
 i 

 

 

 

 

Risk Management in the Allocation of Sales 

for Salmon Farming Companies 
	  

 
 
 
 
 
 
 
 
 
 
Christer Nyrud and Christoffer Johansen Cock 

 
 
 
 
Master of Science in Financial Economics 
 
Submission date: 21.06.2017 
Supervisor:  Denis Becker 
 
 
 
 
 
 
 
 

Norwegian University of Science and Technology  

Department of Economics  



 ii 

 
 
 
 
 
 
 
 
 
 

Preface 
This thesis represents the completion and last requirement of the 2-year Master program in 

Financial Economics at the Norwegian University of Science and Technology. This thesis is, 

in its entirety, a joint product completed by Christer Nyrud and Christoffer Johansen Cock. We 

would like to extend our appreciation and thanks to our supervisor Denis Becker for invaluable 

guidance and encouragement. In addition, we would like to thank Norway Royal Salmon 

represented by, CFO, Ola Loe and, Group Controller, Jan Pål Johannesen for graciously 

agreeing to meet with us and provide valuable insight into the operation of a Norwegian salmon 

farming company.  

 

Trondheim, June, 2017 

 

Christer Nyrud and Christoffer Johansen Cock 

 

 

 

 
 

 

 

 
 
 
 
 
 
 
 



 iii 

 
 
 

 
 
 
 
 
 
 
 

Abstract 
 
This thesis describes the implementation of two new distinct decision tools for risk management 

for salmon farming companies. There are few tools salmon farming companies use when 

allocating sales between spot and forward contracts. Most decisions on the allocation of sales 

are based on “expert opinion” and loose policies. The aim of this thesis is to develop a decision 

tool which improve risk management in the allocation of sales for salmon farming companies. 

The focus is mainly on price risk. The thesis develops a Single-Period model in which 

practicability and usability has been emphasized. A framework for obtaining a policy regarding 

the allocation of sales between spot and one- through six-month forward contracts has been 

developed. In addition to the Single-Period model, the thesis develops a more complex Multi-

Stage Stochastic Recourse model. The Multi-Stage model provide the salmon farming 

companies with a potential dynamic decision tool which can be incorporated into larger life-

cycle optimization programs.  
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Chapter 1 

Introduction  

The salmon industry has grown into one of the most important industries in Norway. The 

growth of the industry coincides with the growth in prices of salmon. Throughout the 1990s the 

salmon price declined steadily, while from the 2000s and onward the price increased and 

fluctuated from peeks of NOK 45 and troughs of NOK 20. From 2015, the price increased 

dramatically and has seen peeks of NOK 80 and troughs of NOK 50. The increase in price from 

the early 2000s was also coupled with an increased price volatility (Oglend, 2013). In addition, 

production costs rose in the same period. The cost increase was driven by capital cost (Asche 

et al., 2013) and salmon lice related expenditures (Torrisen et al., 2013). The lice related 

expenditures are assumed to increase further, which would increase the total cost of production 

for salmon producers (Costello, 2009). Increased price volatility and future potential for 

significant increases in production cost due to lice problems has augmented the need for risk 

management tools to assist managers with sales decisions. Specifically, how to handle the spot 

price risk involved in selling salmon products.  

 

The authors found that several optimization programs have been developed in previous 

research. The previous developments consider the optimization of life cycle production in the 

salmon industry, but most gloss over the sales and price modelling. The previous developments 

do either, not deal with the distinctive nature of forward contracts with different lengths or do 

not deal with the stochastic nature of price formulation at all. The motivations for this paper is 

to address the shortcomings of previous research and add to the application possibilities of said 

research. The objective of this paper is to create a decision tool for managers to use in allocation 

decisions between the sale of salmon over spot or forward contract of differing lengths. The 

paper will create two distinct models. One model is a policy decisions model set up as a single-

period horizon model with two distinct objective functions for expected weekly cash flow and 

expected ending bank balance. The motivation for the development of the Single-period model 

is to create a functional tool that can easily be utilized by any salmon farming company. The 

second model will address the stochastic nature of price movements directly through a multi-

stage stochastic recourse model from where the aim is to optimize revenues subject to a risk 

metric. The Multi-Stage model will take advantage of the value-adding application of the 

recourse option.  
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The thesis consists of nine chapters. Chapter 2 gives and introduction to the basic information 

regarding the salmon industry. Chapter 3 will follow with an overview of relevant literature 

regarding the salmon industry and methods. In chapter 4 an exposition of financial risk and risk 

management in terms of the salmon industry will be examined followed by chapter 5 where a 

description of the data used in this thesis will be outlined. Chapter 6 will detail the methodology 

used for the construction of both models followed by chapter 7 with a detailed description of 

the models. The application of the models will follow in chapter 8 with discussion of the results 

and suggestions for improvements. Chapter 9 consist of concluding remarks regarding the 

thesis. 

 

In this thesis salmon farmers refers to anyone selling salmon using prevailing spot prices and 

forward prices. Throughout this thesis “forward contract”, or simply “forwards”, will be used 

to represent both forward contracts and future contracts. The difference between the two types 

of contracts are that future contracts are standardized forward contracts which can be traded 

financially. The thesis is based on Atlantic Salmon which throughout the thesis is referred to as 

“salmon”. 

 
Chapter 2 

The Salmon Industry  

“Fish farming holds tremendous promise in responding to surging demand for food which is 

taking place due to global population growth” (“FAOs Director-General,” 2009). FAOs 

statement substantiate the growing importance of the salmon farming industry and accordingly 

its rising profitability. Over the last decade, salmon has grown to become one of Norway’s main 

commodities for export. In section 2.1 the industry with respect to the history of production and 

exports, and supply and demand of salmon is described. Section 2.2 review the salmon farming 

market, to give an insight to some of the drivers in the industry. Section 2.3 explore the 

operations of salmon farming companies more thoroughly. Finally, section 2.4 explores the 

sales side, specifically with focus on the Fish Pool marketplace.  

 

2.1  The Industry 

Experimental salmon farming began in the 1960s. However, it was not until the 1980s it became 

an established industry in Norway. In the 1990s Chile followed. Today, the largest global 

exporters of Atlantic Salmon in volume are Norway, Chile, Scotland, Canada and Faroe Islands. 
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Not many regions have the natural conditions for salmon farming. Regarding production, the 

water must be cold with temperature varying between 8°C and 14°C. In addition, the coastline 

must be sheltered and the biological conditions in the ocean must be optimal (Salmon Farming 

Industry, 2016). 

 

As figure 2.1 illustrates, it has been high growth in export volume over the last 36 years. From 

2012, the yearly growth stagnated and export has been fluctuating between 900.000 to 

1.000.000 metric tons per year. Despite this, revenues from salmon farming have increased 

significantly over recent years due to record high prices for the commodity. Norway exported 

salmon for 61.4 billion NOK in 2016, a twenty-nine per cent increase from 2015. At the same 

time export volume fell by 5.2 per cent from 2015. (“Laks- og ørreteksporten,” n.d.) 

 
Figure 2.1: Yearly export of salmon 

 
Figure 10.1 in Appendix A illustrate the variation in export throughout each year. 

 

2.2  Market Conditions in the Salmon Industry  

Economic theory describes supply and demand as the price determinants in a competitive 

market. Salmon is broadly considered to be homogenous product, despite some variation in size 

and quality segments.  
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2.2.1   Supply of Farmed Salmon 

The growth in global production has been strong over the last twenty years. Globally, the total 

harvest quantity of Atlantic salmon has experienced a cumulative annual growth rate (CAGR) 

of seven percent since 1996 (“Salmon Farming Industry,” 2016) However, the growth rates are 

declining. CAGR was six percent from 2004 to 2015, and is projected at three percent from 

2015 to 2020.  

 

As previously mentioned, production is limited by the fact that few locations are suitable and 

optimal for salmon. This set a constraint on the supply. In addition, salmon farming companies 

experience other challenges that inhibit growth in production. Total production is now on a 

level where biological boundaries are being pushed. Lice and other deceases regularly cause 

extensive problems, resulting in mass slaughtering and lost profits, not to mention the impaired 

animal welfare.  The Norwegian fish authorities have introduced strict regulations upon the 

industry and potential growth is closely associated with to which degree companies acquire 

licenses with rigid terms from the government (“Salmon Farming Industry,” 2016). Asche and 

Tveterås (2007) suggested that the long run supply elasticity was 1.5. However, government 

regulations combined with the long production cycle of salmon, results in a price elasticity close 

to zero in the short term. Production is expensive, complex and difficult to adjust. (Andersen & 

Tveterås, 2008)  

 

2.2.2   Demand for Farmed Salmon 

With the world population estimated at 9.7 billion in 2050, the need for increased global food 

production is an issue on which it is imperative to find a solution (“FAOs Director-General,” 

2009). Farmed salmon is a highly efficient source of protein and may be a vital part of the future 

food production (“Protein production facts,” n.d.). In addition, salmon is recognized as a 

healthy meal choice, with high levels of Omega-3 and other vitamins and minerals. Health 

authorities worldwide encourage people to eat more fish and are increasingly promoting 

policies with advantages for healthier food (“What is salmon farming,” n.d.). Consequently, the 

demand for farmed salmon is increasing. In a master thesis from Lodhi (2015) results exhibited 

a price elasticity of -1.14 for fresh Norwegian Salmon to the EU. Interestingly, results on frozen 

salmon was significantly different (-0.39). 

 

Historically, the key markets for Norwegian exporters have been the EU, Russia and Asia. The 

EU and North America are the largest markets globally. Transportation cost and time is a key 
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factor in exporting salmon, as most of the salmon sold is fresh. Closer markets are therefore 

preferred by producers, with some exceptions. The transport distance to Asia is approximately 

similar for all the producing regions and is therefore served by both Norway and Chile (“Salmon 

Farming Industry,” 2016). The global market has grown by CAGR of 8.2 per cent over the last 

twenty years. Asia and emerging markets have shown the strongest growth over the last ten 

years, with CAGR 19 per cent for Brazil for example (Salmon Farming Industry, 2016). 

 

2.3  Production Process and Facilities  

The companies with the largest salmon production in Norway are Marine Harvest (254.800), 

Salmar (136.400), Lerøy Seafood (135.000) and Cermaq (58.000), Norlaks (39.000) and Nova 

Sea (37.400). Top ten companies produce 70 percent of farmed salmon in Norway. All figures 

are in tones gutted weight equivalent (GWE). There has been an increase in consolidation in 

the industry during the last decade. However, Norway has a more fragmented industry 

compared to Chile due to policies of decentralized structures and local ownership from the 

Norwegian government (“Salmon Farming Industry,” 2016). Hordaland is the industry’s main 

county, with a high allocation of sea farming and smolt production licences and offices for 

many of the largest companies. Other key areas include Sør-Trøndelag, especially Frøya, 

followed by Nordland (“The Norwegian aquaculture,” 2016). 

 

EY’s Norwegian Aquaculture Analysis 2016 define the salmon farming value chain as 

presented in figure 2.3. The value chain is complex and therefore the steps will give a rough 

impression of the process.   

 

 
Figure 2.2: Salmon farming value chain (The Norwegian Aquaculture Analysis, 2016) 

 
The supply side is essentially differentiated between biotechnology suppliers, technical 

solutions suppliers, and distributors. Biotechnology suppliers deliver feed, medicines, vaccines, 

and a large variety of other products, many related to fish health. Technical solutions suppliers 

are a key part at every stage in the value chain and deliver products such as barges, feeding 

systems, well boats, cages and software. Distribution include transport of smolt and transport 
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of harvestable fish. In addition, the farmed salmon is distributed to end consumers by exporters 

(“The Norwegian aquaculture,” 2016). 

 

The production cycle of salmon farming is approximately three years from eggs to processing. 

First, the eggs are developed in to spawn. Next, the eggs are fertilized and the fish grow in 

controlled environments until it becomes smolt with a weight of 60 to 100 grams. This stage 

takes place in freshwater and the timeline is usually 10 to 16 months. In recent years, many 

companies have changed smolt production, adding more time to the phase in freshwater. 

Consequently, the smolt grows larger onshore, typically between 100 and 1000 grams. The risk 

for sea lice and other illnesses which is a substantial problem for the production in seawater is 

therefore reduced (“The Norwegian aquaculture,” 2016). The salmon must be transported into 

seawater cages for the next phase of production, which happen mainly twice a year in Norway. 

Within a period of 14 to 24 months the salmon grow in these cages and growth is heavily 

dependent on sea temperatures. Harvesting typically takes place when the weight reaches four 

to six kilograms and harvesting volume is approximately even throughout the year.  The salmon 

is transported to shore, where it is slaughtered and gutted at primary processing plants (“Salmon 

Farming Industry,” 2016). 

 

Primary processing concerns to the process which prepares the fish to be sold whole. It is then 

sold by weight measures such as Gutted Weight Equivalent (GWE), Head-on-Gutted (HOG) or 

Whole Fish Equivalent (WFE). Secondary processing produce value-added products and 

mainly refers to fileting, filet trimming, portioning and smoking. (“Salmon Farming Industry,” 

2016: “The Norwegian aquaculture,” 2016).  

 

2.4  The Fish Pool Marketplace  

In 2006, several different marketplaces for financial trade of salmon was established. However, 

the only marketplace still in operation is Fish Pool. Fish Pool operates as a platform where 

salmon farmers can go to buy or sell contract for risk hedging or for speculative purposes. The 

products used at Fish Pool are bilateral contracts, cleared contracts, and options. Bilateral 

contract on Fish Pool are contracts where Fish Pool matches buyer and seller which then 

negotiates a contract. Cleared contracts are futures contracts where Fish Pool, in cooperation 

with the clearinghouse Nasdaq Clearing, acts as an intermediate and eliminates the counterparty 

risk. The option contract available at Fish Pool is an Asian option where the buyer can hedge 

the possibility of the price either going above or below a certain price level. Lattanzio (2015) 
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noted that the option market at Fish Pool suffer significant liquidity problems which would 

indicate a low application from the side of the salmon farmers. Salmon farmers do, however, 

take advantage of the bilateral contracts and cleared contracts provided by Fish Pool. 

 
Chapter 3 

Literature Review  

There are several papers covering stochastic optimization of production and sales allocation. 

However, specific research into sales of salmon using stochastic spot prices versus sales at 

different forward contract lengths is still lacklustre, in both the use of Multi-Stage Stochastic 

Recourse modelling and Single-Period modelling. The aim of the literature review is to discover 

techniques and methods for addressing the modelling of sales of salmon at spot and forward 

contracts.  

 

Previous research into stochastic modelling of the process of harvesting and selling salmon 

have showed that the value of using a stochastic multi-stage recourse model “is substantially 

higher” than using two-stage modelling or deterministic modelling (Hæreid, 2011). Hæreid, a 

master thesis, also concluded that the two-stage model used in his paper did not perform 

significantly better than the deterministic model. Hæreid uses stochastic programming to 

account for the myriad of uncertainties facing salmon producers. Hæreid addresses the planning 

a salmon farmer faces in terms of harvesting and sales. The model created in Hæreid addresses 

the stochasticity of biomass and uses a fixed spot price above the FHL, now Norwegian Seafood 

Federation, spot price. 

 

Frøystein & Kure (2013) used stochastic optimization to model salmon production by 

minimizing the total expected cost related to smolt production. The approach is similar to that 

of Hæreid (2011) but focuses solely on the minimization of the expected cost related to smolt 

production. Inspired by Hæreid (2011), Denstad, et al.  (2015) expanded Hæreids stochastic 

model to include more aspects of the value chain. Among the inclusions in the model are 

processed products and inventory management, as well as stochastic spot prices and fixed 

contract mark ups.  

 

Research regarding stochastic optimization and the use of spot prices and forward contracts is 

present in several industries beside the salmon industry. An industry where there has been 



 8 

significant research conducted of both topics is the energy industry.  In their 2010 paper 

Kettunen et al. (2010) created a multi-stage stochastic optimization approach to help electricity 

retailers manage their contract portfolios. Kettunen et al. (2010) found, as Hæreid (2011) did 

for salmon producers, that “stochastic optimization can be more efficient for risk management 

than periodic optimization or fixed allocation approaches.” In line with Kettunen et al. (2010) 

and Hæreid (2011), Fleten et al. (2002) found that stochastic programming implementation 

have significant upside. Fleten et al (2002) created a stochastic programming model with the 

goal of coordinating electricity generation resources and risk reduction. The created stochastic 

optimization model included risk aversion, contract trading, and electricity operating decisions. 

Fleten et al. (2002) concluded that, in their example, risk could be reduced by 32%, with the 

same level of return, and they could increase returns by 1.1% for the same level of risk.  

 

Topaloglou et al. (2008) studied the performance of dynamic stochastic models with regards to 

international portfolio management. The study showed that when including the possibility for 

recourse action at stages throughout the model the expected return increased significantly and 

it also contributed to higher stability of returns. The greatest effect of the recourse option was 

found in areas with the highest risk which indicate that recourse action is only marginally better 

and that for actors that have risk reduction/elimination as their main objective the potential cost 

of developing and using stochastic recourse modelling might outweigh the marginal benefit.  

 

There are several risk measures that can be applied when evaluating stochastic optimization 

problems. Bjorgan et al. (1999) argues that one possible solution for risk management for 

energy producers can be the use of efficient frontiers to find the optimal or preferred portfolio 

of contracts. Efficient frontiers can be created by using several different risk measures, such as 

standard deviation, semi-deviation, downside deviation (Ogryczak & Ruszczynski, 1999), and 

Conditional Value at Risk. Rockafellar and Uryasev (2002) stated that the CVaR as a risk 

measure outperform other risk measures such as VaR and Variance. Mo et al. (2001) proposed 

an expansion of the modelling procedure in terms of risk management for hydro power 

scheduling and contract management. The standard before Mo et al. (2001) were to separately 

handle operation scheduling and contract management. Mo et al. (2001) proposed to use an 

integrated model that could model both tasks simultaneously. The risk measure used in the 

paper is a form of downside deviation. The authors set revenue targets from which they 

punished negative deviation. If the objective function fails to deliver a profit for the given period 

that is above the specified revenue target for the end of the period the deviation from that target 
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is classified as the risk. The punishment of negative deviations implicitly defined revenue utility 

function. Deviation from revenue target is a very good measure of risk in stochastic 

programming problems (Tauer, 1983).  

