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Abstract—Adaptive beamformers aim for improved resolution
and contrast in the ultrasound images, and their performance is
typically benchmarked using metrics such as contrast ratio (CR)
and contrast-to-noise ratio (CNR). Using synthetic aperture Field
II simulations, we show that certain beamformers alter speckle
statistics and that this opens up for cherry picking of contrast
metrics.
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I. INTRODUCTION

Quality assessment of ultrasound images is difficult since
image quality is subjective to the human observer. Neverthe-
less, image quality metrics are imperative when benchmarking
different beamforming techniques. If we do not know how
a beamformer alters an image, a quality metric might give
an incorrect measurement of the actual image quality. Using
the standard Delay-And-Sum (DAS) beamformer as a ref-
erence, we examine several adaptive beamformers presented
in literature; Capons Minimum Variance (MV), Eigenspace
Based Minimum Variance (EBMV), Coherence Factor (CF),
Generalized Coherence Factor (GCF), Phase Coherence Factor
(PCF) and Delay-Multiply-And-Sum (DMAS). We show that
the speckle statistics for some of these adaptive beamformers
are dependent on both scattering intensity and location of the
region of interest, resulting in contradicting measurements of
standard contrast metrics.

II. BACKGROUND

In this section we briefly introduce the theory for the
following beamforming methods; DAS, MV, EBMV, CF, GCF,
PCF and DMAS. We refer to [1] and [2] for full description
of the implementation of the beamformers and the parameters
used in this study.

A. Conventional Delay-And-Sum (DAS)

Conventional DAS for image pixel [z, x] is defined as:

SDAS[z, x] =

M−1∑
m=0

wmym[z, x] (1)

where M is the number of elements, ym[z, x] is the delayed
signal received at element m, and wm is a predefined weight
for element m.

B. Minimum Variance Beamforming

Capon’s Minimum Variance (MV) beamformer calculates
for each pixel a data dependent set of weights wT =
{w0, w1, . . . , wM−1} that minimizes power while maintaining
unity gain in the steering direction [3]. The solution found with
Lagrange multipliers turns out to be dependent on the spatial
covariance matrix. The MV weights are used in the summation
in (1).

The Eigenspace Based Minimum Variance (EBMV) beam-
former is an extension of the MV beamformer which utilizes
the eigenstructure of the covariance matrix to enhance perfor-
mance [4]. The covariance matrix is eigendecomposed into a
signal and noise subspace, and the conventional MV weights
are projected onto the signal subspace.

C. Coherence Based Beamforming

The Coherence Factor (CF) beamformer calculates the ratio
between coherent and incoherent energy across the aperture
[5]. It is used as an adaptive weight to the DAS image [6].

The Generalized Coherence Factor (GCF) beamformer is
an extension of CF which utilizes the Fourier-spectrum over
the receive aperture of the delayed channel data [6]. The GCF
is calculated as the ratio between the energy in a small angular
sector around the direction of interest divided by the total
energy of the Fourier-spectrum. It is also used as an adaptive
weight to the DAS image.

The Phase Coherence Factor (PCF) beamformer [7] cal-
culates for each pixel an adaptive weight based on the phase
of the receive data. The weights are multiplied with the DAS
image.

The Delay-Multiply-And-Sum (DMAS) [8] multiplies the
delayed RF-signals using a ”signed” square root. The sum of
these signals is band-pass filtered around an ”artificial second
harmonic” signal before conventional envelope detection and
log-compression of the signal results in the final image. It is not
obvious that this is a ”coherence based beamformer”. However,
it has been shown that ”The DMAS enhances signal coherence
and can be seen as an intermediate solution between the DAS
beamformer and the coherence factor method” [9].

III. METHODS

Synthetic transmit aperture datasets were simulated in Field
II [10][11] using a 128 element, λ pitch, linear array with
5 MHz center frequency (L11-4v). The simulated phantom
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Fig. 1. Ultrasound images for the seven different beamformers. The vertical orientation of the speckle phantom is in (a), and the horizontal orientation is in
(b). The images are shown with a dynamic range of 80 dB.

consists of two speckle regions with intensity at −30 dB
and 0 dB, using at least 43 scatterers per resolution cell.
To investigate any spatial dependency of the beamformer’s
speckle statistics, two different phantoms were designed. The
first phantom has the speckle regions in vertical orientation,
where the low intensity region is above the high intensity
region as shown in Fig. 1a. The other phantom is horizontally
oriented with the speckle regions located side-by-side as shown
in Fig. 1b.

The beamforming was performed in MATLAB (Math-
works, Natick, MA) using The UltraSound ToolBox (USTB)
[12]. Each transmit sequence was combined before applying
the different beamforming methods briefly described above on
the combined receive aperture.

