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a b s t r a c t

The hydrogen solubility and permeation in Pd77%Ag23% membranes have been determined as a function
of temperature and membrane thickness. Unexpectedly, the solubility of hydrogen is found to system-
atically increase as the membrane thickness decreases from 11.2 to 2.2 mm. Topography studies by atomic
force microscopy in conjunction with previously reported characterization suggest linkage of the
hydrogen solubility to the density of grain boundaries. A higher average grain boundary density for
thinner membranes results from the nucleation and growth proceeding during membrane fabrication by
sputtering. For the membranes and conditions (no membrane pretreatment; 300–400 1C;
ΔpH2

r200 kPa) applied here, surface phenomena affect the hydrogen transport at thicknesses below
�5 mm. Determination of the solubility constants hence allowed the extraction of the bulk diffusivity
parameters from the permeability measurements over the thicker membranes (6.7–11.2 mm), in good
agreement with reported values obtained using other techniques.
& 2014 The Authors. Published by Elsevier B.V. This is an open access article under the CC BY-NC-ND

license (http://creativecommons.org/licenses/by-nc-nd/3.0/).

1. Introduction

Palladium-based membranes are able to separate hydrogen
from gaseous mixtures with high or perfect selectivity and high
permeability [1]. However, pure Pd is subject to the α-to-β phase
transition in the palladium–hydrogen system at To300 1C and
Po2 MPa, which causes the so-called hydrogen embrittlement.
This is suppressed by alloying with other metals [2,3]. Alloying
palladium with silver leads in addition to an increase of the
hydrogen permeability [3–5], with a maximum permeability at
approximately 23 wt% Ag [4].

Hydrogen permeation through a dense membrane generally
follows the solution-diffusion mechanism, where Fick's law of
diffusion describes the mass transport given by

JH2
¼ p

t
ðpn1�pn2Þ: ð1Þ

where P is the permeability of the membrane, t the thickness and
p1 and p2 the partial pressure of hydrogen on the high and low
pressure side of the membrane, respectively. The n-value is a

number between 0.5 and 1, depending on the transport limiting
step. The solution-diffusion mechanism defines the permeability
(P) as the product of the diffusivity (D) and the solubility or
Sieverts' constant (K) given by

P ¼DK ð2Þ
The diffusion of hydrogen is an activated process and the

diffusivity is hence given by

D¼D0expð�Ea=RTÞ: ð3Þ
Here, D0 is a pre-exponential factor, Ea is the activation energy for
diffusion, T is the temperature and R is the gas constant.

The solubility of hydrogen in palladium (Pd) and Pd-based alloys
can be described by Sieverts’ law, where the concentration of atomic
hydrogen in the metal is proportional to the square root of the
hydrogen partial pressure at constant temperature [6]. Dilute solu-
tion of hydrogen in the metal and no interactions between hydrogen
atoms are assumed. Burch and Francis [7] observed that deviations
from Sieverts' law in pure palladium occur at temperatures lower
than 250 1C and atomic ratios (H/Pd) of hydrogen to palladium above
0.006. According to Evans [8], Sieverts' law is not obeyed at high
pressure (413.33 kPa) as the concentration of absorbed hydrogen in
palladium increases. Validation of Sieverts' law has been shown at
low hydrogen content [6,8–10]. Both the solubility and the diffusivity
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of hydrogen in palladium depend on the temperature. While the
diffusivity is enhanced by increasing temperature, the solubility
decreases. Sieverts demonstrated that one volume of palladium is
able to absorb up to 800 atmospheric volumes of hydrogen at 20 1C,
while only 56 volumes at 140 1C [6]. The hydrogen solubility
increases with silver content and reaches a maximum at 20–40%
Ag [2,11–14], while the diffusion coefficient decreases [4,13,14]. The
simultaneous changes in solubility and diffusivity lead to a value of
permeability �1.7 times higher for alloys with 23 wt% of Ag than for
pure Pd at 350 1C [15,16]. Different measurement principles can be
applied to determine hydrogen solubility in palladium and its alloys
[17], of which volumetric [18–20] and gravimetric [21–23] absorp-
tion, sample dilation measurements [24] and electrical resistance
measurements [25] are a few examples. Flanagan and Oates [26]
reported a series of methods used to estimate diffusivity in the
palladium–hydrogen system.