 

In stochastic optimization where prices behave stochastically one need to be develop a 

forecasting model that models the price movements accurately. Guttormsen (2008) studied 

forecast methods for forecasting salmon spot prices. The study could not definitely determine 

a preferred forecast model but noted that several models performed well. Solibakke (2012) 

found that the variance of the salmon forward price exhibit stochastic volatility, meaning that 

the variance is time-varying. The found regarding the forward contracts of salmon can be taken 

to mean that spot prices of salmon also exhibit stochastic volatility. Similar to Solibakke (2012), 

Oglend (2013) found that the volatility of the salmon price has a time-varying mean. 

Specifically, the volatility has had an increasing trend since the start of the 2000s which was 

confirmed by modelling conditional variance of the price returns by a GARCH model.  

 

There is some research on the use of contracts in the salmon industry. Larsen and Asche (2011) 

argues that the use of “fixed price contracts primarily changes the profile of revenue flows” 

and not the long-term revenues. The data used by Larsen and Asche was from the year 2006 

which was the year with the highest price volatility up until 2011 (when the paper was written). 

One point to be made regarding Larsen and Asche (2011) is the limited timeframe of the study 

and the increased volatility exhibited over long periods of time in periods after the study, 

specifically after the 2010, might change the outcome of the study if the study were conducted 

now and with a larger timeframe in mind. The use of forward contract as a hedging tool was 

studied in Misund and Asche (2016). The results indicate that there is significant risk reduction 

potential in the use of forward contracts. Misund and Asche (2016) found that the risk reduction 

potential in the salmon market is higher than other seafood markets, but lower than agricultural 

markets. The use of forward contracts can potentially reduce the risk of salmon producers is the 

sales phase approximately 30-40%.   

 

Liu and Wu (2007) constructed a portfolio optimization problem using Modern Portfolio 

Theory for optimal selection of sale of electricity in the electricity market using spot prices and 

bilateral contracts. Liu and Wu (2007) demonstrate the construction of a portfolio of contracts 

and spot sales. The main advantage of the use of MPT is the ease of understanding and its 

applicability. Martínez-de-Albéniz and Simchi-Levi (2006) conducted research into mean-
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variance trade-off in supply contracts for manufacturers. Even though the research is focused 

on the purchase of inputs to be turned into finished products, known as the newsvendor 

problem, the methodology is interesting for pure sales situations as well. The situation described 

in Martínez-de-Albéniz and Simchi-Levi (2006) would be very similar in a larger production 

problem. Martínez-de-Albéniz and Simchi-Levi (2006) showed that there is an efficient frontier 

that is connected by the maximum expected return portfolio and the minimum variance 

portfolio. Every buyer (seller) would select a portfolio located on the efficient frontier. 

 

Based on the available literature the best approach would seem to be to focus on the use of 

stochastic programming. According to previous research the best model to use in stochastic 

programming seem to be a multi-period model, followed by a single period and two-stage 

model, respectively. There are several different risk measures available and previous research 

suggest a handful of useful risk measures which include Value at Risk, Conditional Value at 

Risk, standard deviation, semi-deviation, and downside deviation. There seems to be little to 

no research into the actual allocation of the sale of salmon over spot and forward contracts of 

different lengths.  

 

Chapter 4 

Financial Risk and Risk Management  

Section 4.1 will outline the key risk factors in aquaculture and salmon farming with emphasis 

on price risk. As mentioned in chapter 2, it was not until 2006 that a forward market was 

introduced, and the use of financial instruments in salmon farming companies are still, to a 

degree, limited. In section 4.2 the field of ‘Risk Management’ will be introduced and the 

utilization of forwards and hedging methods in salmon farming will be discussed. Risk 

management is an established discipline within numerous industries. Extensive research has 

been published and various methods exist for managing both risk in general and price risk for 

commodities. However, within the salmon farming industry, financial risk management is a 

relatively immature field. Attitudes within the salmon farming companies are treated in section 

4.3 and the path towards enhanced quantitative risk management for financial risk is explored. 

A short conclusion follows the review and two risk models will be introduced in section 4.4. 

The ambition for the models is to provide enhanced quantitative measures for handling risk 

within salmon farming companies, in line with the objective for this paper.   
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4.1  Risk in Aquaculture and Salmon Farming 

“Risk is defined as uncertain consequences, usually unfavorable outcomes, due to imperfect 

knowledge. Hazards are tangible threats that can contribute to risk but do not necessarily 

produce risk. In aquaculture, the hazards can be broadly classified as production threats or 

market (or economic) threats” (Kam & Leung, 2008). 

 

Production threats generally refer to threats that potentially give adverse impact on the saleable 

commodity, e.g. asset or equipment failure, environmental conditions or diseases. To mitigate 

production threats, companies rely heavily on the experience and knowledge of the personnel 

running the production. Market threats refer to factors such as regulations, sales price and prices 

of inputs (Kam & Leung, 2008). Decreasing commodity prices will lower revenues from sales 

and rising prices on input will diminish margins. Further examples of market threats are 

included in Figure 10.2 in Appendix A. In a survey from Bergfjord (2009), Norwegian salmon 

farming companies were asked questions with the intention of mapping risk attitudes and risk 

measures in the industry. Ideally, the survey would be more recent, but it still provides valuable 

information on many interesting and relevant aspects for risk management considerations 

today. First, Bergfjord asked the companies how they perceived the importance of various risk 

factors, with a scale of one through seven, one meaning “not important” and seven meaning 

“extremely important”. Results are included in table 10.1 in Appendix A. “Future salmon price” 

is perceived as the most important risk factor, with a score of 5.95. The second most important 

factor is “Uncertainty about market access/trade policy” (5.39) and the third is “Diseases” 

(4.97). The conclusion is clear: Salmon price is perceived as the most important risk factor by 

a relatively high margin. Furthermore, the standard deviation from responses on this factor is 

low. These results are not surprising when compared to sources of risk within agriculture. 

Several studies found price risk, production risk and institutional risk to be the most important 

sources of risk (Bergfjord, 2009). 

 

4.2  Financial Risk Management 

Quantitative Risk Management (McNeil et al., 2005) defines financial risk as “the quantifiable 

likelihood of loss or less-than-expected-returns”. However, no single sentence is 

comprehensive enough to be entirely satisfactory in all contexts. The nature of risk assessment 

can be qualitative or quantitative. When assessing factors with a qualitative perspective, they 

are often expressed in nonnumeric terms such as low, medium, high or negligible. The 

assessment is a logical and reasoned discussion of the relevant factors (Kam & Leung, 2008). 
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Quantitative risk assessment differ as monetary values can be assigned to a specific risk. It is 

widely believed that the value of a company can increase with appropriate financial risk 

management. There is extensive literature on “corporate risk management and shareholder 

value” within the subject of corporate finance. It is not the aim of this paper to give a full 

treatment of this subject, although some key relevant arguments will be presented in the 

following. First, risk management makes bankruptcy less likely, thus firm value can be 

increased by employing risk management in the presence of bankruptcy costs. A key issue is 

that bankruptcy costs may include liquidation costs, which can be considerable in the case of 

intangibles like research and development (R&D). In general, R&D spending is positively 

related to the use of RM (McNeil et al., 2005). Notably, salmon farming companies spend 

significant amounts on R&D. Moreover, there are typically adverse effects on employees, 

management and customer relations from increased likelihood of bankruptcy (McNeil et al., 

2005). Second, risk management facilitates the realization of optimal investing. Therefore, it 

can lower the impact of costly external financing on firm value. 

 

The utilization of forward and futures contracts for hedging purposes is common in various 

industries, e.g. in agriculture. Two fundamental features which are important for participants in 

a forward market are risk reduction potential and the role of future reference price, i.e. forward 

contracts “discover” future commodity prices (Berge, 2017) 

 

Commodity producers automatically have a long position in the commodity, and are exposed 

to price fluctuation. A short position in the commodity forward- or futures contracts will hedge 

the position, and the extent to which the producer has secured his revenue is dependent on the 

number of contracts. Although risk management is meant to increase the overall value of the 

company, hedging itself should have a negative expected value. The motivation for such a 

strategy should be to reduce price risk (Kam & Leung, 2008). 

 
4.3  Financial Risk Management in Salmon Farming 

Figure 10.3 in Appendix A is from the research of Bergfjord (2009) and show the results of 

salmon farming companies responses on four statements regarding attitudes toward the futures 

market for salmon. Results show a mean on all four questions below the scale median of four. 

This indicate a limited interest in the futures market. In addition, the use of forward contracts 

receives a very low score from a question of “perceived importance of different risk 

management tools”, receiving only 3.18 out of 7. It appears that maintaining good liquidity 
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through multiple risk management tools is the most recognized risk management strategy, in 

line with similar research for agriculture (Kam & Leung, 2008). Furthermore, the research finds 

that liquidity as a risk management tool is more important for smaller companies, while larger 

companies naturally have more resources and can implement more advanced risk management 

strategies. As the survey is relatively old, it seems intuitive that forward contracts are more 

widely used today due to the rising activity within the industry over the last few years. However, 

the perceived importance of risk factors outlined in 4.1 are likely to be valid and approximately 

accurate today. The research concludes that fish farmers perceive themselves as moderately 

risk-averse and that this notion probably is correct. 

 

An imperative question with regards to financial risk management in salmon farming is whether 

the two fundamental features of forward and futures markets outlined in section 4.2, risk 

reduction potential and reference price, are met at Fish Pool. First, as mentioned in Chapter 3, 

Misund and Asche (2016) concluded that the risk reduction potential in the salmon market is 

higher than other seafood markets, but lower than agricultural markets. A different paper from 

Asche et al. (2016) concluded that the use of forward and futures, in this case from Fish Pool, 

provide a good price hedge and that it has the possibility of becoming the standard risk handling 

tool in the salmon market. Second, research found inconsistent results regarding the suitability 

of salmon forward prices as a reference price. Results from Asche et al. (2016) indicate that 

Fish Pool futures does not have this feature. Conversely, research from Ankamah-Yeboah et al. 

(2016) indicate that some contracts may serve the role of discovering prices.  

 

4.4  Discussion and Conclusion from Initial Research  

Industry-, literature- and risk management research laid the foundation for informed choices on 

risk management for salmon farming companies. Although informal talks with some of the 

largest salmon farming companies in Norway has confirmed that use of financial instruments 

occur, comprehensive price risk models are yet to be incorporated into daily risk management. 

Consequently, the remainder of this paper will introduce, apply and discuss two financial risk 

management models. Most importantly, the models will be based on price risk, in line with 

perceived importance from industry players outlined in section 4.1. Based on the review in 

section 4.3, Fish Pool futures market is assumed to be sufficiently mature, and forward contracts 

will therefore be implemented in the models. Both models will optimize positions in salmon 

spot or any of the one- through six-month forward contracts. As mentioned in section 2.4 the 
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option market at Fish Pool has significant liquidity problems, thus options will not be included 

in the models.  

 

The financial risk models differ in methodology. A key feature of first model will be simplicity 

in application, with steps in the method that are relatively intuitive to understand for an actor 

without extensive competence in finance. To achieve a dynamic model, production costs will 

also be included as it is a key factor for margins in salmon farming. In addition, negative bank 

balance is penalized to account for liquidity. The main output will be the allocation through the 

decision variables, with application of various risk measures to increase awareness of the 

relationship between revenues and risk.   

 

As larger companies have more resources to pursue a more advanced quantitative model, the 

second model in this paper will contain key elements for development of such a risk 

management tool. The methodology used is stochastic programming which is based on the 

literature review. The model will use a revenue target and to account for risk it will use negative 

deviation from the set target, similar to the risk measure used in Mo et al. (2001) Necessary 

simplifications will be described and discussed.  

 

Chapter 5 

Data Description 

Commodity data were extracted from Datastream and fishpool.eu. It covers historic salmon 

spot prices, one- through six-month forward prices, and spot prices for comparable 

commodities. The spot price data begins in January 2004 with weekly observations until March 

2017. Forward price data begins in January 2006 due to lack of forward contracts in previous 

years. Salmon data is in Norwegian Kroner and data for other commodities are in US Dollar. 

This chapter looks at how the data has developed historically in section 5.1 and examine salmon 

price characteristics. These characteristics are compared to the characteristics of similar 

commodities in section 5.2. Next, the relevant time series data are tested with regards to 

normality, serial correlation and other factors that provide an understanding of the price 

processes. Finally, the dynamics between salmon spot price and forward prices are investigated 

in section 5.3.  
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5.1  Salmon Spot Price 

The salmon spot price development is presented in figure 5.1. 

 

 
Figure 5.1: Historic salmon price movement 

 
From 2004 to 2009 the salmon spot price was mostly in the interval 20 to 30 NOK except for 

one short period with higher price, peaking at approximately 45 NOK. From 2009, the spot 

price became more volatile and showed more distinct price shifts in the interval 20-45 NOK.  

 

The strongest period in this time series is 2013 to present date were prices have been increasing 

remarkably. Figure 5.1 and 5.2 illustrate these movements in the 35-80 NOK interval with peaks 

at the 80 NOK threshold.  
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Figure 5.1: 3D illustration of historic salmon price movement 

In recent years, we can see that prices tend to fall during the late part of the summer and the 

early part of the fall. Visually, stronger price periods seem to include mid-summer and around 

Christmas.     

 

5.2  Descriptive Statistics 

Table 4 displays mean, median, standard deviation, variance, kurtosis, skewness, minimum, 

maximum and number of observations for the various commodities and salmon forward 

contracts. Results on variance (0,326%) and standard deviation (5,710%) show that salmon spot 

is more volatile than sugar and corn. However, compared to the same commodities salmon spot 

exhibits less excess kurtosis and practically zero skewness. The minimum-maximum range is 

roughly identical for salmon, corn and sugar.  

 

Table 5.1: Descriptive statistics 

 
 

All the salmon forward contracts exhibit less volatility than salmon spot. However, the results 

reveal higher kurtosis, indicating a distribution with “fatter tails” compared to the spot price. 

With respect to minimum and maximum the results show a significantly lower range. 



 

 17 

 

5.2.1   Normality 

The distribution of salmon spot returns is compared to a normal distribution in table 5.  

 

 
Figure 5.2: Distribution of log-returns of spot prices with normal distribution superimposed. 

 

Normality of the returns were tested in MATLAB with Kolmogorov-Smirnov test, Lillie test, 

Jarque-Bera test and Shapiro-Wilk test. The Kolmogorov-Smirnov test reject normality of the 

returns for spot prices at the 5% significance level, indicating that returns are not normally 

distributed. However, Shapiro-Wilk test and Lillie test could not reject that the returns where 

normally distributed. An identical result was produced by the Jarque-Bera test, which test if the 

data has the skewness and kurtosis that matches normal distribution. Thus, we cannot conclude 

on whether the data are normally distributed. 
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5.2.2   Autocorrelation 

Salmon spot returns were analyzed with respect to autocorrelation and partial autocorrelation 

using 52 lags.   

 
Figure 5.3: Autocorrelation Functions: Salmon spot price. 

 
The autocorrelation function (ACF) of the salmon spot price is significant for a large number 

of lags. However, we want to make sure that the significance lags are not only due to the 

propagation of autocorrelation at some subset of lags. We do this by looking at the partial 

autocorrelation function. 

 
Figure 5.4: Partial Autocorrelation Function: Salmon spot price. 
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The partial autocorrelation function (PACF) indicate that after lag 3 the higher significant lags 

in the ACF is due to the propagation of autocorrelation at lag 1 thought 3. The ACF and PACF 

looks to display an autoregressive (AR) signature where the PACF cuts of while the ACF has 

many significant lags. The ACF exhibit a slow linear decay which is typical of a nonstationary 

time series. Because of the indication of non-stationarity of the time series the data should be 

differenced. Below is the ACF and the PACF for the differenced data.  

 
Figure 5.5: Autocorrelation Function: Differenced salmon spot price. 

 
Figure 5.6: Partial Autocorrelation Function: Differenced salmon spot price. 
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We can observe that the non-stationarity that was indicated in the ACF of the original time 

series is no longer present. The time series presents indication of seasonality by having 

significant lags at around lag 52.   

 

5.2.3   Spot Price Process 

Figure 5.8 display the historic weekly price variations for salmon spot price: 

 
Figure 5.7: Historic salmon price volatility. 

 

The figure gives an impression of how the volatility behaves. The data is consistent with 

Solibakke (2012) and Oglend (2013) findings of time-varying volatility. As in Oglend (2013), 

the volatility looks to have been increasing and show differences in volatility in different 

periods. Observation of the volatility of the price returns indicate that the price process exhibit 

heteroscedasticity. The Engle test and Ljung-Box-Q test for heteroscedasticity in the returns 

rejected the null hypothesis of homoscedasticity, indicating that there is heteroscedasticity in 

the residuals of the returns.   

 

5.3  Spot-Forward Relationship 

Naturally the salmon spot price and salmon spot expectations are the leading factors impacting 

forward price fluctuations. Table 7 exhibit three- and six-month forward contract prices 

compared to realized spot prices on delivery dates.  
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Figure 5.8: Historic spot price, three-month forward price, and six-month forward price. 