The two most common contrast metrics are contrast ratio
(CR) and contrast-to-noise ratio (CNR). CR is defined as [13]:

CR = 20 log10

(
µ1

µ2

)
,

where µ1 and µ2 are the mean intensity values of the two
rectangular speckle regions. The values for the region are
calculated with a 0.9 mm margin from the other speckle region,
and horizontal and vertical edge margins of 1.5 mm and 3.0
mm. CNR weighs the intensity difference between the two
regions with the average variance [14]:

CNR =
|µ1 − µ2|√
(σ2

1 + σ2
2)/2

,

where µi is the mean intensity value and σ2
i is the variance of

speckle region i.

IV. RESULTS

Images created with the DAS, MV, EBMV, CF, GCF, PCF
and DMAS beamformers for the vertical speckle phantom are
shown in Fig. 1a and images for the horizontal phantom are

shown in Fig. 1b. To measure the speckle statistics for the
different beamformers in Fig. 1, the normalized probability dis-
tribution function (PDF) of each speckle region was estimated.
Fig. 2 shows the estimated PDFs of the horizontally oriented
phantom shown in Fig. 1, together with the corresponding
signal-to-noise ratio (SNR=µ/σ). The estimated PDFs of the
speckle region with high intensity is presented in Fig. 2a. The
theoretical Rayleigh distribution for DAS, with SNR = 1.91
[15], is plotted for comparison. Fig. 2b presents the statistics
of the low intensity speckle region.

Fig. 3 shows the estimated PDFs of the images after log-
compression of the intensity values. Fig. 3a shows the vertical
speckle phantom and Fig. 3b shows for the horizontal speckle
phantom. In both plots the estimated PDFs of the low intensity
regions are plotted with a solid line, while the estimated PDFs
of the high intensity regions are plotted with a dashed line. The
SNR, measured from the envelope before log-compression,
is indicated in the legend. Fig. 4 shows the CR and CNR
measurements for both phantom orientations for the different
beamformers.

V. DISCUSSION

Fig. 1 shows the different beamformed images for our
simulation with 30 dB intensity difference between the speckle
regions and two phantom orientations. From the images, we
notice how especially the CF and PCF images have higher
variance than the DAS image. When the two speckle regions
are side-by-side , i.e. horizontally oriented, the adaptive beam-
formers EBMV, CF and PCF seem to darken the low intensity
speckle region in the transition between the two regions.

We can observe in Fig. 2a that DAS, MV, EBMV and
GCF seem to approximately follow the theoretical Rayleigh
distribution. The above beamformers have SNR values close
to theoretical Rayleigh, i.e. SNR ≈ 1.91, whereas the CF, PCF
and DMAS beamformers have very different distributions and
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Fig. 2. Estimated probability distributions (PDF) of the two speckle regions in the horizontal phantom orientation, shown for all beamformers. DAS is compared
to its respective theoretical Rayleigh distribution.
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Fig. 3. Estimated PDFs of the log-compressed images for each speckle region, shown for all beamformers. When the speckle regions are in horizontal
orientation, the statistics of the low intensity region is altered compared to the high intensity region.

much lower SNR values. However, for the low intensity region
presented in Fig. 2b, only the DAS and MV beamformers are
Rayleigh distributed with SNR close to 1.91. The SNR values
for the EBMV and GCF beamformers are significantly lower
for the low intensity region than the high intensity region. This
signifies that the beamformers alter the statistics of the two
regions differently. For the CF and PCF beamformers, the SNR
was much lower than 1.91 in both cases.

Fig. 3 shows the estimated PDFs of the beamformed log-
compressed images for both phantom orientations. When the

speckle regions are orientated one on top of the other, i.e.
vertical phantom orientation, the speckle statistics for each
region within the same image are similar. However, when
the speckle regions are horizontally oriented, several of the
adaptive beamformers have different distributions for the two
regions. The CF, PCF and DMAS beamformers, which had
distributions far from theoretical Rayleigh in Fig. 2, have
heavy left-tailed distributions for both phantom orientations.
However, for the horizontally oriented phantom there is a clear
difference between the low intensity region (solid line) and the
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Fig. 4. Contrast metrics for the different adaptive beamformers compared to
DAS, given different phantom orientations.

high intensity region (dashed line). The EBMV, CF, GCF and
PCF beamformers have much more heavy-tailed distributions
for the low intensity region, which corresponds to increased
variance. The DMAS beamformer has a deformed PDF for the
low intensity region with a second peak emerging at very low
intensity.

