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ABSTRACT 

Unidentifiability and equifinality of parameters pose challenges to calibration and prediction 

by conceptual precipitation-runoff models. Evaluation of prediction performances of 15 

parametrical parsimonious and more complex conceptualizations is lacking for hourly 

simulation. We conducted a comparative evaluation of four configurations of the distributed 

(1x1 km2 grids) HBV runoff response routines for hourly streamflow simulation for boreal 

mountainous catchments in mid-Norway. The routines include the standard Swedish 

Meteorological and Hydrological Institute HBV or HBV-SMHI, HBV-Nonlinear (standard soil 20 

routine and non-linear reservoirs), HBV-Soil Parsim R (standard soil routine and linear 

reservoirs) and HBV-Parsim (parsimonious and linear soil routine and reservoirs).   

The routines provided simulated hydrographs, flow duration curves and quantile-quantile (QQ) 

plots, which are marginally different from each other for the study catchments. However, the 
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HBV-Parsim provided better parameter identifiability and uncertainty, and simulated baseflow 25 

that better matches the baseflow separated by filtering techniques. Performances of the HBV-

Parsim indicated a potential for application of parametrical parsimonious routines, which would 

benefit model updating for forecasting purposes. The study revealed strong effects of the soil-

moisture parameters on the recharge, percolation and hence the baseflow, which substantiates 

importance of evaluating the internal simulation (e.g. soil-moisture and baseflow) of the HBV 30 

routines against measurements or analytical computations.  

Key words: Distributed HBV runoff response routines, hourly runoff simulation, parametrical 

parsimony, model calibration and spatio-temporal validation, boreal mountainous catchments, 

baseflow simulation. 

 35 

INTRODUCTION 

Various conceptual runoff response routines are currently used for decision making for 

operational forecasting though they are not capable of detailed modelling of physical 

hydrological processes (e.g. preferential flows). Some of the recent works endorsing the utility 

of conceptual models include Fenicia et al. (2011), and Kavetski and Fenicia (2011) who tested 40 

a flexible framework for conceptual model structure for comparison and refinement of 

alternative hypotheses. Precipitation-runoff models based on the standard HBV (Bergström, 

1976) which is named as the HBV-SMHI in the present study and its variants have been widely 

applied in many countries for real-time forecasting of floods and inflow to storage reservoirs, 

for design flood estimation and for scenario studies such as the impacts of anticipated climate 45 

change (e.g. Harlin, 1992; Harlin and Kung, 1992; Killingveit and Sælthun, 1995; Lindström 

et al., 1997; Blöschl et al., 2008; Driessen et al., 2010). For the representation of spatial 

heterogeneity through different levels of spatial discretization, the standard HBV model has 

evolved through different variants from lumped to ‘fully’ distributed versions e.g. Lindstrom et 
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al. (1997), Hundecha and Bardossy (2004), Beldring et al. (2003), Blöschl et al. (2008),  Das et 50 

al. (2008) and Li et al. (2014). Wrede et al. (2013) further implemented a ‘fully’ distributed 

HBV model complemented by subgrid scale parameterization for distinct land use classes or 

hydrological response units for a Swedish lowland catchment. Based on the distributed model 

intercomparison project (DMIP) experiments, Smith et al. (2004) suggested distributed models 

as complements rather than replacements of the lumped models for operational forecasting 55 

purposes. 

     The HBV model has gained significant applications for daily forecasting, and with recent 

developments for hourly simulation/forecasting (e.g. Kobold and Brilly, 2006; Shrestha et al., 

2008 and Rakovec et al., 2012). There are growing interests for hourly application of the HBV 

model since hourly flood forecasting is becoming important due to the prevalence of extreme 60 

hydrological events driven by intense rainfall events. In addition, for operational hydropower 

management a reliable hourly inflow prognosis is required. For instance, real-time forecasting 

of inflow to hydropower reservoirs during hydropeaking (i.e. when hydropower is operating to 

balance intermittent renewables or non-renewable energy sources for peak demands of 

electricity) requires runoff simulation for shorter time steps for optimal scheduling and to 65 

minimize downstream impacts of releases. In addition, for catchments that are affected by 

diurnal variations of streamflow due to diurnal variations in snowmelt and evapotranspiration, 

the hourly simulation is expected to better capture the temporal dynamics of the hydrological 

processes for reliable prediction/forecasting of streamflow. Also, flood peaks may not be 

reliably simulated based on a coarse temporal resolution (e.g. daily time step) especially for 70 

small basins. Several studies were conducted on time scale dependencies of conceptual model 

parameters (Littlewood and Croke, 2008; Wang et al., 2009; Merz et al., 2009). Kavetski et al. 

(2011) thoroughly investigated the time scale dependencies of information content of data, 

parameter calibration and identifiability, quickflow and hydrograph peak simulation. The 



4 
 

considerable loss in performance when parameters calibrated for a longer time step (e.g. daily 75 

streamflow) are used for simulation for shorter time step (e.g. hourly) as demonstrated by 

Bastola and Murphy (2013) showed the introduction of additional uncertainty and hence 

associated risks in hourly prediction from utilizing the daily calibrated parameters. Therefore, 

hourly predictions based on parameters calibrated utilizing hourly observations are required for 

water management purposes.   80 

Depending on their conceptualization, the different versions of the HBV response routines 

contain different numbers of free parameters while large numbers of free parameters do increase 

the complexity in parameter calibration and identifiability. Moreover, the reliability of 

simulation based on different conceptualization may be different. The standard form SMHI 

(Bergström 1976), the HBV light (Seibert, 1997b; 2002) and the “Nordic” HBV model 85 

(Sælthun, 1996) all have two (non-linear upper and linear lower) reservoirs and three outlets 

(three recession coefficients, upper zone threshold and one percolation parameter). The 

operational HBV version used by Norwegian hydropower companies (Killingveit and Sælthun, 

1995) has two (non-linear upper and linear lower) reservoirs and four outlets (four drainage 

coefficients, two upper zone thresholds and one percolation parameters). The HBV-96 90 

(Lindström et al., 1997) and the HBV-IWS (Hundecha and Bárdossy, 2004) have two (non-

linear upper and linear lower) reservoirs and four parameters (two recession coefficients, non-

linearity exponent and percolation parameters). The Tillart (2010) version of HBV contains two 

(non-linear upper and linear lower) reservoirs with five parameters (upper and lower reservoir 

recession coefficients, non-linearity exponent, percolation rate and capillary flux).   95 