 

Visually, the graphs indicate that the forward prices follow the spot price fluctuations relatively 

closely, although with a lag. The co-movement is characterized by a strong correlation, 

displayed in Table 0.3 in Appendix A. Furthermore, the graph clearly show that spot prices 

have stronger fluctuations and more ‘spikes’. As a representation of co-movement of the spot 

price with each forward contract we have used the beta 𝛽. The beta is calculated using classical 

linear regression:  

 

𝛽 = #$%('($)*,,-./*)
123('($)*)

 (  5.1  ) 

 

The betas for each forward contract is represented in table 5.2 below: 

 

Table 5.2: Betas 

Variables 1m fwd 2m fwd 3m fwd 4m fwd 5m fwd 6m fwd 

Spot 0.9183 0.8844 0.8535 0.8315 0.8146 0.7901 
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Absolute price differences throughout the time series are presented in figure 5.10.  

 
Figure 5.9: absolute price differences between spot price and 6- and 3-month forward 

contract prices 

 

The distribution of price differences is distinctly broader for spot minus six-month forward 

contracts, which is not surprising considering weakening predicative power with increasing 

time horizon. Notably, the spot minus six-month forward distribution also display a higher 

number of ‘outliers’ in the tails, especially in positive values. The descriptive statistics in table 

5.3 support the visual impression.  

 

Table 5.3: Spot-Forward difference 
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Standard deviation is higher when realized spot is compared to six-month forward prices and 

kurtosis is slightly higher. Furthermore, the results show a distinct difference for both mean and 

minimum-maximum range. On average the realized spot price was 3,02 NOK higher than the 

six-month forward price at delivery. Spot prices were 1,73 NOK higher than three-month 

forward prices on average. The minimum-maximum range show a wider span when the forward 

contracts have longer duration. In both cases the price differences are significantly higher 

upwards compared to downwards, but with higher upward differences for contracts with longer 

duration. 

 

Chapter 6 

Methodology 

This chapter will introduce the reader to the most essential parts of stochastic programming as 

well as portfolio optimization and some applicable forecasting elements. In section 6.1 

stochastic programming will be introduced. However, it is assumed that the reader is familiar 

with the basics of optimization and stochastic programming. For an indebt examination of 

stochastic programming the reader is directed to Birge and Louveaux (2011) and Kall and 

Wallace (1997). In section 6.1.1 we will discuss the single-stage horizon problem. Section 6.1.2 

explore the features of recourse. Next, section 6.1.3 describe the multi-stage recourse problem 

and section 6.1.4 explain scenario tree theory. Section 6.2 will detail portfolio optimization 

using Modern Portfolio Theory along with some discussion regarding risk measure. Finally, 

section 6.3, will provide the reader with a walk-through of some applicable forecasting theory.  

 

6.1  Stochastic Programming 

The problem with managing a business, or anything for that matter, is that we need to make 

decisions before we have all the information that we would prefer. Because of the implication 

uncertainty has on future events several methods and application have been developed and 

designed to manage the uncertainty.  

 

There are several decisions to be made before one even tries to deal with uncertainty. One of 

those decision is specifically how to model the uncertainty. There are several different 

methods in dealing with uncertainty. The easiest and most straightforward is the so-called 

deterministic approach which entails that the uncertainty variable is not included in the model 
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but rather is evaluated through one of the following techniques. Scenario analysis, what-if-

analysis, or sensitivity analysis. In sensitivity analysis, we try to analyse the effect of 

changing different variables separately and without changing the fundamentals to measure the 

sensitivity of the outcome to changes in those specific variables which than give us an idea 

whether our solution is stable or unstable. In what-if-analysis, we try to analyse the effect of 

changing several variables where the fundamentals have changed to measure the change in 

outcome. In scenario analysis, we create several different scenarios based on estimation of 

possible outcomes. Then we analyse the solution of the model based on each scenario and 

combine the solutions and analyse the combined solutions based on some criteria. Based on 

for example mean and variance, we create a possible optimal solution (King & Wallace, 

2012).  

 

A more complex possibility to modelling uncertainty is to use stochastic programming. 

Stochastic programming accounts for uncertainty directly in the model formulation. In many 

cases the stochastic programming models would be better at dealing with uncertainty than the 

deterministic approaches (King & Wallace, 2012). Stochastic programming try to minimize or 

maximize a certain function subject to a set of constraints and by so seeking to extract a some 

possible solution that can serve as a policy in all future scenarios (Shapiro & Philpott, 2007). 

By taking uncertainty into account the decision maker might make other decisions than he 

would have done when disregarding uncertainty and the decisions which are made when 

acknowledging uncertainty most often prove to be better. 

 

In stochastic programming, there are several different types of models. In this thesis, we will 

be looking at a one-stage stochastic model and a multi-stage stochastic model. A third common 

stochastic model, which is a special case of the multi-stage stochastic model, is the two-stage 

stochastic model. We will not focus on the two-stage model in this thesis and will therefore 

only state the essence of the model in a short manner. These models are explained in the sections 

that follows. 

 

“A two-stage model is a model where the first decision is a major long-term decision, whereas 

the remaining stages represent the use of this investment. This could be something like building 

a factory for later production under uncertain demand, prices, or even products” (King & 

Wallace, 2012). Another variant is when someone must make a decision at stage one and 

afterwards there is a random event which affects the outcome of the decision. After stage one 
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we can add a recourse option to correct for, or take advantage of, the effect of the random event 

(Shapiro & Philpott, 2007).  

 

6.1.1   Single-Period Horizon: Policy Selection Problem 

A one-period horizon, or single stage, stochastic model is a model where we only have one 

decision stage and no recourse options. One example could be that we want to select the 

parameters for a specific model. For example, we want to minimize a cost function where we 

have some unknown event in the future that will affect the cost. 

 

𝜁∗ = 𝑚𝑖𝑛
9∈𝒳

𝑓 𝑥 = 𝐸 𝐹(𝑥, 𝜉)   (  6.1  ) 

 

Where 𝒳 is the set of possible decision points and 𝑥 is the specific decision. F is the cost 

function and 𝜉 is the random event or information that become available after the decision. As 

𝐹(𝑥, 𝜉) cannot be directly optimized because we have a stochastic variable we instead optimize 

the expectation of 𝐹(𝑥, 𝜉), 𝐸 𝐹(𝑥, 𝜉) , which is why we have equation 6.1 above.  

 

There are several methods for solving a single stage stochastic problem. Examples are, Sample 

Average Approximation, Stochastic Approximation, Response Surfaces, and Metamodels. The 

models have their roots from within different disciplines and therefore rest upon different 

assumptions about the data used in the problem. In this paper, for the single stage stochastic 

model, we are going to use the Sample Average Approximation method. For an overview of 

the assumptions regarding the problem considerations and description of the other three 

methods please see Hannah (2014). 

 

The Sample Average Approximation is a method comprised of two parts. The two parts of the 

method is sampling and deterministic optimization. Normally the objective function cannot be 

directly calculated, however, the use of Monte Carlo simulations can in some cases approximate 

the objective function (Hannah, 2014). By using Monte Carlo simulations, we can approximate 

the objective function by taking the average of the realized simulations.  
 

𝔼 𝐹(𝑥, 𝜉) ≈ D
E

𝐹(𝑥, 𝜉F)E
FGD  (  6.2  ) 
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The	  𝑛 in equation X represents the number of realized simulations. The right-hand side of the 

equation is deterministic, and we can therefore use a deterministic optimization method to solve 

the approximation problem (Hannah, 2014): 

 

𝜁E∗ = 𝑚𝑖𝑛
9∈𝒳

𝑓E 𝑥 = D
E

𝐹(𝑥, 𝜉F)E
FGD  (  6.3  ) 

 

 

The restrictive assumption of a convex decision set 𝒳 and objective function 𝐹(𝑥, 𝜉) ensures 

that we will find the global optimum point. It is possible to relax this restriction. However, as a 

consequence, we would only be guaranteed to find a local optimal point (Hannah, 2014).  

 

Normally, we have to assume that 𝒳 is convex and that “the objective function 𝐹(𝑥, 𝜉) is 

convex in 𝑥 for any realization 𝜉" (Hannah, 2014). If these assumptions are not met, we need 

to use a more specialized solution We will not describe those methods here, however, we can 

refer the reader to Alrefaei & Andradottir (2001), Shi & Olafsson (2000), Norkin et al. (1998), 

Battiti & Tecchiolli (1996), and Glover & Laguna (1999) for a detailed exposition of the 

methods. 

 

6.1.2   Recourse 

One of the most thoroughly research topics regarding stochastic programming deals with 

models with recourse. Recourse is closely related to Real Options (Wallace & King). Real 

options and recourse are used in many industries, if not all industries, to some extent. For 

example, the pharmaceutical industry uses real options and recourse during research and 

development where they have outlined several stages and will make a decision at each stage 

based on new information in terms of abandonment, increased investment, or simply a 

continuation of the investment (Gupta & Maranas, 2004). Other industries that real options and 

recourse are used include Airline industry, Oil and Gas industry, and the Utilities industry 

(Mun, 2006). 

 

In a stochastic model recourse is the option to make a new decision to account for new 

observable information (Birge & Louveaux, 2011). In the first stage we make our initial 

decision while at some point before stage two an uncertain event takes place which provides us 

with information. In the second stage we use our recourse option and adjust our decision so as 
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to minimize any negative effects or maximize any positive effect of the uncertain event (Shapiro 

& Philpott, 2007). A depiction of the process of decision, uncertain event, and then new 

decision are depicted below in equation 6.4 where 𝑥 is the first stage decision, 𝜉 𝜔  is the 

uncertain event, and 𝑦(𝜔, 𝑥) is the recourse decision based on information from the uncertain 

event (Birge & Louveaux, 2011).  
 

𝑥 → 𝜉 𝜔 → 𝑦(𝜔, 𝑥) (  6.4  ) 

 

 

 
Figure 6.1: Depiction of scenario tree of two-stage program (Popela et al.,2014) 

 

Figure 6.1 above visualize a scenario tree of a two-stage model. 

 

A recourse model can be included in models from two-stage and up to, in theory, infinite stage 

modes, or by their more common classification of multi-stage models. The classic 

representation of a recourse model is the two-stage stochastic linear program with fixed 

recourse which was first proposed by Dantzig (1955) and Beale (1955) and is represented in 

equation 6.5 below:  
 

𝑚𝑖𝑛 𝓏 = 	   𝑐O 𝑥 + 𝐸Q 𝑚𝑖𝑛 𝑞 𝜔 O 𝑦(𝜔)  (  6.5  ) 

s.t  𝐴𝑥 = 𝑏	  , 

𝑇 𝜔 𝑥 +𝑊𝑦 𝜔 = ℎ 𝜔 	  , 

𝑥 ≥ 0	  , 𝑦 𝜔 ≥ 0	  . 
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In the function the 𝑐O𝑥 is a deterministic term while 𝑞 𝜔 O𝑦(𝜔) is the expectation of the second 

stage realization using all possible realization of the stochastic event 𝜔. In the function we know 

𝑐O, 𝑥, 𝐴, and 𝑏 at the first stage. After the first stage a stochastic event 𝜔 takes place and the 

variables 𝑞 𝜔 , ℎ(𝜔) and 𝑇 𝜔  become known. In the second stage when the stochastic 

variables have become know we make our second stage decision 𝑦(𝜔) which typically differ 

when the realization of the stochastic variables differ (Birge & Louveaux, 2011). The above 

formulation of the recourse model shows the information process directly in the decisions that 

are made, most often using scenario trees. This type of structure is often referred to as implicit 

formulation. Another formulation to the problem is to formulate a problem for each scenario 

and then add constraints to make sure that the information structure, coupled with the 

optimization process, is held. We formulate the model as such: (Higle, 2005). 

 

𝑚𝑖𝑛 (𝑐𝑥[ + 𝑞[𝑦[)𝑝[[∈]  (  6.6  ) 

s.t. 𝑇[𝑥[ +𝑊[𝑦[ = ℎ(𝜔) 

𝑥[ − 𝑥 = 0	  	  	  ∀[∈ Ω 

𝑥[, 𝑦[ ≥ 0. 

 

Where pb is the probability and qbyb is the recourse part of the equation. The rest of the 

notation is as in equation 6.5. We see here that the distinction between the decision in the 

different stages in equation 6.6 is not as clear as in equation 6.5. In equation 6.6 the decision is 

dependent on the formulation of as a set of subproblem for each scenario. The structure equation 

6.6 is in is often referred to as explicit formulation. Equation 6.6 includes a non-anticipatively 

constraint, 𝑥[ − 𝑥 = 0	  	  	  ∀[∈ Ω, which ensures that decisions honour the information structure 

of the problem. When the non-anticipativity constraint is represented as in the explicit, or full 

form, equation the problem is sometimes referred to as the deterministic equivalent problem 

(Higle, 2005). For a detailed exposition on the deterministic equivalent the reader is referred to 

Wets (1974). In this thesis we will use explicit formulation for ease of understanding for the 

readers.  

 

6.1.3   Multi-Stage Recourse Problem 

The previous section laid out the recourse model in the classic two-stage model. However, in 

real life most decision problems have a long life span and have several points where new 

information becomes available and one can make corrective decisions. Higle (2005) describe it 
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as a “decide-observe-decide” pattern which forms a multi-stage stochastic recourse model. The 

problem in this paper is operational and continuous so we can therefore infer that our problem 

is “inherently multistage with, principally, an infinite number of stages as you have no plans to 

stop this activity” (King & Wallace, 2012).  

 

We can generalize the information regarding recourse as detailed in the “recourse” section 

above to include several stages. As such, we can use the notation found in Higle (2005) to 

represent the general multi-stage stochastic model with recourse.  

 

𝑚𝑖𝑛 𝑝[𝑐[𝑥[[  (  6.7  ) 

s.t. 𝐴)e𝑥e)
eGD = 	  𝑏)	  	  	  𝑡 = 1,… , 𝑇 

𝑥[ ∈ 𝑋 𝜔 	  	  ∀𝜔 ∈ Ω 

𝑥[ [∈j ∈ 𝒩 

 

In this linear problem the 𝒩 denotes the set of non-anticipative solutions,  𝑐[ is the objective 

function, 𝑥[ is the decision variable, and 𝑝[ is the probability of the uncertain event (Higle, 

2005).  

 

When the time horizon becomes very long it is advisable to include a discount factor to discount 

payments that are located in the far future. (King & Wallace, 2012) 

 

6.1.4   Scenario Trees 

In most cases, to find a solution for a stochastic program, one needs to discretize the probability 

distribution (King & Wallace, 2012). The discretization of a stochastic program along with the 

idea of recourse is very well represented in a scenario tree. A scenario tree is also useful when 

trying to understand the characteristics of the program and the non-anticipativity constraints. 

According to Higle (2005) a “scenario tree is a structured distributional representation of the 

stochastic elements and the manner in which they may evolve over the period of time 

represented in the problem.”  

 

A scenario tree is represented in figure 6.2 below. The scenario tree divides into branches 

corresponding to different realizations of the evolution of the events (Birge & Louveaux, 2011).  
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Figure 6.2: Depiction of scenario tree of multi-stage program (Loewe, n.d.). 

 

The non-anticipativity constraint states in its simplest form that we cannot use information that 

we do not have and the decision must be based on the same history. When we simulate a 

scenario tree we technically have the information. However, in the real world we would not be 

able to see the realization beforehand and the non-anticipativity states the fact that we cannot 

utilize information revealed after the decision point. 

 

There is often a difference between the term “period” and the term “stage”. The decisions are 

made at stages where new information becomes available while periods often represents time. 

A scenario is defined as the path from the beginning node at the start of the scenario tree through 

to the ending node at the end of the scenario tree. The number of branches at each node is 

decided by the modeller but is limited by the computational power of the software and/or 

hardware used to solve the problem. The branching does not necessarily need to be 

symmetrical, meaning that depending on the underlying problem, we can have a different 

number of branches both at different nodes at different stages and nodes at the same stage.  

 

The importance of scenario generation for stochastic programming problems with the goal of 

real decision making cannot be overstated. King and Wallace (2005) state that the modeller 

“should be concerned that the solutions you are studying (and possibly implementing!) are 

driven not by how you make scenarios, but by the actual problem formulation.” However, the 

focus of this paper is to develop models / methodology to be used either in the development of 

a policy or in decision-making at each period for the sale of salmon over spot and forward 
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contracts. Keeping this in mind we will not elaborate too much on the theory of scenario 

generation but rather refer the reader to King and Wallace (2005) for a detailed exploration.  

 

6.2  Portfolio Optimization and Quantitative Risk Measures 

Here the we are going to cover some of the theory behind portfolio optimization, specifically 

Markowitz optimization, and various quantitative risk measures. The classic Markowitz 

optimization comes from the Nobel Prize-winner Harry M. Markowitzs´ PhD. dissertation and 

article in 1952 and subsequently the publication of his book Portfolio Selection in 1959 and has 

now become what we refer to as Modern Portfolio Theory (MPT) (Markowitz, 1991). Section 

6.2.1 outlines the use of modern portfolio theory. The paper will use MPT to compare the result 

obtained by applying Modern Portfolio Theory to the forecasted spot prices and forward prices 

to the result obtained from the single-period horizon model. Section 6.2.2 describe various risk 

metrics while section 6.2.3 details the risk metrics that are going to be used in this paper. 

 

6.2.1   Modern Portfolio Theory 

The revolutionary theory that Markowitz postulated was that there is a trade-off between risk 

and return in a given portfolio. In his original paper he compared the historic mean-return and 

the variance of those returns composed in a portfolio. When comprising several equities in a 

portfolio the one have to calculate the mean return and the variance of the portfolio and not just 

for each equity. The return of a portfolio is just the weighted expected returns of each equity. 
 

