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ABSTRACT 

BACKGROUND: Diffusion-weighted MRI (DWI) is currently one of the fastest 

developing MRI-based techniques in oncology. Histogram properties from model fitting 

of DWI are useful features for differentiation of lesions, and classification can potentially 

be improved by machine learning.   

PURPOSE: To evaluate classification of malignant and benign tumors and breast 

cancer subtypes using Support Vector Machine (SVM). 

STUDY TYPE: Prospective. 

SUBJECTS: Fifty-one patients with benign (n=23) and malignant (n=28) breast tumors 

(26 ER+ whereof 6 were HER2+).  

FIELD STRENGTH/SEQUENCE: Patients were imaged with DW-MRI (3T) using twice 

refocused SE-EPI with TE/TR=9000/86ms, 90x90 matrix size, 2x2mm in-plane 

resolution, 2.5mm slice thickness, and 13 b-values.   

ASSESSMENT: Apparent Diffusion Coefficient (ADC), Relative Enhanced Diffusivity 

(RED) and the Intravoxel Incoherent Motion (IVIM) parameters diffusivity (D), pseudo-

diffusivity (D*) and perfusion fraction (f) were calculated. The histogram properties 

(median, mean, standard deviation, skewness, kurtosis) were used as features in SVM 

(10-fold cross-validation) for differentiation of lesions and subtyping.  

STATISTICAL TESTS: Accuracies of the SVM classifications were calculated to find 

the combination of features with highest prediction accuracy. Mann-Whitney tests were 

performed for univariate comparisons.   
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RESULTS: For benign versus malignant tumors, univariate analysis found 11 histogram 

properties to be significant differentiators. Using SVM, highest accuracy (0.96) was 

achieved from a single feature (mean of RED), or from 3 feature-combinations of IVIM 

or ADC. Combining features from all models gave perfect classification. No single 

feature predicted HER2 status of ER+ tumors (univariate or SVM), although high 

accuracy (0.90) was achieved with SVM combining several features. Importantly, these 

features had to include higher order statistics (kurtosis and skewness), indicating the 

importance to account for heterogeneity.  

DATA CONCLUSION: Our findings suggest that SVM, using features from a 

combination of diffusion models, improves prediction accuracy for differentiation of 

benign versus malignant breast tumors, and may further assist in subtyping of breast 

cancer.  

Keywords: Breast MR; Diffusion weighted MRI; Intravoxel incoherent motion; Support 

vector machine; Tumor heterogeneity; Prognostic factors 
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INTRODUCTION 

Diffusion-Weighted Magnetic Resonance Imaging (DW-MRI) [1] is sensitive to the 

random motion of water molecules. In the case of Gaussian, or free diffusion, the DW-

MRI signal can be appropriately modelled as a mono-exponential decay that is a 

function of the degree of applied diffusion weighting (b-value) and the diffusion 

coefficient. In cases of non-Gaussian diffusion, the mono-exponential model is 

commonly applied to data arising from application of two or more low and medium b-

values, providing the measure of an apparent diffusion coefficient (ADC) that is 

influenced by number and choice of b-values [2].  

It has been shown that ADC is able to detect cancerous tissue in breast, with reduced 

ADC being associated with malignant tumors [3-5]. The micro-structural origin of this 

effect is commonly attributed to increased cellular density and decreased extracellular 

matrix in cancer tissue compared to healthy fibroglandular tissue and benign lesions [3, 

6]. 

At low b-values (<50 s/mm2), DW-MRI signal attenuation may also reflect blood flow in 

randomly-oriented capillaries, with this component having a pseduo-diffusion coefficient 

similar to that observed for true diffusion effects, but approximately one order of 

magnitude higher [7]. The bi-exponential intra-voxel incoherent motion (IVIM) [7] model 

is formulated to capture the combined effect of microcirculation (perfusion, f and D*) in 

capillaries alongside conventional true diffusivity (D), and has been successfully applied 

to breast cancer [8, 9], providing accurate identification of malignant lesions. 

Relative Enhanced Diffusivity (RED) [10] was recently introduced as a new approach in 

classification of breast lesions using DW-MRI data. RED is sensitive both to diffusion 
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and microcirculation, and has been shown to correlate with early enhancement in 

Dynamic Contrast Enhanced (DCE) MRI, an indicator of high perfusion within the lesion 

[10]. Compared with IVIM, RED is a simpler approach, requiring fewer b-values and 

thereby less data and faster to acquisition. This is at the cost of not providing 

quantitative biophysical parameters like the pseudo-diffusion (D*) coefficient or pseudo-

diffusion fraction (f), i.e., it does not strictly separate microvasculature induced diffusion 

from true diffusion. 

