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1. Summary 
 
Long term materials stability is one of the main challenges related to the development of 
electrochemical devices such as solid oxide fuel cells (SOFC) and dense gas separation 
membranes. These devices often operate under severe conditions. Gradients in 
thermodynamic potentials may lead over time to the transport of species which are initially 
expected to have a very low mobility. The reduction of the performance of fuel cells is 
related to the deterioration of materials properties due to interfacial reactions and inter-
diffusion between the different fuel cell components. Degradation mechanisms of oxygen 
permeable membranes exposed to a gradient in the chemical potential of oxygen include 
cation demixing and decomposition. The development of SOFC and dense inorganic 
membranes technology must, therefore, take into consideration a possible transport of 
cations. Here a study of cation diffusion in LaMnO3, LaCoO3 and LaFeO3 materials is 
presented. Substituted derivatives of these materials are key components in SOFC 
electrodes and oxygen permeable membranes. A set of experiments including reactive 
diffusion couples, inter-diffusion measurements and tracer diffusion experiments has been 
performed in order to evaluate the diffusion coefficients and contribute further to general 
understanding of defect chemistry and transport properties of perovskites. The results are 
presented in four separate papers and an overview of the experiments is given the following 
table: 
 

Material Cation T / K 
2

/ kPaOp  Reference 
LaMnO3 Mn3+ 1370 – 1673 0.04 – 50 Paper I 
LaCoO3 Co3+ 1370 – 1673 0.04 - 50 Paper II 
La2CoO4 Co3+ 1573 0.04 Paper II 
LaMnO3 Pr3+ 1373 - 1673 21 Paper III 
LaCoO3 Pr3+ 1373 - 1673 21 Paper III 
LaFeO3 Pr3+ 1373 - 1673 21 Paper III 
LaMn1-xCoxO3(ss) Co3+ 1383 - 1683 21 Paper IV 

 
In paper I, reaction kinetics between dense, polycrystalline pellets of La2O3 and 

Mn3O4 was investigated at temperatures 1370-1673 K and oxygen partial pressures 40 Pa - 
50 kPa. The formation of a single product phase, nonstoichiometric La1-xMn1-yO3±δ, was 
confirmed by X-ray diffraction and electron microprobe analysis. The solid solubility limits 
of La1-xMn1-yO3±δ determined by wave dispersive spectroscopy were in good agreement 
with previous reports and equilibrium was achieved at the phase boundaries in the diffusion 
couples. The growth of the product phase followed the parabolic rate law regardless of 
temperature and oxygen partial pressure. The location of Pt-markers demonstrated that the 
diffusion of Mn cations in La1-xMn1-yO3±δ dominated over the diffusion of La3+. The 
diffusion coefficient of Mn3+ was determined from the parabolic rate constant and 
activation energy of (280±40) kJ mol-1 was found. The analysis of the observed solubility 
limits of the LaMnO3 phase suggested that a considerable amount of Mn vacancies was 
present only in a thin layer close to the LaMnO3/La2O3 interface at low temperatures and 
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high oxygen partial pressures. The vacancies at the La and O sub-lattices were proposed to 
be the dominating point defects in the product layer. The chemical diffusion coefficient of 
Mn cations increased with decreasing pO2 and increasing temperature. At low pO2, the 
entire LaMnO3 phase was La-deficient. It is therefore likely that the Mn vacancy diffusion 
took place also in the La sublattice. The results were discussed in relation to cation 
diffusion in other LaBO3±δ oxides (B = Cr3+, Mn3+, Fe3+). 

In paper II, reaction kinetics between dense, polycrystalline pellets of La2O3 and 
CoO were investigated at temperatures 1370-1673 K and oxygen partial pressures 40 Pa - 
50 kPa. At high oxygen partial pressures, single phase LaCoO3 was formed. The growth of 
the LaCoO3 phase followed the parabolic rate law. The location of Pt-markers 
demonstrated that the diffusion of Co cations in LaCoO3 dominated over the diffusion of 
La3+. The diffusion coefficient of Co3+ was determined from the parabolic rate constant and 
an activation energy of (250±10) kJ mol-1 was found. The diffusion coefficient of Co3+ in 
LaCoO3 decreased with decreasing oxygen partial pressure. The defect chemistry of 
LaCoO3 is dominated by oxygen vacancies. Due to the Schottky defect equilibria taking 
place in the material the concentration of cobalt vacancies increases with the pO2. The 
diffusion coefficient of Co3+ cations followed the increase in the concentration of cobalt 
vacancies which reflects the vacancy mechanism of the chemical diffusion. The results 
obtained for the LaCoO3 phase were discussed in relation to cation diffusion in other 
LnBO3 oxides (B = Cr3+, Mn3+, Fe3+). A correlation between the diffusivity of the B-cation 
and the melting point was found for the LnBO3 materials. The relationship between the 
chemical diffusion coefficient and the melting point suggests that the melting process of the 
crystal lattice of perovskites is related to the stability of the BO6 network rather than to the 
mobility of the A cation. At the lowest oxygen partial pressure investigated, two product 
phases in the diffusion couples La2O3 - CoO were observed - LaCoO3 and La2CoO4. 
La2CoO4 is a Ruddelsden-Popper phase, which contains the perovskite layers altered with 
the LaO rock salt layers. The analysis of the data revealed that the diffusion of Co cations 
in La2CoO4 and LaCoO3 phases was comparable despite of the layered structure of the 
La2CoO4 phase. It can, therefore, be suggested that the diffusion of Co cations in the 
La2CoO4 phase takes place both in the perovskite layer and along the c-axis – probably via 
vacant La sites in the LaO layer.  

In paper III, impurity diffusion of Pr3+ in dense polycrystalline LaMnO3, LaCoO3 
and LaFeO3 respectively was studied at 1373 – 1673 K in air in order to shed a light on the 
La-site vacancy migration in these materials. Cation distribution profiles were studied by 
secondary ion mass spectrometry and it was found that penetration profiles of Pr3+ had two 
distinct regions with different slopes. The first, shallow region was used to evaluate the 
bulk diffusion coefficients. The activation energies for bulk diffusion of Pr3+ in LaMnO3, 
LaCoO3 and LaFeO3 were (47 ± 31), (141 ± 40) and (198 ± 84) kJ mol-1 respectively, 
which are significantly lower than previously predicted by atomistic simulations. The bulk 
diffusion coefficients of Pr3+ cations in LaCoO3 and LaFeO3 materials were about 1-2 
orders of magnitude lower than the chemical self-diffusion coefficients of the Co3+ and Fe3+ 
cations respectively. The bulk diffusion of Pr3+ in LaMnO3 was enhanced compared to 
LaCoO3 and LaFeO3 materials due to higher concentrations of intrinsic point defects in 
LaMnO3, especially La-site vacancies. The grain boundary diffusion coefficients of Pr3+ in 
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LaCoO3 and LaFeO3 materials were evaluated according to the Whipple-Le Claire’s 
equation. Activation energies for grain boundary diffusion of Pr3+ in LaCoO3 and LaFeO3 
materials respectively were (173 ± 24) and (196 ± 74) kJ mol-1 respectively. A correlation 
between activation energies for cation diffusion in bulk and along grain boundaries in pure 
and substituted LaBO3 materials (B = Cr, Fe, Co) was found and discussed. It may be 
suggested that the cation diffusion is of the vacancy type both inside the grains and along 
grain boundaries. The grain boundary diffusion, however, is accelerated due to the 
significant amount of defects located at grain boundaries.  
 In paper IV, cation inter-diffusion between LaMnO3 and LaCoO3 materials was 
investigated at 1383 – 1683 K in air by electron microprobe analysis. The penetration of 
Co3+ into LaMnO3 was observed to be significantly more pronounced than the Mn3+ 
diffusion in LaCoO3. The inter-diffusion of Co3+ into LaMnO3 resulted in the formation of 
solid solution LaMn1-xCoxO3(ss) in line with previous phase diagram studies.  The bulk 
diffusion coefficients of Co3+ in LaMn1-xCoxO3(ss) were evaluated and an activation energy 
of (197 ± 17) kJ mol-1 was found. The element mapping of the exposed surface of LaCoO3 
revealed a preferential grain boundary diffusion of Mn3+ in LaCoO3. The low bulk diffusion 
of Mn3+ in LaCoO3 relative to bulk diffusion of Co3+ in LaMnO3 reflects the lower cation 
vacancy concentration in the later material. The difference in the activation energies for the 
impurity diffusion of Co3+ in LaMnO3 and self-diffusion of Mn3+ in LaMnO3 reported 
previously, was discussed with respect to the contributions of vacancy formation and 
migration enthalpies reflecting the different thermal history of the materials. The estimated 
apparent enthalpies for the partial Schottky equilibrium of LaMnO3 and LaCoO3 materials 
were similar but significantly lower than previously calculated by atomistic simulations.  
  