𝑋F𝜇Fm
FGD = 𝐸 (  6.8  ) 

 

Where 𝐸 is the expected or mean return of the portfolio, Xo is the weight of equity i and µμo is 

the return of the set of equities.  

 

The variance of a portfolio is a bit more complicated. We need to account for the covariance 

between each equity and the variance of each individual equity. The equation for evaluating the 

variance of a portfolio becomes as follows: 

 

𝑥F𝑥e𝜎Fem
eGD

m
FGD  (  6.9  ) 
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Where xo is the weighting for equity i, xs is the weighting of equity j, and σos is the covariance 

matrix. 

 

The main goal of the Markowitz mean-variance method is to create an efficient frontier where 

all optimal portfolio structures are represented. It may not be surprising then that the efficient 

frontier also represents a collection of all utility-maximizing functions. It can be shown that, up 

to second-order approximation, every utility function is represented in the efficient frontier. For 

a detailed explanation as to why that is the reader is referred to King and Wallace (2005) and 

Markowitz (1991).  

 

The efficient frontier is developed by minimizing the risk measure for a given expected return. 

The normal procedure is to first calculate the mean excess return for each equity in the portfolio 

then calculate the covariance matrix. After the covariance matrix has been calculated we use 

equation 6.8 and 6.9 above to calculate the mean return and variance of the portfolio. There are 

several tools for optimization one can use but the most convenient for most people is to use 

Excel Solver to minimize the risk variable subject to a given return target. Based on several 

iterations of minimizing the risk measure subject to a specific return target we are able to 

construct the efficient frontier which represents the optimal set of portfolios for a given utility 

function.  

 

6.2.2   Risk measure 

There are several risk measures we can use, for example variance, standard deviation, Value at 

Risk (VaR), Conditional Value at Risk (CVaR), downside deviation, and semi-variance to name 

a few. Variance and standard deviation are measurements of volatility which gives you an idea 

of the distribution and dispersion of the data set. For more information regarding variance and 

standard deviation the reader is referred to Pfeiffer (1990). The semi-variance and semi-

deviation, or downward deviation, as opposed to variance and standard deviation, does not 

measure the dispersion of the whole data set but only the dispersion below a certain critical 

value. Downside deviation is only focused on the downside risk.  For further information on 

semi-variance and semi-deviation, or downward deviation, the reader is referred to Markowitz 

(1991). VaR and CVaR are two related risk measurements. Schachter (1997) define VaR as “a 

forecast of a given percentile, usually in the lower tail, of the distribution of returns on a 

portfolio over some period; similar in principle to an estimate of the expected return on a 
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portfolio, which is a forecast of the 50th percentile” and “an estimate of the level of loss on a 

portfolio which is expected to be equaled or exceeded with a given, small probability.” CVaR 

measures the average loss at a specified confidence level. CVaR is usually measured by taking 

the weighted average of the VaR and the losses that exceeded the VaR (Uryasev and 

Rockafellar, 2000). Uryasev and Rockfellar  (2000) defines and contrasts VaR and CVaR as 

such “by definition with respect to a specified probability level 𝛽, and 𝛽-VaR, of a portfolio is 

the lowest amount such that with, probability 𝛽, the loss will not exceed 𝛼, whereas the 𝛽-CVaR 

is the conditional expectation of losses above that amount 𝛼.” For further details on the risk 

measure mentioned above the reader is referred to Uryasev and Rockfellar (2000), Sarykalin, 

Serraino, and Uryasev (2008), Schachter (1997), and Markowitz (1991). 

 

6.2.3   Utilized Risk Measures 

The following is the risk measured that are going to be used in the single-stage horizon model. 

The first risk measure is the Conditional Value at Risk. The second risk measure is downside 

deviation. In this paper, for the single-period model, the critical level for the downside deviation 

has been defined as zero. Below follows the equation for the minimization of the CVaR (6.13) 

and downside deviation (6.15), respectively. 

 

For 𝛼 ∈ 0,1 	  	  	  	  	  	  	  	  	  	  	  	  	  𝑚𝑖𝑛 𝐶𝑉𝑎𝑅z 𝑋 = 𝑧𝑑𝐹}z(𝑧)
~�
��  (  6.10  ) 

Where 𝐹}z(𝑧) =
0	  𝑊ℎ𝑒𝑛	  𝑧 < 𝑉𝑎𝑅z(𝑋)

�� � �z
D�z

	  𝑊ℎ𝑒𝑛	   ≥ 	  𝑉𝑎𝑅z(𝑋)
 (  6.11  ) 

 

𝑚𝑖𝑛 𝐸𝜎(. =
D
'

(𝐹O,� − 𝐹O)��
��,����

�
� (  6.12  ) 

 

𝐸𝜎( represents the standard deviation of the portfolio, 𝐹O,� represents the portfolio ending 

balance. 𝐹O is the critical value and S represents the number of scenarios (“Downside 

Deviation,” n.d.).  

 

In addition to the above mentioned risk measures we will also use semi-variance and the related 

semi-deviation. Semi-deviation is represented in equations 6.13 
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𝑚𝑖𝑛 𝛴(� = 𝑥F𝑥e𝛴Fe�E
eGD

E
FGD

�
� (  6.13  ) 

 

Where Σ(� is the semi-deviation, 𝑥F is the weight of equity i, 𝑥e is the weight of equity j, and 

ΣFe� is the semi-covariance matrix associated with the set of equities which in this paper consist 

of the spot price of salmon and forward contract of salmon for one through six months. 

 

6.3  Forecasting 

Uncertainty is inherent in all decisions and is a problem for many organizations and individuals. 

As a means to ameliorate the problems inherent with uncertainty several different forecasting 

techniques has been developed. Depending on the specific circumstances surrounding the 

desired forecast, such as available data, reason for forecast, accuracy desired, and other 

characteristics of the forecast, the specific forecast technique, or method, is chosen (Chambers 

et al., 1971). Forecasting is inherently difficult and uncertain within its own right.  

 

Before one starts to forecast there are some questions that one should ask oneself. “What is the 

purpose of the forecast—how is it to be used? This determines the accuracy and power required 

of the techniques. What are the dynamics and components of the system for which the forecast 

will be made? This clarifies the relationships of interacting variables, and how important is the 

past in estimating the future?” Chambers et al., 1971). There are three common approaches to 

forecasting, they include the qualitative approach, time series analysis and projection, and 

causal methods. In this paper time series analysis with projection is going to be used. The reader 

is referred to the Harvard Business Review article on forecasting by Chambers, Mullick, and 

Smith for further details on causal methods and qualitative approaches.   

 

A popular way of choosing the appropriate methods for forecasting a univariate time series 

model is the Box-Jenkins three-stage method. The three stages in the method are 1. 

Identification stage, 2. Estimation stage, and 3. Diagnostic stage. In the identification stage the 

forecaster would want to look at the data by plotting it in a time series, looking at the 

autocorrelation function (ACF), and partial autocorrelation function (PACF). In this first stage 

the forecaster is trying to identify potential problems that might affect a forecast model and 

correct these potential problems. The forecaster is checking if the data series has any outliers, 

missing values, and structural breaks. Evaluating the ACF and PACF the forecaster can get 

compare several plausible models to that of several theoretical ARMA models. One would also 
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like to check the stationarity of the time series. One can check for stationarity using the sample 

correlogram. However, a more precise way to establish whether or not a time series is stationary 

is to use the Dickey-Fuller test. The Dickey-Fuller test tries to establish if 𝛼D = 1 in the equation 

𝑦) = 𝛼D𝑦��D + 𝜀). One starts by subtracting 𝑦��D from each side of the equation to get ∆𝑦) =

𝛾𝑦��D + 𝜀) where 𝛾 = 𝛼D − 1. We then test the hypothesis 𝛾 = 0 which is that the time series 

contain a unit root which indicate that the time series is nonstationary. One can apply the 

Dickey-Fuller test by using OLS and evaluating the t-statistics of the resulting data with the 

associated critical value found in a Dickey-Fuller table we can determine whether to reject the 

null hypothesis or not. Most econometrics packages today come with a built-in Dickey-Fuller 

test for easy evaluation. The Dickey-Fuller test can also account for deterministic elements such 

as a constant or intercept and linear time trends as shown below in equation 6.14 through 6.16 

where equation 6.14 is a pure random walk, equation 6.15 have an intercept or drift included, 

and equation 6.16 has both an intercept or drift and a linear time trend (Ender, 2014).  
 

∆𝑦) = 𝛾𝑦��D + 𝜀) (  6.14  ) 

∆𝑦) = 𝛼� + 𝛾𝑦��D + 𝜀) (  6.15  ) 

∆𝑦) = 𝛼� + 𝛾𝑦��D + 𝛼� + 𝜀) (  6.16  ) 

 
We can also use a so-called Augmented Dickey-Fuller test which can account for higher-order 

equations. For further information of the Augmented Dickey-Fuller test the reader is referred 

to Ender (2014). 

 

In the second stage the forecaster fit a selection of potential models to the data and evaluate 

those models on a set of criteria. The goal would be to select a “stationary and parsimonious 

model that has a good fit” (Ender, 2014). 𝑅� and the average of the residual sum of squares are 

common measures of goodness-of-fit for OLS. However, the goodness-of-fit tend to improve 

by adding more parameters to the model. As a goodness-of-fit evaluation that accounts for the 

importance of parsimony the Akaike Information Criterion (AIC) and the Schwartz Bayesian 

Criterion (SBC) are good models to capture the overall goodness-of-fit of the model (Ender, 

2014). The AIC and BIC formulas are as follow: 

 
𝐴𝐼𝐶 = 𝑇 𝑙𝑛 𝑟F�E

FGD + 2𝑛 (  6.17  ) 

𝐵𝐼𝐶 = 𝑇 𝑙𝑛 𝑟F�E
FGD + 𝑛	  𝑙𝑛	  (𝑇) (  6.18  ) 
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Where n = number of parameters estimated (p + q + possible constant term) and T = number of 

usable observations (Ender, 2014).  

 

One would want to choose the model with the smallest AIC and BIC. In cases where the AIC 

and BIC gives contradiction opinions one has to keep in mind the purpose of the model. AIC is 

said the be better for choosing among models for forecasting purposes. Studies show that AIC 

and BIC has advantages over other model selection methods such as the hierarchical likelihood 

ratio test. For details regarding the advantages the reader is referred to Posada & Buckley 

(2004). 

 

The third stage of the Box-Jenkins method is evaluating the chosen model. There are several 

ways to evaluate a model. A common practice is to plot the residuals to look for outliers and 

possible periods where the model does not fit the data well. There are several tests developed 

to measure how good the forecasts are. Some of these tests include the Mean Square Prediction 

Error, the Granger-Newbold test, and the Diebold-Mariano test. For a detailed exposition of 

these test please see Ender (2014). The main purpose of this paper is not to create a good 

forecast for salmon price but rather to create a set of plausible forecasts to be used in the model 

creation and evaluation.  

 

Chapter 7 

Modelling  

We are going to explain the modelling of the two models, the Single-Period model along with 

the portfolio optimization used and the multi-stage stochastic recourse model. In section 7.2.1 

the forecast model for the spot prices will be detailed followed by section 7.2.2 with the forecast 

model for the forward prices, and section 7.2.3 with the modelling of salmon production. In 

section 7.2 the One-Period Horizon model with accompanying objective function as well as the 

use of MPT will be detailed. Lastly, in section 7.3 the multi-stage model with accompanying 

objective function will be explained. 
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7.1  Data Simulation 

7.1.1   Modelling Spot Prices 

Neither spot prices nor forward prices are based solely on previous data points. However, since 

the forecast model is not the key part in this paper and to keep the forecast model simple enough 

to be practical we have decided to use an autoregressive ARIMA model with GARCH 

innovations. We found, as Solibakke (2011) discovered, that the data exhibit time-varying 

volatility indication a stochastic volatility structure which are represented by a GARCH model. 

Alexander (2008) and McNeil et al. (2005) provide a detailed exploration of ARIMA and 

GARCH. The main objective of the forecast model in this paper is not to simulate “correct” 

price movements but rather to forecast plausible price movements to allow us to run the 

optimization models using realistic real world price movements.  

 

Based on the data characteristics we have chosen to use a ARIMA-GARCH model to create the 

forecasted spot prices. The best-fitted model was chosen by using the AIC and BIC model 

selection strategy in combination with analysis of the ACF, PACF and the Augmented Dickey-

Fuller test of the original time series data and the differenced time series data. The ARIMA 

model has an order of (2,1,0) with a t-distribution while the GARCH model has an order of 

(2,1) with a t innovation distribution. Based on visual analysis of the ACF and PACF and 

observing that the time series presents indication of seasonality by having significant lags at 

around lag 52 and that the lags are positive which indicating that a Seasonal Autoregressive 

(SAR) process is appropriate, as opposed to and Seasonally Moving Averages (SMA) process.  

To account for the believed seasonality present in the data we include an SAR term at lag 52. 

The model was chosen by using forward stepwise AIC and BIC test. Below is the AIC and BIC 

outputs for the assessed models. 

Table 7.1: Result from AIC and BIC test 

Models AIC BIC 

ARIMA(1,1,0) 2.5260 2.7598 

ARIMA(2,1,0) 2.4898 2.7279 

ARIMA(1,1,1) 2.5110 2.7492 

ARIMA(3,1,0) 2.4914 2.7339 

ARIMA(3,1,1) 2.4914 2.7338 

ARIMA(3,1,2) 2.4951 2.7462 

ARIMA(3,1,3) 2.4967 2.7522 
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Table 7.1 represents the AIC and BIC test for the ARIMA-GARCH model with different 

number of parameters. Both test chose the ARIMA(2,1,0)-GARCH(2,1) model with a 

Seasonally Autoregressive term at lag 52 as the optimal model, as can be gleaned from table 

7.1. The seasonality was included because the Augmented Dickey-Fuller test using equation 

6.14 and 6.15 could not reject the null hypothesis of a unit root process while using equation 

6.16 we rejected the null hypothesis of a unit root. After considering the results of the 

Augmented Dickey-Fuller tests and after examining the historic prices movements, as can be 

seen in chapter 4, and industry characteristics, as can be seen in chapter 3, we believe we have 

seasonal trends in the time series.  

 
Figure 7.1: Forecast of mean spot prices and 95% forecast intervals 

 

Figure above depicts mean forecast and 95% interval for the forecast of the spot price as used 

in the single-period horizon model along with portfolio optimization.  
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7.1.2   Modelling Forwards Prices  

There is little research into the forecast of forward contracts in general. A reason for the lack of 

specific research into the forecast of forward contracts is that a forecast of forward contracts is 

basically a forecast of the spot price. If we generalize the statement of Kaye, Outhred, and 

Bannister (1990) we can state:  

 

𝑃)~� = 𝐸 𝑆𝑝𝑜𝑡)~�	  |	  𝑠𝑦𝑠𝑡𝑒𝑚	  𝑐𝑜𝑛𝑑𝑖𝑡𝑖𝑜𝑛	  𝑎𝑡	  𝑞  (  7.1  ) 

 

Where 𝑃)~� is the set forward price set to be realized at time t+q which is equal to the expected 

spot price at time t+q conditional on all the available information. However, forward prices 

coming due at time t will rarely equal the spot price at time t.  

 

Forward contract prices and, for that matter, future contract prices are based on several different 

aspects of the commodity being sold such as, the spot price, the expectation of the future, supply 

and demand, storage cost, and other factors to establish an equilibrium price for the forward or 

future price in terms of the spot price. For an equilibrium to hold for two set of prices the price 

movements of one price, in this case the forward price, must move in the same direction as the 

other price, in this case the spot price (Stein, 1961). It is natural to state that the forward price 

is, in some form, dependent on the spot price.  

 

Asche et al. (2016) studied the relationship between spot prices and forward prices of salmon. 

Asche et al. (2016) found that, contrary to many empirical studies of the spot-forward 

relationship in many commodities market, the lead-lag relations in the salmon market is that of 

a leading spot price and a lagging forward price. Asche et al. (2016) found that the spot and 

forward prices were cointegrated for up to 6-month forward contracts and that the causality was 

one-directional, leading from spot to forward price. A reason for the result could be that the 

forward market for salmon is still immature (Asche et al., 2016) but this could change as time 

goes on.  

 

For our model we need to account for the fact that in the real world forward prices change 

continually as spot prices change. The changes in spot price within the model necessitates that 

we also create a model that represents the changes in forward prices as the spot prices change. 

Based on the data characteristics, Stein (1961), and Asche et al. (2016) we develop a simplistic 
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forward price forecasting model that is conditional on the forecasted spot prices and the 

relationship between the forward prices and spot prices, which is represented by β¡. 

 

𝑃)~�,� = 𝑆𝑝𝑜𝑡)�¢,� 	  + 	   𝑆𝑝𝑜𝑡),� − 𝑆𝑝𝑜𝑡)�¢,� ∗ 𝛽�  (  7.2  ) 

 

Where 𝑆𝑝𝑜𝑡),� is the simulated spot price at time t in scenario s. 𝑃)~�,� is the forecasted forward 

price for forward contract with length q in scenario s while 𝛽� represents the historic joint 

movement between the spot price at t and forward price at time t.  

 

7.1.3   Modelling Production 

The assumption in this paper is that the optimizing salmon producer is a medium sized 

company. The total sales volume is based on other salmon producers in the Norwegian market 

and then adjusted for size. The comparable salmon producers are Salmar AS, Norway Royal 

Salmon, and Marine Harvest where Salmar AS and Marine Harvest are classified as large 

salmon producers while Norway Royal Salomon is a small to medium salmon producer.  