While it is common to report the median/mean value of derived model parameters [11, 

12] as measured across a region of interest (ROI), more detailed information can 

potentially be obtained from analysis of the parameter histograms [13]. These additional 

metrics provide greater insight into heterogeneity of tumors, which is important for the 

optimal planning of treatment [14]. MRI histogram features have already been 

associated with known prognostic factors for treatment outcome, including estrogen 

receptor (ER), progesterone receptor (PR) and human epidermal growth factor receptor 

2 (HER2) status [15].  

Breast cancer is one of the few cancer types in which molecular classification (ER, PR, 

HER2) has successfully been used for the design of individualized therapies, leading to 

significant improvements in survival [16, 17]. The current method for determining the 

molecular subtype, however, currently requires invasive biopsies for histologic 

evaluation. Access to non-invasive prognostic and diagnostic factors derived from DW-

MRI would further improve the treatment of breast cancer.   

In addition to simple summary statistics, combining features from different MRI models 

can lead to improved diagnostic classification compared to single metrics or models [18, 
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19]. For such purposes it is common to use a machine learning approach, such as 

Support Vector Machine (SVM) [20]. SVM has been used for prediction in breast cancer 

classification [18, 19, 21], and showed the highest prediction accuracy among other 

machine learning methods.  

The study aimed to establish whether the performance of DW-MRI can be improved 

using SVM with a combination of diffusion-derived parameters, specifically to 

differentiate malignant from benign tumors, and further to predict the HER2 status in ER 

positive breast cancer. 

MATERIALS AND METHODS 

Patient Cohort 

The study was approved by the Regional Committee for Medical and Health Research 

Ethics (REK Central Norway, 2011/568). All patients gave written informed consent prior 

to enrolment. The recruitment of patients for this study started in October 2013 and 

ended in August 2016.  

Following MR examination, patients with malignant tumors underwent surgery and 

histopathologic analysis was performed on the resected mass. ER status was classified 

as positive if ≥ 1 % of the cells were stained positive [22]. HER2 status was assessed 

by fluorescence in situ hybridization and classified as positive if the HER2 gene to 

chromosome ratio was ≥ 2.0 [23]. Categorization of benign tumors was done by 

histopathologic analysis on core needle biopsies or on resected tissue if the tumor was 

surgically removed. For benign lesions where biopsy was not requested by the 

radiologist, diagnosis was based on the patient history, which included either 
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radiographic mammography, ultrasonography, or a previous clinical MR examination 

with at least 6 months’ follow-up at the time of recruitment. MR was performed on 61 

patients; 10 datasets were excluded from analysis (7 non-successful motion correction 

and 3 had Nyquist ghosting artefacts), giving 51 cases in total. Where multiple lesions 

were present in the same breast, the largest was selected for analysis.  

Of the 51 patients, 23 tumors were classified as benign and 28 as malignant. Most of 

the patients with malignant tumors were ER+ (N=26) and these were used for the 

classification of HER2 status, whereof 6 were HER2+ and 20 HER2- cases. Clinical 

data is reported in Table 1. A subset of thirty four out of the 51 patients analyzed in this 

study were previously reported in a study by Teruel et al. where the RED parameter 

was presented for the first time [10]. 

MRI Protocols 

Patients were imaged with a 3T scanner (Skyra, Siemens Healthcare, Erlangen, 

Germany) equipped with a 16-channel breast coil (16-channel AI Breast Coil, Siemens 

Healthcare, Erlangen, Germany).  

Fat-suppressed (n=17 FatSat and n=34 SPAIR) unilateral sagittal DWI was acquired 

using a twice-refocused spin-echo echo-planar imaging sequence with: repetition time 

(TR) 9000ms, echo time (TE) 86ms 90x90 matrix, 2x2mm in-plane resolution, slice 

thickness 2.5mm, 60 slices, generalized auto-calibrating partially parallel acquisition 

(GRAPPA) factor 2 and 13 b-values: 0, 10, 20, 30, 40, 50, 70, 90, 120, 150, 200, 400, 