The diffusion of the B cation (B = Mn, Fe, Co) in LaMnO3, LaFeO3 and LaCoO3 
materials respectively was found to be dominating over the La3+ diffusion. This observation 
is unexpected from structural considerations of the perovskite phase since two 
neighbouring B3+ lattice positions are separated by an oxygen anion, while two La3+ lattice 
positions are not. The activation barrier for the simple vacancy hopping in the B cation 
sublattice was initially expected to be high. Nevertheless, the experiments confirmed that 
the activation energies for the Mn3+, Fe3+ and Co3+ diffusion in LaMnO3, LaFeO3 and 
LaCoO3 materials were considerably lower. We therefore suggested that the B cation 
diffusion in LaMnO3, LaFeO3 and LaCoO3 materials did not take place solely in the B 
sublattice. A possible migration mechanism discussed in this thesis was the diffusion of the 
B cations via both the La and B vacant sites. This mechanism provides a substantial 
decrease of the activation barrier. The amount of available cation vacancies in the materials 
is a critical point with this respect. Although the LaMnO3 phase is known to exhibit a 
significant cation deficiency and has a significant amount of vacancies, the LaCoO3 and 
LaFeO3 phases are nearly cation stoichiometric and thus, possess only a small amount of 
cation vacancies. The diffusivities and activation energies for the B cation self-diffusion in 
LaMnO3, LaFeO3 and LaCoO3 materials were similar. This fact indicates that the B cation 
diffusion occurred by the same mechanism in all three materials despite of the different 
defect chemistry of the materials involved. It is, therefore, believed that the number of 
cation vacancies required to facilitate the B cation diffusion was relatively low and it was 
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provided by a common defect reaction taking place in each of the three materials. The 
source of cation vacancies could be either a full Schottky equilibrium or a partial Schottky 
defect equilibrium occurring at one of the interfaces in reactive diffusion couples.  
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2. Background 
 
 
Materials based on perovskite-type LaMnO3, LaCoO3 and LaFeO3 are often used as the 
components of high temperature devices. These include solid oxide fuel cells1,2 and oxygen 
permeable membranes.3,4,5 The component materials operate under various thermodynamic 
forces. The exposure to thermodynamic gradients of temperature, pressure or electrical 
field leads to transport processes of mobile components and causes the materials 
degradation and decrease of performance.
 If  an oxide with a composition (A1-xBx)O is exposed to an oxygen potential 
gradient, the gradients of the chemical potentials of the chemical components A and B are 
induced as a consequence of the Gibbs-Duhem relation, .A A B B O Ox dµ + x dµ + x dµ = 0 6 This 
situation is illustrated in Fig. 2.1.6 The thermodynamic forces generate fluxes of the mobile 
components. The cations are assumed to be mobile by the means of cation vacancies, V, in 
the cation sublattice of the binary oxide. The fluxes of cations and vacancies are, therefore, 
coupled. If both cations have different mobilities, the originally homogeneous oxide 
becomes inhomogeneous (Fig. 2.1b).6 The faster of the two cations becomes enriched at the 
high-p(O2) side while the slower component is left behind and becomes enriched at the 
low-p(O2) side. 
 

 
 
Fig. 2.1 Oxide A1-xBxO exposed to the oxygen potential gradient. (a) Chemical potential 
gradients of chemical components A, B and O; (b) fluxes of cations, A2+ and B2+, cation 
vacancies, V, and electron holes, .•h 6 

 
 When the cations and cation vacancies arrive at the crystal surfaces the chemical 
reactions occur.6 At the high-p(O2) side, cations, A2+, are oxidized by the oxygen from the 
gas phase according to the following reaction 
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( )X //
A 2 A

1A + O g V + 2h + AO
2

→ •         (1) 

 
At the low-p(O2) side the opposite reaction takes place and the oxide anions are reduced to 
the oxygen according to the following reaction 
 

( )// • X
A A

1V + 2h + BO B + O g
2

→ 2         (2) 

 
As a consequence, the oxide surfaces shift to the side of higher oxygen potential. In 
summary, the external oxygen potential causes:6 

1. The directed flux of cation vacancies from the high to the low oxygen potential 
side of the oxide. 

2. The drift motion of both crystal surfaces towards the high-p(O2) side. 
3. A demixing of cations with enrichment of the faster cation at the high-p(O2) 

side. 
The stability and durability of functional oxides for solid oxide fuel cells and gas 

separation membranes are one of the main technical challenges.2 The understanding of 
stability issues requires the knowledge of transport properties and defect chemistry of these 
materials. The chemical diffusion of mobile components of oxides occurs due to the 
exposure to chemical potential gradients. Diffusion coefficient is a fundamental property 
for each component of the oxide.7 The diffusion coefficients of the anions in the perovskite-
type oxides are mostly higher than the diffusion coefficients of the cations.8 The cation 
mobility is, therefore, probably the rate-limiting step in the materials degradation. Once the 
chemical diffusion coefficient of a rate limiting species is known, the durability of the high 
temperature device can be estimated. The relationship between the diffusion length, x, and 
the diffusion time, t, can be given in a first approximation as t = bx2 / D, where D is the 
diffusion coefficient and b is a constant in order of 1.7 The diffusion times, computed as t = 
x2 / D, for the typical cation diffusion coefficients at high temperatures are given in Table 
2.1. It is apparent already from this rough estimation that the role of cation diffusion 
becomes significant as soon as the diffusion length reaches 10 – 100 µm. Since it is 
desirable to reduce the thickness of electrolytes for SOFC and oxygen permeable 
membranes,9 the materials selection needs to be made with respect to the diffusion 
coefficients of the least mobile species.  It is the objective of the present work to study the 
cation diffusion in LaMnO3, LaCoO3 and LaFeO3 materials by three different techniques, 
determine diffusion coefficients and contribute further to the general understanding of mass 
transport processes and defect chemistry of these oxides. 
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Table 2.1 Estimated diffusion times for several diffusion coefficients and diffusion lengths.   
 

x D/ cm2s-1

 10-10 10-11 10-12

1 cm 318 ya 3 180 y 31 800 y 
1 mm 3.18 y 31.8 y 318 y 
100 µm 1.65 w 16.5 w 3.18 y 
10 µm 2.8 h 28 h 280 h 
1 µm 100 s 1 000 s 10 000 s 
1 nm 0.1 ms 1 ms 10 ms 

 

ay = year, w = week, h = hour, s = second, ms = millisecond 
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3. Introduction 
 
3.1. Perovskite structure 
 
The perovskite structure bears its name after the mineral with the same composition, 
CaTiO3.1,2,3 The general formula unit of the perovskite is ABX3 where A is a larger cation, 
B is a smaller cation and X is an anion. The ideal perovskite structure is cubic. The B 
cations are located in the corners of the cube and the A cation occupies the centre of the 
cube. The anions are located at the cube edges, between two B cations. Each B cation is 
surrounded by six anions and forms the centre of the BX6 octahedra. The BX6 octahedras 
extend infinitely in three dimensions. The perovskite structure is given in Fig. 3.1.1,2 The 
perovskite structure can also be regarded as a superstructure of the ReO3-type that has, in 
addition, the A cations occupying the cavities (Fig. 3.1b). 
 

 
Fig. 3.1 The ideal cubic perovskite structure.  
 
 In the ideal perovskite structure, the B-X distance, , is equal to a/2 and the A-O 

distance, , is equal to 
B Xr −

A Xr − / 2a  where a is a cubic unit cell parameter (Fig. 3.1a). A useful 
parameter, t, can be defined by the ratio between A-X and B-X distances1 

 

( )
A-X A X

B-X B X

r rt = =
2 r 2 r +r

+r        (3.1) 

 
where   and  are the respective effective ionic radii. t is the Goldschmidt tolerance 
factor.

Ar , Br Xr
4 The ideal cubic perovskite structure has t = 1. It was observed, however, that the 

perovskite structure remains preserved also when t is smaller or larger than 1, in fact 0.75 < 
t <1.05.3 Nevertheless, the structure becomes distorted and less symmetric. The reduction 
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in symmetry is driven by the necessity to accommodate the anion coordination number 
around the cations. One or more of the following processes usually happen:5,6,7 

1. Titling of the anion octahedra 
2. Displacement of the cations 
3. Distortion of the octahedra 

These structural distortions were studied in detail by Glazer in 1970s.5,6 Glazer provided a 
classification of lattice distortions of perovskites and described 23 different tilt systems.5 It 
is out of the scope of the present work to discuss all structural types of the perovskites. In 
the following, we shall provide only a brief description of the structures and known 
structural transitions of LaMnO3, LaCoO3 and LaFeO3 materials since they are the subject 
of the present study. 
 Lanthanum manganite, LaMnO3, t ~ 0.95, possess both the cation and oxygen 
nonstoichiometry.8 A rhombohedral symmetry with space group R3c  is found for 
LaMnO3+δ where 0.10 ≤ δ ≤0.18.9 For δ < 0.10, two orthorhombic structures with the space 
group Pnma are found: ORT1-type with a Jahn-Teller distorted octahedra and ORT2-type 
with a regular MnO6-octahedra.10,11 The Jahn-Teller distortion occurs due to the high-spin 
state of Mn3+ cations.9 The lanthanum deficiency, x, in lanthanum manganite, La1-xMnO3+δ, 
determines, in addition to the temperature and oxygen partial pressure, the stability region 
for different crystal symmetries. The phase stability regions can be found in ref. 10.  
 Lanthanum cobaltite, LaCoO3, has a rhombohedrally distorted perovskite lattice 
with the space group R3c .12 It transforms to the ideal cubic lattice at ~ 1610 K.13 Two 
other structural changes are observed at 100 K and 500 K.14,15 These transformations are 
observed due to the transition from the low spin state ( 6

2gt ) to the intermediate spin state 

( 5 1
2g gt e ) and then to the high spin state ( 4 2

2g gt e ).14 These spin transitions are accompanied by a 
large increase of the ionic radius of Co3+, from 0.545 Å to 0.61 Å.14,15 

 Lanthanum ferrite, LaFeO3, crystallises in the orthorhombic space group Pbnm at 
temperatures below ~ 1273 K.16 At temperatures above 1273 K, it has a rhombohedral 
structure with space group R3c .17 

 Beside the ionic radii requirement (3.1), the electroneutrality condition in 
perovskite-type oxides has to be satisfied. If X = O2-, the following charge distributions 
between A and B cations are allowed: A1+B5+O3, A2+B4+O3, A3+B3+O3.2,3 A partial 
substitution of A or B cations is also allowed. The possibility to partially substitute cations 
in the perovskite structure leads, therefore, to an extremely large number of perovskite 
compounds with variable properties.18 Applications of these compounds in science and 
technology are wide-ranging and have been a subject of several reviews, including ref. 1, 2, 
3 and 18.    
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3.2. Heterogeneous phase equilibria and nonstoichiometry of LaMnO3, 
LaCoO3 and LaFeO3 materials 
 
