimal policy decision rules

In addition to the charging policy for each time step, another approach discussed in 4.4.3
is to use the SQG method to find some decision rules for optimal charging policy.

7.2.5.1 Results

Running decision rule the model with three variables as the decision parameters, we get
the following results.

xOut =

10.1640 23.5531 46.1557

Here, the first two values represents the energy level to go to, whilst the third represent
the associated threshold value given by equation 4.18 as the last periods generation minus
the battery energy of the start of the period.

In figure 7.16, we see the evaluation of the objective function values for corresponding
to the solution above.

Figure 7.16: Objective function for policy rules calculations for the 4 bus system
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7.2.5.2 Discussion

The figure 7.16 ends at about 6000 which is not a very good solution value. Yet, a more
fine grained decision variable vector for the policy rules might allow a better solution.
Non-the-less, this is even after 5000 SQG iterations, taking about 8100 seconds. From
figure C.5 in the appendix, which shows that the value for the first decision variable has a
difficult time converging, it is evident that the simulation needs event more time to come
up with a good solution. This is an even bigger problem when having more variables. Yet,
for big and complex cases, this type of decision rule analysis might allow the problem to
be solved quick by having a limited amount of decision variables.

7.2.6 Further testing

In this subsection, results are presented from test using different values or different range
for the random wind generation in the 9 bus system, gauge the benefit of the stochastic
solution with the SQG method.

In figure 7.17 one finds the objective function values for the regular values of the 9 bus
case. The approximated value for the solution ends up at around 11000 after 200 iterations.

Figure 7.17: Normal objective function values for Gradient SQG solution for 9 bus system
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7.2.6.1 Different range for the random variables

In figure 7.18 and 7.19 the same graph is presented, yet with increased or decreased range
respectively for the stochastic value of wind generation. In the fist graph, we see the solu-
tion starting out at a much higher value and converging to about 13000 whereas the second
starts and later converges to a value around 10250.

Increased range of stochastic variables

Figure 7.18: Objective function values for Gradient SQG solution for 9 bus system with increased
stochasticity

Decreased range of stochastic variables
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Figure 7.19: Objective function values for Gradient SQG solution for 9 bus system with decreased
stochasticity

From these figures, it is clear that higher stochastic variations increases the cost for
the system, and that the higher the volatility, the more improvement is made with the
stochastic solution after some iterations.

7.2.6.2 Different mean value for the wind production

The figures 7.20 and 7.21 shows the same graphs again, but now it is the the mean value
for the wind generation that is shifted so that we may see if the batteries might facilitate
more wind in the grid.

Increased value of mean wind production
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Figure 7.20: Objective function values for Gradient SQG solution for 9 bus system with increased
wind generation

Decreased value of mean wind production

Figure 7.21: Objective function values for Gradient SQG solution for 9 bus system with decreased
wind generation

In both figures, the approximated value converges to about the same value. However,
the first figure with an increased amount of wind generation, starts of at a higher value
and takes a little longer before it manages to converge. This indicates that the battery is
able to adjust so that the increased wind energy that at first may create additional cost, is
incorporated in the same fashion as less wind with a more optimal charging policy.
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Chapter8
Concluding remarks and future research

This thesis has centered around how to use the Stochastic Quasi-Gradient (SQG) method
to analyze how best to operate the power generators together with a energy storage system
in the advent of greater variability thought inclusion of renewable energy sources in the
power system.

To address this, the thesis has developed mathematical models and methods, and im-
plemented a stochastic and multistage version of the Alternating Current Optimal Power
Flow (AC-OPF) problem to be solved by the SQG method. This chapter brings some con-
cluding thoughts on the endeavor, and elaborates on future areas of research continuing on
the topic and models treated here.

8.1 Conclusion

This thesis has showed that the SQG method might be an effective tool for analyzing and
optimizing energy systems with stochastic and dynamic aspects.

For the 4 bus case, the finite differences method for estimating the stochastic quasi-
gradient provided the best solution, which also was closest to the best solution from the
stochastic dynamic programming approach.

In the 9 bus case, however, the estimate of the stochastic quasi-gradient directly cal-
culated gradient from the AC-OPF solution gave a better and smarter solution than the
finite difference approach. The reason the solution it finds may be considered good, is
that it both manages to charge and discharge the battery when energy is in abundance and
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shortage, and charges the battery in the later stage towards midnight when the power is in
abundance even though one might think it would gain from discharging more during that
time.

In regards to solution time, the gradient performs clearly best of the models. The finite
difference approach gives interesting results, but in a much longer time for the bigger
model. Further tuning and tweaks of both solution approaches for the individual cases
might improve them further, yet since the finite difference approach has to calcualte all
the perturbations again and again, it will always be considerably slower. For the small
case in this thesis, the SDP method worked ok, given a fine enough level of discretization.
However, in larger cases, with more time steps, this method is bound to loose relevance as
the solution time it needs grows exponentially.