700s/mm2 in six (n=18 (7 benign, 8 ER+HER2-, 1 ER+HER2+ and 2 ER-PR-HER2+), 

scan time 11 minutes) or three (n=33 (16 benign, 12 ER+HER2- and 5 ER+HER2+), 
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scan time 6 minutes) directions. The protocol included one additional geometry-

matched, non-diffusion-weighted (b=0s/mm2) series with reversed phase-encoding 

direction for implementation of distortion correction arising from susceptibility 

boundaries [24]. Twice-refocused diffusion encoding scheme was chosen to minimize 

eddy current effects [25].The patients also underwent dynamic contrast enhanced 

(DCE) MRI. DCE scans consisted of 3D, T1 weighted, non-fat suppressed, gradient 

echo sequence (TR/TE 5.82/2.18, flip angle 15%, 256x256 matrix, in-plane resolution 

0.7x0.7mm, slice thickness 2.5mm) acquisitions, collected pre-contrast, and at 7 

consecutive time points (with temporal resolution of 1min) after administration of 

contrast agent. The DCE MR images were used for guidance of region of interest (ROI) 

selection in the DWI images.  

For T2 weighted images, non-fat suppressed 2D turbo spin echo was performed, with 

TR/TE 5500/118ms, 256x256 matrix in-plane resolution 0.7x0.7mm, and slice thickness 

2.5mm.  

 

Data Analysis 

Preprocessing 

The processing workflow is presented in Figure 1; Before statistical analyses and 

machine learning, images were corrected for geometric distortion using the phase-

reversed b=0s/mm2 acquisition, using the method described by Holland et al [26] and 

proved for breast applications by Teruel et al [24]. In the case of displayed obvious 

patient motion, three-dimensional rigid co-registration using a normalized cross-
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correlation metric was performed [27] coregistering all raw images to the corresponding 

b0 image. Following distortion and/or motion corrections, trace images were calculated 

and lesions were segmented in 3 dimensions on the largest b-value DW-MRI 

(700s/mm2) with reference to DCE images. ROIs were drawn by a basic scientist (I.V. 

with 2 years of experience in breast imaging) advised by a breast radiologist (A.Ø., with 

20 years of experience). 

Diffusion Models 

ADC was calculated by fitting (Trust-Region method) the mono-exponential decay for 

the signal at b-values of 200, 400, and 700s/mm2: 

𝑆(𝑏)

𝑆(𝑏 = 200)
= 𝑒−(𝑏−200)∙𝐴𝐷𝐶 

The RED parameter presents relative increase in ADC for lower b-values compared to 

the medium b-value range. It was calculated using the formulation by Teruel et al[10]: 

𝑅𝐸𝐷 =
𝐴𝐷𝐶𝑏0,𝑏1 − 𝐴𝐷𝐶𝑏1,𝑏2

𝐴𝐷𝐶𝑏1,𝑏2
 

Where b0, b1, and b2 are 0, 200 and 700 s/mm2, respectively.    

The IVIM parameters true diffusivity (D), pseudodiffusion fraction (f), and 

pseudodiffusivity (D*) were calculated from the bi-exponential IVIM model [7]: 

𝑆𝑏
𝑆0

= (1 − 𝑓) ∙ 𝑒−𝑏∙𝐷 + 𝑓 ∙ 𝑒−𝑏(𝐷+𝐷
∗) 

Since it can be assumed that the contribution to the signal coming from blood flow is 

negligible for b>200s/mm2, fitting was performed using the segmented approach [8]; D 

was calculated from the monoexponential decay for the b-values higher than 200s/mm2 
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(400 and 700s/mm2). The zero intercept (Sint) of that monoexponential decay was used 

for estimation of the pseudodiffusion fraction parameter f: 

f =
S(b = 0) − 𝑆𝑖𝑛𝑡

S(b = 0)
 

Finally, D* was calculated by constrained (0-100µm2/ms) Trust-region fitting to the bi-

exponential IVIM equation fixing these values for D and f.  

The distortion and motion corrections were performed using the preprocessing 

algorithm provided in the Computational Morphometry Toolkit (CMTK, SRI International, 

Menlo Park, CA). Image analysis and fitting were performed using in-house developed 

scripts in Matlab (2014a Mathworks, Natick).  

Statistical Analysis 

For each 3D ROI, voxel-wise fitting for ADC, RED and IVIM was performed to provide 

parameter maps of the tumors. For each of these parameters (ADC, RED, and D, f and 

D* from IVIM), the mean, standard deviation, median, skewness, and kurtosis were 

calculated, giving 5 features for each of the 5 parameters and thus a total of 25 features 

for the machine learning analysis (Figure 1). 