The permeation through PdAg membranes is hence a combined
kinetic and thermodynamic property [13]. Given that thin, defect/
pinhole-free membranes can be manufactured, the picture becomes
further complicated at the point where surface phenomena affect
the transport, and even more so if the thin Pd membrane is
supported by a porous mechanical support material that may also
impose transport limitations. The Pd-alloy membrane fabrication
technique developed by SINTEF utilizing magnetron sputtering
[27,28] has enabled membrane investigations with thicknesses
down to 1 mm without defects, i.e. 100% selectivity, and in config-
urations where mass transfer limitations in the gas phase can be
largely reduced [29–31]. We have previously presented results that
indicate that the surface as well as the bulk microstructure and
composition of the Pd77%Ag23% membranes affect the permeation,
and that this may be affected by membrane treatment [32–35].
Previous investigations also indicate that – depending on the condi-
tions and the pre-treatment of the membrane – surface limitations
start to affect the permeation for thicknesses below �5 mm [36–39].
The so-called heat treatment in air, essentially an oxidation–reduc-
tion cycle of the surface to a �2 nm thick oxide [35], has been
demonstrated to enhance the hydrogen transport kinetics [19,20,
32–35,40–45] as well as to suppress the competitive adsorption of
CO [44]. The findings have been linked to segregation phenomena
[35,42,43,46] as well as roughening of the surface [19,32,35,47,48]
and removal of surface impurities [5,42,43,49], but are not fully
understood. However, the heat treatment in air is not expected to
affect hydrogen solubility in Pd–Ag membranes [19,20].

The aim of this work is to further disentangle the interplay
between the bulk solubility and diffusion and the surface phenom-
ena in thin Pd77%Ag23% membranes, taking into account also
structural properties. The solubility has been experimentally
obtained as a function of temperature, and for different membrane
thicknesses. Permeation measurements have been performed in a
microchannel configuration with insignificant limitations to the
mass transfer from the gas phase to the surface of the membrane
[29–31]. When applied jointly with solubility and characterization
data, this allows for an improved analysis of the phenomena
affecting the hydrogen transport.

2. Materials and methods

2.1. Membranes and hydrogen permeation

Pd77%Ag23% thin films were prepared at SINTEF by a unique
two-steps sputtering technique [27,28], to nominal thicknesses
ranging from 2.2 to 10.0 mm. The resulting thicknesses of the
samples were measured by white-light interferometry. The thin
films were peeled off the Si substrate wafer applied during
sputtering and sealed in a microchannel configuration made of a

polished stainless steel feed housing with seven parallel channels,
a stainless steel permeate housing, and a polished stainless steel
plate [29]. The steel plate had apertures for gas flow corresponding
to a total active surface area of 0.91 cm2, determined by the feed
housing geometry. The membrane growth side from the sputter-
ing process was always placed facing the feed housing of the
apparatus, while the side that faced the substrate always faced the
permeate side. The permeation measurements were performed at
300, 350 and 400 1C. 300 1C was reached by ramping at 2 1C/min
under nitrogen (purity 99.999%) flow on the feed side and argon
(purity 99.999%) on the permeate. No sweep gas was used during
hydrogen (purity 99.999%) permeation tests. The permeate side
was kept at atmospheric pressure while a differential pressure was
applied reaching a maximum of 200 kPa. Permeate flow was
measured accurately by using a film flow meter. A Micro-GC
(Agilent) was applied to check for potential failure/leakage by
feeding N2 and using Ar permeate sweep. No experiments or
membranes indicative of N2 leakage have been included in the
results.

2.2. Characterization

Equilibrium sorption measurements were carried out using an
ASAP 2020 Chemisorption Analyzer (Micromeritics Instrument Cor-
poration). Prior to any sorption measurement, a degassing procedure
was performed in order to clean the sample surfaces from unwanted
species. Following heating under He and evacuation, volumetric
hydrogen sorption measurements were performed applying hydro-
gen pressures from 0.02 to 90.7 kPa. Hydrogen was always intro-
duced to the system at 300 1C. In every measurement a sample mass
close to 0.1 g (Mettler Toledo XA204 Delta Range Analytical Balance)
of the as-grown PdAg film peeled off the substrate was used. The
sorption measurements were carried out twice for each sample at
each temperature: 300, 350 and 400 1C. Samples with thicknesses in
the range 2.2–11.2 mm were investigated. The weight of the mem-
branes was carefully checked after each sorption experiment, since
the degassing procedure can cause a reduction in the mass. This
sample weight was used to calculate the adsorbed volume of
hydrogen per mass unit.