 The LaMnO3 perovskite system exhibits a well-established oxygen 
nonstoichiometry. The oxygen content measured at 1273 – 1473 K is given in Fig. 2.19 The 
LaMnO3 compound exhibits an oxygen excess as well as an oxygen deficiency depending 
on the experimental conditions. The oxygen deficiency is strongly dependent on 
temperature (Fig. 3.2). In addition to the oxygen nonstoichiometry, this compound has also 
a significant deviation from the cation molar ratio 1:1.20 The well-established 
nonstoichiometry makes the defect chemistry of LaMnO3 more complicated relative to 
LaCoO3 and LaFeO3 materials. The phase diagram of the pseudo-binary system La2O3 – 
Mn2O3 was first reported by van Roosmalen et al.20 A. N. Grundy et al. recently provided a 
defect model that best suits the experimental observations in air.21 This model includes anti-
site defects - Mn3+ cations occupying vacant La sites and also a possibility of Mn to exist in 
several oxidation states.  The following sublattice occupation for LaMnO3 was adapted: 
(La3+, Mn3+, Va)1(Mn2+, Mn3+, Mn4+, Va)1(O2-, Va)3 where Va represents a vacant site.21 
Vacancies at all three sublattices are present in LaMnO3. The calculated pseudo-binary 
diagram of the La2O3 – Mn2O3 system in air is given in Fig. 3.3.21 Experimental 
observations of cation nonstoichiometry were included for a comparison. The agreement 
between the experimental data and calculations was good. A. N. Grundy et al. also 
calculated the phase diagram of the La2O3 – Mn2O3 system at p(O2) = 1 Pa.21 It was 
predicted that the solid solubility region of LaMnO3(ss) becomes narrower with p(O2) and 
that the composition at the LaMnO3-MnO phase boundary shifts towards a Mn-deficiency 
at low temperatures. We will show in Paper I how this model fits with our experimental 
observations from reactive diffusion couples La2O3 – Mn3O4 measured at 1370 – 1673 K 
and  p(O2) = 40 Pa – 50 kPa, where also a further discussion of the defect chemistry of 
LaMnO3(ss) will be provided. 
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Fig. 3.2 Oxygen content in LaMnO3 measured at different temperatures and oxygen partial 
pressures.19  
 

 
 

Fig. 3.3 Pseudobinary phase diagram of the La2O3 – Mn2O3 system in air (left) and at p(O2) 
= 1 Pa. Experimental observations of cation nonstoichiometry are also included.21   
 
 LaCoO3 exhibits a well-established oxygen deficiency and may, therefore, be 
written as LaCoO3-δ.22 A plot of oxygen deficiency, δ, for several temperatures and oxygen 
partial pressures is given in Fig. 3.4.22 It was suggested that the oxygen nonstoichiometry 
may be explained by a random defect model.23 The defects in LaCoO3-δ are formed due to 
the following two defect equilibria 
 

X • •• X
O Co O Co

1O + 2Co = V + 2Co + O
2 2      (3.2) 
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X •
Co Co Co2Co = Co + Co/         (3.3) 

 
and the point defects are randomly distributed in the material. The comparison between the 
observed and calculated oxygen deficiency is provided in Fig. 3.5.23 The agreement 
between the experimental and calculated oxygen deficiency was good. 
 

 
Fig. 3.4 Oxygen deficiency, δ, in LaCoO3-δ at several temperatures and oxygen partial 
pressures.22 

 

 
Fig. 3.5 Comparison between calculated and experimentally observed oxygen deficiency in 
LaCoO3-δ.23 
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 Due to the pronounced oxygen deficiency the LaCoO3-δ phase is unstable at low 
oxygen partial pressures. Two other ternary phases, La4Co3O10 and La2CoO4, have been 
reported to be present at reducing conditions.24-26 These phases have a crystal structure of 
the Ruddlesden-Popper type, Lan+1ConO3n+1, which can be described as an alternation of n 
perovskite layers with rock salt layers.26 An isothermal cross-section of the phase diagram 
for the La-Co-O system is given in Fig. 3.6.26 The stability region of the La4Co3O10 phase is 
narrow in comparison with the stability regions of the LaCoO3-δ and La2CoO4 phases. The 
phase equilibria in the La-Co-O system will be discussed further with respect to the reactive 
diffusion couples of La2O3 – CoO phases in Paper II of this thesis. 
 
 

 
Fig. 3.6 Isothermal section of the La-Co-O phase diagram26 

 
 Pure LaFeO3 have a very narrow homogeneity range.27,28 It becomes oxygen 
deficient at a significantly lower oxygen partial pressure compared to LaCoO3.27 The phase 
diagram of the pseudo-binary La2O3 – Fe2O3 system is given in Fig. 7.29 Beside the LaFeO3 
phase, only one other ternary compound was found, LaFe12O19.  This phase is 
ferromagnetic and 1/12 of the iron is in the ferrous state. The LaFe12O19 phase decomposes 
to LaFeO3 and Fe3O4 at 1694 K.29 
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Fig. 3.7 Phase diagram of the La2O3 – iron oxide system in air. Temperature is given in 
°C.29 

 
 
3.3. Cation diffusion in LnBO3 perovskite-type oxides – theoretical 
considerations 
 

It is now well established that the mass transport processes in crystalline oxides proceed 
by the means of point defects.30 There are two basic mechanisms - vacancy and interstitial 
diffusion.31 These two features are similar to diffusion processes in other crystalline 
materials - metals and intermetallic compounds. The main differences between oxides and 
metals with implications to diffusion processes are the following:32 

1. Most oxides are ionic compounds. They consist of cations and anions with well 
defined, opposite charges. 

2. Crystalline oxides consist of two or more sublattices. Due to the opposite charges of 
the cations and anions, the cation diffusion takes place in the cation sublattice(s) and 
the anion diffusion takes place in the anion sublattice. 

3. The concentration of point defects, in addition to intensive thermodynamic variables 
such as temperature and pressure, depends also on the chemical potential of oxygen.  

4. Diffusion processes in oxides may be facilitated by a parallel diffusion of electrons 
and holes since oxides may be electrically conducting. 

5. The crystal structure influences the defect structure of the oxide.  
From the structural point of view, the interstitial positions in the perovskites are not 

favoured due to the close atomic packing. It is, therefore, probable that the cation diffusion 
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takes place mostly by a vacancy migration mechanism. The A cations in perovskite lattice 
may be totally missing without the collapse of the BO6-network. The B site vacancies in 
perovskites, on the other hand, are not favoured since the BO6 octahedras form the 
backbone of the perovskite structure. The vacancy diffusion taking place only in the B 
cation sublattice itself would be complicated since an oxygen anion is located between two 
neighbouring sites. The oxygen ion transport in several LaBO3 oxides has already been 
studied by both the experimental and theoretical methods. Data are compared in Table 
3.1.32 The reproducibility of the oxygen ion vacancy migration energies with experimental 
values was good.32 For this reason, we shall deal with the theoretical results first to get an 
insight into the ionic transport in LaBO3-type oxides. These studies are useful since they 
provide an atomistic approach into cation diffusion. Experimental cation diffusion studies 
will be discussed later.  

 
Table 3.1 Calculated and experimental oxygen vacancy migration energies in LaBO3 

oxides (1 eV  96.5 kJ mol-1).32 

 
Cmpd. Em / kJ mol-1

 Calc. Exp. 
LaGaO3 70.4 76.2, 63.7, 70.2 
LaMnO3 83.0 70.4 
LaCoO3 58.9 56.0, 75.3 
LaYO3 117.7 125.5 

 
The formation and migration of cation defects was studied in detail for LaMnO3 by De 

Souza et al.33 To the present date, there have not been published any reports in the literature 
dealing with the direct experimental determination of cation diffusion coefficients in this 
perovskite system. The calculations of cation defect energies in LaMnO3 were based upon 
the Born model of ionic solids with ions assigned integral charges corresponding to their 
formal oxidation states.33 The calculation of defect formation and migration energies 
utilised the Mott-Littleton approach in which the crystal lattice was split into two regions. 
The first region was spherical with the defect in its centre and consisted of 150 – 200 ions. 
The emphasis in calculations was placed on the local lattice relaxation around the defect.33 
The second region, the remaining crystal, was the region where forces due to defect were 
relatively weak and the response could be, therefore, treated by more approximate quasi-
continuum methods. The migration energy of the ion was determined by calculating the 
defect energy of the migrating ion at different positions along the migration path.33 

 The formation energies of isolated vacancies and interstitial defects were computed for 
the rhombohedral and orthorhombic structures. The interstitial defect was represented by an 
octahedral interstice situated at the position (0,0,1/2)cubic. Calculated values are listed in 
Table 3.2.33 For both systems the cation Frenkel disorder energies are much higher than the 
other disorder energies. It can, therefore, be concluded that the vacancies and not the 
interstitials will be the dominant structural defects. The effect of structural distortion on 
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cation disorder energies is about 10 %. The effect of structural distortion on oxygen Frenkel 
disorder energies is negligible. 

 
Table 3.2 Calculated energies for Frenkel disorder, partial and full Schottky disorder in 

LaMnO3 crystals.33

  Energy per defect / kJ mol-1

Name Reaction Rhombohed. Orthoromb.
La Frenkel X ///

La La iLa V +La→ ••• a 973 893 
Mn Frenkel X ///

Mn Mn iMn V +Mn→ •••

//
i

 848 887 
O Frenkel X ••

O OO V +O→  388 386 
LaMnO3 full Schottky /// /// •• surf

La Mn O 3nil V +V +3V +LaMnO→  336 360 
La2O3 partial Schottky /// •• surf

La O 2 3nil 2V +3V +La O→  309 338 
Mn2O3 partial Schottky /// •• surf

Mn O 2 3nil 2V +3V +Mn O→  359 380 
astandard Kröger-Wink notation was used 
 
Upon the examination of the perovskite structure (Fig. 3.1) it is apparent that the 

obvious vacancy migration path for La vacancy is the (100)cubic direction. Calculated 
vacancy migration energies are listed in Table 3.3.33 The La vacancy can exchange its 
position with one of the six surrounding La cations. All six jump distances are equal in the 
cubic and rhombohedral perovskite structures. In the orthorhombic structure there are three 
different jump distances and, therefore, three different migration energies. The saddle point 
configuration consisted of the migrating La cation moving through the aperture defined by 
four oxygen anions.33 Four oxygen anions provided a severe steric hindrance to the A site 
migration. The radius of the sphere that would just pass through the aperture was, in fact, 
similar to the radius of the B site cation. Since La3+ was larger, the surrounding lattice had 
to relax substantially to allow the A site cation to migrate. The shortest oxygen-oxygen 
separation distances across the octahedral interstice are, therefore, also included in Table 
3.3 for the comparison.33 As expected, vacancy migration energy increases as the 
separation distance decreases.  