To utilize these features, the support vector machine architecture [20] was employed as 

shown schematically in Figure 2. The radial basis function was chosen as kernel, with 

kernel size (γ) and regularization parameter (C). Kernel size (γ) determines the range of 

influence of samples selected by the model as support vectors, while the regularization 

parameter (C) determines the number of selected support vectors, defining the 

complexity (smoothness) of the decision surface. A grid search over all possible 
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combinations of γ and C, within a preselected range of values (γ, C ∈ [0.01, 0.1, 0.2, 

0.4, 0.8, 1.6, 3.2, 6.4, 12.8, 25.6]), was done to find the best combination of γ and C 

providing highest accuracy. All the features were standardized around mean zero and 

unit variance prior to grid search. To prevent possible overfitting with leave one out 

cross validation [28], the accuracy of the prediction was evaluated through a 10-fold 

cross validation scheme. The data was randomly divided in 10 equally sized subsets, of 

which 9 were used for training and the remaining one for testing. The mean accuracy 

after 10 repetitions was used to evaluate the prognostic capabilities of the selected 

variables.  

The mean accuracy over 10 repetitions was calculated for all possible combinations of 

features to find the combination of features with the highest prediction accuracy. 

Comparison between groups (benign vs malignant, and ER+HER2- vs ER+HER2+) for 

selected features was done using the Mann-Whitney test with Bonferroni correction. 

The Mann Whitney test was performed in Matlab (2014a Mathworks, Natick), while SVM 

was implemented in Python programming language (version 3.6, Python Software 

Foundation, https://www.python.org/ ) using the scikit-learn library [29].  

RESULTS 

Figure 3 shows parametric maps from two patients with benign and malignant tumors, 

respectively.  

Feature Selection 

https://www.python.org/
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For all models, it was found that including more than 4 features for the SVM analysis 

failed to increase the 10-fold prediction accuracy, and in some cases decreased it 

(Figure 4).   

Prediction of Benign vs Malignant tumors 

Default accuracy by arbitrarily assigning all tumors as malignant is 0.55 (28/51) (red 

dashed line, Figure 4). Single feature accuracy from SVM with 10-fold cross-validation, 

as well as p-values obtained from univariate analysis are presented in Table 4. 

For ADC model features, 10-fold accuracy of 0.92 was achieved by using either 

ADCmean or ADCmedian (Table 2). By combining two ADC features (multiple combinations 

possible, see Table 3) the accuracy increased to 0.94. The best accuracy (0.96) for 

ADC alone was obtained when combining 3 features (Table 2). 

For IVIM model features, Dmean had the highest accuracy of 0.883, and the accuracy 

increased to 0.94 by combining either Dmean or Dmedian with one of D*mean, D*kurtosis, or 

fmean. Highest accuracy for IVIM model was achieved by using 3 features: Dmean or 

Dmedian with D*median and fkurtosis. 

REDmean alone achieved 0.96, and increasing the number of features failed to an 

increase accuracy.  

When allowing combinations of features from all models simultaneously, an accuracy of 

0.96 was achieved by combining 2 features (Table 2). The accuracy increased to 0.98 

when combining 3 features. Finally, perfect predictive accuracy (1.0) was reached using 

4 features combined. This combination included of REDmedian, ADCstd, D*std with 

ADCkurtosis, Dkurtosis or D*median.  
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Prediction of ER+HER2- vs ER+HER2+ Tumors 

Default accuracy by assigning all cases as ER+HER2- is 0.77 (20/26) (red dashed line, 

Figure 4). Single feature accuracy from SVM with10-fold cross-validation, as well as p-

values obtained from univariate analysis are presented in Table 5. 

The most accurate single feature from the ADC model was ADCkurtosis with an accuracy 

of 0.8 (Table 3). The accuracy increased to 0.817 by combining ADCkurtosis with either 

ADCmedian or ADCmean. 

For IVIM the single most accurate feature was D*std (0.767), and the accuracy increased 

to 0.8 using two features (multiple combinations possible, see Table 3). Again, a further 

increase in accuracy (0.817) was observed when using combinations of 3 features 

(D*mean, fmean, and fskewness). 

REDstd alone gave an accuracy of 0.717. By combining it with REDskewness the accuracy 

increased to 0.8. By further adding REDmedian into the combination, accuracy of 0.85 

was achieved. 

When allowing combinations of features from all models, an accuracy of 0.85 was 

achieved by several combinations of 2 features (see Table 3), while 4 features provided 

the best predictive power of 0.9 for ER+HER2- and ER+HER2+ (Table35, multiple 

combinations possible). 