Atomic force microscopy (AFM) imaging was carried out using a
Bruker Multimode AFM instrument with a Veeco Multimode con-
troller in tapping mode under atmospheric conditions. The surface
topography was investigated for both the growth/feed side and the
substrate/permeate side of as-grown samples. At least five areas at
different locations on the surface for each sample were imaged. The
first flattening order command, provided by the Nanoscope Software
(Version 7.2, by Veeco), was performed in order to remove tilt and
noise from all images. The surface topography was quantified by
determining the root mean square roughness (Rq) from the recorded
images.

3. Results and discussion

3.1. Hydrogen solubility

A representative example of the measured equilibrium hydrogen
sorption isotherms is shown in Fig. 1 for the 6.9 mm thick membrane.
Linear fitting including pressure points below �200 Pa0.5 only, where
Sieverts' law is mainly valid [8], was performed to obtain Sieverts'
constant from the data. As shown (Fig. 1), there is little deviation
between the two consecutive isotherms taken at each temperature,
indicating negligible contributions from irreversible adsorption. Sie-
verts' constants of the Pd77%Ag23% thin films as a function of the film
thickness are shown in Fig. 2 for different temperatures. The solubility
always decreases with increasing temperature and shows similar
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temperature dependence for all membrane thicknesses. The differ-
ence in Sieverts' constant is always larger in the temperature range
300–350 1C than 350–400 1C, in accordance with the thermodynamic
temperature dependency of the hydrogen solubility.

More unexpectedly, however, Fig. 2 shows that the hydrogen
solubility consistently decreases with increasing membrane thick-
ness. Solubility as an intrinsic material property should not depend
on thickness, and the experiment was therefore repeated several
times and with different samples. Although minor differences in
Sieverts' constants were observed, the overall trend was always
reproduced. Variations in hydrogen solubility in the Pd–Ag alloy
membranes may be related to thickness dependent changes in the
grain structure. Salomons et al. [21] attributed the enhancement of
solubility in thin Pd-films to a strong influence of grain boundaries
and increase of interface to volume ratio. The hydrogen uptake in
palladium is also previously reported as dependent on the degree of
crystallinity in the material [50–53]. Comparing nano-crystalline
samples with average grain size 8–12 nm with polycrystalline Pd
with average grain size of 20 mm, Mütschele and Kirchheim [51,52]
found that the hydrogen solubility in palladium depended on the
grain boundary density, but with opposite effects for the α (increase)
and β phase (decrease). Not only grain boundaries can affect
hydrogen solubility but also other lattice defects such as voids,
vacancies, dislocations and impurity atoms. Flanagan et al. [54]

suggested that deviations from Sieverts' law observed in their study
could be attributed to hydrogen segregation in dislocations and
vacancies. Moreover, going from the α to the β hydride phase (and
vice versa) can also increase solubility [55], and this has been related
to the large density of dislocations that the transformation generates
[56,57]. The two-step sputtering technique used to obtain the Pd77%
Ag23% membranes tested in this work avoids the presence of most
potential contaminants, and analysis has confirmed the purity
[27,28,34,35]. It is thus believed that impurities are not involved in
the solubility variations found in the present work. Moreover, the
composition (Pd–Ag) and experimental conditions applied have
been chosen so as to avoid the phase transition. It has been
established, however, that edge and screw dislocations are asso-
ciated with the growth of the sputtered PgAg films, with twin
lamellae present in the – mainly [111]-oriented – grains, but their
dependency on grain size was not obtained [58]. Finally, it should be
noted that our values for Sieverts' constant obtained for the 11.2 mm
membranes compare reasonably well to values obtained for even
thicker, typically cold-rolled, membranes [13,20,59]. The different
reports are given for comparable, but not exactly similar, composi-
tions and temperatures, and in addition there seem to be minor
variations reflecting e.g. structural differences. Nevertheless, our
values obtained for the thinnest membranes seem consistently
10–30% higher.