Reed et al. (2004) in the DMIP noted that model formulation and parameterization could 

have a bigger impact on simulation accuracy than the spatial computational unit (lumped versus 

distributed). The authors also pointed out that due to interacting and compensating effects of 

different factors, studies based on changing one model component at a time will be required to 
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identify reasons for any observed differences among the models. Parsimonious 100 

parameterization is important since large numbers of free parameters do not guarantee good 

model performance (e.g. Michaud and Sorooshian, 1994). The cost of model calibration 

increases as the number of free parameters increases. The problem of equifinality and poor 

identifiability related to overparameterization, which potentially happens when complex 

models are calibrated using data of low information content, were addressed among others by 105 

Beven and Binley (1992); Beven and Freer (2001) and Kirchner (2006; 2009). Werkhoven et 

al. (2009) illustrated the importance of reduction of parameter dimensionality. Each additional 

parameter represents a whole new dimension of parameter space, so the overparameterization 

problem grows with the number of free parameters (Kirchner, 2006). Uhlenbrook et al. (1999) 

investigated the prediction uncertainty of different variants of the HBV model caused by 110 

problems in identifying model parameters and structure.  

However, studies of relationships between prediction performances and various 

configurations of the distributed HBV response routines and the numbers of free parameters is 

lacking from literature. Dependent on the ability of the model to simulate the precipitation-

runoff relationships, conceptualization based on less number of parameters is preferable. 115 

Despite the pros in allowing better identifiability of parameters, there are also cons against 

parsimonious models. For example, Kuczera and Mroczkowski (1998) noted that a simple 

model cannot be relied upon to make meaningful extrapolative predictions, where a complex 

model may have the potential but because of information constraints may be unable to realize 

it. Due to the pros and cons related to parsimony and more complexity in hydrological 120 

modelling, the focus of the present study is on comparative evaluation of the runoff response 

routines. Some of the previous attempts to reduce the number of free parameters in the HBV 

response routine include works by Harlin (1992) and Winsemius et al. (2009). Samuel et al. 
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(2012) evaluated different configurations of the HBV response routines for baseflow simulation 

in Canada.  125 

Jakeman and Hornberger (1993) in their ‘principle of parsimony’ claimed that simple 

conceptual models with four to five parameters provide an adequate fit if only streamflow is 

available for calibration. Observing a large degree of equifinality in calibration of the nine 

HBV-96 parameters for four climatologically different river basins, Lidén and Harlin (2000) 

stated that given the inherent limitations of information in calibration data only a smaller 130 

number of parameters can be uniquely identified which calls for a parsimonious model. When 

calibration is based on different state variables (e.g. ground water level, soil moisture, snow 

depth) in addition to streamflow, multi-objective calibration gives an opportunity to further 

exploit the information content of each variable to better constrain the model parameters. 

However, the challenge is that such a rich data set may not be readily available especially for 135 

operational purposes. Hence, the maximum possible exploitation of the information content of 

the relatively readily available streamflow data is a possible solution.  

Kokkonen and Jakeman (2001) while explaining the higher information requirement of a 

complex model structure stated that the more process complexity one wants to include in the 

model structure the more types of data are required to estimate the process parameters and to 140 

test the model performance. Perrin and Andréassian (2001) compared 19 lumped models for 

daily simulation in 429 catchments and found that models with a large number of parameters 

generally yield better calibration results, but were not verified in the validation stage. Hughes 

(2010) noted that if the model performance is evaluated only by the success of calibration 

against observed streamflow, certain simpler models would frequently out-perform the more 145 

complex models but selection of models for wider objectives such as prediction in ungauged 

basins is far complex. Better process understanding augmented by field experiments and 

measurements to conceptualize improved (suitable) model structures for simulation of 
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dominant hydrological processes is indispensable in catchment hydrology but this task was not 

an objective of the present study.  150 

The main objective of the present study focus on the evaluation of the performance of 

different configurations of the runoff response routine of the HBV model. The model 

configurations used in the study is the distributed (1x1 km2) standard HBV (HBV-SMHI), non-

linear storage-discharge relationships HBV (HBV-Nonlinear), standard soil-moisture 

accounting and linear parsimonious runoff response routine (HBV-Soil Parsim R) and 155 

parsimonious and linear conceptualizations of both the soil-moisture accounting and runoff 

response routines (HBV-Parsim).  The main research questions are:  

(1) What are the performances of different configurations of the HBV runoff response 

routines for distributed (1x1 km2) hourly runoff simulation in boreal mountainous catchments 

in terms of prediction of various streamflow ‘signatures’, parameter identifiability and 160 

uncertainty? 

(2) What are the performances of the routines in terms of spatial and temporal validation 

when parameters are transferred to internal (interior) subcatchments and among the non-nested 

catchments inside the study watershed? 

 165 

THE STUDY REGION 

The study region is the mountainous boreal watershed of Gaula in mid Norway. We used 

streamflow data from four stations, which include Gaulfoss, Eggafoss, Hugdal bru and 

Lillebudal bru. Hugdal bru, Eggafoss and Lillebudal bru are nested within Gaulfoss, but they 

are independent of each other. Rainfall mainly occurs from April to October while snowfall 170 

occurs from November to March. We used hourly precipitation data from twelve climate 

stations with an elevation range from 127 to 885 masl. We interpolated the climate inputs on 

the spatial computational scale of 1x1 km2 grids by the inverse distance weighing (IDW) 
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method.  The maximum length of input records for calibration was two years of hourly temporal 

scale due to difficulty in finding long series of hourly climate and streamflow data with 175 

complete records. However, the length of the hourly data series is expected to provide sufficient 

information on the rainfall-runoff relationships to constrain the model parameters. Where sub-

daily data exist, it would appear to be wise to use the extra information they contain, leading to 

more accurate calibrated model parameters (Littlewood and Croke, 2013).  

The hourly climate data used include precipitation (P), temperature (T), wind speed (Ws), 180 

relative humidity (HR) and global radiation (RG). The main vegetation/land use types in the 

catchments are forests (conifers), upland and riparian areas. The dominant loose (soil) 

formation in the Gaula watershed is glacial tills underlain by impermeable bedrock geology 

(http://www.ngu.no/no/hm/Kart-og-data). The main surface deposits in the Nordic countries 

are till soils (Beldring et al., 2000). The main characteristics of the catchments and maps of land 185 

use, elevation, locations of climate and streamflow stations for the study catchments are given 

in Table 1 and Fig.1. 