This leads to the results presented in Fig. 4, where we
show that a beamformer may have high CR and simultaneously
low CNR compared to DAS. The CR measurements in Fig.
4b indicate that the CF, GCF, PCF and DMAS beamformers
have higher contrast than DAS, but concurrently lower CNR
compared to DAS. This is consistent with what we observe
in Fig. 3 where the EBMV, CF, PCF, GCF and DMAS
beamformers have both increased the variance and the intensity
difference between the regions. This means that apparent
contrast enhancement can be due to alterations of the speckle
statistics or the dynamic range. When a beamformer increases
the contrast between the speckle regions while also increasing
the intensity variance, it is not sufficient to only present one
contrast metric when analyzing the beamformer’s performance.
Presenting only CR as a quality metric would not adequately
describe the performance of for example the PCF beamformer
when compared to conventional DAS.

The results show that several of the adaptive beamform-
ers are spatially and intensity dependent when altering the
speckle statistics of the image data. Further investigation of
the intensity dependency should include varying the intensity
difference between the regions. Benchmarking the performance
of an adaptive beamformer by only using one contrast metric
will not sufficiently address any possible spatial or intensity
dependent behavior.

VI. CONCLUSIONS

We have shown that the effect of adaptive beamform-
ers on the speckle statistics vary for different beamformers.
The effect varies also with regard to spatial location of the
speckle regions examined. When evaluating a beamformer’s

performance in comparison to conventional DAS, both the
contrast and contrast-to-noise metrics should be presented.
Since an adaptive beamformer can alter the speckle statistics,
it is imperative that a performance comparison also includes a
statistical discussion.
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[3] J.-F. Synnevåg, A. Austeng, and S. Holm, “Adaptive Beamforming
Applied to Medical Ultrasound Imaging.” IEEE transactions on ultra-
sonics, ferroelectrics, and frequency control, vol. 54, no. 8, aug 2007.

[4] B. M. Asl and A. Mahloojifar, “Eigenspace-based minimum variance
beamforming applied to medical ultrasound imaging,” IEEE Transac-
tions on Ultrasonics, Ferroelectrics, and Frequency Control, vol. 57,
no. 11, pp. 2381–2390, 2010.

[5] R. Mallart and M. Fink, “Adaptive focusing in scattering media through
sound-speed inhomogeneities: The van Cittert Zernike approach and
focusing criterion,” The Journal of the Acoustical Society of America,
vol. 96, no. 6, p. 3721, 1994.

[6] P. C. Li and M. L. Li, “Adaptive imaging using the generalized
coherence factor,” IEEE Transactions on Ultrasonics, Ferroelectrics,
and Frequency Control, vol. 50, no. 2, pp. 128–141, 2003.

[7] J. Camacho, M. Parrilla, and C. Fritsch, “Phase coherence imaging,”
IEEE Transactions on Ultrasonics, Ferroelectrics, and Frequency Con-
trol, vol. 56, no. 5, pp. 958–974, 2009.

[8] G. Matrone, A. S. Savoia, G. Caliano, S. Member, and G. Magenes,
“The Delay Multiply and Sum Beamforming Algorithm in Ultrasound
B - Mode Medical Imaging,” IEEE Trans. Med. Imaging, vol. 34, no. 4,
pp. 1–10, 2015.

[9] F. Prieur, O. M. H. Rindal, S. Holm, and A. Austeng, “Influence
of the Delay-Multiply-And-Sum beamformer on the ultrasound image
amplitude,” IEEE International Ultrasonics Symposium, IUS, 2017.

[10] J. A. Jensen and N. B. Svendsen, “Calculation of Pressure Fields from
Arbitrarily Shaped, Apodized, and Excited Ultrasound Transducers,”
IEEE Transactions on Ultrasonics, Ferroelectrics and Frequency Con-
trol, vol. 39, no. 2, pp. 262–267, 1992.

[11] J. A. Jensen, “Field: A Program for Simulating Ultrasound Systems,”
Medical & Biological Engineering & Computing, vol. 34, pp. 351–353,
1996.

[12] A. Rodriguez-Molares, O. M. H. Rindal, O. Bernard, A. Nair, M. A.
Lediju Bell, H. Liebgott, A. Austeng, and L. Løvstakken, “The Ultra-
Sound ToolBox (USTB),” IEEE International Ultrasonics Symposium,
IUS, 2017.

[13] D. H.Turnbull, P. K. Lum, A. T. Kerr, and F. S. Foster, “Simulation of
B-scan images from two-dimensional transducer arrays: Part I Methods
and quantitative contrast measurements,” Ultrasonic Imaging, vol. 14,
no. 4, pp. 323–343, 1992.

[14] M. S. Patterson and F. S. Foster, “The Improvement and quantitative
assessment of b-mode images produced by an annular array/cone
hybrid,” Ultrasonic Imaging, no. 5, pp. 195–213, 1983.

[15] R. F. Wagner, S. W. Smith, J. M. Sandrik, and H. Lopez, “Statistics
of Speckle in Ultrasound B-Scans,” IEEE Transactions on Sonics and
Ultrasonics, vol. 30, no. 3, 1983.