 
Table 3.3 Calculated activation energies for La vacancy migration, La

mE , and shortest 
oxygen-oxygen separation distances across the octahedral interstice, , in LaMnOoct

O Od − 3.
33 

 
 -1/ kJ molLa

mE /oct
O Od − Å 

Cubic 379 3.904 
Rhombohedral 400 3.481 
Orthorombic 407 3.469 
 411 3.415 
 417 3.406 
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Two migration paths for Mn vacancy were investigated in detail. These are illustrated in 
Fig. 3.8.33 The calculated migration energies are given in Table 3.4.33 The first path 
involved jumps of individual Mn cations along the diagonal. In this case, the Mn cation did 
not have an oxygen anion directly in its way. Nevertheless, the calculated migration 
energies for the migration path A were extremely high.33 This is due to the fact that the 
jumping Mn3+ cation was surrounded by two apical La cations. The main reason for such 
high migration energies was attributed to the electrostatic repulsion between Mn3+ and La3+ 
cations. The second possible migrating path was also investigated. In this case, the 
migrating Mn3+ cation moved up and around the oxygen anion located between two 
neighbouring Mn sites. The authors believed that this transport path represented a balance 
between the repulsive cation interactions and the large displacement which the oxygen ion 
must undergo. Calculated migration energies were lower. 

 

 
Fig. 3.8 Possible jumping mechanisms for Mn3+ cations in LaMnO3 investigated in ref. 22 
projected to the (100)cubic plane. Mn cations are represented by small open circles, Mn 
vacancies by small open squares, oxygen anions by large open circles, La cations by line-
shaded circles. La cations are situated above and behind the plane given by Mn and O ions.

 
Table 3.4 Calculated activation energies for manganese vacancy migration in LaMnO3

33

 -1/ kJ molMn
mE  

 Mechanism A Mechanism B 
Cubic 1420 746 
Rhombohedral 1351; 1518 851 
Orthrombic 1362; 1421 959; 1027 

 
Finally, the authors preliminarily investigated the effect of a removal of a neighbouring 

La3+ cation in the transition state. The location of Mn3+ cations at vacant La positions was 
experimentally confirmed. Preliminary calculations of manganese vacancy migration 
mediated by lanthanum vacancies yielded a value for Mn3+ migration energy ca. 3.5 eV 
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(340 kJ mol-1).33 It is apparent already from these simulations that the lanthanum vacancy 
concentration could be an important parameter since it would explicitly determine not only 
the lanthanum diffusion coefficient but also the manganese diffusion coefficient and thus, 
the overall cation transport properties of LaMnO3.   

Atomistic simulations based on Mott-Littleton calculations have also been performed 
for LaGaO3.34 The activation energies for cation self-diffusion were nearly identical to the 
values obtained for LaMnO3. This reflects comparable ion-ion interactions in LaBO3 
perovskites. Migration energies for selected A site cations on the La3+ and Ga3+ sublattices 
were also calculated and these are given in Table 3.5.34 It can be seen that the transport of 
divalent cations at the La and Ga sublattices is easier than the transport of trivalent cations. 
This is due to the decrease in repulsive interactions between positively charged ions.  Also, 
the transport of smaller cations in the La sublattice is easier since they can better fit into the 
aperture formed by O2- anions. In the LaGaO3 study it was, again, pointed out that the B 
cation diffusion could be significantly facilitated by the presence of La vacancies.  

 
Table 3.5 Calculated migration energies (in kJ mol-1) for cation self-diffusion and 

impurity diffusion on the La3+ and Ga3+ sublattices in LaGaO3.34 

 
 La sublattice 
Cation Pseudo-cubic Orthrombic 
La3+ 436 455; 457; 455 
Sm3+ 347 386; 386; 383 
Gd3+ 311 354; 356; 354 
Ba2+ 366 371; 373; 372 
Sr2+ 258 267; 267; 267 
 Ga sublattice 
 Mechanism A Mechanism B 
Ga3+ 1370 754 
Sc3+ 1304 * 
Fe3+ 1352 839 
Cr3+ 1420 795 
Al3+ 1389 * 

Co2+ 969 609 
Zn2+ 948 663 
Mg2+ 997 644 

* transition state not found 
 

Neither the presence of electronic defects (holes) that could facilitate the cation 
transport nor the effect of surrounding cation vacancies on the cation diffusion were 
investigated in the atomistic simulations. The diffusion in the Mott-Littleton calculations is 
generally calculated in a well-defined surrounding, free of further disorder.33,34 The 
properties of heavily disordered systems are, therefore, difficult to calculate. Molecular 
dynamics (MD) has an advantage that absolute diffusion coefficients can be calculated at 
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various temperatures and then be compared to experimental values. Nevertheless, only 
relatively fast processes such as oxygen diffusion can be modelled due to the limited 
computer time.35,36 Kilo et al. performed the MD studies on cation diffusion in heavily 
disordered systems like strontium and magnesium doped lanthanum gallate 
(La0.9Sr0.1Ga0.9Mg0.1O2.9, LSGM) and yttria-stabilised zirconia (YSZ) for the first time.37 
To overcome problems, a well-defined concentrations of cation vacancies were artificially 
introduced into simulation boxes and their behaviour was modelled using long-time 
calculation runs.37 The influence of defect concentration was estimated using varying defect 
concentrations. It was found that the diffusion of all the cations in LSGM is correlated and 
occurs via two neighbouring vacancies on the A and B sites of the perovskite lattice.37 
These two vacancies migrate together and form a binary vacancy complex. A cations hop 
directly to the neighbouring A site vacancies while B cations are allowed to use an A site 
vacancy as an intermediate state. This leads to the similar cation diffusion coefficients for 
all four types of cations and explains the experimental observations for 
La0.9Sr0.1Ga0.9Mg0.1O2.9.38 

 
3.4. Cation diffusion in LnBO3 perovskite-type oxides – experimental 
observations 
 

Experimental studies on cation diffusion in perovskite-type oxides of the LnBO3 type 
(Ln = La or lanthanoid cation, B = transition metal element) are relatively scarce in the 
literature. Freer in his review of self-diffusion and impurity diffusion data in oxides 
published in 1980 provided data only for one perovskite compound – NdFeO3.39 The need 
for new experimental studies is, therefore, apparent. The cation diffusion has 
experimentally been studied directly (tracer diffusion and inter-diffusion experiments) and 
indirectly (following the kinetics of a process explicitly limited by cation diffusion). Table 
3.6 contains experimental data available on cation diffusion in unsubstituted LnBO3 
oxides.40-51 Experimental activation energies are in a large range of ~ 50 – 600 kJ mol-1, 
depending on the cation, material and experimental technique used. These values are 
mostly lower than predictions of activation energies from atomistic simulations. In the 
following discussion we will discuss differences in the activation energy that may arise 
from the use of different experimental techniques. A further discussion of the activation 
energies will also be later provided in research papers of this thesis. 

Activation energies resulting from reactive diffusion couple experiments are higher than 
activation energies from tracer diffusion experiments. It was suggested that this could be 
due to the nature of the experimental methods used.41,50 In reactive diffusion measurements 
it is likely that a new perovskite phase, which is continuously formed, contains an 
equilibrium population of cation vacancies. The activation energy is, therefore, probably a 
sum of activation energies for vacancy formation and migration respectively. In tracer 
diffusion experiments, the population of cation vacancies might have already been defined 
by the sintering temperature during the material’s synthesis.38 The concentration of 
vacancies probably exhibit only minor changes with annealing temperature. If so, activation 
energies obtained from tracer diffusion experiments reflect only the activation barrier for 

 

20



jumps between lattice sites. One could, therefore, evaluate directly the activation energy for 
vacancy migration and formation from these two diffusion experiments. This hypothesis, 
however, needs to be experimentally tested by diffusion experiments involving the same 
cation. To the best of our knowledge, only one system – Co3+ diffusion in LaCoO3 – was 
studied by both experimental methods.43,49 Tracer diffusion experiments most often involve 
diffusion studies of an impurity element. Some metals, including manganese or cobalt, have 
only one stable, naturally occurring isotope. Alternative choices, therefore, need to be 
sought. Small amount of radioactive isotopes could be a possibility to overcome this 
problem, as reported by Petrov et al.43 and Pavlyuchenko et al.42 in their studies of LnCoO3 
and LnFeO3 materials. 