What goes for the accuracy of the models, a greater number of SQG iterations is needed
to produce more precise results. As mentioned, to have a relative precision of say 0.01

one needs somewhere around 1000 iterations. However, considering the error present in
the stochastic functions in the first place, a precision of much more than 0.025 is not
necessarily to be expected.

The decision rule analysis of the charging policy, does not come forth as such a good
approach here. This is mainly because the solutions found for several variables are not
very logic, and that it uses a lot of time to produce these. Even a small case took longer
time than any other model.

From the further analysis with the models, we also made note of the benefit of the
stochastic solution approach to optimal charging. The tests indicated that the inclusion
of energy storage might enable the incorporation of more variability in the electrical grid.
Our tests also indicated that the more volatility present, the more improvement can be
made with by employing a charging policy based on the SQG solution.

In chapter 2 we asked:

How might the Stochastic Quasi-Gradient method be used to analyze and op-
timize multistage power system operation with energy storage under uncer-
tainty?

To conclude, we may note that the are several ways the SQG may be applied to this prob-
lem, yet that the approach with a directly calculated gradient performs well for the largest
of the cases tested here, providing a good solution quite fast that lets energy storage facil-
itate the incorporation of variability in the electrical grid.
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8.2 Further work

This report also has showed their is more work that may be done, potential not only on the
further development, tuning and application of the models presented, but also in exploring
new ways to utilize the SQG approach in the field of Power System Analysis. The work
of this thesis is of course limited by how much it is possible to do within a certain time
frame. However, there are may ways this work may be continued forward, both in terms
of methodology and in terms of application.

As for improvement in methodology, some possibilities are:

• Implement or develop an even faster solver of the AC-OPF model.

• Develop a Stochastic Optimization heuristic to solve the same case for comparison,
for instance an Evolutionary Algorithm or Swarm Optimization

• Expand the AC-OPF model include more direct measures of stability, such as the
N-1 criterion or continuation power flow.

• Expand the AC-OPF model to include a market coupling, for instance through bid-
ding of power from the different sources to be solved by a market clearing algorithm.

• Develop a theoretical proof for the suggested relation on calculating the SOC gradi-
ent

• Develop a theoretical proof for the suggested relation on projection of policy deci-
sion variables onto feasible set.

• Implement parts of the model using parallel programming, to speed up the solution
process.

• Implement the use a discrete, dynamic AC-OPF for the whole period to calculate
the gradient for the solution in the SQG process.

• Implement a version where the dispatchable generation is the decision variable not
charging, with more complex constraints for the SQG solver.

• Find new ways to implement the decision rule version of the model, to gain more
insights from this approach.

As mentioned previously in this thesis, the work with the fundamental AC-OPF model and
its Interior Point solver was halted once an approach with sufficiently good performance
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was found. Therefore, it might be very relevant to improve the solution time of the un-
derlying AC-OPF model, as it has the potential to greatly speed up the SQG iterations.
Moreover, a comparison with a typical randomized search method such as an Evolution-
ary Algorithm might could be interesting to see whether the SQG performs better than it
does for this problem. Further expansions of the AC-OPF model is also possible to analyze
other power system phenomena in greater detail, such as the N-1 criterion or a fully market
coupled model. Another issue left unresolved is the theoretical development of proofs for
the calculation of the SOC gradient and the projection suggested in this thesis, and further
advances in the implementation of the method.

In order to apply this method to implement and analyze problems that might provide
valuable insight for real life cases, one may for instance look at

• Use the method in this thesis to valuate how much economic profit a energy grid
operator can gain if it is able to exercise some control of when the Electric Vehicles
in the grid are charging.

• Valuate control of household demand, through for instance price signals in a smart
grid system.

• Include electricity price, and for instance water inflow to hydro power reservoirs, as
a stochastic variables.

• Use real grid data to develop a full fledged model for an existing power system.

• Use real data to implement forecasts of the variable generation of variable generation
and demand.

• Develop an online model that uses real time data to calculate the optimal level of a
distributed battery in a micro grid for any time instance.

• Use the model to analyze how much wind can be included in a power system with
and without batteries, given it has to satisfy the stability and safety limits of the
current grid.

The suggestions mentioned above are in now way exhaustive or exclusive, yet might
provide an illustration to how versatile the method might be and serve as inspiration for
other researchers to test out the SQG method. As mentioned in the preface of the thesis,
the student will continue working with the application of the SQG method for analysis of
power system variability and energy storage. Hence, some of the mentioned points from
the lists above will be addressed quite soon.
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AppendixA
Acronyms and Definitions

A.1 Acronyms

AC Alternating Current

ESS Energy System Storage

EV Electric Vehicles

NVE The Norwegian Water Resources and Energy Directorate

OPF Optimal power flow

RES Renewable Energy Sources

SDP Renewable Energy Sources

SOC State of Charge, eg. how much power there is available on a PEV’s battery compared
to its capacity.