 

MODELS AND METHODS 

The four configurations of the conceptual HBV runoff response routines modelled and 190 

evaluated in the present study differ either in the number of conceptual reservoirs (one versus 

two), form of storage and discharge (S-Q) equations (linear versus non-linear), the soil-moisture 

accounting routine or the number of free parameters (few/parsimonious versus many/more 

complex). A summary of the main features of the routines is given in Table 2 and Fig. 2. The 

lists of the free parameters and ranges of their uniform priors is given in Table 3. 195 

The HBV-SMHI distributed runoff response routine 

The distributed runoff response routine based on the standard HBV model used in the present 

study contains two conceptual reservoirs (Fig. 2a). The upper reservoir contains two outlets 

http://www.ngu.no/no/hm/Kart-og-data/
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(one with non-linear and one with linear drainage equations) and the lower reservoir is linear 

with only a single outlet. It has five free parameters in the response routine that include very 200 

quick and quick upper reservoir recession coefficients (k2 and k1 respectively), slow base flow 

recession coefficient (k0), percolation rate (PERC) and upper reservoir threshold storage (UZt). 

For the upper reservoir, the runoff generated conceptually represents very quick and quick 

runoff components, both from overland flow and from groundwater drainage from perched 

aquifers (Killingtveit and Sælthun, 1995). The storage-outflow relationship for the upper zone 205 

is threshold based and the total outflow from the upper reservoir (QUZ) is the sum of outflows 

from the lower (QUZ1) and upper (QUZ2) outlets. The lower zone conceptually represents the 

base flow from ground water and the storage-baseflow relationship is linear. 

HBV-Nonlinear distributed runoff response routine 

The HBV-Nonlinear runoff response routine has two storage reservoirs (upper and lower) 210 

conceptually similar to those of the HBV-SMHI routine but with the basic differences in 

configuration of the structure of the upper conceptual reservoir by a single outlet (Fig. 2b) with 

an exponent based non-linear storage-outflow relationship and also a non-linear storage-

baseflow relationship for the lower reservoir. The total numbers of parameters in the response 

routine are five (i.e. upper and lower reservoir recession coefficients, two non-linearity 215 

parameters and percolation). Simulation over fixed discrete time steps of the hourly data 

resolution was used in the present study assuming that the input forcings and fluxes are constant 

over the time step. The fixed-step approaches are commonly used for conceptual models (e.g. 

Lindström et al., 1997; Blöschl et al., 2008). Focus on the effects of numerical artifacts (e.g. 

Clark and Kavetski, 2010) in solving the storage-discharge functions were not the objective of 220 

the present study. 

The HBV-Soil Parsim R distributed runoff response routine 
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The HBV-Soil Parsim R runoff response routine has two (upper and lower) reservoirs (Fig. 2c) 

similar to those of the HBV-Nonlinear routine but with the basic differences that both the 

storage-outflow (upper reservoir) and storage-baseflow (lower-reservoir) relationships are 225 

linear. Hence, the total numbers of parameters in the response routine are three, namely the 

quick reservoir recession coefficient (k1), slow base flow recession coefficient (k0) and 

percolation to the lower reservoir (PERC). 

The HBV-Parsim distributed runoff response routine 

The HBV-Parsim runoff response routine (Fig. 2d) is similar to the HBV-Soil Parsim R 230 

response routine with the only difference in their soil-moisture accounting routines.   

The soil moisture accounting routine 

The soil moisture accounting routine partitions the effective precipitation in to recharge to the 

upper zone and contribution to change in the soil moisture storage. For the HBV-SMHI, HBV-

Nonlinear and HBV-Soil Parsim R, the soil moisture accounting is based on a non-linear 235 

function which partitions the infiltration from rainfall and snowmelt (I) into recharge (R) to 

upper reservoir and change in soil moisture storage or ΔSM (Bergström 1976).                                                       

The ‘non-linearity parameter’ β controls the shape of the partitioning curve. The soil moisture 

storage (SM) is depleted by evapotranspiration. If the ratio of the actual soil moisture (SM) to 

the field capacity (FC) or SM/FC exceeds the ‘limit for potential evaporation’ or 240 

evapotranspiration threshold parameter (LP), actual evapotranspiration (AET) is assumed to be 

equal to the potential (PET). The field capacity represents the maximum soil moisture holding 

capacity of the soil. However, if the soil moisture is below (LP*FC), the actual 

evapotranspiration decreases linearly with the decrease in soil moisture storage (i.e. AET/PET 

= SM/ (LP*FC). Therefore, the soil moisture accounting routine of the HBV-SMHI involves 245 

three free parameters namely the field capacity (FC), shape parameter (β) and LP. A capillary 
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flux (flow) from the storage reservoirs to the soil-moisture zone was not considered in the 

present study. 

However, for the HBV-Parsim the soil moisture accounting routine is based on a linear 

function (i.e. β = 1.0), LP is also set to a constant value of 0.9 which is a default value of HBV-250 

96 (Booij, 2005). The sensitivity of the HBV model to the FC parameter was studied by  Seibert 

et al. (1999), who reported both well-defined and badly-defined (i.e. insensitive or uncertain) 

cases respectively for some of Swedish catchments and mountainous catchment in Germany. 

Abebe et al. (2010) found that the FC parameter to be dominantly affecting the high flow and 

volume errors for semi-humid catchment in USA. Beldring et al. (2003) obtained FC values of 255 

20 mm to 150 mm for different land cover from simultaneous calibration of a distributed version 

of the standard HBV model for 141 catchments in Norway. Following the results obtained by 

Beldring et al. (2003), we assigned field capacity values for different land classes  due to our 

objective of testing a parametrical parsimonious response routine with a total number of five 

free parameters based on the ‘principle of parsimony’ by Jakeman and Hornberger (1993). For 260 

the Gaula watershed, land cover above timberline (approximate timberline elevation ranges 

from 800-850 masl) is mainly dominated by sparse vegetation, bedrock/cracked rock with some 

proportions of lichen, heather and shrubs. The area below the timberline is dominated by 

coniferous forests with some proportions of deciduous forests and non-forested areas such as 

farmland and marshes/bogs. Therefore, we used field capacity (FC) maps with values of 150 265 

mm and 50 mm respectively below and above the timberline. Therefore, there is no free 

parameter in the soil moisture accounting routine (i.e. three free parameters are removed 

compared to HBV-SMHI, HBV Non-linear and HBV-Soil Parsim R). 