 

Salmar sold 128 100 tons of salmon 2016 (“Salmar ASA,” 2017) while Marine Harvest sold 

125 400 (“Marine Harvest ASA,” 2017) and Norway Royal Salmon sold 66 808 (“Norway 

Royal Salmon,” 2017). Based on these sales numbers we have decided that our producers´ 

weekly production will produce and sell 1700 tons of salmon. Salmon production is not certain 

in terms of weekly production so we have included fluctuations around the mean of 1700 tons´ 

with a standard deviation of 100 tons´ as such:  

 

𝑋),�	  ~	  𝒩(𝜇, 𝜎) (  7.3  ) 

 

Where 𝑋),� is the production in tons, 𝜇 is the mean, and 𝜎 is the standard deviation.  

 

7.2  Single-Period model and Portfolio Optimization 

We will use a Single-period model to select the optimal policy of sales of salmon over contract 

and spot at the end of the simulated period based on a selection of assumptions. The goal of the 

model is to set a policy at time t that will hold for all future periods as to optimize the selected 

assumptions. Assume a fixed planning horizon 𝑇 that is split up into discrete equidistant points 
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of time. Assume that we can hedge each months production volume 𝑋),� (given in tons) where 

𝑡 represents the month and 𝑠 = 1,… , 𝑆 denotes the scenario. Let 𝜔) denote the quantity to be 

sold forward to period 𝑡 = 1,… , 𝑇 at given forward prices 𝑝). Let the spot price be denoted by 

𝑞),�. Furthermore, let 𝐹),� be cash flow from decisions made before the planning horizon. 

Assume that idle cash is hold on a bank account with a monthly interest rate 𝑟�. Furthermore, 

cash can be drawn from a credit line with a monthly interest rate of 𝑟# , which include a 

significant penalty percentage for negative cash flows. The motivation behind including a 

significant penalty for negative cash flow is to account for the risk of involved in the lack of 

liquidity, which are especially important for smaller producers. In addition, a variable cost 𝑘% 

and a fixed cost 𝑘� is subtracted from each period. 

 

The model uses scenario analysis constructed in MATLAB by using the forecast models for the 

spot prices and forward prices to forecast 100 observations and 1000 scenarios. The forecasted 

scenarios, along with the salmon production of 100 observations and 1000 scenarios, are 

transferred to Excel where the optimization is calculated using GRG Nonlinear Solver and 

Simple LP Solver. In calculating the optimization problem based on the set of selected 

assumptions in the one-period horizon model we use 100 weeks of forecasted observations. 

However, we start the optimization at week 24 to include all forecasted forward contracts in 

each period-calculation. The optimization will be based on the both the expected ending bank 

balance and the expected weekly cash flows resulting from salmon sales.  

 

In the Single-Period model several optimizations will be conducted based on distinctive 

optimization objectives and restrictions. We have 2 distinct optimization problems that are set 

to be optimized based on whether we are optimizing expected weekly cash flow or expected 

ending bank balance. 

 

The following is the expected weekly cash flow in each intermediate period and distinctive 

scenario: 

 

𝜔¥,�))
¥GD ∙ 𝑝¥,�) + 𝑋),� − 𝜔¥,�))

¥GD ∙ 𝑞),� − 𝑋),�𝑘% − 𝑘� = 𝐹),� (  7.4  ) 

 

In period 𝑡 = 0 we have the following constraint for the financial balance: 
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−𝑏�,� + 𝑐�,� = 𝐹�,�	  	  	  	  𝑓𝑜𝑟	  𝑎𝑙𝑙	  	  	  	  𝑠 = 1,… , 𝑆 (  7.5  ) 

 

The financial balance constraint indicates that there is no uncertainty in period t = 0. This is 

because the first forward contract only comes due after one month.  

 

The expected ending bank balance in each intermediate step and distinctive scenarios is 

represented below: 

 

𝜔¥,�))
¥GD ∙ 𝑝¥,�) + 𝑋),� − 𝜔¥,�))

¥GD ∙ 𝑞),� − 𝑋),�𝑘% − 𝑘� + (  7.6  ) 

𝑏)�D,� ∙ 1 + 𝑟� − 𝑏),� − 𝑐)�D,� ∙ (1 + 𝑟#) + 𝑐),� = 𝐹),�  

 

s.t.     

𝑐),� 	  ≥ 0 

𝑏),� ≥ 0 

𝑐),� ≥ 𝑏),� 

𝑥F)� ≥ 0 

 

The restrictions state that both the interest on credit and the interest rate on bank deposits must 

be positive, the credit interest rate must be larger than the interest received on bank deposits, 

and that the decision variables has to be positive. The restriction on the decision variables limits 

the actor from buying in the market. For a visual representation of the model interface please 

see appendix C. 

 

7.2.1   Optimization Structure 

The structure of the policy-decision can be sketched as following using optimization objectives 

and restriction. The following are the optimization structure used for the expected weekly cash 

flow and the expected ending bank balance. 

 

𝑚𝑎𝑥	  𝐸[𝐹O] = 	  
D
'

D
O

𝜔¥,�))
¥G�© ∙ 𝑝¥,�) + 𝑋),� − 𝜔¥,�))

¥G�© ∙ 𝑞),� − 𝑋),�𝑘% − 𝑘�  (  7.7  ) 

 

𝐹O	  represents or the expected weekly cash flow, or Cash, at the end of the period and where the 

variables in the equation is described above in section 7.2.  



 

 43 

 

𝑚𝑎𝑥	  𝐸[𝐵O] =
D
'

𝜔¥,�))
¥G�© ∙ 𝑝¥,�) + 𝑋),� − 𝜔¥,�))

¥G�© ∙ 𝑞),� − 𝑘�
−𝑋),�𝑘% + 𝑏)�D,� ∙ 1 + 𝑟� − 𝑏),� − 𝑐)�D,� ∙ (1 + 𝑟#) + 𝑐),�

 (  7.8  ) 

 

𝐵O represents the expected ending bank balance, or Balance, at the end of the period and where 

the variables in the equation is described above in section 7.2.  

 

The optimization is conducted with respects to both the expected weekly cash flow and the 

expected ending bank balance. The optimization follows Markowitz theory of portfolio 

optimization and an efficient frontier where all utility functions are represented is constructed.  

 

7.2.2   Using MPT on Forecasted Price Returns 

The semi-deviation described in section 6.2.3 will use the returns of the forecasted spot and 

contract prices to establish both the return of each “equity” and semi-covariance matrixes. The 

returns are established by averaging each period forecasted price by scenarios and then 

calculating the changes over the forecasted time period as follows. 

 

𝐸[𝑟(] =
ªE(«¬�«¬

)�
*®�¯

O
 (  7.9  ) 

Where 

𝐹2 =
�*,�°

�®�
'

 (  7.10  ) 

𝐹2~D =
�*�,�°

�®�
'

 (  7.11  ) 

 

Where 𝐸𝑟( is the expected return, or change, of the specific price path, 𝐹2 is the average 

forecasted price for all scenarios at time t, while 𝐹2~D is the average forecasted price at time 

t+1.Using standard deviation and semi-deviation along with the return data we are able to 

account for the theoretical covariance between the spot price movements and each of the 

foreword contract price movements which might produce different distribution between spot 

sales and contract sales than the distribution found from the objective function.  
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7.3  Multi-Stage Stochastic Recourse Model 

We will use a multistage stochastic recourse model that maximizes the expected final wealth at 

the end of the planning horizon for a typical medium salmon producer. The model will use 

scenario analysis where we forecast a set of scenarios for the planning horizon. The price 

movement leading up until the beginning of our model is deterministic while the price 

movement in the future scenarios is considered to be uncertain. However, the future price 

movements are dependent on past realizations of price movements up until time T through the 

use of the forecast model ARIMA-GARCH.  

 

In our model we start at time t equal 0. At time 0 we will have production of 𝑋�,� which all will 

be sold at spot. We will also sell forward contract for future production at time 1 through the 

end of the planning horizon, T, which will produce an income at time 1 through T. This means 

that we will have to make a decision of how much salmon should be sold at time 1 though T at 

the specified forward price at time 0 and at each new time period. The allocation decision will 

be repeated every month which is represented by the time fragments in this model.  

 

We assume a discretization of future scenarios. Let the scenarios be denoted by 𝑠 = 1,… , 𝑆 Let 

𝑋),� be the production at point of time t. The produced salmon are not storable so at each period 

every salmon either will be sold on spot or delivered at forward contracts previously sold. Let 

𝜔)�,�
)�  be the quanity which is sold at point in time 𝑡D and delivered at point of time 𝑡� (forward 

contract of length 𝑡� − 𝑡D) in scenario 𝑠. Let 𝑝)�,�
)�  be the forward price that is negotiated upon 

in 𝑡D and scenario 𝑠. Let the spot price be 𝑞),�. Let 𝑘( represent the transaction cost on the sale 

of forward contracts. Furthermore, let 𝐹),� be cash flow from decisions made before the planning 

horizon which continues to grow (be reduced) throughout the planning horizon. The cash flow 

in 𝐹),� include cash from sale of forward contracts at t-1 through t-6 and spot at time t.  Let 𝑏),� 

represent cash inflows and 𝑐),� be a credit line. Assume that idle cash is hold on a bank account 

with a monthly interest rate 𝑟�. Furthermore, cash can be drawn from a credit line with a 

monthly interest rate of 𝑟# . The decision variables are the 𝜔)�,�
)�  variables which is the quantity 

of salmon to be sold on forward contract in future periods. 

 

In period 𝑡 = 0 we have the following constraint for the financial balance: 
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−𝑏�,� + 𝑐�,� = 𝐹�,�	  	  	  	  𝑓𝑜𝑟	  𝑎𝑙𝑙	  	  	  	  𝑠 = 1,… , 𝑆 (  7.12  ) 

 

The financial balance constraint has the same justification as the financial balance constraint in 

the single-period model. 

 

In each intermediate period (and every scenario) we have defined the financial balance in the 

following way: 

 

𝜔¥,�))
¥GD ∙ 𝑝¥,�) + 𝑋),� − 𝜔¥,�))

¥GD ∙ 𝑞),� − 𝜔¥,�))
¥GD ∙ 𝑘( + (  7.13  ) 

𝑏)�D,� ∙ 1 + 𝑟�,� − 𝑏),� − 𝑐)�D,� − 𝑐)�D,� ∙ 𝑟#,� + 𝑐),� = 𝐹),� 

 

or simply  

 

𝜔¥,�))
¥GD ∙ 𝑝¥,�) + 𝑋),� − 𝜔¥,�))

¥GD ∙ 𝑞),� − 𝜔¥,�))
¥GD ∙ 𝑘( + (  7.14  ) 

𝑏)�D,� ∙ (1 + 𝑟�) − 𝑏),� − 𝑐)�D,� ∙ (1 + 𝑟#) + 𝑐),� = 𝐹),� 

 

 

for all 𝑠 = 1,… , 𝑆	  and	  all 𝑡 = 1,… , 𝑇 − 1 

s.t.  

    

𝑐),� 	  ≥ 0 

𝑏),� ≥ 0 

𝑐),� ≥ 𝑏),� 

𝑋)�D,� ≤ 𝑥F)� ≥ 0 

 

The restrictions state that both the interest on credit and the interest rate on bank deposits must 

be positive, the credit interest rate must be larger than the interest received on bank deposits, 

and that the decision variables has to be between zero and the expected production which is 

represented by the production 𝑋)�D,� in the previous period. The restriction on the decision 

variables limit the actor from buying in the market and selling more salmon than are being 

produced.  
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In the last period of the planning horizon we would have the following: 

 

𝜔¥OO
¥GD ∙ 𝑝¥O + 𝑋O − 𝜔¥,�OO

¥GD ∙ 𝑞O − 𝜔¥,�))
¥GD ∙ 𝑘( + (  7.15  ) 

𝑏O�D,� ∙ (1 + 𝑟�) − 𝑐O�D ∙ (1 + 𝑟#) −𝑊O = 𝐹O,� 

 

for all 𝑠 = 1,… , 𝑆	  and	  all 𝑡 = 1,… , 𝑇 − 1 

 

We maximize the expected final wealth, which is the cash flow generated during the planning 

horizon subtracted by the credit line at the end of the planning horizon: 

 

𝑊O =
D
'

𝑊O,�
'
�GD  (  7.16  ) 

 

The non-anticipativity constraints are as follows: 

 

𝑥F)� = 𝑥F)�²	  	  	  	  	  	  ∀𝑖 ∈ 𝑁,	  	  	  ∀𝑡 ∈ 𝑇,	  	  	  ∀𝑠 ∈ 𝑆,	  	  	  ∀𝑠´ ∈ 𝑆�) (  7.17  ) 

 

Where 𝑥F)�	  represents the decisions i at time t in scenario s based on historic variables, while 

𝑥F)�² represents the decisions i at time t in scenario 𝑠´ based on historic varibles. ∀𝑖 ∈ 𝑁 are all 

decision varibles from i to N, ∀𝑡 ∈ 𝑇 are all time period from t to T, ∀𝑠 ∈ 𝑆 are all scenarios 

from s to S, and ∀𝑠´ ∈ 𝑆�) are all scnarios from 𝑠´ to 𝑆�) which are equivalent to s at time t.  

 

The following depict the evolution of the optimization equation from period 𝑡 = 0 through 

period 𝑡 = 6 

 

𝒕 = 𝟎: 	  𝑋�,� ∙ 𝑞�,� + 𝑏�D,� ∙ (1 + 𝑟�) − 𝑏�,� − 𝑐�D,� ∙ (1 + 𝑟# + 𝑖𝑝#,)) + 𝑐�,� = 𝐹�,� (  7.18  ) 

 

𝒕 = 𝟏:	  𝜔�D ∙ 𝑝�,�D + 𝑋D,� − 𝜔�D ∙ 𝑞D,� − 𝜔�D ∙ 𝑘( + 𝑏�,� ∙ 1 + 𝑟� − (  7.19  ) 

𝑏D,� − 𝑐�,� ∙ 1 + 𝑟# + 𝑖𝑝#,) + 𝑐D,� = 𝐹D,� 

 

𝒕 = 𝟐:	  𝜔�� ∙ 𝑝�,�� + 𝜔D� ∙ 𝑝D,�� + 𝑋�,� − 𝜔�� − 𝜔D� ∙ 𝑞�,� − 𝜔�� ∙ 𝑘( − (  7.20  ) 

𝜔D� ∙ 𝑘( + 𝑏D,� ∙ (1 + 𝑟�) − 𝑏�,� − 𝑐D,� ∙ 1 + 𝑟# + 𝑖𝑝#,) + 𝑐�,� = 𝐹�,� 
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. 

. 

. 

𝒕 = 𝟔:	  𝜔�¼ ∙ 𝑝�,�¼ + 𝜔D¼ ∙ 𝑝D,�¼ + 𝜔�¼ ∙ 𝑝�,�¼ + 𝜔¢¼ ∙ 𝑝¢,�¼ + (  7.21  ) 

𝜔©¼ ∙ 𝑝©,�¼ + 𝜔½¼ ∙ 𝑝½,�¼ + 𝑋¼,� − 𝜔�¼ − 𝜔D¼ − 𝜔�¼ − 𝜔¢¼ − 𝜔©¼ − 𝜔½¼ ∙ 𝑞¼,� − 

𝜔�¼ ∙ 𝑘� − 𝜔D¼ ∙ 𝑘( − 𝜔¢¼ ∙ 𝑘( − 𝜔©¼ ∙ 𝑘( − 𝜔½¼ ∙ 𝑘( − 𝜔¼¼ ∙ 𝑘( + 

𝑏½,� ∙ (1 + 𝑟�) − 𝑐½,� ∙ 1 + 𝑟# = 𝐹¼,� 

 

After the calculation of the solution of the stochastic program an efficient frontier is created to 

represent all optimal portfolios for actors with different risk appetite. The risk measure used is 

based on the risk measure outlined in Mo, et. al. (2001). The risk measure used negative 

deviation from a set revenue target. The risk aversion of the actors which outline the efficient 

frontier is reprinted by lambda 𝜆 which range from 0 to 1 with 0.01 intervals. The risk adjusted 

objective function is represented as follows: 

 

𝑊O𝜆 − (1 − 𝜆)𝑅 (  7.22  ) 

 

 

Where 𝑊O is the expected ending wealth, 𝜆 is the risk aversion where 0 represents perfect risk 

aversion and 1 represents no risk aversion. 𝑅 represents the risk measure which in this model 

is the negative deviation from the revenue target  

 

𝑅 = − ℙ𝑠
'
�GD 𝑚𝑖𝑛 𝑤O,�	  ; 	  𝜓  (  7.23  ) 

 

Where ℙ represents the probability of the outcome, which in this model is the number of distinct 

scenarios. ψ represents the set revenue target.  

 

When calculating a multi-stage stochastic recourse model a problem that often occurs is the 

problem of dimension where each period the number of new branches grows exponentially 

leading to a problem too large for todays´ technological computing power to compute. 

Therefore, the tree-structure we have constructed is based on a monthly decision variable with 
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weekly price updates for the simulations which reduces the exponential growth of the tree-

structure by only branching at every fourth node. 

 
Figure 7.2: Visualization of price simulation process 

 
Figure 7.3: Visualization of decision nodes 
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The reduction in the branching in the tree-structure makes it possible for a personal computer 

to compute a more demanding computation of the model that we otherwise would have needed 

a special computer with extreme computing power to compute for the same number of time 

periods and scenarios.  

 

Chapter 8 

Model Application  
This chapter contains the results from the risk models introduced in Chapter 7. Section 8.1 

present and discuss output from the single-period model, with comparison of various 

approaches for utilization. In section 8.2 the application of the multi-stage model will be 

presented. This is a more sophisticated model where the focus will be on “hypothetical” results 

and steps for a complete model.  