 
Table 3.6 Experimental data available on cation diffusion in unsubstituted LnBO3 oxides40-

50

Compound Cation T / K -1
A / kJ molE  Reference 

Tracer and radiotracer diffusion experiments 
YCrO3 La3+ 1273 - 1473 * Hong et al. (2001)40

YCrO3 Mn3+ 1273 - 1473 * Hong et al. (2001)40

LaFeO3 Y3+ 1173 - 1373 * Wærnhus et al. (2004)41

LaFeO3 Cr3+ 1173 - 1373 * Wærnhus et al. (2004)41

NdFeO3 Nd3+ 1513 - 1693 80 Pavlyuchenko et al. (1970)42

NdFeO3 Fe3+ 1513 - 1693 93 Pavlyuchenko et al. (1970)42

LaCoO3  Co3+ 1273 - 1523 170 ± 15 Petrov et al. (1987)43

PrCoO3 Co3+ 1273 - 1523 182 ± 8 Petrov et al. (1987)43

NdCoO3 Co3+ 1273 - 1523 163 ± 6 Petrov et al. (1987)43

SmCoO3 Co3+ 1273 – 1523 107 ± 4 Petrov et al. (1987)43

EuCoO3 Co3+ 1273 – 1523 79 ± 6 Petrov et al. (1987)43

GdCoO3 Co3+ 1273 – 1523 50 ± 6 Petrov et al. (1987)43

PrCoO3 Pr3+ 1273 – 1523 75 ± 6 Petrov et al. (1987)43

SmCoO3 Sm3+ 1273 – 1523 148 ± 15 Petrov et al. (1987)43

EuCoO3 Eu3+ 1273 - 1523 117 ± 11 Petrov et al. (1987)43

LaGaO3 Fe3+ 1673 * Matraszek et al. (2002)44

LaGaO3 Cr3+ 1673 * Matraszek et al. (2002)44

LaGaO3 Y3+ 1673 * Matraszek et al. (2002)44

Inter-diffusion couples 
LaFeO3 Nd3+ 1373 - 1573 610 ± 30 Smith et al. (2006)45

NdFeO3 La3+ 1373 - 1573 610 ± 30 Smith et al. (2006)45

Reactive diffusion couples 
LaCrO3 La3+ 1483 - 1695 480 Akashi et al. (1998)46

NdCrO3 Nd3+ 1473 - 1773 343 Akashi et al. (2001)47

YCrO3 Y3+ 1458 - 1719 272 Kawamura et al. (1995)48

LaCoO3 Co3+ 1523 - 1573 550 ± 20 Petrov et al. (1981)49

LaFeO3 Fe3+ 1223 - 1623 320 ± 20 Smith et al. (2006)50

* Activation energy not reported 
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The absolute values of cation diffusion coefficients in the perovskite-type oxides are 

observed in the range of   10-8 – 10-18 cm2s-1. The data are given in Fig. 3.9. The values are 
spread over 10 orders of magnitude. The grain boundary diffusion coefficients are usually 
about 5 orders of magnitude higher than the respective bulk diffusion coefficients. The 
grain boundaries constitute a rapid transport path in these materials. A cation enrichment at 
the grain boundaries was also confirmed by other, independent techniques.56,57 The reactive 
diffusion couples often provide information about the self-diffusion of the faster cation. 
The complementary studies are, therefore, needed to obtain information about the least 
mobile cations. Tracer diffusion studies are most often performed with impurity elements. 
Information regarding the chemical self-diffusion of the least mobile species is, therefore, 
very often lacking. LaFeO3 is one of the compounds where the lower mobility of La3+ 
relative to Fe3+ was confirmed with separate inter-diffusion coples of LaFeO3 – NdFeO3.45 

Further experimental data available on cation diffusion involve substituted perovskite 
compounds.38,41,44,51-55 The influence of dopant fraction on cation diffusion was studied in 
detail for La1-xSrxGa1-xMgxO3-z.44 Three elements, Fe, Cr and Y, respectively, were studied. 
It was found that the diffusion coefficients passed through a minimum at x = 0.02 but the 
values of diffusion coefficients were nearly identical.44 The effect of the substitution was 
also studied by I. Wærnhus et al. for La1-xSrxFeO3.41 It was observed that the substitution 
level did not have a dramatic effect on cation diffusion coefficients. 

 

 
 

Fig. 3.9 Cation diffusion in unsubstituted perovskite oxides. 
 
The cation diffusion could be, in principle, studied by any physico-chemical process 

taking place in the oxide that is explicitly limited by the cation mobility. K. Salama et al. 
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recently reviewed several studies of creep involving perovskite-type oxides with respect to 
cation diffusion.58 It was pointed out that creep processes are limited by cation diffusion 
since activation energies were higher than the activation energy for oxygen diffusion.58 
Nevertheless, it was not possible to determine from the creep studies alone which cation 
was rate-controlling.58 It was pointed out that only a combination of at least two 
independent investigations can provide full information about deformation processes in 
these compounds.58,59 Cation diffusion studies are needed also in order to fully understand a 
densification60 or some solid state kinetic studies of perovskite materials.61,62 These 
observations inevitably lead to a general conclusion that the systematic, experimental cation 
diffusion studies are necessary to fully understand many diffusion-limited processes in the 
perovskite-type oxides. 
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4. Solid state diffusion 
 
This section provides the necessary mathematical background for diffusion studies in solid 
state materials. The models and equations introduced in this section will be later actively 
used in the research papers of the thesis. The first chapter introduces the Fick’s laws of 
diffusion. The solutions to the diffusion equation are mathematically derived for the 
diffusion from constant and instantaneous sources into a semi-infinite medium. The second 
chapter describes the chemical and tracer diffusion experiments. Analysis of both the inter-
diffusion experiment and the reaction-diffusion experiment is provided. The last chapter 
deals with the mass transport in polycrystalline materials. The Fisher’s model of grain 
boundary diffusion is described. Finally, the classification of diffusion kinetics in 
polycrystalline materials is discussed. 
 
4.1. Fick’s laws of diffusion 
 

In a direct analogy with the heat flow, Fick expressed a mass flow of praticles due 
to a concentration gradient.1 The mass flux, J, is proportional to the concentration gradient, 
i.e., 
 

∇J = - D c          (4.1) 
 
where c is the actual concentration of diffusing species, is a gradient vector operator, 
defined in the rectangular coordinate system as 

∇

 

x y z
∂ ∂∇ = + +
∂ ∂x ye e e ∂

∂z       (4.2) 

 
and D is a proportionality constant called the diffusion coefficient. Equation (4.1) 
represents the Fick’s first law of diffusion. Since the dimensions of J and  in the SI 
system

c∇
2 are   m-2s-1 and m-4 respectively, the dimension of the diffusion coefficient is m2s-1.  
In practice, the solution of equation (4.1) requires the measurement of the steady-

state concentration gradient and the steady-state flux. The steady-state conditions can not 
be often established during experiments due to, for example, time constraints. A materials 
balance in the volume element of the system then becomes useful.3 This situation is 
illustrated in Fig. 1. The following expression in one dimension 
 

xJc
t x

∂∂ = −
∂ ∂

         (4.3) 

 
can be easily derived from Fig. 4.1. In three dimensions, equation (4.3) reads  
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Jc
t

∂ = − ∇
∂

         (4.4) 

 
Equation (4.4), upon substitution for J from equation (1), becomes 
 

(c D c
t

∂ = ∇ ∇
∂

)         (4.5) 

 
If the diffusion coefficient is independent of coordinates, equation (4.5) becomes 
 

c D c
t

∂ = ∆
∂

         (4.6) 

 
where ∆ is a Laplacian operator, defined in the rectangular coordinate system as 
 

2 2
2

2 2

2

2x y z
∂ ∂∆ = ∇ = + +
∂ ∂

∂
∂

      (4.7) 

 
Equation (4.6) is called the Fick’s second law of diffusion, or, simply, the diffusion 
equation. 
 
 

 
 
Fig. 4.1 One-dimensional mass balance in an infinitesimal system element. 
 
 
4.2 Solutions to the diffusion equation 
 
 Experiments are usually designed in a way that the mass transport takes place 
mostly in one direction. The diffusion equation (4.6) then reduces to 
 

2

2

c D
t x

∂ =
∂ ∂

c∂          (4.8) 
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The solutions of equation (4.8) are, for example, sought in the following form 
 

( ) ( )( , )c x t X x T t=         (4.9) 
 
where X(x) and T(t) are the functions of one variable only. Equation (4.9) forms the basis 
for the method of separation of variables.1 Equation (4.8) can also be solved in the form of 
Laplace transforms.  The Laplace transform of concentration  is, by definition, given 
as

( ,c x t)
3 

 

( ){ } ( ) ( ) ( )
0

, exp
t p

L c x t c p pt c x t dt
∞

→
= = −∫ ,                (4.10) 

 
where ( )c p  is the image function, ( )exp pt−  is the Laplace kernel and p is a complex 
variable. If c = c0 for all t ≥ 0, it can be shown that 
 

( ) ( ) 0
0

0

exp cc p c pt dt
p

∞

= − =∫       (4.11) 

 
Table 4.1 illustrates the most often used types of Laplace transforms.3 In addition, the 
general theorems, taken from ref. 3, are given here 
 
{ } { } {1 2 1 2L c c L c L c+ = + }        (4.12) 

 

{ } 0
cL pL c c
t

⎧ ⎫∂⎪ ⎪⎪ ⎪ = −⎨ ⎬⎪ ⎪∂⎪ ⎪⎩ ⎭
        (4.13) 

 
n n

n

cL n

c
x x

⎧ ⎫⎪ ⎪∂⎪ ⎪ =⎨ ⎬⎪ ⎪∂ ∂⎪ ⎪⎩ ⎭

∂          (4.14) 

 
where c0 is the initial concentration at t=0. 
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Table 4.1 Laplace transforms applicable to diffusion studies. 
Laplace transform Original function 
( )c p  ( ),c x t  

0 /c p  0c  
( )1/ p+α  ( )exp t−α  

( )2 2/ pω +ω  ( )sin tω  

( )2 2/p p +ω  ( )cos tω  

( ){ }1/ 2exp /p D x− x >0 
( )

2

1/ 23
exp

42

x x
DtDt

⎛ ⎞⎟⎜ ⎟−⎜ ⎟⎜ ⎟⎜⎝ ⎠π
 

( ){ } ( )1/ 2 1/ 2exp / / /p D x p D− x >0 
1/ 2 2

exp
4

D x
t D

⎛ ⎞⎛ ⎞ ⎟⎜⎟⎜ ⎟−⎟ ⎜⎜ ⎟⎟⎜ ⎜ ⎟⎜⎝ ⎠π ⎝ ⎠t
 

( ){ }1/ 2exp / /p D x p− x >0 erfc
2

x
Dt

⎛ ⎞⎟⎜ ⎟⎜ ⎟⎟⎜⎝ ⎠
 

 
 