The potential evapotranspiration was computed using the Priestley Taylor method (Priestley 

and Taylor. 1972) for the all response routines: 270 
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,where α is Priestley Taylor constant, ∆ is the slope of saturation vapor pressure curve at air 

temperature at 2m (T2m), Ƴ is the psychometric constant (0.67 hPaK-1), Rn is the net radiation 

= net shortwave radiation (SRn) + the net longwave radiation (LRn). Priestley and Taylor (1972) 

obtained values of α, for diverse well-watered surfaces, between 1.08 and 1.34 with an overall 275 

mean of 1.26. Teuling et al. (2010) used α = 1.26 for the Swiss catchment. Gardelin and 

Lindstrom (1996) determined the value of α by calibration. Following Teuling et al. (2010), we 

used an alpha value of 1.26 rather than calibrating the parameter due to our objective of testing 

parametrical parsimonious HBV model and due to expected less effect of fixing the parameter 

to an average value on the PET calculation for the snow-dominated boreal catchment. The SRn 280 

is computed from the measured global radiation (RG) and land albedo. The LRn is computed 

based on Sicart et al. (2006). The soil/ground heat flux (G) = (0.12)* Rn is assumed following 

Teuling et al. (2010).  

    If the grid cells are within a lake, direct precipitation on the lake,  evaporation from the lake 

and outflow are considered for the lower reservoir zone (i.e. there is no soil-moisture accounting 285 

routine and the upper zone reservoir). The evaporation from the lake surfaces is assumed to be 

40% above the potential evapotranspiration computed from the Priestley Taylor method.  

The snow routine 

For the study catchments, snow accumulation and melt processes dominate during winter and 

spring seasons respectively. Snow routines based on temperature index models or degree-day 290 

methods are commonly used to simulate snowmelt rates in many variants of the HBV models. 

However, in the present study we used the gamma distributed snow depletion curve or SDC, 

which uses radiation for surface layer energy and phase change calculations (Kolberg and 

Gottschalk, 2006) for all the response routines. The routine uses a mass balance approach to 
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simulate the melt water release (snowmelt runoff) from saturated snow (Qs) and the remaining 295 

unmelted snow storage, the snow water equivalent (SWE) (Fig. 2).  

The snow depletion curve describes how snow covered area (SCA) reduces gradually through 

the melt season by relating the fractional snow covered area in a grid cell to the mass balance 

of a heterogeneous snow cover (Kolberg and Gottschalk, 2010). Kolberg and Gottschalk (2006; 

2010) defined the four variables defining the snow pack state in a grid cell (Fig. 2) as the average 300 

snow water equivalent or SWE (mm) at the start of melt season, the SWE coefficient of 

variation cv (-) explaining the subgrid spatial heterogeneity, the fractional snow covered area 

at the melt start of the melt season (-) and the accumulated melt depth, λ (mm) aggregated from 

the melt season onset or end winter day. The free parameters in the routine are the TX which is 

the snow-rain threshold temperature parameter and identifies the form of precipitation (rainfall 305 

or snow fall) and wind scale (WS) which is the snow-melt sensitivity to the wind speed or wind 

turbulence driving heat fluxes. Details of the SDC based snow routine can be found from 

Kolberg and Gottschalk (2006; 2010). 

 

MODEL CALIBRATION  310 

Different researchers (Harlin, 1991; Lindstrom, 1997; Seibert, 2000; Hundecha and Bárdossy, 

2004; Seibert, 1997a; Uhlenbrook, 1999; Seibert, 2003; Das et al, 2008; Bárdossy and Singh, 

2008; Lawrence et al., 2009; Shrestha et al., 2009; Sorman et al., 2009; Tillart, 2010; Driessen, 

2010; Abebe et al., 2010) applied various algorithms for parameter calibration and 

identifiability and uncertainty analyses for the HBV model.  315 

     In the present study, we used the DREAM algorithm (Vrugt et al., 2009) implemented in 

Enki hydrological modelling platform (Kolberg and Bruland, 2012) for model calibration and 

assessment of parameter identifiability and uncertainty. To our knowledge, calibration of the 

HBV based precipitation-runoff model by the DREAM algorithm had not been pursued so far. 
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In DREAM, multiple chains with different starting points in the parameter space run 320 

simultaneously for global exploration, and automatically tune the scale and orientation of the 

proposal distribution during the evolution to the posterior distribution (Vrugt and Ter Braak, 

2011). The calibration was performed based on a residual based log-likelihood (L-L) objective 

function:         
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, where Qsim(θ) and Qobs(θ) respectively are the Box-Cox (Box and Cox, 1964) transformed 

observed and simulated streamflow time series (of length n), β represents model parameters, θ 

is the Box-Cox transformation parameter, σƐ
2 is variance of error and f is a fraction of effectively 

independent observations. The logarithm form was used for simplicity and numerical stability 

and the function should adequately summarize the statistical properties of the residuals (Vrugt 330 

et al., 2013). 

    The Box-Cox transformation was performed in order to obtain an approximately normal 

distributed series with homoscedastic residuals (i.e. variance of residuals is independent of 

streamflow). Homoscedasticity in the residuals provides an advantage that the model residuals 

can be represented by one single distribution most often Gaussian (Willems et al., 2009). If θ = 335 

0.0 (log-transformation), it corresponds to an assumption of lognormal distributed streamflow 

and it gives high weights to low flows like the Nash-Sutcliffe efficiency (Nash and Sutcliffe, 

1970) for a log-transformed data (NSELn). If θ = 1.0 (no transformation), it is assumed that the 

streamflow series is Gaussian and weight of high flows will be much greater than low flows 

like the Nash-Sutcliffe efficiency or NSE. The main advantages of the DREAM algorithm is 340 

that it accepts better parameter proposals (i.e. higher likelihood) and converges to posterior 

distributions rather than a single optimal parameter set and allow an objective assessment for 