DISCUSSION 

There is already considerable evidence in the literature of the ability of ADC to 

differentiate between benign and malignant breast lesions [3, 5, 8, 10, 30]. Commonly, 

ROI mean or median value is the single feature used for classification. The results from 
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the current study show that adopting a machine learning approach including higher 

order statistical features from the ROI increases the classification accuracy of the ADC 

model. This indicates that the spatial distribution of ADC holds additional information on 

tumor heterogeneity relevant for the classification of malignancy, in agreement with 

previous studies [31]. Perfusion characteristics are known to be relevant for 

differentiation of malign and benign lesions [8, 9], and they improve accuracy compared 

to using only diffusion characteristics where only first order statistics are considered. In 

this work the IVIM model, which contains information about perfusion in addition to 

diffusion, achieved equivalent, but not higher accuracy compared with the ADC model 

when using 2 or more features The Relative Enhanced Diffusivity model achieved its 

maximum accuracy for malignant vs benign classification when using only one feature; 

REDmean. This result was equivalent to the best accuracy achieved for ADC and IVIM 

when using 3 or more features. Being sensitive to both microcirculation and diffusion 

effects, and more robust against noise than IVIM due to its simpler fitting approach RED 

contains sufficient information for the classification task. Interestingly, the high single-

feature accuracy for the RED model was achieved without using any higher order 

statistical features associated with heterogeneity. 

Finally, perfect differentiation of malignant and benign lesions in our cohort was 

achieved when using features from ADC, IVIM and RED models combined, indicating 

that these models contain complementary information that can be leveraged for clinical 

use (classifications). One possible interpretation is that in the combined approach, 

information about diffusion, perfusion and heterogeneity contribute together in an 
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optimized way. Furthermore, it is possible to obtain perfect classification using only 

lower order statistics from all models.   

DWI-derived parameters are also able to predict the HER2 status of the malignant 

tumors, although with lower accuracy compared to the differentiation of benign and 

malignant lesions. Here, it is crucial to combine features in SVM to have predictive 

value, as none of the parameters itself is a significant differentiator in univariate 

analysis. In addition to mean/median among chosen features, skewness and kurtosis 

appear very important, emphasizing the importance of features associated with 

heterogeneity. Intratumor heterogeneity, which appear on any level (i.e. genes, cells, 

tissue, and clinical features) pose a huge challenge for diagnostics, and has 

implications for the further treatment selection [32].   

Scan time and fitting complexity are both significantly higher for the IVIM model, using 

13 b-values in this study, than for the ADC and RED models that are based on only 

three b-values. Our results show that classification accuracy for malignant versus 

benign is already very high using REDmean alone, and the limited added clinical value of 

including the IVIM model must be balanced against the additional scan time and 

complexity of analysis. Optimal prediction of ER+HER2- and ER+HER2+ in this study 

can be achieved without IVIM features, and so accuracy would not be adversely 

affected using a simpler acquisition. 

The classification accuracy for DWI-MRI parameters to differentiate benign and 

malignant tumors in our study were comparable to those reported in several other 

studies (91% and 86.7%) [3, 10]. Additionally, one of these also showed the increased 

accuracy when using RED over ADC shown in this study [10]. Contrary to other prior 
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studies [8, 9, 30], we observed no added value from consideration of IVIM over ADC. It 

may be because this work additionally considered ADC heterogeneity parameters, 

which increased the accuracy of multisided analysis of ADC.  

For classification of HER2 status, varying results have been presented in literature. 

Significant differentiators in (non-Bonferroni adjusted) univariate analysis of DWI 

parameters have been found in other studies (not exclusively considering ER+ cases) 

including significantly lower mean D* [15], higher mean ADC (p=0.018) [33], and a 

higher 90th percentile of D (p=0.027) [34] for HER2+ malignant tumors. It was reported 

that important parameters were mean, kurtosis and skewness of D* for both 

(ER+HER2+ and ER+HER2-) as well as ADC kurtosis (for ER+HER2+ only) [15]. By 

combining skewness and mean of D*, Cho, G.Y. et al. could distinguish ER+HER2-from 

all other cancer subtypes (AUC=0.8). As in our study it is important to combine first 

order with higher order statistical parameters to obtain optimal combination of diffusion 

parameters. However, other studies [35, 36] found neither correlation nor statistical 

differences between HER2 status and DWI-MRI parameters, as was the case in our 

univariate analysis.  

Machine learning is common approach beyond univariate analysis, with many available 

algorithms. SVM was the choice in this work due to previous performance in breast 

cancer [18, 19]. In Cai et al, SVM (compared to k-nearest neighbors algorithm (KNN), 

Naïve Bayes classifier (NB), and logistic regression) achieved highest 10-fold accuracy 

for predicting malignancy status of tumor using ADC. By combining ADC, morphology, 

DCE kinetics and pathology, Cai et al found that SVM machine learning approach 

yielded accuracy of 92.4% [18]. Sutton et al. successfully implemented SVM using only 
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features developed from DCE images achieved overall accuracy of 71.2% for subtype 

groups of ERPR+, ERPR-HER2+ and TN (triple negative)[19]. 