In an effort to link the grain structure of the Pd77%Ag23% thin
films to the measured solubility, atomic force microscopy (AFM)
imaging was used. The topography studies show an increase in the
surface roughness on the growth side as the thickness increases
for as-grown thin films (Fig. 3). The substrate side is very smooth
and characterized by small grains, as reported in Table 1. Increased
roughness on the growth side with growing membrane thickness
has already been reported for sputtered membranes similar to
those applied here [32,35]. Images of the substrate side were
previously not reported in literature due to the resolution limita-
tions imposed by the equipment available at the time [32,35]. This
was possible with the current AFM, and an image representative of
the substrate side for all the samples is shown in Fig. 3(a).

Surface roughness can be associated with grain size; the larger
the grains present in the film, the rougher the surface [60]. In
consistence, Tucho et al. [34] measured grain size variations in
similar, sputtered Pd77%Ag23% films using X-ray diffraction (XRD)
and transmission electron microscopy (TEM). The grain sizes
measured by TEM were obtained from cross-section samples at
about 0.1–0.2 mm below the surface. The region near the substrate
was characterized by small grains around 12–18 nm. The region
near the growth side had larger grains. The grains were larger for
the 10 mm film compared to the 5 mm film, with average grain sizes
of 100 [34] and 76 nm, respectively [61].

The grain structure of the sputtered films reflects the growth
process. Under the sputtering conditions applied, the nucleation
density on the Si wafer substrate is high, and the smooth nature of
the wafer surface also affects the resulting roughness on the
substrate side. As more material is deposited, some grains grow
while others are terminated and covered. The result is a grain size
gradient extending from the substrate interface into the film, with
elongated grains of preferential orientation along the [111] direc-
tion. This is schematically illustrated in Fig. 4. As a result, the
average grain size increases with the thickness while the average
density of grain boundaries decreases. There may exist a thickness
after which further grain growth does not occur, but the average
values will be affected somewhat beyond this thickness.

3.2. Hydrogen transport kinetics

The permeabilities obtained from the flux measurements, assum-
ing n¼0.5, are given in Table 2. These are in good agreement with

Fig. 1. Equilibrium hydrogen isotherms for a Pd77%Ag23% sample of 6.9 mm
thickness. Experiments were done twice at each temperature of 300, 350 and
400 1C. Linear fits for the range up to 33.7 kPa are also shown (dotted lines).

Fig. 2. Sieverts' constants as a function of the thickness of the Pd77%Ag23% thin
film membranes for different temperatures.
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values obtained for similarly prepared Pd77%Ag23% membranes not
subjected to oxidation under air at elevated temperature or other
pretreatment [32,33,45]. Eqs. (1) and (2) were combined to analyze
the effect of thickness and temperature on the kinetics. Fig. 5 shows
the measured permeances (P/t, Eq. (1)) divided by the correspon-
ding solubility (Sieverts) constants against the inverse thickness,

applying a density of 11.674 g/cm3 for Pd77%Ag23%. It shows that the
diffusivity/thickness (P/Kt) systematically increases with temperature
as expected. It also shows a reasonably linear dependence with 1/T
for the thicknesses from 11.2 to 6.9 mm, indicating that bulk diffusion
is controlling the transport. This is, however, not the case for the
thinner membranes –with the leveling off of the values being a clear
indication of surface phenomena becoming controlling. Through
modeling, Ward and Dao predicted that hydrogen permeation
through Pd membranes was bulk diffusion limited above �573 K
and membrane thicknesses down to about 1 mm, whereas desorption
became the limiting process for lower temperatures and/or thick-
nesses [62]. As discussed in Section 1, previous experimental findings
show that the critical thickness for the transition between surface
and bulk limited transport also depends on the pretreatment and the
conditions [33,35–39].

Fig. 3. Representative AFM topographic images as-grown Pd77%Ag23% films. (a) 1�1 mm2 scan area of the substrate/permeate side; (b)–(f) 5�5 mm2 scan areas from the
growth/feed side of film thickness: (b) 2.2; (c) 4.7; (d) 6.9; (e) 8.5; and (f) 11.2 mm. (a) is obtained from the 2.2 mm thick sample, but representative of the substrate side of all
thicknesses.

Table 1
Root mean surface roughness for the as-grown thin film membranes as obtained
from analyzing the recorded AFM images.

Samples thickness (mm) Roughness (nm)

Growth/feeda Substrate/permeateb

2.2 8.470.3 0.2970.02
4.7 10.770.6 0.1970.01
6.9 11.871.6 0.3870.04
8.5 10.270.6 0.4070.03
11.2 13.272.3 0.2170.01

a Based on 5�5 mm2 scan areas.
b Based on 1�1 mm2 scan areas.