4.2.1. Linear diffusion from a constant source into a semi-infinite medium 
 
 
 The diffusion equation (4.8) is a second order partial differential equation that 
requires two boundary or initial conditions in order to obtain a unique solution. In the case 
of linear diffusion from an infinite source into a semi-infinite medium, the initial condition 
is c=0 for x > 0 and t = 0. In addition, there is a boundary condition that requires c = c0 at x 
= 0 for all t > 0. 
 By the use of equations (4.13) and (4.14), the diffusion equation can be transformed 
into3 

 
2

2

c cp
x D

∂ =
∂

         (4.15) 

 
Equation (4.15) is an ordinary differential equation. Its general solution is 
 

exp exppc A x B
D D

⎛ ⎞ ⎛⎟⎜ ⎟= − + +⎜ ⎟⎜ ⎟⎟ ⎟⎜ ⎜⎝ ⎠ ⎝
p x

⎞⎟⎜ ⎟⎜ ⎟⎜ ⎟⎠
     (4.16) 

 
Only the first, decaying term satisfies the boundary condition and thus, B = 0. Parameter A 
is equal to  since the Laplace transform of the initial condition is 0 /c p
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( ) ( ) ( )0
0

00

0 exp expcc c pt dt pt
p p

∞∞

= − = − − =∫ 0c    (4.17) 

 
The Laplace transform of the solution to the diffusion equation, therefore, becomes 
 

0 expc pc
p D

⎛ ⎞⎟⎜ ⎟= −⎜ ⎟⎜ ⎟⎟⎜⎝ ⎠
x         (4.18) 

 
Finally, referring to table 4.1, the solution to the diffusion equation becomes 
 

0erfc
2

xc c
Dt

⎛ ⎞⎟⎜= ⎟⎜ ⎟⎟⎜⎝ ⎠
        (4.19) 

 

where erfc
2

x
Dt

⎛ ⎞⎟⎜ ⎟⎜ ⎟⎟⎜⎝ ⎠
 is a complementary error function of 

2
x
Dt

. The complimentary error 

function is defined by the following equation 
 

( ) ( ) ( )2
0

2erfc 1 erf 1 exp
z

z z= − = − −
π ∫ dη η    (4.20) 

 
 
4.2.2. Linear diffusion from an instantaneous source into an infinite 
medium  
 
 
 Another useful diffusion problem is a unidirectional diffusion from an instantaneous 
(finite) source into an infinite medium. This situation can be represented by a thin film 
source placed on a disk. The boundary condition requires that c = 0 for x → ∞ and t > 0 s. 
In addition, the diffusion process is a subject to the mass constraint for a unit area given by 
the following equation4 

 

( )
0

,
2
Mc x t dx

∞

=∫          (4.21) 

 
where M is a constant.  
 The Laplace transform of the solution to the diffusion equation is given by equation 
(4.16) with B = 0, i.e. 
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exp pc A
D

⎛ ⎞⎟⎜ ⎟= −⎜ ⎟⎜ ⎟⎟⎜⎝ ⎠
x         (4.22) 

 
The Laplace transform of equation (4.21) yields 
 

( )
0

,
2 t pt p

ML c x t dx L
∞

→→

⎧ ⎫⎪ ⎪ ⎧ ⎫⎪ ⎪⎪ ⎪ ⎪ ⎪=⎨ ⎬ ⎨⎪ ⎪ ⎪⎪ ⎪⎩ ⎭⎪ ⎪⎩ ⎭
∫ ⎬⎪

       (4.23) 

 
The left-hand side of equation (4.23) is 
 

( ) ( ) ( ) ( ) ( )
0 0 0 0 0

exp , exp , ,pt c x t dx dt pt c x t dt dx c x t dx
∞ ∞ ∞ ∞ ∞⎧ ⎫ ⎧ ⎫⎪ ⎪ ⎪ ⎪⎪ ⎪ ⎪ ⎪− = − =⎨ ⎬ ⎨ ⎬⎪ ⎪ ⎪ ⎪⎪ ⎪ ⎪ ⎪⎩ ⎭ ⎩ ⎭
∫ ∫ ∫ ∫ ∫
 (4.24) 
 
Upon the substitution for c from equation (4.22) we obtain 
 

( ) ( )
0 0 0

, , exp
/

t p

p AL c x t dx c x t dx A x dx
D p D

∞ ∞ ∞

→

⎧ ⎫ ⎛ ⎞⎪ ⎪ ⎟⎜⎪ ⎪ ⎟= = − =⎜⎨ ⎬ ⎟⎜ ⎟⎪ ⎪ ⎟⎜⎝ ⎠⎪ ⎪⎩ ⎭
∫ ∫ ∫  (4.25) 

 

The right-hand side of equation (4.23) is equal to 
2
M

p
, see Table 1. This then, finally, 

yields 
 

2 /
MA
p D

=          (4.26) 

 
Eqaution (4.22) then becomes 
 

1 exp
2 /
M pc

Dp D

⎛ ⎞⎟⎜ ⎟= −⎜ ⎟⎜ ⎟⎟⎜⎝ ⎠
x        (4.27) 

 
The solution to the diffusion equation, upon the examination of Table 4.1, is  
 

2

exp
2 4
M D xc

t D
⎛ ⎞⎟⎜ ⎟= −⎜ ⎟⎜ ⎟⎜π ⎝ ⎠t

        (4.28)  

 
The diffusion coefficient can be easily determined from the slope of the log c vs. x2 plot. 
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4.3. Diffusion in materials 
 
The diffusion in materials is characterized by several different diffusion coefficients since 
the diffusion experiment can be performed in several different ways. In the following, we 
shall distinguish between two different types of diffusion experiments.5 

 
1. Tracer diffusion experiment. In this experiment, tiny amounts of the diffusing 
species are placed on the polished surface of the material (A) and annealed for a certain 
period of time. The total concentration of the trace element is usually very small and thus, 
the composition of the material is not affected by the presence of the tracer. Tracer 
diffusion experiments may be performed by the use of an isotope of the same element, A*, 
or another element, B*. We can therefore distinguish between the self-diffusion, DA*, and 
impurity diffusion coefficients, DB*. A factor that gives the ratio between the self- and 
impurity diffusion is called the segregation factor. 
 
2. Chemical diffusion experiment. In this experiment, two different materials, A and 
B, are opposed and the diffusion between them occurs due to the concentration gradient. 
Two situations may happen depending on whether these two materials do react or not.  If 
these materials do not react, an inter-diffusion between them usually occurs. If these 
materials do react, a third and, possibly, also fourth and fifth phases are formed at the 
interface between the reactants.  
 
 
4.3.1 Concentration dependent diffusion  
 

A first estimation of the inter-diffusion coefficient can be obtained from equation 
(4.19). Equation (4.19) can be rewritten in the following form 
 

erfc
2 2

c c xc
Dt

+ −
−⎛ ⎞− ⎟⎜= ⎟⎜ ⎟⎟⎜⎝ ⎠

c+       (4.29) 

 
where c+ and c- are the constants apparent from the experimental concentration profile. An 
illustration of the experimental penetration profile is given in Fig. 4.2. 

If the diffusion coefficient is concentration-dependent, equation (4.29) does not 
suffice. The Boltzmann-Matano analysis should then be applied to evaluate the inter-
diffusion coefficients from an experimental penetration profile.5 The chemical diffusion 
coefficient, D, is, in general, concentration dependent. Equation (4.5), therefore, holds for 
the system. Equation (4.5) in one dimension is given by the following expression 
 

c D
t x

⎛ ⎞∂ ∂ ⎟⎜= ⎟⎜ ⎟⎜⎝ ⎠∂ ∂
c
x

∂
∂

         (4.30) 
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Fig. 4.2 Illustration of the inter-diffusion concentration profile. 
 
 
It was shown by Boltzmann1 that the partial differential equation (4.30) can be 

transformed to an ordinary differential equation by the introduction of a new variable, η , 
given by the following definition1 

 

2
x

t
η =           (4.31) 

 
The following transformations are then valid 
 

1
2

c dc
x dt

∂ =
∂ η

         (4.32) 

 
1
4

c dD dcD
x x t d

⎛ ⎞⎛ ⎞∂ ∂ ⎟⎜⎟⎜ = ⎟⎟ ⎜⎜ ⎟⎟⎜ ⎜ ⎟⎜⎝ ⎠∂ ∂ η η⎝ ⎠d
       (4.33) 

 

3
24

c x
t dt

∂ = −
∂ η

dc          (4.34) 

 
Equation (4.30) then finally becomes 
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2 dc d dcD
d d

⎛ ⎞⎟⎜− η = ⎟⎜ ⎟⎜ ⎟⎜η η⎝ ⎠dη
        (4.35) 

 
Equation (4.35) can be integrated with respect to η as follows 

 

( )
**

*

2
cc

c cc

dc dcdc D D c
d d−− =

⎡ ⎤ ⎛ ⎞⎟⎜⎢ ⎥− η = = ⎟⎜ ⎟⎜⎢ ⎥ ⎟⎜η η⎝ ⎠⎣ ⎦
∫ *

c

0

     (4.36) 

 
since  when c=c/D dc dη= - (Fig. 4.2). The rearrangement of equation (4.36) provides 
the following expression 
 

( )
*

*

2*
c

c

c c

D c dc
dc
d

−

=

= − η⎛ ⎞⎟⎜ ⎟⎜ ⎟⎜ ⎟η⎝ ⎠

∫        (4.37) 

 
Upon the substitution for η from equation (4.31), equation (4.37) finally becomes 
 

( )
*

*

1*
2

c

c

c c

D c xdc
dct
dx

−

=

= − ⎛ ⎞⎟⎜ ⎟⎜ ⎟⎜⎝ ⎠

∫        (4.38) 

 
Since also  when c=c/D dc dη= 0 +, it follows from equation (4.36) that x must satisfy the 
following condition 
 

0
c c

c c

dc xdc
+ +

− −

η = =∫ ∫         (4.39) 

 
The distance x must therefore be measured from the position xM given in Fig. 4.2. This 
plane is called the Matano plane.1  
 The accurate location of the Matano plane is often complicated, especially in the 
non-symmetric concentration profiles. den Broeder therefore provided an alternative 
approach that avoids the location of the Matano interface.6 By the use of the following 
variable 
 

c
c cy

c c

−

+ −

−=
−

         (4.40) 

 
equation (4.38) can be rewritten in the following way 
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( ) ( ) ( ) ( )
*

* *
*

*

1* 1
2

x

c c
x

x x

D c y c c dx y c c dx
dct
dx

∞
− +

−∞

=

⎧ ⎫⎪ ⎪⎪ ⎪= − − − + −⎨ ⎬⎛ ⎞ ⎪ ⎪⎟ ⎪ ⎪⎜ ⎩ ⎭⎟⎜ ⎟⎜⎝ ⎠

∫ ∫   (4.41) 

 
Equations (4.39) and (4.41) are equivalent in terms of the accuracy of the result. This was 
recently confirmed by Kailasam et al.7  
 The intrinsic chemical diffusion coefficients of pure components A and B, DA and 
DB, can finally be obtained by the extrapolation of the concentration-dependent diffusion 
coefficient at cA→∞ (or cB→0) and cB→∞ (or cA→0) respectively. 
 