It is important to note that all the differing accuracies provided by diffusion parameters, 

such as D and ADC, arise from the choice of b-value images from our dataset; a similar 

effect has been analyzed in previous studies for b-value choice [2, 37]. Standardization 

of acquisition strategies, diffusion models, and fitting strategies remains important for 

comparison across studies, although combination of parameter features across different 

models may ameliorate this problem. Additionally, IVIM-model is known to be noise 

sensitive, and several papers have explored the effect of different fitting algorithms [38, 

39]. In this study, we applied the segmented fitting approach, whereas applying a 

Bayesian algorithm with a Gaussian or spatial prior [38] can be expected to return 

different histograms and thus potentially affect the machine learning outcome. The main 

limitation of this study is, however, the relatively small patient cohort. Importantly, the 

applied 10-fold validation scheme is less prone to overfitting compared to LOOCV [28]. 

A larger cohort would allow a separate test set and more rigorous validation. Thus, 

further validations in independent and larger cohorts are necessary to avoid 

overgeneralization. 

In conclusion, the results from this study show that individual, conventional diffusion 

models and ROI statistics, including histogram moments, do not necessarily reflect all 

available information from clinical DW-MRI acquisitions. Our findings suggest that a 

SVM learning approach, using multiple features from a combination of diffusion models 

improves prediction accuracy for differentiation of benign and malignant breast lesions, 

and may further assist in differentiating HER2 status of ER+ lesions. The encouraging 
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predictive power of these combined features within this preliminary study demonstrates 

untapped potential of DW-MRI, and supports the inclusion of DW-MRI as part of a 

robust and in future potentially fully non-invasive, diagnostic process for breast cancer 

patients. 
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Table 1 Clinical characteristics of the patient cohort.  

Characteristics Result 

Cancer 
No of cancers 28 
Mean patient age (years) 53.7 (29.3 – 74.6) 
Mean tumor volume (cm3)   1.5 (0.2 – 4.25) 
Histologic type  
   Invasive ductal carcinoma 16 
   Invasive ductal carcinoma with ductal carcinoma 
in situ 

  8 

   Medullary carcinoma with ductal carcinoma in 
situ 

  1 

   Invasive lobular carcinoma   1 
   Mucinous carcinoma with ductal carcinoma in 
situ 

  1 

   Papillary carcinoma   1 
Histologic grade   
   1   6 
   2   9 
   3   9 
  2/3   2 
  Not analyzed   2 
Receptor status   
 ER+/PR+/HER2- 16 
 ER+/PR-/HER2-   4 
 ER+/PR+/HER2+   4 
 ER+/PR-/HER2+   2 
 ER-/PR-/HER2+   2 
Mass/nonmass enhancement  
 Mass 27 
 Nonmass    1 
Benign 
No. of benign lesions 23 
Mean patient age (years) 29.9 (20.6 – 53.3) 
Mean tumor volume (cm3)   8.1 (0.1 – 104.1) 
Histologic type  
 Fibroadenoma 14 
 Phyllodes    2 
 Fibroadenomatosis   1 
 Adenosis   1 
 No histologic analysis available   5 

ER – estrogen receptor; PR – progesterone receptor; HER2 – human epidermal growth 
factor  
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Table 2 Benign vs Malignant. Accuracy for SVM classification with 10-fold cross-
validation, including the list of the feature combinations for each of the models with 
highest accuracy 
No. of 
features 

ADC RED IVIM Combined 

1 0.92 0.96 0.88 – 

Mean Mean Dmean – 

Median    

     

2 0.94 0.96 0.94 0.963 (0.96†) 

Mean & skewness Mean & median Dmean & D*mean REDmedian & ADCstd 

Mean & kurtosis Mean & kurtosis Dmean & D*kurtosis (other combinations†) 

Std & median  Dmean & fmean  

Median & skewness  Dmedian & D*mean  

Median & kurtosis  Dmedian & D*kurtosis  

   Dmedian & fmean  

     

3 0.96 0.96 0.96 0.98 

 Mean, median & 
kurtosis 

Mean, std & median Dmean, D*median & 
fkurtosis 

REDmean, REDskewness 
& Dkurtosis 

 Mean, skewness & 
kurtosis 

 Dmedian, D*median & 
fkurtosis 

REDmedian, REDkurtosis 
& ADCstd 

 Std, median & 
kurtosis 

  REDmedian, ADCmean & 
ADCkurtosis 

    REDmedian, ADCstd & 
D*std 

    REDmedian, Dmean & 
D*skewness 

    REDmedian, Dmedian & 
D*skewness 

     