15 
 

parameter identifiability and predictive uncertainty. We used the last 50 % of the DREAM 

accepted marginal posterior parameters after the burn-in iterations (Vrugt et al., 2009) for the 

evaluation of parameter identifiability, correlation and presentation of minimum and maximum 345 

ranges of posterior parameters. But, for a 'fit for purpose' evaluation of the routines in terms of 

their maximum performance in simulating the hydrographs, we picked the optimal parameter 

sets which corresponds to the maximum values of the NSE and NSELn performance measures 

among the whole accepted by the DREAM algorithm. Burn-in iteration refers to discarding an 

initial portion of the samples to minimize the effect of initial conditions. 350 

    Values of θ from 0.25 to 0.3 are commonly used in literature (e.g. Vrugt et al., 2002 and 

references therein; Willens et al., 2009). But, in the present study θ values of -0.14, -0.1, 0.05 

and -0.35 respectively for Gaulfoss, Eggafoss, Hugdal bru and Lillebudal bru were 

estimated/optimized from the hourly observed streamflow series based on the ‘fminsearch’ 

optimization algorithm in matlab software. The algorithm calls for finding the θ value that 355 

maximizes a log-likelihood function (http://www.mathworks.com). Box and Cox (1964) also 

proposed a maximum likelihood method for estimation of θ that satisfy a normal distributed 

and homoscedastic transformed series. Details on how the ‘fminsearch’ optimization algorithm 

works can be found from http://www.mathworks.com. Optimizing the Box-Cox transformation 

provides as close as normal distributed series and homoscedastic residuals, but when the 360 

objective of simulation focuses on prediction of high flows, it may be preferable to use higher 

values of θ (for instance, θ = 0.3 is common in literature). We used the same transformation for 

all the compared runoff response routines and this specific issue related to selection of θ was 

not our focus in the present study. 

The fraction of effectively independent observations, f was introduced to address problems 365 

related to correlation of residuals. The amount of information obtained from the data is much 

less than the nominal number of observation suggests due to a serial correlation (independence) 

http://www.mathworks.com/
http://www.mathworks.com/
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in the hourly streamflow series. Setting the f value to 1.0 implies the observations are 

considered independent. We computed the fraction of effectively independent observations 

from the autoregressive or AR (1) model of error covariance (Ziḙba, 2010). Further details of 370 

the DREAM algorithm can be found from Vrugt et al. (2009). 

 

POST CALIBRATION ANALYSES (COMPARATIVE EVALUATION) 

Model validation aims to validate the model’s robustness and ability to describe the 

catchment’s hydrological response, and further detect any biases in the calibrated parameters 375 

(Gupta et al., 2005). A set of calibrated model parameters are expected to provide reasonable 

performance when transferred in time to a separate data set for the same catchment. We used 

the split sample test (Klemes, 1986) for temporal validation of the routines and the proxy basin 

test for spatial transfer of parameters to ‘proxy ungauged’ catchments (for spatial validation). 

We also transferred the parameters in both space and time for spatio-temporal validation of the 380 

routines. 

Transferability of model parameters in space and consistency of model performance for 

multi-sites for the internal subcatchments builds our confidence of the predictive performance 

of the model. The main objective of transferring parameters to other catchments within the 

watershed in the present study is for spatio-temporal validation of the model and to test the 385 

possibility of simulating at interior locations based on parameter set calibrated for the 

streamflow at the catchment outlet that was one of the research question by the DMIP (Smith 

et al., 2004). We comparatively evaluated the routines based on transferability of their 

respective calibrated parameter set to ‘proxy ungauged’ internal or neighboring catchments 

with in the study watershed. Transfer of calibrated parameters to another watershed in the 390 

region for prediction in ungauged basins (PUB) was not an objective in the present study due 

to limited number of catchments. In addition, study on the effects of landuse and climate change 
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was not an objective due to limited length of data.  The NSE and NSELn performance measures 

were used for evaluations as discussed earlier. We used the parameter sets among the whole 

calibration that correspond to maximum values of the  NSE  and NSELn  for comparisons of 395 

observed versus simulated hydrographs and to test temporal and spatial transferability of 

parameters with in the watershed.  

Different frameworks for assessment and quantification of parameter identifiability and 

uncertainty are available in literature (see Uhlenbrook et al., 1999; Wagener et al., 2006; 

Pechlivanidis et al., 2011; Vrugt and Ter Braak, 2011). Uhlenbrook et al. (1999) used plots of 400 

objective function versus the parameters and Vrugt and Ter Braak (2011) used plots of posterior 

density of the parameters to assess parameter identifiability and uncertainty. In this work, plots 

of posterior parameters versus corresponding log-likelihood (L-L) objective function and linear 

correlation coefficient matrix of the posterior parameters (Schoups and Vrugt, 2010; Moreda 

et al., 2006) were presented to express parameter identifiability and uncertainty. The DREAM 405 

calibration algorithm converges as the Gelman-Rubin convergence (Gelman and Rubin, 1992) 

comes below 1.2. Therefore, it is not prone to subjective fixing of the number of simulations, 

which is one of the limitations of the pure MonteCarlo calibration methods. Among the whole 

DREAM generated and evaluated parameter sets, we filtered the parameter vectors that are 

accepted by the DREAM algorithm. As discussed earlier, we used the last 50 % of the DREAM 410 

accepted marginal posteriors after the burn-in iterations for parameter identifiability and 

uncertainty.  

 

RESULTS 

Observed versus simulated streamflow hydrographs for Gaulfoss from parameter set 415 

corresponding to the maximum NSE are presented in Fig. 3a and Fig. 3b. Simulated baseflow 

from parameter set corresponding to the maximum NSE and NSELn performance measures are 
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presented in Fig. 3b and Fig. 3c respectively. The simulated base flow index (BFI) which is the 

ratio of simulated baseflow to the simulated streamflow are given in Table 4 for Gaulfoss and 

Eggafoss. For spatial and temporal validation of the model through transfer of calibrated 420 

parameters in space (among internal and neighboring catchments inside the Gaulfoss 

watershed) and also in time, maximum NSE/NSELn values for the calibrated catchments 

corresponding to the calibrated (optimal) parameter sets and the NSE/NSELn values obtained 

from transfer of the calibrated parameter sets to ‘proxy ungauged’ catchments are given in Table 

5.   425 

The observed and simulated streamflow hydrographs showed satisfactory agreements (Fig. 