4.3.2 Kirkendall effect 

 
In general, chemical diffusion experiments of two different components, DA and DB, differ. 
Due to this reason, the original interface (Kirkendall plane) between the materials moves 
during the experiment.5 This situation is schematically given in Fig. 4.3. It is, therefore, 
necessary to place inert markers between two materials in order to track the position of the 
initial interface. The movement of the marker, vK, is a function of the individual chemical 
diffusion coefficients and it is given by the Kirkendall equation 
 

( ) A
K A B

Xv D D
x

∂= −
∂

        (4.42) 

 

where AX
x

∂
∂

 is the concentration gradient at the Kirkendall plane. 
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Fig. 4.3 Illustration of the Kirkendall effect in an inter-diffusion couple composed of two 
pure metal A and B. 
 
4.3.3. Formation of a chemical compound layer at the interface of two 
elementary substances 
 
V. I. Dybkov8 recently reviewed the experimental data on solid state reaction kinetics 
between two metal components, A and B.  
 

p qpA qB A B+ →         (4.43) 
 
The conclusions from the study are the following8: 
 

1. The solid-state growth of the layer of any  chemical compound ApBq between 
two mutually insoluble elementary substances A and B is due to two parallel 
partial processes: 

a) diffusion of atoms of a given component across the bulk of the layer, 
b) chemical transformations with the participation of these atoms and the surface 

atoms of another component (interface reactions). 
2. Both interface reactions as well as diffusion fluxes of the components across the 

bulk of a growing compound layer are independent of each other. 

 

37



3. The layer thickness-time dependence is, in general, described by a linear to 
parabolic equation. Its initial region is close to a straight line. This region then 
transforms gradually to a parabola. The higher the temperature the narrower is 
the region of linear growth. 

4. There are two critical values of the layer thickness, 1/ 2
Ax  and 1/ 2

Bx , that divide the 
layer thickness-time dependence into the reaction-controlled and diffusion-
controlled regions with respect to the components A and B respectively. 

5. For any chemical compound ApBq, the reaction-diffusion and self-diffusion 
coefficients of a given component (A or B) are, in general, different, the former 
being much greater than the latter. Nevertheless, after normalising to the same 
vacancy concentration, these become close, if not identical, provided that the 
mechanism of diffusion is of a vacancy type in both the growing and non-
growing layer of that compound. 

6. The different contributions of the components to the growth process of the layer 
at the interface between phases A and B should not be regarded as a result of the 
Kirkendall’s effect. The Kirkendall’s effect reflects the different diffusivities of 
A and B in a solid solution of A in B or B in A respectively. It does not reflect 
the different diffusivities of A or B in an intermetallic compound ApBq which 
has, in general, a very narrow solid solubility range.  

 
The relationship between the experimentally observed parabolic rate constant and the 

chemical diffusion coefficient of diffusing species in the bulk of the layer is not simple. The 
parabolic rate constant is, in fact, a function of both component diffusivities, DA and DB, 
and a function of the standard Gibb’s energy of the solid state reaction. Schmalzried 
provided the following equation for the parabolic rate constant of reaction (4.43)9 

 
0

p qA BA B
GD Dk

p q RT

∆⎛ ⎞⎟⎜= + ⎟⎜ ⎟⎜ ⎟⎜⎝ ⎠
       (4.44) 

 
where 0

p qA BG∆  is the standard Gibb’s energy of reaction (4.43) and k is a parabolic rate 
constant. The parabolic rate law is generally expressed as 
 

2 2x kt C= +          (4.45) 
 
where C is an integration constant. Equation (4.45) comes from the integration of the 
following kinetic equation, observed experimentally 
 

1dxv
dt

−= = kx          (4.46) 

 
where v is the rate of the reaction (4.43). 

 

38



 The analysis of the solid state reaction kinetics between oxides is a very complex 
process since the number of possible mobile components and, correspondingly, the number 
of possible reaction mechanisms, increase dramatically. Only a few reactions have been 
studied both theoretically and experimentally.9 Further mathematical treatment of reactive 
diffusion couples will be provided in papers I and II. 
 
4.3.4 Grain boundary diffusion 
 
4.3.4.1  Fisher’s diffusion model along single grain boundary 
 
The diffusion in solids is known to occur along grain boundaries (GB) and over free 
surfaces more rapidly than through interiors of crystals. Most mathematical treatments are 
based on the Fisher’s model describing diffusion along a single GB.10,11,12 This model is 
also called an isolated boundary model. The GB is represented by a semi-infinite slab 
embedded in an isotropic crystal perpendicular to its surface. The schematic representation 
is given in Fig. 4.4. The GB is described by two physical parameters: the GB width δ and 
the GB diffusion coefficient DGB.  
 

 
 
Fig. 4.4 The Fisher’s model of the grain boundary. 
 

A derivation of the diffusion equation for this system is based on the following 
assumptions:11 

 
1. The Fick’s laws of diffusion are obeyed in both the crystal and the grain 

boundary slab. 
2. The diffusion coefficients in the bulk and in the grain boundary slab are 

isotropic and independent of the concentration, position and time. 
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3. The diffusant flow is continuous at the grain boundary/crystal interface. This 
necessarily means that the diffusant concentration and the flux are continuous at 

. / 2x = ± δ
4. The width of the grain boundary is small and therefore, the concentration 

variation across it in the x-direction is negligible. 
 

The diffusion process is then described by the following two second-order partial 
differential equations11 

 
2 2

2

c cD
t x

⎛ ⎞∂ ∂ ⎟⎜ ⎟= +⎜ ⎟⎜ ⎟⎜∂ ∂⎝ ⎠2

c
y

∂
∂

    for x >       (4.47) / 2δ

2

2
/ 2

2GB GB
GB

x

c c D cD
t x =δ

⎛ ⎞∂ ∂ ∂ ⎟⎜= + ⎟⎜ ⎟⎜⎝ ⎠∂ ∂ δ ∂x
      (4.48) 

 
where c, cGB, D and DGB are the concentrations and diffusion coefficients in the bulk and 
along grain boundaries respectively. The solutions to equations (4.47) and (4.48) must meet 
the initial and boundary conditions. In addition, a condition of continuity between bulk and 
grain boundary concentration must be met, i.e. 
 
( ) ( ), /GBc y t c y t= ±δ 2, ,         (4.49) 

 
as well as a surface condition. The surface condition for the diffusion from a constant 
source is 
 
( ) 0,0, const.c x t c= =          (4.50) 

 
The surface condition for the diffusion from a thin-film source can be given as 
 

( ) ( ) ( ), ,0 , ,0, Mc x y M y c x t
Dt

= δ =
π

    (4.51) 

 
where M is a constant. 

Fisher postulated that the bulk diffusion occurs due to the leakage of diffusing 
species from the grain boundary. The bulk diffusion can be, therefore, given approximately 
as11 

 

( ) ( ), , , erfc
2GB

xc x y t c y t
Dt

⎛ ⎞⎟⎜≈ ⎟⎜ ⎟⎟⎜⎝ ⎠
       (4.52) 
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The average concentration found at the distance y from the surface, c , then obeys the 
following proportionality 
 

( )1/ 4
0 expc c −−π∼ w         (4.53) 

 
with 
 

1/ 44

GB

y Dw
tD

⎛ ⎞⎟⎜= ⎟⎜ ⎟⎜⎝ ⎠δ
        (4.54) 

 
This equation means that the plot of log .c vs y  should yield a straight line. The 
product  can be, then, calculated by the following equation GBDδ
 

2
ln

1.128GB

cDD
t y

−⎛ ⎞∂ ⎟⎜ ⎟δ = −⎜ ⎟⎜ ⎟⎜ ∂⎝ ⎠
       (4.55) 

 

where 
ln c

y
∂
∂

 is a slope of the experimental ln .c vs y plot. Whipple later refined Fisher’s 

solution11 and found that for the diffusion from constant and instantaneous sources it is 
possible to write 
 

6 /5

ln
0.78

c
w

∂
= −

∂
         (4.56) 

 
The power of 6/5 has no physical meaning; it only provides a good numerical 
approximation of the exact profile. Equation (4.55) than transforms into the following, 
widely used form 
 

5/3 5/3

6/5 6/5

ln log
1.32 0.33GB

c cD DD
t y t y

− −⎛ ⎞ ⎛∂ ∂⎟⎜ ⎜⎟δ = − = −⎜ ⎜⎟⎜ ⎜⎟⎜ ⎜∂ ∂⎝ ⎠ ⎝

⎞⎟⎟⎟⎟⎠
  (4.57) 

 
The validity of equations (4.56) and (4.57) requires the parameter α, given as 
 

2 Dt
δα =          (4.58) 

 
to be α < 0.1 and β, given as 
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2
GBD

D Dt
δβ =          (4.59) 

 
to be β > 10. Equation (4.57) thus can only be applied to the long penetration “tail” caused 
by the simultaneous GB and bulk diffusion. A near-surface region, caused by the direct 
volume diffusion from the surface, can not be used to obtain GB diffusion data.   
 