4 0.96 0.94 0.96 1 

 Mean, std, skewness 
& kurtosis 

Mean, std, median & 
skewness 

Dmean, Dmedian, 
Dskewness & D*median 

REDmedian, ADCstd, 
ADCkurtosis & D*std 

  Mean, std, median & 
kurtosis 

Dmean, Dmedian, D*median 

& fkurtosis 
REDmedian, ADCstd, 
Dkurtosis & D*std 

  Mean, std, skewness 
& kurtosis 

Dstd, Dmedian, D*median 
& fskewness 

REDmedian, ADCstd, 
D*std & D*median 

  Std, median, 
skewness & kurtosis 

Dmedian, Dskewness, 
D*median & fskewness 
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The highest accuracy for a specific number of features is underlined. ADC – apparent 
diffusion coefficient; RED – relative enhanced diffusivity; IVIM – intravoxel incoherent 
motion  
† Complete list of combinations in supplementary 
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Table 3 ER+HER2- vs ER+HER2+: Accuracy for SVM classification with 10-fold cross-
validation, including the list of the feature combinations for each of the models with 
highest accuracy 

No. of 
features 

ADC RED IVIM Combined 

1 0.80 0.72 0.77 – 

Kurtosis std D*std – 

     

2 0.817 0.80 0.80 0.85 

mean & kurtosis std & skewness Dstd & fskewness REDskewness & Dkurtosis 

median & kurtosis Mean & kurtosis Dstd & fkurtosis ADCkurtosis & Dmean 

  Dkurtosis & fstd ADCkurtosis & Dmedian 

  D*std & fskewness  

     

3 0.817 0.85 0.82 0.85 

 Mean, median & 
kurtosis 

std, median & 
skewness 

D*mean, fmean & 
fskewness 

Many combinations†
 

     

4 0.72 0.85 0.82 0.90 

 Mean, std, median & 
kurtosis 

Mean, std,  median & 
skewness 

Dskewness, D*std, 
D*median & fstd 

REDmean, REDmedian, 
REDskewness & ADCmean 

   D*std, D*median, fmean & 
fskewness 

REDstd, REDskewness, 
ADCmean & ADCkurtosis 

   D*kurtosis, fmean, 

fskewness & fkurtosis 
REDstd, REDskewness, 

ADCmedian & ADCkurtosis 

    REDmedian, REDskewness, 
ADCmedian & D*kurtosis 

    REDskewness, ADCmean, 

ADCskewness & 
ADCkurtosis 

    REDskewness, ADCmedian, 

ADCskewness & 
ADCkurtosis 

The highest accuracy for a specific number of features is underlined. ADC – apparent 
diffusion coefficient; RED – relative enhanced diffusivity; IVIM – intravoxel incoherent 
motion 
† Complete list of combinations in supplementary  
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Table 4 Benign vs Malignant. Single feature accuracy from SVM with 10-fold cross-
validation, and p-values obtained from univariate Mann-Whitney testing of the histogram 
properties 

p-value 
mean std median skewness kurtosis 

(accuracy) 

ADC       
<0.00004 0.99 <0.00004 0.02 0.78 

(0.92) (0.59) (0.92) (0.74) (0.50) 

RED      

 <0.00004 <0.002 <0.00004 0.70 0.21 

(0.96) (0.77) (0.94) (0.63) (0.34) 

IVIM       
D <0.00004 0.93 <0.00004 0.84 0.80 

(0.88) (0.51) (0.86) (0.47) (0.42) 
 

D* 0.04 0.06 0.04 0.05 0.044 

(0.66) (0.74) (0.64) (0.70) (0.72) 
 

f <0.002 0.44 <0.002 0.53 0.83 

(0.72) (0.55) (0.65) (0.44) (0.44) 

Significant univariate differentiators are in bold font.  
ADC – apparent diffusion coefficient; RED – relative enhanced diffusivity; IVIM – 
intravoxel incoherent motion; std – standard deviation 
Bonferroni corrected significance threshold is p=0.002 (equivalent to the p=0.05 non-
corrected), Bonferroni corrected high significance treshold is p=0.00004 (equivalent to 
the p=0.001 non-corrected).  
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Table 5 ER+HER2- vs ER+HER2-: Single feature accuracy from SVM with 10-fold 
cross-validation, and p-values obtained from univariate Mann-Whitney testing of the 
histogram properties  

p-value 
(accuracy) 

mean std median skewness kurtosis 

ADC      

 0.88 0.24 0.93 0.88 0.41 

(0.75) (0.70) (0.72) (0.70) (0.80) 