SSB Statistics Norway, Statistisk Sentralbyrå in Norwegian.

A.2 Definitions

Dispatchable generation Power production that is easy and quick to turn on and off.

Simulation The word simulation is in this thesis is often used for referencing the low-
lever part of the models running the deterministic AC-OPF optimization given the
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realization of stochastic variables and charging policy. The results returned are used
by the SQG-optimization engine to optimize the stochastic dynamic AC-OPF.

Stochastic Optimization The use of stochastic variation in an iterative optimization method
in order to help find the global optimum.

Stochastic Programming Refers to decision making under uncertainty, by modeling and
formulation of exact mathematical programs to optimize the outcome by manipula-
tion of some decision variables.

Multi-Period Stochastic AC-OPF or MP-S-AC-OPF is an AC-OPF model with ESS and
stochastic variables, solved by the SQG method.

Stochastic Dynamic AC-OPF or SD-AC-OPF, is an AC-OPF model with ESS (thus dy-
namic) and stochastic variables, solved by Stochstic Dynamic Programming (SDP).
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AppendixB
Additional Information on the Models

B.1 Case data

B.1.1 Case 1: the 4 bus power system

Table B.1 presents the given demand and generation (average in the stochastic case) of the
different buses, that the AC-OPF takes as input to its solution enforcing the values by up-
per and lower boundaries. In table B.2 the corresponding constrains on the buses voltage
maximum and minimum, as well as power bounds on active and reactive power. Table
B.3 shows the line constraints for the network. Note that the values are the same for all
three phases. The system is assumed to have base values of 100MVA for base power and
115kV as base voltage.

Table B.1: Given demand and generated power for the 4 bus case

Bus number Pd Qd Pg Qg
1 0 0 0 0
2 10 0 0 0
3 0 0 30 0
4 100 20 0 0
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Table B.2: Constraints value for the buses for the 4 bus case

Bus Vmax Vmin Qmax Qmin Pmax Pmin
1 1,1 1,1 200 -200 200 0
2 1,1 0,9 0 0 0 0
3 1,1 0,9 0 0 30 30
4 1,1 0,9 0 0 0 0

Table B.3: Constraints value for the lines for the 4 bus case

Linefrom,to Ri,j Xi,j Imaxi,j

2,4 0,5 0,3 250
2,3 0,5 0,3 250
2,1 0,5 0,3 250
1,3 0,3 0,2 250
1,4 0,3 0,2 250
3,4 0,2 0,1 250

B.1.2 Case 2: the 9 bus power system

Table B.4 shows the constrains on the buses voltage maximum and minimum, as well as
power bounds on active and reactive power. In table B.5 the line constraints for the net-
work are presented. Note again that the values are the same for all three phases, and that
the system is assumed to have base values of 100MVA for base power and 115kV as base
voltage.

Table B.4: Constraints value for the buses for the 9 bus case

Bus number Discription Vmax Vmin Pmax Pmin Qmax Qmin
1 Gas, slack 1,1 1,1 300 0 300 -300
2 Wind 1,1 1 300 0 0 0
3 PV 1,1 1 300 0 0 0
4 Transformator 1,1 0,9 - - - -
5 Business 1,1 0,9 - - - -
6 Transformator 1,1 0,9 - - - -
7 House 1,1 0,9 - - - -
8 Transformator 1,1 0,9 - - - -
9 Battery 1,1 0,9 50 0 0 0
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Table B.5: Constraints value for the lines for the 4 bus case

Linefrom,to Ri,j Xi,j Bi,j Imaxi,j

1,4 0 0,0576 0 250
4,5 0,017 0,092 0,158 250
5,6 0,039 0,17 0,358 150
3,6 0 0,0586 0 300
6,7 0,0119 0,1008 0,209 150
7,8 0,0085 0,072 0,149 250
8,2 0 0,0625 0 250
8,9 0,032 0,161 0,306 250
9,4 0,01 0,085 0,176 250

B.2 SDP data

Transition probability matrix with discterization level of 11.

Figure B.1: Transition matrix.

B.3 Figures on projection of policy rules
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Figure B.2: Feasible space for policy projection in three dimensions.

Figure B.3: Feasible space for policy projection in three dimensions with illustrative points.
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AppendixC
Additional Results and Graphs from the

Models

Due to concerns on length for this report, a number of figures may have been left out that
might be of interest to the reader.

In this appendix, a few extra graphs and other relevant results will be presented.

C.1 Further figures form the simulations
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Figure C.1: Function approximation and observations for the 4 bus case with finite differences

Figure C.2: Function approximation and observations for the 4 bus case with direct gradient
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Figure C.3: Function approximation and observations for the 9 bus case with finite differences

Figure C.4: Function approximation and observations for the 9 bus case with direct gradient
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Figure C.5: Variable approximation of policy rule simulation
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