Fig. 4. Schematic illustration of the grain distribution of thin Pd–Ag films grown on
silicon as resulting from the magnetron sputtering.

Table 2
Permeabilities for the different Pd77%Ag23% thin film membranes as measured at
300, 350, and 400 1C.

Thickness (mm) Permeability (10�8 mol m m�2 s�1 Pa0.5)

300 1C 350 1C 400 1C

2.2 1.1 1.2 1.5
4.7 1.7 1.7 1.8
6.9 2.2 2.2 2.3
8.5 2.1 2.1 2.2
11.2 2.0 2.0 2.1
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The applicability of Eqs. (1) and (2) must hence be considered,
since, the flux can no longer be assumed proportional to the difference
between the square root of the partial pressures, i.e. n¼0.5 (1). In
principle, surface kinetic control should be associated with n¼1, but
many investigations find n-values between 0.5 and 1, indicating that
the transport mechanism is more complicated, see e.g. [63,64] and
references cited therein. In addition, precise determination of the
n-dependence by fitting of experimental data has been shown to
require a wide differential pressure range [29,45]. The diffusivities
calculated using Eq. (2) were therefore plotted as a function of inverse
temperature to obtain the diffusivity constant and the activation
energy according to Eq. (3)) for the three higher thicknesses only.
The result is given in Fig. 6 and Table 3. D0 in the range 1–
2�10�7 m2/s and Ea�19 kJ/mol are in good agreement with values
of diffusivity reported by Holleck [13] for a thick (between 0.08 and
0.20 cm) Pd80%Ag20% membrane.

Whether the density of grain boundaries affect the diffusivity
should be evaluated based on bulk-limited permeance data, i.e. in
the thickness range 45 mm for the membranes and conditions
applied here. If the above explanation on the thickness dependence
of the solubility is adopted, our results indicate little or no effect of
the grain boundary density on the transport. The literature is
somewhat inconclusive with respect to the effect of grain boundaries
and other lattice defects on the kinetics [51,65–67], likely reflecting
the large microstructural variations possible in polycrystalline palla-
dium and PdAg alloys. Mütschele and Kirchheim [51] reported values
of the hydrogen diffusion coefficient in a single crystal Pd sample
and in nano-crystalline Pd. The diffusivity of hydrogen in the Pd
single crystal was independent of the hydrogen concentration.
However, in the nano-crystalline Pd-sample, the hydrogen diffusivity
changed with the hydrogen concentration in the material, i.e.
increasing hydrogen pressure. Li and Cheng [69] attributed a
decrease of the hydrogen diffusivity in very thin, pure Pd films
relative to bulk Pd foil to lattice defects at grain boundaries. These
experiments were conducted in a solution using electrochemical
stripping at room temperature, and they also observed decreased
solubility by electrochemical cycling. Comparing the present results
to pure Pd investigations is complicated by the differences in phase
behavior. The membrane micro- and nanostructures, as well as the
purity and homogeneity of the alloy composition, are strongly
affected by the membrane/film fabrication. In this respect, sputter-
ing/evaporation, arc melting-cold rolling, and wet chemical techni-
ques such as electroless plating are very different.

The sputtering applied here results in pure and dense mem-
branes of homogeneous bulk composition [68–70], highly suitable
for detailed investigations of how the structure affects the mem-
brane properties. The film nucleation and growth scheme produces,
however, a gradient with respect to grain size across the thickness of
the film. Systematic variation of thickness in the range 2.2–11 mm
thus renders a variation in the average grain boundary density that
possibly leads to variations in the thermodynamic properties. Care-
ful solubility measurements were required to pick up this effect. The
study envisages that such variations need to be addressed in order to
increase the precision in transport kinetics analysis.

4. Conclusions

The solubility of hydrogen in sputtered Pd–Ag thin membranes
shows an increase with decreasing membrane thickness. In addi-
tion, the hydrogen permeability exhibits variations with mem-
brane thickness. This may be accounted for mainly by surface
limitations when the thickness decreases below 5 mm, while the
changes in permeability for the thicker membranes result from
differences in hydrogen solubility rather than hydrogen diffusivity.
The systematic variation in solubility may be related to gradients
in grain size over the sputtered Pd–Ag thin films, with a larger
fraction of smaller grains and higher average density of grain
boundaries as the thickness is reduced.
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