 

8.1  Single-Period Horizon Model  
Section 8.1.1 present results from the application of the single-period model. The model use 

different risk measures/metrics to substantiate the inferences that are drawn from the results. In 

addition, an optimization based on Modern Portfolio Theory is presented and compared to the 

use of objective functions. Next, an application of the model with a more “negative” market 

scenario is presented and discussed in section 8.1.2. Finally, in section 8.1.3, further 

development of the model is discussed. 

 

8.1.1 Results 

In the following we present the decision variables output from optimizing the two objective 

functions presented in section 7.2. As the first function use expected weekly cash flow and the 

second function use expected ending bank balance, we compare tables from use of these 

respective functions. In the first presentation of tables, the model use CVaR as a risk metric. 

For the same purpose, the second presentation of tables use downside deviation.  

 

The non-stochastic input variables used in the model are:  

 

𝑘% = 35	  𝑁𝑂𝐾	  𝑝𝑒𝑟	  𝑘𝑔 (  8.1  ) 



 50 

𝑘� = 15	  000	  𝑁𝑂𝐾 weekly ( 8.2  ) 

𝑟# = 45%	  𝑦𝑒𝑎𝑟𝑙𝑦 (  8.3  ) 

𝑟� = 2%	  𝑦𝑒𝑎𝑟𝑙𝑦 (  8.4  ) 

 

The tables consist of a set of optimizations subject to different constrictions. The ‘Min Var’ in 

the table is minimization of the risk measure used in the respective table. Because CVaR is 

negative, it is actually maximized by the model when applied. ‘Max Return’ is maximization 

of the expected return of the objective functions. The optimization providing the ‘Optimal’ 

allocation of decision variables is conducted by maximizing the division of expected return on 

the risk measure for the risk measure downside deviation. Equivalently, we minimize the 

division when CVaR is applied.  

 

Table 8.1 and 8.2 show model output from use of respective objective functions and CVaR:  

Table 8.1: Allocation of spot and contracts based on Expected Weekly Cash Flow using 
CVaR(95) 

  Min Var Optimal         
Max 
Return 

Mean ret 37801 37801 38300 38500 38700 38900 38979 
CVaR (95) -8242 -8242 -13464 -14592 -16672 -20157 -21561 
Slope -4,59 -4,59 -2,84 -2,64 -2,32 -1,93 -1,81 
spot 0 % 0 % 0 % 0 % 14 % 76 % 100 % 
1m forw 0 % 0 % 0 % 45 % 0 % 0 % 0 % 
2m forw 0 % 0 % 18 % 19 % 86 % 24 % 0 % 
3m forw 0 % 0 % 51 % 19 % 0 % 0 % 0 % 
4m forw 0 % 0 % 0 % 2 % 0 % 0 % 0 % 
5m forw 0 % 0 % 0 % 0 % 0 % 0 % 0 % 
6m forw 100 % 100 % 31 % 15 % 0 % 0 % 0 % 

 

Table 8.2: Allocation of spot and contracts based on Expected Ending Bank Balance using 
CVaR(95) 

  Min Var Optimal         
Max 
Return 

Mean ret 
  
2 912 106 

  
2 912 106 

  
2 924 999  2 940 000  

  
2 954 996 

  
2 970 000  

  
2 986 938  

CVaR 
(95) -740 565  -740 565  -840 179  -1 106032  -1 325719  -1 467293  -2 024878  
Slope -3,93 -3,93 -3,48 -2,65 -2,22 -1,83 -1,47 
spot 0 % 0 % 0 % 0 % 23 % 36 % 100 % 
1m forw 0 % 0 % 0 % 0 % 0 % 0 % 0 % 
2m forw  0 % 0 % 0 % 0 % 15 % 2 % 0 % 
3m forw  0 % 0 % 13 % 58 % 17 % 62 % 0 % 
4m forw  0 % 0 % 12 % 0 % 25 % 0 % 0 % 



 

 51 

5m forw  0 % 0 % 20 % 0 % 5 % 0 % 0 % 
6m forw  100 % 100 % 55 % 42 % 15 % 0 % 0 % 

 

The columns represent steps on the efficient frontier and explicitly show allocations of sale.  

 

Table 8.3 and 8.4 show model output from use of respective objective functions and Downside 

Deviation:  
 

Table 8.3: Allocation of spot and contracts based on Expected Weekly Cash Flow using 
Downside Deviation 

  Min Var Optimal       
Max 
Return 

Mean ret 37801 37801 38100 38400 38700 38979 
DD 12115 12115 13025 14174 15343 16726 
Slope 3,12 3,12 2,93 2,71 2,52 2,33 
spot 0 % 0 % 25 % 51 % 58 % 100 % 
1m forw 0 % 0 % 0 % 0 % 0 % 0 % 
2m forw 0 % 0 % 0 % 0 % 13 % 0 % 
3m forw 0 % 0 % 0 % 0 % 16 % 0 % 
4m forw 0 % 0 % 0 % 0 % 0 % 0 % 
5m forw 0 % 0 % 0 % 0 % 0 % 0 % 
6m forw 100 % 100 % 75 % 49 % 13 % 0 % 

 

Table 8.4: Allocation of spot and contracs based on Expected Ending Bank Balance using 
Downside Deviation 

  Min Var Optimal         
Max 
Return 

Mean ret 2 912105 2 912105   2 925000 
  
2 940000   2 955000  

  
2 970000  

  
2 986938  

DD 1088772 1088772   1 150944  
  
1 239007   1 342388   1 457123   1 632591  

Slope 2,67 2,67 2,54 2,37 2,201 2,03 1,82 
spot 0 % 0 % 15 % 23 % 0 % 37 % 100 % 
1m forw 0 % 0 % 0 % 0 % 0 % 0 % 0 % 
2m forw 0 % 0 % 0 % 0 % 0 % 0 % 0 % 
3m forw 0 % 0 % 0 % 19 % 56 % 63 % 0 % 
4m forw 0 % 0 % 0 % 0 % 0 % 0 % 0 % 
5m forw 0 % 0 % 0 % 0 % 0 % 0 % 0 % 
6m forw 100 % 100 % 85 % 58 % 44 % 0 % 0 % 

 

We can clearly see from all the tables that the model mainly allocate sale to either spot or the 

six-month forwards, with some minor variations along the frontier. By aggregating the use of 

the different risk measure we can draw some inferences from the single-period model. The first 
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clear-cut inference is that that for an actor who seeks to maximize profits the portfolio he should 

choose is a portfolio consisting of 100% spot sales while an actor seeking to minimize risk 

should allocate 100% sales to forward contracts.  

 

The model seems to prefer a parsimonious allocation policy in which the allocation is centered 

around the use of the least amount of different sales distributions. There are significant 

differences in allocations of spot and contracts when using the different risk measures. 

Downside deviation seem to be most sensitive to risk and the model will therefore allocate a 

larger proportion of sales to forward contracts when downside deviation is used. The 

differences highlight the importance of choosing the right risk measure for the individual 

salmon companies. 

 

The inclusion of credit rate significantly changes the risk profile of the cash flow. The difference 

in risk profile is highlighted in the different allocations between the two objective functions. 

Where the credit rate is included, in the bank balance, the model prefers an allocation with 

significantly larger portion of sales allocated to forward contracts. The difference can be seen 

in the comparison of table 8.1 with table 8.3 and table 8.2 with table 8.4.  

 

8.1.1.1   Output from the use of MPT with semi-deviation 
An alternative to the objective functions is to optimize the allocation of decision variables with 

the ‘Mean Variance’ approach from Modern Portfolio Theory. This is based on forecasted 

returns of the spot price and forward contracts. We apply semi-deviation as a risk measure, 

which is approximately identical to the risk measure in the original theory. Results from this 

optimization follows in table 8.5.  
 

Table 8.5: Allocation of spot and contracts based on MPT using Semi-Deviation 

      
Min 
Var         Optimal     

Max 
return 

Mean 
ret 0,053% 

0,055 
% 

0,057 
% 

0,061 
% 

0,065 
% 

0,068 
% 0,071 % 0,075 % 

 
0,075 % 0,076 % 

0,076
% 

Semi-SD 0,403% 
0,402 
% 

0,402 
% 

0,403 
% 

0,408 
% 

0,417 
% 0,428 % 0,446 % 

 
0,450 % 0,463 % 

0,475 
% 

Slope 0,132 0,137 0,142 0,152 0,159 0,163 0,166 0,167 0,167 0,164 0,160 
spot 46 % 48 % 50 % 54 % 62 % 67 % 73 % 80 % 86 % 94 % 100 % 
1m forw 37 % 36 % 35 % 33 % 23 % 16 % 9 % 0 % 0 % 0 % 0 % 
2m forw 10 % 7 % 5 % 0 % 0 % 0 % 0 % 0 % 0 % 0 % 0 % 
3m forw 7 % 9 % 10 % 13 % 15 % 17 % 18 % 20 % 14 % 6 % 0 % 
4m forw 0 % 0 % 0 % 0 % 0 % 0 % 0 % 0 % 0 % 0 % 0 % 
5m forw 0 % 0 % 0 % 0 % 0 % 0 % 0 % 0 % 0 % 0 % 0 % 
6m forw 0 % 0 % 0 % 0 % 0 % 0 % 0 % 0 % 0 % 0 % 0 % 
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The output from use of Modern Portfolio Theory show a more diversified set of portfolios than 

was present in results from the use of the objective functions.  

 

Equivalently to the results from using the objective functions with CVaR and downside 

deviation, the results in table 8.5 indicate that a profit maximizing actor should place all his 

sales on the spot market. Contrary to the results provided when the objective functions are used, 

the results in table 8.5 does not indicate that the actor seeking to minimize risk should allocate 

100% in contracts.   

 

The reason for the difference between the use of the objective functions and that of MPT could 

be that MPT accounts indirectly for the risk associated with contracts of longer longevity. The 

fact that MPT accounts for the covariance between the spot price and the forward contracts of 

different length might provide an indirect appreciation for the risk associated with being 

overexposed in spot price or in one single forward contract length. The issue of overexposure 

will be explored further in later sections.  

 

An interesting feature from the MPT approach with semi-deviation is that the use of five- and 

six-month contracts is non-existent. The result from the use of MPT is consistent with reality 

in the sense that the range of the efficient portfolios is within the range that salmon producers 

operate today, which is between 20 and 60 percent allocation to contracts. 

 

8.1.2   Analysis of an Unfavorable Market Scenario 

As mentioned earlier in the paper, salmon prices are at historic heights and costs have increased 

significantly as well. However, costs have not grown at the same rate as prices. The currently 

large price margins will probably have a significant impact on the results of the single-period 

horizon model. Consequently, we will analyze a more unfavorable market scenario. We 

implement higher production cost which lead to tighter margins. Note that we use the original 

model from the first part of this chapter, with the original objective functions. Equivalently, 

risk measures are CVaR and Downside Deviation. Below are the updated non-stochastic inputs: 

 

𝑘% = 55	  𝑁𝑂𝐾	  𝑝𝑒𝑟	  𝑘𝑔 (8.5  ) 

𝑘� = 15	  000	  𝑁𝑂𝐾	  𝑤𝑒𝑒𝑘𝑙𝑦 (8.6  ) 

𝑟# = 45%	  𝑦𝑒𝑎𝑟𝑙𝑦 (8.7  ) 
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𝑟� = 2%	  𝑦𝑒𝑎𝑟𝑙𝑦 (8.8  ) 

 

Notice that production cost per kg of salmon has been adjusted to 55 NOK per kg. 

 

 

Table 8.6 and 8.7 show model output from use of objective functions and CVaR:  

Table 8.6: Margin adjusted allocation of spot and contracts based Expected Weekly Cash Flow 
using CVaR(95) 

  Min Var Optimal           
Max 
Return 

Mean ret 3 356   3 356   3 600   3 800   4 000   4 200   4 400   4 534  
CVaR (95) -38 097  -38 097  - 41 382  -44 138  -46 970  -50 202  -53 652  -56 039  
Slope -0,088 -0,088 -0,086 -0,086 -0,085 -0,083 -0,082 -0,080 

spot 0 % 0 % 0 % 0 % 0 % 0 % 69 % 100 % 
1m forw 0 % 0 % 0 % 0 % 0 % 0 % 0 % 0 % 
2m forw 0 % 0 % 0 % 0 % 0 % 94 % 31 % 0 % 
3m forw 0 % 0 % 36 % 65 % 95 % 6 % 0 % 0 % 
4m forw 0 % 0 % 0 % 0 % 0 % 0 % 0 % 0 % 
5m forw 0 % 0 % 0 % 0 % 0 % 0 % 0 % 0 % 

6m forw 100 % 100 % 64 % 35 % 5 % 0 % 0 % 0 % 
 

Table 8.7: Margin adjusted allocation of spot and contracts based on Expected Ending Bank 
Balance using CVaR(95) 

  Min Var Optimal       Max Return 

Mean ret   155 524    155 524    160 000    165 000    170 000   171 231  
CVaR (95) - 3 579 127  - 3 579 127  - 3 807 823  - 4 138 802  - 4 568 712  - 4 935 654  
Slope -0,043 -0,043 -0,042 -0,040 -0,037 -0,035 
spot 0 % 0 % 0 % 0 % 0 % 10 % 
1m forw 0 % 0 % 0 % 0 % 0 % 0 % 
2m forw 0 % 0 % 0 % 0 % 0 % 86 % 
3m forw 0 % 0 % 23 % 57 % 98 % 4 % 
4m forw 0 % 0 % 0 % 0 % 0 % 0 % 
5m forw 0 % 0 % 0 % 0 % 0 % 0 % 
6m forw 100 % 100 % 76 % 43 % 1 % 0 % 
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Table 8.8 and 8.9 show model output from use of objective functions and Downside Deviation:  

Table 8.8: Margin adjusted allocation of spot and contracts based on Expected Weekly Cash 
Flow using Downside Deviation 

  
Min 
Var Optimal           Max return 

Mean ret   3 356    3 356    3 600    3 800   4 000   4 200   4 400    4 534  
DD   12 127   12 127    13 078    13 888   14 709  15591  16 546   17 248  
Slope 0,276 0,276 0,275 0,273 0,271 0,269 0,265 0,262 

spot 0 % 0 % 0 % 0 % 0 % 33 % 71 % 100 % 
1m forw 0 % 0 % 0 % 0 % 0 % 0 % 0 % 0 % 
2m forw 0 % 0 % 7 % 0 % 0 % 0 % 6 % 0 % 
3m forw 0 % 0 % 27 % 65 % 95 % 67 % 23 % 0 % 
4m forw 0 % 0 % 0 % 0 % 0 % 0 % 0 % 0 % 
5m forw 0 % 0 % 0 % 0 % 0 % 0 % 0 % 0 % 
6m forw 100 % 100 % 66 % 35 % 5 % 0 % 0 % 0 % 

 

Table 8.9: Margin adjusted allocation of spot and contracts based on Expected Ending Bank 
Balance using Downside Deviation 

  
Min 
Variance Optimal       Max Return 

Mean ret   155 524    155 524    160 000   165 000   170 000    171 231  

DD 
  
1 138 983    1 138 983    1 207 736    1 306 511    1 434 095   1 538 240  

Slope 0,137 0,137 0,132 0,126 0,119 0,111 
spot 0 % 0 % 0 % 0 % 0 % 10 % 
1m forw 0 % 0 % 0 % 0 % 0 % 0 % 
2m forw 0 % 0 % 0 % 0 % 0 % 86 % 
3m forw 0 % 0 % 23 % 57 % 99 % 4 % 
4m forw 0 % 0 % 0 % 0 % 0 % 0 % 
5m forw 0 % 0 % 0 % 0 % 0 % 0 % 
6m forw 100 % 100 % 77 % 43 % 1 % 0 % 

 

 

With every factor except for production cost equal to the initial analysis, we find significantly 

different results compared to a ‘wide margin scenario’. The results suggest that the actor should 

increase the proportion of forward contracts as margins shrink. The shift in allocation can be 

seen especially succinct in the result from optimization with the objective function ‘Expected 
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Ending Bank Balance tables reflecting the expected ending bank balance in table 8.7 and table 

8.9 above allocate more sales through contracts compared to the allocations in table 8.6 and 

8.8.  

 

The analysis indicate that the model takes account of the increased risk associated with closer 

price margins. Specifically, the model exhibit more dynamic features when based on expected 

ending balance. It adjusts the decision variable allocations to minimize the risk of negative 

ending bank balance by penalizing negative ending balance through the credit interest rate.  

 

For salmon farming companies the usefulness of the Single-Stage Model comes through the 

application of the model as a guiding or decision tool. Adaptation to changing price margins 

makes the model reliable in a cyclical industry. The elements most significant to the dynamic 

properties are the production cost and credit interest rate. The model provides the companies 

with a policy for allocation decisions for a selected timeframe. Each individual salmon farming 

company must decide the risk measure to be used, the timeframe, provide a forecast for the 

future spot price, set credit rate, and include cost. Based on changing industry fundamentals 

and the salmon company’s needs, the model can be updated and run again to provide the salmon 

farmer with an updated allocation policy. 

 

8.1.3   Further work  

A potential shortcoming with the Single-Stage Horizon Model, as highlighted by comparison 

of MPT, is the fact that the model does not, to a satisfactory degree, capture the risk involved 

in overexposure in one single forward contract. Further research can improve the objective 

functions in the single-period model by discovering the risk factors of forward contracts of 

different lengths and their contribution to risk levels of a portfolio consisting of spot sales and 

various forward contracts. 

 

 The importance of forecasting in the model indicate that research specifically into the “correct” 

forecasting model should be conducted. In addition to the forecasting of spot prices, the 

relationship between spot prices and forward contract price should be examined. Since the 

single-period model is implemented in excel and solved by Excel Solver GRG nonlinear we are 

not guaranteed to find the global optimum, only the local optimum. The recommendation of the 

authors is to use Global Optimization theory to address the issue of local optimums. One 
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possibility would be to create a similar MATLAB scrip as the one created for the multi-stage 

stochastic recourse model discussed in this paper. 