3a and b for Gaulfoss) for three of the four catchments. For Gaulfoss, Eggafoss and Hugdal bru, 

the NSE/NSELn performance measures corresponding to the calibrated parameters range from 

0.68 to 0.87, the NSE/NSELn for spatially and spatio-temporally transferred parameters range 

from 0.65 to 0.84 and from 0.47 to 0.90 respectively (Table 5). The NSE values for the 430 

calibration period for Eggafoss could be raised to 0.70 (only by an order of 0.02) by choosing 

a higher Box-Cox transformation parameter (i.e. θ = 0.3 which is common in literature) rather 

than optimizing it. Low NSE performances for Eggafoss for the split sample tests may be 

attributed to the effects of unrepresentativeness or low quality hydro-climatic data for the 

validation period.  435 

For further comparative evaluations, reliability of predictions was presented for Gaulfoss in 

Fig. 4a to Fig. 4d in terms of quantile-quantile (QQ) plots to test the consistency of the 

predictive distribution and the observed data (Kavetski and Fenicia, 2011). We presented the 

QQ plots in terms of the empirical cumulative distribution functions (CDF) or probability of 

non-exceedance of the observed and simulated streamflow, and departures of the plots from the 440 

theoretical uniform distribution (i.e. the 1:1 diagonal line) indicate the discrepancy between the 

predictive distribution and the observed data (Fig. 4a to Fig. 4d). In addition, we further 
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evaluated the routines for their performance in simulating the temporal variability of 

streamflow in terms of flow duration curves, FDCs (Fig. 5).  

Table 5 shows the results of split-sample tests (temporal validation), ‘proxy ungauged’ basin 445 

test (spatial-validation) and spatio-temporal transfer of parameters among the four catchments 

in the Gaulfoss watershed. The DREAM calibrated parameter sets corresponding to the 

maximum NSE for the Gaulfoss catchment were validated for temporal, spatial and spatio-

temporal transferability. Spatial validation and spatio-temporal validation for Eggafossen and 

Hugdal bru (when parameters are transferred to Gaulfoss catchment) also performed well 450 

though temporal validation for Eggafossen resulted in less performances. Good quality 

streamflow data was available only from 2010 to 2011 for Hugdal bru catchment and hence we 

did not perform temporal validation for the catchment. But, calibration and temporal validation 

for the smallest catchment (Lillebudal bru) resulted in low performance measures. The spatio-

temporal transfer of calibrated parameters for Lillebudal bru provided better results for the NSE 455 

performance measures though it gave very poor performances for the NSELn (low flows). 

Lillebudal bru catchment is dominated by a mountainous topography (Fig. 1) where large 

portions of the catchment are at elevations above the climate stations from which data were 

used in the present study. In addition, the precipitation stations are far from Lillebudal 

catchment and hence their representativeness for spatially interpolated areal precipitation fields 460 

may be low. We also tested the effects of the quality of streamflow data for Lillebudal bru by 

calibrating the routines for the validation data (2010-2011) but the result showed no 

improvement in the calibration performances. Nevertheless, contingent on the quality and 

representativeness of input climate data, calibration of the conceptual HBV runoff response 

routines provided predictions which were validated by transferability of parameter sets in space 465 

and time to the internal (interior) and nearby ‘proxy ungauged’ catchments. 
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We presented the results of the DREAM log-likelihood calibration in terms of plots of 

posterior parameters versus the log-likelihood objective function in Fig. 6a-d for Gaulfoss to 

evaluate parameter identifiability from the last 50 % of the DREAM accepted parameter vectors 

after the burn-in iterations until the DREAM converges. The numbers of simulations (iterations) 470 

plotted are 3223 (Fig. 6a), 3411 (Fig. 6b), 2857 (Fig. 6c) and 914 (Fig. 6d) for the HBV-SMHI, 

HBV-Nonlinear, HBV-Soil Parsim R and HBV-Parsim respectively. Ranges of the prior and 

posterior parameters, and optimal parameters corresponding to maximum NSE and NSELn 

were given in Table 6. The linear correlation matrix among the posterior parameters in the soil-

moisture accounting and runoff response routines for Eggafoss catchment was presented in 475 

Table 7.    

 

DISCUSSION  

A comparative evaluation of parsimonious versus more complex configurations of distributed 

conceptual HBV response routines were performed in terms of prediction of different runoff 480 

‘signatures’ (hydrographs, flow duration curves and baseflow), spatial and temporal validation 

of the routines and parameter identifiability and uncertainty. The results indicated that there are 

only marginal differences among the total streamflow predictions by the parsimonious and 

more complex routines. It comply with the advantages of the ‘principle of parsimony’ which 

was illustrated by Jakeman and Hornberger (1993). However, by testing the internal simulation 485 

of the routines in terms of the baseflow, we could observe differences in performances among 

the routines in simulation of the baseflow contributions to the streamflow.  

Simulated hydrographs, baseflow, Q-Q plots and FDCs 

Plots of simulated streamflow hydrographs corresponding to the maximum NSE performance 

measure (Fig. 3a and Fig. 3b) versus the observed streamflow hydrograph indicated only 490 

marginal differences in the performances of the routines in terms of reproducing the time series 
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of streamflow. All the four cases of conceptualization of the routines gave low simulated 

streamflow (Qsim) compared to the observed streamflow (Qobs) during summer high flow 

events. The soil moisture routine parameters particularly influence the discharge volume and 

the fast flow routine parameters particularly affect the shape of the hydrograph and extreme 495 

discharges (Booij, 2005). Abebe et al. (2010) noted the field capacity (FC) as a dominant 

parameter affecting both high flow series and runoff volume. In the soil moisture accounting 

routine, the field capacity (FC) and the evapotranspiration threshold parameter (LP) control the 

amount of evapotranspiration while β controls partitioning of infiltration (I) in to recharge to 

upper reservoir (R) and change in soil moisture (ΔSM). At any relative saturation (SM/FC) of 500 

the soil moisture zone a larger proportion of the infiltrated water will replenish the soil moisture 

zone as β increases. However, the nonlinear effect of varying soil saturation become more 

pronounced for larger β and there is a rapid increase in the amount of infiltrated water that 

recharges the upper zone reservoir as relative saturation increases. But, the HBV-SMHI routine 

which has three free parameters in the soil moisture accounting routine (FC, LP and β) and also 505 

the very quick recession coefficient (k2) in the response routine shows no marked better 

performance for simulation of high flows during summers. Though it does not contain the very 

quick runoff component, the simulated peak flow from HBV-Parsim was indistinguishable 

from those of the other routines. These findings may indicate compensation effects among 

model parameters, the crucial importance of the quality of input precipitation data to improve 510 

simulation of peak events and the potential for equivalent performances of the parsimonious 

routines.  