RED      

 
0.60 0.29 0.48 0.60 0.02 

(0.70) (0.72) (0.70) (0.70) (0.70) 

IVIM      

 

D 0.78 0.21 0.88 0.45 0.65 

(0.75) (0.70) (0.70) (0.70) (0.70) 
 

D* 0.29 0.52 0.14 0.24 0.32 

(0.77) (0.70) (0.70) (0.70) (0.70) 
 

f 0.69 0.93 0.65 0.88 0.78 

(0.70) (0.70) (0.70) (0.70) (0.70) 
 

 

ADC – apparent diffusion coefficient; RED – relative enhanced diffusivity; IVIM – 
intravoxel incoherent motion; std – standard deviation 
The Bonferroni corrected significance threshold is p=0.002 (equivalent to the p=0.05 
non-corrected) 
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Figure Legends 

Figure 1. Processing workflow diagram: 1. Distortion correction (PA – posterior anterior, 
AP – anterior posterior direction), followed by motion correction when necessary, to 
obtain aligned images for all 13 b-values (in s/mm2); 2 3D region of interest selection in 
high b-value image ; 3. Voxel wise calculation of diffusion model parameters, ADC, 
RED, IVIM (D, f, D*); 4. Univariate comparison (Mann-Whitney test) and/or SVM 
classification based on histogram properties of the diffusion parameters.  
 

Figure 2. Diagram for SVM and feature selection: k  [1,2,3,4,5] for RED and ADC; k  

[1, 2…14, 15] for IVIM; k [1, 2…24 , 25] when all possible features were used SVM – 
support vector machine; RBF – radial basis function kernel – nonlinear kernel described 
as exp(-γ∙║x-x’║2);     γ kernel size - determines the range of influence of samples 
selected by the model as support vectors; (C) regularization parameters - determines 
the number of selected support vectors, defining the complexity (smoothness) of the 
decision surface. 
  
Figure 3. Parametric maps for the diffusion models overlaid the T2-weighted 
image (ADC mm, RED [%], D [mm2/s], f and D* [mm2/s]):  
top row: Patient (Age 43 years) diagnosed with a benign tumor (adenosis)  
bottom row: Patient (age 74 years) diagnosed with an invasive ductal carcinoma ((grade 
1, ER+, PR-, HER2-) 
 

Figure 4. Highest accuracy for each model (including combined) per number of features 
for both differentiation of benign vs malignant and for prediction of HER2 status of ER+. 
Red dashed line represents the default accuracy by arbitrarily assigning all tumors as 
malignant/ER+HER2-  
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Figure 5. Processing workflow diagram: 1. Distortion correction (PA – posterior anterior, 
AP – anterior posterior direction), followed by motion correction when necessary, to 
obtain aligned images for all 13 b-values (in s/mm2); 2 3D region of interest selection in 
high b-value image ; 3. Voxel wise calculation of diffusion model parameters, ADC, 
RED, IVIM (D, f, D*); 4. Univariate comparison (Mann-Whitney test) and/or SVM 
classification based on histogram properties of the diffusion parameters.  
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Figure 6. Diagram for SVM and feature selection: k  [1,2,3,4,5] for RED and ADC; k  

[1, 2…14, 15] for IVIM; k [1, 2…24 , 25] when all possible features were used SVM – 
support vector machine; RBF – radial basis function kernel – nonlinear kernel described 
as exp(-γ∙║x-x’║2);     γ kernel size - determines the range of influence of samples 
selected by the model as support vectors; (C) regularization parameters - determines 
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the number of selected support vectors, defining the complexity (smoothness) of the 
decision surface. 
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D f D* 

     

     

Figure 7. Parametric maps for the diffusion models overlaid the T2-weighted 
image (ADC mm, RED [%], D [mm2/s], f and D* [mm2/s]):  
top row: Patient (Age 43 years) diagnosed with a benign tumor (adenosis)  
bottom row: Patient (age 74 years) diagnosed with an invasive ductal carcinoma ((grade 
1, ER+, PR-, HER2-) 
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Figure 8. Highest accuracy for each model (including combined) per number of features 
for both differentiation of benign vs malignant and for prediction of HER2 status of ER+. 
Red dashed line represents the default accuracy by arbitrarily assigning all tumors as 
malignant/ER+HER2-  
 