 

8.2  Multi-Stage Model Application 

Section 8.2.1 present hypothetical results from application of the single-period model. The 

efficient frontier based risk appetite will be presented, as well as explanation of how the model 

should be used when completed. Shortcomings and further steps for the model will be presented 

in section 8.2.2. The main purpose of the results section is to illustrate how the model work in 

practice and how any practitioner would deal with application of the model when completed.  

 

8.2.1   Results 

Due to size limitation within MATLAB the maximum number of branches that could be used 

in the model when running the program was 3 branches. Lacking computational power also set 

a constraint on the scope of the model as simulation time grow exponentially with increased 

number of variables, branches and time periods. The maximum number of time periods that 

could be used was 14 and the maximum combination of branches and time periods was three 

and eight, respectively. The optimal solution was to run the model with 14 future time periods 

(t = 14) and two branches (B=2) as it proved to be an acceptable compromise between 

simulation time and quality of the output. 

 

As presented in chapter 7.4, the model optimizes the stochastic program with maximization of 

expected final wealth as the objective, with deviation from revenue target as the risk measure. 

The multi-stage model is highly dependent on the inclusion and setting of the revenue target. 

The target within the model is the variable which creates the risk variable. 
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The efficient frontier from model optimization is represented in figure 8.1: 

 

 
Figure 8.1: Efficient Frontier of output from Multi-Stage Stochastic Recourse Model 

 

The efficient frontier is created by using the risk profile of individual salmon producers and 

combining them with their expected revenue and exposure to deviation from expected revenue, 

as can be seen from equation 7.22.  

 

As the frontier represent all optimal portfolios for companies with different risk appetite, we 

can extract decision variable allocations for any given risk profile. Specifically, the points 

which represent risk profiles are found at lambda (𝜆) 0.01 through 0.99. Lambda 0.01 represent 

the most risk averse companies and conversely lambda 0.99 represent the least risk averse 

companies. The reader is now referred to Appendix B for an example of model output. Note 

that the results are hypothetical in principle and should therefore not be used for actual 

allocation decisions.  

 

In terms of methodical characteristics, it is important to emphasize that the model put a 

significant value in flexibility. Consequently, the model tends to avoid allocations with a high 
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degree of long term contracts. As it has the possibility of making new decisions in the future, it 

will often make use of that possibility by waiting. Albeit not an optimal example in terms of 

representing models in general, the output in Appendix B illustrate this point. In summary, there 

are more extensive allocation to short term contracts. Optimally, we would want to automate 

the re-running of the model several times and then aggregated the output for a better result. 

Unfortunately, this was not possible due to computing power limitations. 

 

Based on current features, the most essential information that the model would provide for 

salmon producers is the first-stage decisions. Decision variable 𝑥F)�, as exemplified in 

Appendix B, will provide allocation in terms of volume sold through the various forward 

contracts. The model would function as a rolling-horizon model where for each new time-

period the model would be re-run and update a new first-stage decision.  

 

An alternative approach would be to adjust the model to produce a long-term allocation policy 

suitable for every period in a year. This is not something that we will explore further in this 

paper. However, with a higher number of branches and time periods, it will be possible to 

implement such a policy. 

 
8.2.2   Model Completion/Development  

The most obvious shortcoming of the current model, in terms of practical utilization for a 

salmon farming company, is that it relies heavily on spot- and forwards forecast. However, an 

acquired forecast that is more sophisticated can easily replace the forecast we produced. 

Secondly, computational power is mentioned as a critical bottleneck and is linked with 

competence in advanced programming. Any company with sufficient resources can overcome 

this shortcoming, in terms of attracting skilled personnel and investing in computational 

software and hardware. Programmers can develop algorithms which make it possible to handle 

sparse matrices. Furthermore, greater resources would enable companies to incorporate a cost 

element in the model which might prove beneficial in terms of accuracy and versatility. 

Currently, the multi-stage model only includes a transaction cost variable. A fixed or variable 

production cost element, or both, would produce a more dynamic model which take shifting 

market conditions more into account. Considering that a bank balance element and a deposit- 

and credit interest rate element is included in the objective function, the framework is already 

in place for additional variables.  
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Chapter 9 

Concluding Remarks  

The prosperity in the salmon farming industry has generated an interest within many fields, 

especially among scientific communities and financial actors. Accordingly, the growth in 

scientific papers and financial services have been exponential. However, the field of price risk 

management is relatively untouched. Our literature review discovered that multiple scientific 

papers have been written dealing with hedging, but the number of papers regarding quantitative 

price risk models for salmon farming are few or zero. From chapter 4 regarding financial risk 

management, we learned that price risk is perceived to be the most important risk factor for 

salmon farmers. Consequently, the need for price risk management within the salmon forming 

industry exists. Furthermore, in talks with multiple salmon companies, we learned that 

quantitative risk models are not incorporated into risk management decision processes. To 

accommodate the potential benefit for the industry, we decided to develop two risk models. 

Both models include ARIMA-GARCH forecasting for salmon spot prices and one- through six-

month forward contracts.  

 

Essentially, the two models mainly diverge with regards to the degree of sophistication. The 

first model is a one-period horizon stochastic model, in which the optimization set a policy for 

the allocation of sales throughout the time horizon. The model has a fixed- and variable cost 

element incorporated, most importantly to take increasing production cost into account.  The 

ambition of the model is to adjust to changing market conditions, specifically changing margins. 

Results indicate that the model use contracts more actively under unfavorable market conditions 

when optimization is based on expected ending balance. The credit interest rate penalizes 

negative bank balances, and the model adjust accordingly. 

In term of application properties, the single-period model is practical, can be applied without 

profound competence and is dynamic regarding shifting margins. It can be improved with more 

advanced forecasts, separation of credit rates based on thresholds, or with incorporation of 

additional variables such as currency. However, it is basically a complete model, ready to be 

utilized.  
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The second model is a multi-stage stochastic recourse model, in which stochastic- and linear 

programing are used for the optimization of sales. The model produce output for decision 

variables representing sales allocation in the present point in time (t=0). Consequently, it must 

be applied at every decision point in time. Some additional steps are imperative for the multi-

stage model to qualify for actual risk management utilization. A key initial criterion is 

computational power to increase the number of branches and time periods. Next, the model 

should incorporate production cost to be sufficiently dynamic under shifting market conditions. 

With the framework developed in the objective function, incorporation of additional variables 

should be relatively straightforward. Equivalently to the one-period horizon model, more 

sophisticated spot- and forward price forecasts would be preferable. The multi-stage model is 

aimed at companies with resources to seek a sophisticated quantitative risk model. It will be 

natural for such companies to hold employees with sufficient financial competence to utilize 

the model.  

 

In conclusion of this paper, the key question is to which degree the solution accommodates the 

aim of the paper from the introduction: “The aim is to develop a decision tool which improve 

risk management in salmon farming companies” Although there can be made various 

improvements to both risk models, central elements are founded on thorough review of existing 

financial literature and theory, and should therefore be solid. Furthermore, the models are built 

to be valid in a long-term horizon, and easily adjustable for incorporation of new elements. 

Based on careful examination of results of the single-period model, companies should be able 

to make some useful inferences for allocation decisions. Regarding the multi-stage model, we 

hope it may contribute to an enhanced focus on quantitative models in the salmon farming 

industry, and potentially be a foundation for further work. Example of a next step could be to 

integrate the Multi-Stage Stochastic Recourse model from this paper with the comprehensive 

life-cycle models presented in Hæreid (2011) or Denstad et al. (2015). 
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Appendix A 

 
 
 
 

 
Figure 10.1: Weekly export of salmon and a 52 week Moving Average 

  
 
 
 
 

 
 

 
 
 
 

Figure 10.2: Market Threats (Bergfjord 2009 
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Table 10.1: Percieved importance of risk factors (Bergfjord, 2009). 

 
 
 
 
 

 
Figure 10.3: Risk assessment statements (Bergfjord, 2009) 

 
 
 

 

 
Figure 10.4: Correlation between spot, 3m forwards and 6m forwards 

 



 70 

Appendix B 

 

 

Below in figure 11.1 is an example-representation of the decision result of running the Multi-

Stage Stochastic Recourse Model. In table X the first four decision points are represented. There 

are 15 decision nodes which are disbursed throughout the time period of 0 through 3.  

 

 
Figure 11.1: Scenario tree with numbered time periods and decision nodes 

 

 
 
Figure 11.1 visualize to what time-period each decision node belongs. Table 11.1 represents 

the node in which the data and decision is locate, the forecasted spot price for each node, the 

projected production at each node, in addition to the decision at each node.  
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Table 11.1: Result from example run of Multi-Stage Recourse Model 

 

Node 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 
Price 63 65 68 62 63 68 67 62 64 62 65 67 68 69 67 

Prod 1700 1611 1819 1691 1752 1756 1795 1776 1562 1695 1635 1707 1824 1643 1639 

                

𝜆 One-month forward                       
0,00 0 1691 1692 0 0 1469 32 0 0 0 0 18 35 37 20 

0,01 0 1691 1752 0 0 1636 0 0 0 0 0 0 0 0 0 
0,02 0 1691 1752 0 0 1636 0 0 0 0 0 0 0 0 0 
0,03 0 1691 1752 0 0 1636 0 0 0 0 0 0 0 0 0 
0,04 0 1691 1752 0 0 1636 0 0 0 0 0 0 0 0 0 
0,48 0 1691 1752 0 0 1636 0 0 0 0 0 0 0 0 0 
0,49 0 1691 1752 0 0 1636 0 0 0 0 0 0 0 0 0 
0,50 0 1691 1752 0 0 1636 0 0 0 0 0 0 0 0 0 
0,51 0 1691 1752 0 0 1636 0 0 0 0 0 0 0 0 0 
0,52 0 1691 1752 0 0 1636 0 0 0 0 0 0 0 0 0 
0,96 0 1691 1752 0 0 1636 0 0 0 0 0 0 0 0 0 
0,97 0 1691 1752 0 0 1636 0 0 0 0 0 0 0 0 0 
0,98 0 1691 1752 0 0 1636 0 0 0 0 0 0 0 0 0 
0,99 0 1691 1752 0 0 1636 0 0 0 0 0 0 0 0 0 
1,00 0 1691 1752 0 0 1636 0 0 0 0 0 0 0 0 0 

                
𝜆 Two-month forward            

0,00 599 348 314 229 157 266 697 229 135 217 143 302 1143 264 87 
0,01 0 9 0 54 0 0 1724 0 0 16 0 33 1642 0 0 
0,02 0 9 0 54 0 0 1724 0 0 16 0 33 1642 0 0 
0,03 0 9 0 54 0 0 1724 0 0 16 0 33 1642 0 0 
0,04 0 9 0 54 0 0 1724 0 0 16 0 33 1642 0 0 
0,48 0 9 0 54 0 0 1724 0 0 16 0 33 1642 0 0 
0,49 0 9 0 54 0 0 1724 0 0 16 0 33 1642 0 0 
0,50 0 9 0 54 0 0 1724 0 0 16 0 33 1642 0 0 
0,51 0 9 0 54 0 0 1724 0 0 16 0 33 1642 0 0 
0,52 0 9 0 54 0 0 1724 0 0 16 0 33 1642 0 0 
0,96 0 9 0 54 0 0 1724 0 0 16 0 33 1642 0 0 
0,97 0 9 0 54 0 0 1724 0 0 16 0 33 1642 0 0 
0,98 0 9 0 54 0 0 1724 0 0 16 0 33 1642 0 0 
0,99 0 9 0 54 0 0 1724 0 0 16 0 33 1642 0 0 

1,00 0 9 0 54 0 0 1724 0 0 16 0 33 1642 0 0 
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𝜆 

 
 
 

 
 

Three-Month Forward            
0,00 0 0 6 0 0 16 11 0 0 0 0 22 30 42 21 
0,01 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 
0,02 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 
0,03 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 
0,04 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 
0,48 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 
0,49 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 
0,50 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 
0,51 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 
0,52 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 
0,96 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 
0,97 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 
0,98 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 
0,99 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 
1,00 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 

 

 
 
 
               

𝜆 Four-Month Forward            
0,00 0 0 6 0 0 15 11 0 0 0 0 23 27 42 22 
0,01 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 
0,02 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 
0,03 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 
0,04 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 
0,48 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 
0,49 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 
0,50 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 
0,51 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 
0,52 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 
0,96 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 
0,97 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 
0,98 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 
0,99 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 
1,00 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 
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𝜆 Five-Month Forward            

0,00 0 0 6 0 0 15 12 0 0 0 0 20 17 30 22 
0,01 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 
0,02 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 
0,03 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 
0,04 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 
0,48 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 
0,49 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 
0,50 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 
0,51 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 
0,52 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 
0,96 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 
0,97 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 
0,98 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 
0,99 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 
1,00 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 

                
𝜆 Six-Month Forward            

0,00 0 0 6 0 0 11 11 0 0 0 0 12 10 15 16 
0,01 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 
0,02 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 
0,03 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 
0,04 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 
0,48 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 
0,49 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 
0,50 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 
0,51 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 
0,52 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 
0,96 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 
0,97 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 
0,98 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 
0,99 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 
1,00 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 
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Appendix C  

 
In this appendix a visualization of the application and interface of the Single-Period Horizon 

Model is presented. In the top half of figure 12.1 we can see the decision variables, spot and 

forward allocations, and both of the objective functions along with their risk metrics. The 

bottom half of figure 12.1 a representation of the optimized Expected Weekly Cash Flow 

objective function and its accompanying efficient frontier.  

  

 
 
 

 
 
 
 
 
 
 
 

 

Figure 12.1: Visualization of Single-Stage Horizon Model interface 
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Figure 12.2 depicts an overview of the evolving bank balance of the 100 observations in each 

of the 1000 scenarios. 

 
 

 
Figure 12.3 gives us a close-up view of the ending of the bank balance evolution along with 

the resulting risk metrics   

 

Figure 12.2: Overview of bank balance evolution in a set of scenarios 

Figure 12.3: Close-up view of bank balance with risk metrics 
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Appendix D 

 
The following are the Efficient Frontiers for the tables included in chapter 8. Figure 13.1 

through 13.4 show the efficient frontier for the original wide price margins and figure 13.5 

through 13.8 show the efficient frontier for the model using the scenario with narrow price 

margins. Figure 13.9 show the efficient frontier for the mean-semi-deviation.   

 

 
Figure 13.1: Efficient Frontier: Expected Weekly Cash Flow with CVaR(95) 

 

 
Figure 13.2: Efficient Frontier: Expected Ending Bank Balance with CVaR(95) 
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Figure 13.3: Efficient Frontier: Expected Weekly Cash Flow with Downside Deviation 

 
 

 
 

 
Figure 13.4: Efficient Frontier: Expected Ending Bank Balance with Downside Deviation 
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The following figures show the efficient frontier for the narrow margin scenario. 
 

 
 

 
Figure 13.5: Efficient Frontier: Expected Weekly Cash Flow with CVaR(95) - Narrow 

margins 

 

 
Figure 13.6: Efficient Frontier: Expected Ending Bank Balance with CVaR(95) - Narrow 

margins 
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Figure 13.7: Efficient Frontier: Expected Weekly Cash Flow with Downside Deviation - 

Narrow margins 

 
 

 
 

 
Figure 13.8: Efficient Frontier: Expected Ending Bank Balance with Downside Deviation - 

Narrow margins 
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Table 32 below display the efficient frontier for the mean-semi-deviation optimization.  