The main reasons for lower simulated peak flow during summer periods may be attributed 

to less representativeness of the input precipitation data, particularly in capturing intense 

localized rainfall events. In addition, low quality streamflow data especially during flood events 515 

may contribute to the problem. The effect of Box-Cox transformation for simulation of high 
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flows was checked for Eggafoss catchment but only an increase of NSE values by 0.02 were 

obtained for θ = 0.3. The conceptual nature of the model structures could also be another 

explanation. Uncertainty due to parameter estimation and model structure alone cannot address 

the uncertainty in the prediction and hence assessments of uncertainties in the input data need 520 

to be included to improve decision making under uncertainty. 

Also, prediction based on the NSELn performance measure that gives higher weightage to 

the low flows are indistinguishable for the three configurations (Table 5). However, in terms of 

the quantity of simulated baseflow from the lower (ground water) reservoir, the HBV-Parsim 

provided considerably high contribution of baseflow (Fig. 3c and Fig. 3d) based on both 525 

performance measures compared to the HBV-SMHI, HBV-Nonlinear and HBV-Soil Parsim R. 

Simulated BFI corresponding to the maximum NSE/NSELn performance measures for the 

HBV-Parsim are 0.62/0.55 and 0.70/0.52 for Gaulfoss and Eggafoss respectively (Table 4). 

However, BFI values of greater than 0.8 were estimated from observed streamflow based on a 

Web based Hydrography Analysis Tool (WHAT) baseflow separation of the United States 530 

Geological Survey (Lim et al., 2005) but the validity of the filtering equations and parameters 

in ‘WHAT’ for the boreal catchments needs further study. Also, previous studies such as 

Beldring et al. (2000 and references therein) reported significant groundwater contribution to 

the total streamflow for boreal/humid-temperate catchments. Therefore, the HBV-Parsim 

presumably provided reliable simulation of baseflow but tailor-made study is required on 535 

suitable baseflow separation techniques (e.g. Willems, 2009) for the boreal catchments, which 

was not an objective in the present study.  

The HBV-Parsim and HBV-Soil Parsim R have similar linear storage-outflow and storage-

baseflow model structure in their response routines but differs in their soil-moisture accounting 

routines i.e. the latter is based on soil-moisture accounting routine of Bergström (1976). 540 

Therefore, the differences in the baseflow simulation results of the HBV-Parsim are most likely 
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related to its parsimonious parameterization of the soil-moisture accounting routine. Abebe et 

al. (2010) found the strong effects of the soil moisture accounting parameters on the runoff 

volume and the FC as a dominant parameter affecting both high flow series and runoff volume. 

The present study showed a strong negative correlation between the FC and percolation 545 

parameter, PERC (Table 7). The marked negative correlation between FC and PERC is due to 

a decrease in the recharge to the upper reservoir as FC increases or relative saturation decreases. 

Reduced recharge results in reduced percolation rate. This reduction in percolation rate in turn 

potentially decreases the baseflow contribution, which was observed for the three routines with 

the FC as a free calibration parameter. Samuel et al. (2012) based on the soil-moisture 550 

accounting routine of Bergström (1976) found that the configuration which is similar to the 

HBV-SMHI but with non-linear storage-discharge relationships in the lower reservoir 

outperformed for baseflow simulation than configurations which are the same as the HBV-

SMHI and HBV-Nonlinear. The authors used the Thornthwaite method for computation of 

potential evapotranspiration and the recursive digital filter for separation of baseflow from 555 

observed streamflow series (for comparison against the simulated baseflow) based on the 

assumption of filtering out high-frequency signals (quick flow) to separate low-frequency 

baseflow (Nathan and McMahon, 1990). 

The conceptual very quick flow from the upper outlet of the upper reservoir (QUZ2) for the 

HBV-SMHI corresponding to the optimal parameters for NSE and NSELn for Gaulfoss and 560 

Eggafoss range from 0.30 % to 17 % of the total simulated streamflow which showed slight 

exceedance of the threshold in the upper reservoir and small proportion of the very quick flow 

contributing to the total streamflow. Fig. 6 shows less identifiability of the threshold parameter 

(UZt) which may be related to its low sensitivity and hence its influence on the other parameters 

is not clearly observed. 565 
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The QQ plots for evaluating the reliability of prediction indicated significant over and under 

predictions from low to high ranges of streamflow that are indistinguishable among the three 

runoff response routines (Fig. 4a to d). There are also similar marginally different performances 

in prediction of flow duration curves (FDCs) which are mainly characterized by 

underestimation of high flows for all of the routines (Fig. 5). Therefore, further evaluations 570 

based on additional runoff ‘signature’ and reliability criteria also do not suggest any clear 

superiority of the more complex routines. 

Model validation (temporal, spatial and spatio-temporal) 

Testing if the distributed models that are calibrated with basin outlet streamflow information 

provide meaningful hydrologic simulation at internal catchments was one of the science 575 

question tested by the DMIP (Smith et al., 2004). In the present study, marginal better 

performances from transfer of parameters from Gaulfoss to its internal catchments Eggafoss 

and Hugdal bru were observed for the HBV-Nonlinear and HBV-Parsim routines (NSE from 

0.71 to 0.72 and NSELn from 0.76 to 0.84 in Table 5). Therefore, calibration results of the 

distributed routines indicated possibility for hourly prediction also at ungauged interior 580 

locations within the watershed through transfer of parameters. For some of the routines, 

equivalent or slight improvements in the NSE for the transferred parameter set from the 

watershed outlet (Gaulfoss) than the explicit local calibration at the interior locations of 

Eggafoss and Hugdal bru were occurred probably due to the differences in the 

representativeness of climate stations and hence the accuracy of areal precipitation, and the 585 

quality of streamflow data used for the model calibration. Both spatial transfer of parameter 

sets and explicit calibration performed poorly for the smallest catchment of Lillebudal bru 

especially for NSELn (gives weightage for simulation of low flow). Less performance in low 

flow may also indicate less performance in simulation of baseflow that may also suggest 
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problems with stage-discharge curve during low flows at Lillebudal and subsurface peculiarities 590 

of Lillebudal catchment in addition to the less representative precipitation input. 