4.3.4.2   Harrison’s classification of diffusion kinetics 
 
The GB diffusion is a complex process involving several elementary steps. These steps 
include the direct volume diffusion from the surface, the diffusion along GBs, the partial 
leakage of the diffusant from the GBs to the grains and the subsequent volume diffusion 
around the GBs. In each particular regime one or two elementary processes control the 
overall rate of diffusion. Each regime dominates in a certain region of annealing 
temperatures, grain sizes and other experimental parameters. In the following, we shall 
present the Harrison’s classification of diffusion kinetics.11,12 It is schematically given in 
Fig. 4.5. It is the most widely used classification of diffusion kinetics in polycrystal. 
  

 
  
Fig. 4.5 Harrison’s classification of diffusion kinetics in polycrystal 
 
 In the A type of diffusion kinetics, the volume diffusion length is larger than the 
spacing between grain boundaries. The condition of the A regime is 
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Dt d           (4.60) 
 
On the macroscopic scale, the diffusion in a polycrystal obeys the Fick’s law with an 
effective diffusion coefficient Deff. The effective diffusion coefficient is given by the 
following equation 
 

eff GB (1 )D fD f= + − D        (4.61) 
 
where D and DGB are the bulk and grain boundary diffusion coefficients respectively and f 
is the volume fraction of the grain boundaries in the polycrystal. Equation (4.61) represents 
the Hart’s formula.9 The volume fraction of grain boundaries depends on the grain size. The 
bulk and grain boundary diffusion coefficients can, therefore, be determined from equation 
(4.61) if the diffusion experiment is performed on materials with different grain sizes. 
 In the B regime, the volume diffusion length is shorter than the spacing between the 
grain boundaries. This can be written as 
 

Dt dδ          (4.62) 
 
In this case, the volume diffusion from the neighbouring GBs does not overlap and the 
individual GBs are effectively isolated. In this regime, the penetration profile has a two-
step shape. A near-surface region is caused by the direct diffusion from the surface and 
therefore, this region can be used to evaluate the bulk diffusion coefficient using equations 
(4.19) or (4.28). A long penetration tail is caused by a simultaneous bulk and GB diffusion. 
GB diffusivity can, therefore, be obtained from equation (4.57). 
 In the type C kinetics, observed at low temperatures, the volume diffusion is “frozen 
out”. It can be written that 
 

Dt δ           (4.63) 
 
In this case, the diffusant penetrated into the sample is located only at the grain boundaries. 
This regime can be, therefore, used to obtain the GB diffusion coefficient directly. The GB 
width does not need to be necessarily known. Nevertheless, the analysis of the experimental 
penetration profile may be extremely difficult since the amount of penetrated species is 
usually very small.  
 Beside the Harrison’s model of parallel GBs, also other models have been proposed. 
These include the cubic grain model of Suzuoka, the spherical grain model of Bokshtein et 
al. and the general model of diffusion in isotropic polycrystals by Levine and MacCallum.12 
Nevertheless; it has to be kept in mind that the shape and the grain size of most 
polycrystalline materials are not uniform. The Harrison’s model of parallel GBs remains 
one of the most useful models of the diffusion kinetics in polycrystals. 
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Cation self-diffusion and nonstoichiometry of lanthanum 
manganite studied by diffusion couple measurements*

Marián Palcut, Kjell Wiik and Tor Grande

Department of Materials Science and Engineering, Norwegian University of Science and 
Technology, 7491 Trondheim, Norway 

Abstract 

Reaction kinetics between dense, polycrystalline pellets of La2O3 and Mn3O4 were 
investigated at temperatures 1370-1673 K and oxygen partial pressures 40 Pa - 50 kPa. The 
formation of single product phase, nonstoichiometric La1-xMn1-yO3±δ, was confirmed by X-
ray diffraction and electron microprobe analysis. The solid solubility limits of La1-xMn1-

yO3±δ determined by wave dispersive spectroscopy were in good agreement with previous 
reports and equilibrium was achieved at the phase boundaries in the diffusion couples. 
Vacancies at the La and O sub-lattices are proposed to be the dominating point defects in 
the product layer. The growth of the product phase followed the parabolic rate law 
regardless of temperature and oxygen partial pressure. Location of Pt-markers 
demonstrated that diffusion of Mn cations in La1-xMn1-yO3±δ dominated over diffusion of 
La3+. The diffusion coefficient of Mn3+ was determined from the parabolic rate constant 
and activation energy of (280±40) kJ mol-1 was found. Results are discussed in relation to 
cation diffusion in other LaBO3±δ oxides (B = Cr3+, Mn3+, Fe3+). 

Keywords: LaMnO3, solid solution, diffusion-controlled solid state reaction kinetics, 
cation transport, perovskite 
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Cation self-diffusion in LaCoO3 and La2CoO4 studied by 
diffusion couple experiments* 

Marián Palcut, Kjell Wiik and Tor Grande 

Department of Materials Science and Engineering, Norwegian University of Science and 
Technology, 7491 Trondheim, Norway 

  Abstract 

Reaction kinetics between dense, polycrystalline pellets of La2O3 and CoO were 
investigated at temperatures 1370-1673 K and oxygen partial pressures 40 Pa - 50 kPa. At 
high oxygen partial pressures, single phase LaCoO3 was formed. The growth of the 
LaCoO3 phase followed the parabolic rate law. Location of Pt-markers demonstrated that 
diffusion of Co cations in LaCoO3 dominated over diffusion of La3+. The diffusion 
coefficient of Co3+ was determined from the parabolic rate constant and activation energy 
of (250±10) kJ mol-1 was found. Diffusion coefficient of Co3+ in LaCoO3 decreased with 
decreasing oxygen partial pressure. At the lowest oxygen partial pressure investigated, two 
product phases, LaCoO3 and La2CoO4, were observed. Diffusion coefficient of Co cations 
in La2CoO4 was estimated. Results were discussed in relation to cation diffusion in other 
LnBO3 oxides (B = Cr3+, Mn3+, Fe3+). A correlation between diffusion of the B-cation and 
the melting point was found for LnBO3 materials. 

Keywords: La-Co-O system, diffusion-controlled solid state reaction kinetics, cation 
transport, perovskite 
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Tracer diffusion of 141Pr in LaMnO3, LaCoO3 and LaFeO3 
materials* 

 

Marián Palcut,a Jens S. Christensen,b Kjell Wiika and Tor Grandea 

 

aDepartment of Materials Science and Engineering, Norwegian University of Science and 
Technology, 7491 Trondheim, Norway 

bDepartment of Physics, University of Oslo, 0316 Oslo, Norway 

Abstract 

Impurity diffusion of Pr3+ in dense polycrystalline LaMnO3, LaCoO3 and LaFeO3 
respectively was studied at 1373 – 1673 K in air in order to shed a light on La-site vacancy 
migration in these materials. Cation distribution profiles was studied by secondary ion mass 
spectrometry and it was found that penetration profiles of Pr3+ had two distinct regions with 
different slopes. First, shallow region was used to evaluate bulk diffusion coefficients. The 
activation energies for bulk diffusion of Pr3+ in LaMnO3, LaCoO3 and LaFeO3 were (47 ± 
31), (141 ± 40) and (198 ± 84) kJ mol-1 respectively, which are significantly lower than 
previously predicted by atomistic simulations. Bulk diffusion of Pr3+ in LaMnO3 was 
enhanced compared to LaCoO3 and LaFeO3 due to higher concentrations of intrinsic point 
defects in LaMnO3, especially La-site vacancies. Grain boundary diffusion coefficients of 
Pr3+ in LaCoO3 and LaFeO3 materials were evaluated according to Whipple-Le Claire’s 
equation. Activation energies for grain boundary diffusion of Pr3+ in LaCoO3 and LaFeO3 
materials respectively were (173 ± 24) and (196 ± 74) kJ mol-1. Finally, a correlation 
between activation energies for cation diffusion in bulk and along grain boundaries in pure 
and substituted LaBO3 materials (B = Cr, Fe, Co) was found and discussed.  
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Cation inter-diffusion between LaMnO3 and LaCoO3 
materials* 

 
Marián Palcut, Kjell Wiik and Tor Grande 

 
Department of Materials Science and Engineering, Norwegian University of Science 

and Technology, NO-7491 Trondheim, Norway 
 
Abstract 
Cation inter-diffusion between LaMnO3 and LaCoO3 materials was investigated at 1383 
– 1683 K in air by electron microprobe analysis. The penetration of Co3+ into LaMnO3 
was observed to be significantly more pronounced than the Mn3+ diffusion in LaCoO3. 
The inter-diffusion of Co3+ into LaMnO3 resulted in the formation of solid solution 
LaMn1-xCoxO3(ss) in line with the previous phase diagram studies.  The bulk diffusion 
coefficients of Co3+ in LaMn1-xCoxO3(ss) were evaluated and an activation energy of 
(197 ± 17) kJ mol-1 was found. Element mapping of the cross section of LaCoO3 
revealed a preferential grain boundary diffusion of Mn3+ in LaCoO3. The low bulk 
diffusion of Mn3+ in LaCoO3 relative to the bulk diffusion of Co3+ in LaMnO3 reflects 
the lower cation vacancy concentration in the later material. The difference in activation 
energy for the impurity diffusion of Co3+ in LaMnO3 and self-diffusion of Mn3+ in 
LaMnO3 reported previously, was discussed with respect to the contributions of 
vacancy formation and migration enthalpies reflecting the different thermal history of 
the materials. The estimated energies for the partial Schottky equilibrium of LaMnO3 
and LaCoO3 materials were significantly lower than previously estimated by atomistic 
simulations. 
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