 

 
Figure 13.9: Efficient Frontier: Mean-Semi-deviation 
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Appendix E 

The MATLAB SCRIPT created for the Multi-Stage Stochastic Recourse Model follows 
below:  
 
 
clear all 
clc 
  
tic 
  
BankInterest=0.02; 
CreditInterest=0.1; 
TransCosts=0.02;     % Transaction costs forward 
Target=1500000; 
  
D=53;  % Here we specify the numer of lags of the stochastic process. 
       % D has to be greater equal 1 
  
      
ForwLength=6; % Lenght of the longest forward contract to be considered 
              % important to know how many predecessors in tree 
  
U=4;  % Here we specify the subperiods from one to the next decision point 
  
  
T=ForwLength+7;  % The number of decision points 
                 % At least 1 pluss length of longest forward 
  
B=2;  % Branches in decsion points 
 
 
 
  
%------------------------------ 
% ESTIMATION BASED TREE STRUCTURE 
%------------------------------ 
  
node=1;   % This variable represents the current node 
parent=0;    % This variable represents the current parent node 
  
% Number of nodes in simulation tree 
% D-1 is the pre-decision period 
% (B-1)+(U-1)*(B^T-B)/(B-1) is the decision period 
  
VS=(D-1)+(B^T-1)/(B-1)+(U-1)*(B^T-B)/(B-1); 
  
% Number of nodes in decision based tree 
  
  
VD=(B^T-1)/(B-1); 
  
  
PS=zeros(D,VS);          % vector for the simulation-based scenario tree 
PD=zeros(ForwLength,VD); % vector for decision-based scenario tree 
IndPD=zeros(1,VS);        
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for t=1:D-1 
    node=node+1; 
    parent=node-1; 
    PS(1,node)=parent; 
end 
  
for t=1:T-1 
    for i=1:B^(t-1) 
        parent=parent+1; 
        for j=1:B 
            node=node+1; 
            PS(1,node)=parent; 
        end 
    end 
    for i=1:(U-1)*B^t 
        node=node+1; 
        parent=parent+1; 
        PS(1,node)=parent; 
    end 
end 
  
figure(1); 
treeplot(PS(1,:)); 
  
% First degree predecessors unambiguously determine higher degree 
% predecessors as follows: 
for d=2:D 
    for v=1:VS 
        if PS(1,v)==0 
            PS(d,v)=0; 
        elseif PS(d-1,PS(1,v))==0 
            PS(d,v)=0; 
        else 
            PS(d,v)=PS(d-1,PS(1,v)); 
        end 
    end 
end 
  
  
%------------------------------ 
% SIMULATION OF TREE 
%------------------------------ 
  
% Now the tree can be simulated with the desired stochastic model 
% In what following we use an AR(2) process coupled with GARCH(2,1) 
% Initial parameters AR(2): 
alpha0=0.0421; 
alpha1=0.1276; 
alpha2=-0.2807; 
SAR52=0.2485; 
  
% Initial parameters GARCH(2): 
beta0=0.1454; 
beta1=0.4780; 
beta2=0.3525; 
beta3=0.1453; 
  
% Here we create the variables that contain all simulated values 
DeltaSpot=zeros(1,VS); 
Noise=zeros(1,VS); 
Noise2=zeros(1,VS); 
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Variance=zeros(1,VS); 
SpotS=zeros(1,VS); 
SpotD=zeros(1,VD); 
  
% Previously observed/estimated variances and noise 
Variance(52)=0.2; 
Variance(53)=0.1; 
Noise(52)=0.8; 
Noise(53)=0.5; 
Noise2(52)=-1; 
Noise2(53)=1; 
  
% First difference of spot 
DeltaSpot(1)=0.4; DeltaSpot(2)=-2.9; DeltaSpot(3)=3; DeltaSpot(4)=6.33; 
DeltaSpot(5)=-1.25; DeltaSpot(6)=-3.52;DeltaSpot(7)=-5.24; 
DeltaSpot(8)=1.17; DeltaSpot(9)=-1.05; DeltaSpot(10)=3.18; DeltaSpot(11)=0; 
DeltaSpot(12)=9.26; DeltaSpot(13)=-10.22; DeltaSpot(14)=0.6299; 
DeltaSpot(15)=9.63; DeltaSpot(16)=5.58; DeltaSpot(17)=-3.24; 
DeltaSpot(18)=-2.86; DeltaSpot(19)=9.22; DeltaSpot(20)=-0.5699; 
DeltaSpot(21)=-9.73; DeltaSpot(22)=-7.69; DeltaSpot(23)=-1.88; 
DeltaSpot(24)=1.52; DeltaSpot(25)=-1.06; DeltaSpot(26)=-2.23;  
DeltaSpot(27)=0.3599; DeltaSpot(28)=-1.9; DeltaSpot(29)=-2.94; 
DeltaSpot(30)=0.92; DeltaSpot(31)=1.91; DeltaSpot(32)=5.5299; 
DeltaSpot(33)=0; DeltaSpot(34)=2.27; DeltaSpot(35)=1.61; 
DeltaSpot(36)=1.02;DeltaSpot(37)=-1.9899;DeltaSpot(38)=-1.99; 
DeltaSpot(39)=4.96; DeltaSpot(40)=-2.02; DeltaSpot(41)=1.34; 
DeltaSpot(42)=3.2599; DeltaSpot(43)=5.46; DeltaSpot(44)=4.47; 
DeltaSpot(45)=-0.62; DeltaSpot(46)=0.9399; DeltaSpot(47)=-3.86;  
DeltaSpot(48)=-1.4599; DeltaSpot(49)=-3.15; DeltaSpot(50)=-5.26; 
DeltaSpot(51)=-0.6899; DeltaSpot(52)=-0.6099; DeltaSpot(53)=-1.37; 
     
% First spot price     
SpotS(1)=60.62; SpotS(2)=61.02; SpotS(3)=58.12;SpotS(4)=61.12; 
SpotS(5)=67.45; SpotS(6)=66.20; SpotS(7)=62.68; SpotS(8)=57.44; 
SpotS(9)=58.61; SpotS(10)=57.56; SpotS(11)=60.74; SpotS(12)=60.74; 
SpotS(13)=70.00;SpotS(14)=59.78; SpotS(15)=60.41; SpotS(16)=70.04; 
SpotS(17)=75.62; SpotS(18)=72.38; SpotS(19)=69.52; SpotS(20)=78.74; 
SpotS(21)=78.17; SpotS(22)=68.44; SpotS(23)=60.75; SpotS(24)=58.87; 
SpotS(25)=60.39; SpotS(26)=59.33; SpotS(27)=57.46; SpotS(28)=55.56; 
SpotS(29)=52.62; SpotS(30)=53.54; SpotS(31)=55.45; SpotS(32)=60.98; 
SpotS(33)=60.98; SpotS(34)=63.25; SpotS(35)=64.86; SpotS(36)=65.88; 
SpotS(37)=63.89; SpotS(38)=61.90; SpotS(39)=66.86; SpotS(40)=64.84; 
SpotS(41)=66.18; SpotS(42)=69.44; SpotS(43)=74.90; SpotS(44)=79.37; 
SpotS(45)=78.75; SpotS(46)=79.69; SpotS(47)=75.83; SpotS(48)=74.37; 
SpotS(49)=71.22; SpotS(50)=65.96; SpotS(51)=65.27; SpotS(52)=64.66; 
SpotS(53)=63.29; 
  
% Here the simulation of spot prices starts: 
  
% %------------------------------- 
% % Simulation of spot price changes 
% %------------------------------- 
for v=D+1:VS 
    
Variance(v)=max(0,beta0+beta1*Variance(PS(1,v))+beta2*Variance(PS(2,v))+bet
a3*Noise(PS(1,v))); 
    Noise(v)=normrnd(0,sqrt(Variance(v))); 
    
DeltaSpot(v)=alpha0+alpha1*DeltaSpot(PS(1,v))+alpha2*DeltaSpot(PS(2,v))+SAR
52*DeltaSpot(PS(52,v))+Noise(v); 
    SpotS(v)=SpotS(PS(1,v))+DeltaSpot(v); 
end 
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% Here is the calculation of forward prices 
ForwS=zeros(ForwLength,VS); 
  
roh(1)=0.9183; 
roh(2)=0.8844; 
roh(3)=0.8535; 
roh(4)=0.8315; 
roh(5)=0.8146; 
roh(6)=0.7901; 
  
  
for i=1:ForwLength 
   for v=D+i:VS 
   
    ForwS(i,v)=SpotS(PS(4+4*i,v))+(SpotS(PS(4*i,v))-
SpotS(PS(4+4*i,v)))*roh(i); 
   
   end 
end  
 
%------------------------------ 
% DECISION BASED TREE STRUCTURE 
%------------------------------ 
  
% Reducing the tree to decision/result points 
% First we make a vector that tells which nodes are decision and result 
% nodes 
  
node=D-1; 
for t=1:T 
    for j=1:B^(t-1) 
            node=node+1; 
            IndPD(node)=1; 
    end 
    node=node+(U-1)*B^t; 
end 
  
% Now we create the decision based scenario tree. 
% First we have to create the structure of this reduced tree. 
  
% We now define the scenario tree structure. 
% first line/row in matrix are first order predecessors, second line second 
% degree predecessors etc. 
% We start with predecessors of first degree 
counter=0; 
for v=2:B:VD 
    counter=counter+1; 
    for b=0:B-1 
        PD(1,v+b)=counter; 
    end 
end 
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% First degree predecessors unambiguously determine higher degree 
% predecessors as follows: 
  
for d=2:ForwLength 
    for v=1:VD 
        if PD(d-1,v)==0 
            PD(d,v)=0; 
        else 
            PD(d,v)=PD(d-1,PD(1,v)); 
        end 
    end 
end 
  
  
figure(2); 
treeplot(PD(1,:)); 
  
  
  
% Then we have to copy the values from the large tree to the decision based  
% tree by means of IndPD. 
  
  
node=0; % We reuse the variable node 
for v=D:VS 
    if IndPD(v)==1 
        node=node+1; 
        % Here we need to copy all the info from the tree above to the 
        % reduced tree 
        SpotD(node)=SpotS(v); 
         
        for i=1:ForwLength 
           ForwD(i,node)=ForwS(i,v); 
        end 
         
    end 
end 
  
  
%---------------------------------------------------------- 
% Simulation of expected and realized production quantities 
%---------------------------------------------------------- 
  
% In the following we assume uniformly distributed variables  
QuantityD(1)=1700; 
QuantExp=1700; 
QuantVariation=400; 
  
for v=2:VD 
     
    QuantityD(v)=QuantExp+rand*QuantVariation-QuantVariation/2; 
    ExpQuantD(v)=QuantExp; 
        
end 
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% Now we plot the scenario tree 
figure(1) 
treeplot(PS(1,:)) 
[x,y] = treelayout(PS(1,:)); 
for i=1:length(x) 
     text(x(i),y(i),num2str(SpotS(i))) 
     text(x(i),y(i),num2str(IndPD(i))) 
end 
  
% Now we plot the scenario tree 
figure(2) 
treeplot(PD(1,:)) 
[x,y] = treelayout(PD(1,:)); 
for i=1:length(x) 
     text(x(i),y(i),num2str(SpotD(i))) 
end 
  
% Now we plot the scenario tree 
figure(3) 
treeplot(PD(1,:)) 
[x,y] = treelayout(PD(1,:)); 
for i=1:length(x) 
     text(x(i),y(i),num2str(QuantityD(i))) 
end 
  
  
% Now we plot the scenario tree 
figure(4) 
treeplot(PD(1,:)) 
[x,y] = treelayout(PD(1,:)); 
for i=1:length(x) 
     text(x(i),y(i),num2str(ForwD(1,i))) 
end 
  
  
% Now we plot the scenario tree 
figure(5) 
treeplot(PD(1,:)) 
[x,y] = treelayout(PD(1,:)); 
for i=1:length(x) 
     text(x(i),y(i),num2str(ForwD(2,i))) 
end 
  
  
% ---------------------------- 
% TRANSITION TO LINEAR PROGRAM 
% ---------------------------- 
  
% Here we determine the sizes of submatrices: one submatric per forward 
% length 
for i=1:ForwLength 
    BlockSizeForw(i)=(B^(T-i)-1)/(B-1); 
end 
  
ColsForw=sum(BlockSizeForw); % Number of columns 
ColsBank=(1-B^(T-1))/(1-B); 
ColsCredit=(1-B^(T-1))/(1-B); 
ColsNegDev=B^(T-1); 
  
Cols=ColsForw+ColsBank+ColsCredit+ColsNegDev; 
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L=zeros(VD,Cols); % This is the matrix for the financial constraints 
L3=zeros(VD,Cols); % This is the matrix for the Quantity constraints 
  
% -------------------------------------------- 
% 1. Financial Balance and Quantity Constraints for Forwards 
% -------------------------------------------- 
  
  
BlockStart=0; 
  
% Forward Contracts  
  
for i=1:ForwLength 
     
       
    % In all periods from t=1 to t=T-1 we have equalities 
    for t=1+i:T-1 
       for v=(B^(t-1)-1)/(B-1)+1:(B^t-1)/(B-1) 
           L(PD(i,v),BlockStart+PD(i,v))=-TransCosts; 
           L(v,BlockStart+PD(i,v))=ForwD(i,v)-SpotD(v); 
           L3(v,BlockStart+PD(i,v))=1; 
       end 
    end 
        
     
    % In the last period we have a reversed sign 
  
    for t=T 
        for v=(B^(t-1)-1)/(B-1)+1:(B^t-1)/(B-1) 
          L(PD(i,v),BlockStart+PD(i,v))=-TransCosts;   
          L(v,BlockStart+PD(i,v))=-ForwD(i,v)+SpotD(v); 
          L3(v,BlockStart+PD(i,v))=1; 
        end 
    end 
       
    BlockStart=BlockStart+BlockSizeForw(i); 
     
end 
     
  
% LIQUIDITY ACCOUNT  
  
  
L(1,BlockStart+1)=-1; 
  
for v=2:(B^(T-1)-1)/(B-1) 
    L(v,BlockStart+v)=-1; 
    L(v,BlockStart+PD(1,v))=(1+BankInterest); 
end 
  
  
for v=(B^(T-1)-1)/(B-1)+1:VD 
    L(v,BlockStart+PD(1,v))=-(1+BankInterest); 
end 
  
BlockStart=BlockStart+ColsBank; % BlockStart refers to end of Last Block 
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% CREDIT ACCOUNT   
  
L(1,BlockStart+1)=1; 
  
for v=2:(B^(T-1)-1)/(B-1) 
    L(v,BlockStart+v)=1; 
    L(v,BlockStart+PD(1,v))=-(1+CreditInterest); 
end 
  
  
for v=(B^(T-1)-1)/(B-1)+1:VD 
    L(v,BlockStart+PD(1,v))=(1+CreditInterest); 
end 
  
BlockStart=BlockStart+ColsCredit; % BlockStart refers to end of previous 
block 
  
  
% DEVIATIONS   
  
counter=0; 
for v=(B^(T-1)-1)/(B-1)+1:VD 
    counter=counter+1; 
    L(v,BlockStart+counter)=-1; 
end 
  
BlockStart=BlockStart+ColsNegDev; 
  
  
% We will here split up the matrix L into L1 (equality constraints) and  
% L2 (inequalities) 
  
L1=L(1:(B^(T-1)-1)/(B-1),:);   % Equality Constraints 
L2=L((B^(T-1)-1)/(B-1)+1:VD,:); % Inequality Constraints 
  
  
% ------------------- 
% GENERATION OF R.H.S 
% ------------------- 
  
b=zeros(VD,1); 
  
b(1)=0; 
  
% All periods from t=2 to T-1 
  
for t=2:T-1 
    for v=(B^(t-1)-1)/(B-1)+1:(B^t-1)/(B-1) 
        b(v)=-SpotD(v)*QuantityD(v); 
    end 
end 
        
% In the last period we have a reversed sign 
  
for t=T 
    for v=(B^(t-1)-1)/(B-1)+1:(B^t-1)/(B-1) 
        b(v)=SpotD(v)*QuantityD(v)-Target; 
    end 
end 



 

 89 

  
  
% Split b like L 
  
b1=b(1:(B^(T-1)-1)/(B-1));   % Equality Constraints 
b2=b((B^(T-1)-1)/(B-1)+1:VD); % Inequality Constraints 
  
  
% -------------------- 
% RHS of Quantity Constraints 
%--------------------- 
  
b3=zeros(VD,1); 
  
for v=2:VD 
    b3(v)=QuantityD(v-1); 
end 
  
% Now we add b3 to b2 and L3 to L2 
  
b2=[b2 
    b3]; 
  
L2=[L2 
    L3]; 
  
  
  
  
count99=0 
counter1000=0; 
for lambda = 0:0.01:1 
  
counter1000=counter1000+1; 
  
% ---------------------------- 
% OBJECTIVE FUNCTION 
% ---------------------------- 
  
c=zeros(1,Cols); 
cExp=zeros(1,Cols); 
cRisk=zeros(1,Cols); 
Prob=1/(B^(T-1)); 
% ub=zeros(1,Cols); 
  
% --------------------------- 
% OBJECTIVE: FORWARDS 
% ---------------------------- 
  
BlockStart=0; 
  
for i=1:ForwLength 
     
    % In the last period we have a reversed sign 
  
    for t=T 
        for v=(B^(t-1)-1)/(B-1)+1:(B^t-1)/(B-1) 
          c(BlockStart+PD(i,v))=c(BlockStart+PD(i,v))-
Prob*lambda*(ForwD(i,v)-SpotD(v)); 



 90 

          
cExp(BlockStart+PD(i,v))=cExp(BlockStart+PD(i,v))+Prob*(ForwD(i,v)-
SpotD(v)); 
        end 
    end 
       
    BlockStart=BlockStart+BlockSizeForw(i); 
     
end 
  
  
% BlockStart=ColsForw; 
  
% --------------------------- 
% OBJECTIVE: LIQUIDITY ACCOUNT 
% ---------------------------- 
  
for v=(B^(T-1)-1)/(B-1)+1:VD 
    c(BlockStart+PD(1,v))=c(BlockStart+PD(1,v))-
Prob*lambda*(1+BankInterest); 
    
cExp(BlockStart+PD(1,v))=cExp(BlockStart+PD(1,v))+Prob*(1+BankInterest); 
end 
  
BlockStart=BlockStart+ColsBank; 
  
  
% ------------------------ 
% OBJECTIVE: CREDIT ACCOUNT 
% ------------------------ 
  
for v=(B^(T-1)-1)/(B-1)+1:VD 
    
c(BlockStart+PD(1,v))=c(BlockStart+PD(1,v))+Prob*lambda*(1+CreditInterest); 
    cExp(BlockStart+PD(1,v))=cExp(BlockStart+PD(1,v))-
Prob*(1+CreditInterest);     
end 
  
BlockStart=BlockStart+ColsCredit; 
  
% ------------------------ 
% OBJECTIVE: DEVIATIONS 
% ------------------------ 
  
for counter=1:B^(T-1) 
    c(BlockStart+counter)=Prob*(1-lambda); 
    cRisk(BlockStart+counter)=Prob; 
end 
  
BlockStart=BlockStart+ColsNegDev; 
  
  
  
toc 
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% -------------------- 
% SOLVE LINEAR PROGRAM 
% -------------------- 
  
  
% Now we solve the linear programming problem. 
  
lb=c*0; % Note that all decision variables are non-negative. 
  
  
[x,fval,exitflag,output]=linprog(c,L2,b2,L1,b1,lb); 
  
toc 
 
  
WholeMatrix=[x'    0 
             c     c*x 
             cExp  cExp*x 
             cRisk cRisk*x 
             L1    b1 
             L2    b2]; 
          
  
Decisions(counter1000,:)=x;          
Risk(counter1000)=cRisk*x;        
Wealth(counter1000)=cExp*x; 
count99 = count99+1          
end 
          
 
 
 

 