Parameter identifiability and uncertainty  

Fig. 6b, Fig. 6c and Fig. 6d show maximum log-likelihood (L-L) objective function for narrow 

ranges of parameters of the HBV-Nonlinear, HBV-Soil Parsim R and HBV-Parsim response 

routines. There is better likelihood of obtaining narrow predictive uncertainty of streamflow 595 

from posterior parameters yielding narrow maximum objective function. However, for the 

HBV-SMHI with ten free parameters the posterior ranges of parameters in the threshold based 

non-linear upper reservoir k2 and UZt (Fig. 6a) are not much narrower than their corresponding 

ranges of uniform prior (Table 6) which indicate their poor identifiability. Uhlenbrook et al. 

(1999) attributed the non-identifiability of parameters to uncertainty in model parameters or 600 

lack of sensitivity of model output to the change in parameters. Therefore, prediction 

uncertainty of a response routine with insensitive and unidentifiable parameters is expected to 

be high.  

Narrower ranges of posterior parameters compared to the prior ranges for the HBV-Soil 

Parsim R and the HBV-Parsim compared to the others indicated less parameter uncertainty for 605 

the parsimonious runoff response routines (Table 6). For instance, for the HBV-Soil Parsim R 

routine for maximum NSE for the Gaulfoss catchment, the posteriors ranges of k1 (0.11-0.20), 

k0 (0.01-0.03) and PERC (0.65-3.37) were obtained. Also, for the HBV-Parsim routine for 

maximum NSE of the Gaulfoss catchment, the posterior ranges of k1 (0.12-0.25), k0 (0.03-0.04) 

and PERC (2.36-5.06) were obtained. The uniform prior ranges (Table 3) were k1 (0.001-1.5), 610 

k0 (0.0005-0.5) and PERC (0-6).  

Though the presupposed uniform priors overlap for the recession coefficients k1 and k0, the 

ranges of their DREAM calibrated posteriors do not overlap for the HBV-Soil Parsim R and 

HBV-Parsim and do not overlap significantly for the other routines. This indicated that the 
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DREAM calibration was able to constrain the model parameters to satisfy the conceptual 615 

representation of the quick runoff that is related to k1 and the slow base flow that is related to 

k0. From the pure Monte Carlo method (MC), Seibert (1997a) and Uhlenbrook et al. (1999) 

found an overlap in k1 and k0 for some MC generated parameter sets, which contradicts with 

the model conceptualization. Even if there is a slight overlap between calibrated posterior 

ranges of k2 and k1 for the HBV-SMHI and k1 and k0 for the HBV-Nonlinear, the parameter set 620 

corresponding to the maximum NSE and maximum NSELn comply with the conceptualization 

of very quick runoff corresponding to k2, quick runoff corresponding to k1 and slow baseflow 

corresponding to k0 or k2 > k1 > k0 (Table 6).  

The strong negative correlations between the FC and the PERC parameters (Table 7) shows 

the marked influence of parameterizations of the soil-moisture accounting on the runoff 625 

response parameters. As the FC increases, the relative saturation (SM/FC) decreases and hence 

the recharge decreases (based on the equation for the recharge in Table 2) which in turn reduces 

the percolation rate (related to the PERC parameter). For the HBV-Nonlinear, the negative 

correlations are more pronounced among the recession (drainage) coefficients and the non-

linearity exponents of the outflow and baseflow equations showing existence of strong 630 

compensation or interaction among the recession coefficients and the non-linearity parameters. 

But, the results indicated positive correlation between the FC and the upper reservoir non-

linearity coefficient. Generally, positive correlations were exhibited among the recession 

coefficient parameters and the PERC except for the HBV-SMHI, which showed very slight 

negative correlation between k0 and PERC. Increase in the k1 compensates for reduced storage 635 

in the upper reservoir as the PERC increases for simulation of outflow from the upper reservoir. 

Increase in PERC to increase the storage in the lower reservoir accompanied by an increase in 

k0 favors generation of baseflow according to the baseflow equation. 
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CONCLUSIONS 640 

We performed comparative evaluation of the four different configurations of the HBV runoff 

response routines (HBV-SMHI, HBV-Nonlinear, HBV-Soil Parsim R and HBV-Parsim). The 

results for the boreal catchments in mid Norway indicated that the parsimonious 

conceptualization (HBV-Parsim) with only five free parameters could extract the information 

content of the data efficiently with improved parameter identifiability. Also, better baseflow 645 

simulation were observed which complies with the high groundwater contribution to the 

streamflow for the study catchments as demonstrated in previous studies (Beldring et al., 2000) 

and as guided by the baseflow separation techniques in the present study.  

The findings of the study revealed the importance of comprehensive evaluation of 

parametrical parsimonious (i.e. small number of free parameters) simple linear storage-650 

discharge relationships and the more complex HBV based response routines. Further parsimony 

without compromising the quality of streamflow prediction could also be possible for snow free 

or snow non-dominated catchments by excluding the snow routine. However, the more complex 

routines with large number of reservoirs and parameters and linear and non-linear 

conceptualizations like the HBV-SMHI and HBV-Nonlinear may offer more flexibility for 655 

scientific research purposes (e.g. process understanding). However, increases in the numbers 

of parameters increases degrees of freedom and hence parameter unidentifiability problems, 

which in turn has, negative implications for predictive uncertainty for operational purposes.  

Usually only streamflow observation is readily available for parameter calibration, which is 

also usually the case for prediction for water management purposes. However, evaluations 660 

based on only the total streamflow is highly affected by the compensation and interacting effects 

among the storages and fluxes (outflows) of the upper and lower reservoirs. Therefore, the 

validity of the results of the conceptual HBV based routines need to be evaluated against their 

conceptualization. Reliable prediction by the conceptual HBV models calls for evaluation of 
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the internal simulation of the routines such as baseflow and possibly the soil-moisture state. For 665 

instance, the conceptualized simulated baseflow from the lower (ground water) reservoir should 

be compared against the baseflow estimated from other methods e.g. baseflow separation 

techniques. To this end, development of proper baseflow separation techniques for the 

catchments would be necessary to evaluate the baseflow simulation of the HBV based routines.  

The findings should provide new information for the HBV users and the hydrological 670 

modelling community regarding the performances of different configurations of the conceptual 

HBV model. Equivalent performances of the HBV-Parsim indicated a potential for application 

of parametrical parsimonious models, which would benefit model updating for forecasting 

purposes. Further evaluation of the routines based on larger number of catchments (e.g. regional 

modelling) and for different climate regimes (e.g. Lidén and Harlin, 2000), which requires 675 

availability of data and separate study, would be expected to provide further insights. 
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