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Abstract

There has been a growing interest in the study of biological flows in biome-
chanical systems in recent years. Such flows mostly appear in domains with
complex geometries, flexible moving boundaries and usually involve fluid-
structure interaction (FSI). The simulation of such problems is computation-
ally challenging. The demand for simulating more complex flow problems
more efficiently has motivated the development of the more sophisticated
and more accurate numerical models. This dissertation presents a frame-
work for simulating the fluid dynamical behaviour of viscous compressible
flows around moving bodies and complex geometries as well as FSI.

The first part of the dissertation considers fluid-structure interaction in
a simplified 2D model of the upper airways in order to investigate the flow-
induced oscillation of the soft palate in the pharynx. This study is related
to disorders in the human upper airways, in particular those associated with
snoring and obstructive sleep apnoea syndrome (OSAS). A simplified 2D
model has been developed to simulate the interaction between the soft palate
and compressible viscous flow. The Arbitrary Lagrangian–Eulerian (ALE)
formulation is employed to handle the fluid flow in Eulerian description using
moving fluid grids and the plate structure in a Lagrangian formulation using
stationary structure grids. The coupling between the fluid and the structure
is handled by a partitioned approach where forces and deformations are ex-
changed between the flow and the deformable structure in each time step. To
enable the solver to be applicable to larger simulations and to accommodate
geometric flexibility with high order summation-by-parts (SBP) difference
operators, a multi-block approach is employed to decompose the computa-
tional domain and to parallelize the solver. The idealized soft palate is first
modeled by the Euler–Bernoulli thin beam theory and then by an inexten-
sible thin beam model. Effects of kinematic as well as structural properties
are examined. It has been illustrated that the structure oscillation induces
sound generation.

The second part of the dissertation is devoted to devise an efficient and
versatile immersed boundary method (IBM) for simulating compressible
viscous flows with complex and moving boundaries employing high order
summation-by-parts difference operators. The proposed Cartesian grid based
immersed boundary method builds on the ghost point approach in which the
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Abstract

solid wall boundary conditions are applied as sharp interface conditions. The
interpolation of the flow variables at image points and the solid wall bound-
ary conditions are used to determine the flow variables on three layers of
ghost points within the solid body in order to introduce the presence of the
body interface in the flow computation and to maintain the overall high or-
der of accuracy of the flow solver. Two different reconstruction procedures,
bilinear interpolation and weighted least squares method, are implemented
to obtain the values at the ghost points. A robust high order immersed
boundary method is achieved by using a hybrid approach where the lay-
ers of ghost points are treated differently. The first layer of ghost points is
treated by using a third order polynomial combined with the weighted least
squares method and the second and third layers of ghost points are treated
by finding the image points of the corresponding ghost points and using
bilinear interpolation to find the values at the image points. After demon-
strating the accuracy of the present IBM for low Mach number flow around
a circular cylinder, it is applied to simulate flow in the upper airways with
the cross-section of the complex geometry of a specific OSAS patient. The
IBM solver has been further verified and validated for moving boundaries
by applying it to a transversely oscillating cylinder in free-stream flow and
an in-line oscillating cylinder in an initially quiescent fluid. Sound waves
generated by the in-line oscillation of the cylinder exhibit both quadrupole
and monopole types.
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CHAPTER1
Introduction

This chapter provides a general introduction of this thesis. The
outline of the thesis including motivations and contributions is
also presented.

1.1 Fluid-Structure Interaction

Various processes in engineering and nature are associated with coupled
problems. Many examples of coupled systems can be found in practice. One
of the most common examples is fluid-structure interaction (FSI) where mo-
tions of structural components with the surrounding fluid are considered. In
order to understand the fluid forces on the structure and similarly the struc-
tural responses on the fluid, a detailed study for the interaction between
the fluid and structure is required by solving their coupled behavior. Fluid-
structure interaction coupling is present in many engineering applications
and almost all natural phenomena. Typical examples of this interaction in-
clude engineering systems such as flow interaction with flexible pipes [86],
engines, pumps, compressors, turbines, ventilation systems, aeroelasticity
phenomena like aircraft wing flutter, flutter of flags, wind-induced vibration
of structures and hydroelasticity phenomena such as interaction of ocean and
sea currents with off-shore platforms [100, 107]. Furthermore, fluid-structure
interaction is the keystone in motion of many biological species such as in-
sects, birds, fish, cells and bacteria [16, 119].

With growing interest in the multidisciplinary field of biomedical and
biomechanical engineering, a vast amount of research has been conducted
to comprehend fluid-structure interaction in physiological systems in the
human body [64, 65]. One of the main examples of FSI in biomechanical
systems is the dynamics of the upper airways where the interaction between
inspiratory and expiratory airflow with soft tissues may lead to complex flow
regimes in the upper airways. Understanding biological flows in biomechan-
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1. Introduction

ical systems requires FSI models to inspect the cases of complex geometry,
large structural deformation and complete closure of the fluid domain in the
system.

The interaction between the fluid flow and the structure occurs at the
interface where forces act on the structural boundary because of the fluid
pressure and viscous stress [100]. The structure is deformed by these forces
and correspondingly, the fluid domain changes. As a result, the fluid domain
changes lead to changes in the flow field. That is, the solution to each part
has to be taken into account as a boundary condition on the interface for
the other part [100]. As mentioned, the interface deformation determines
the fluid flow behaviour and at the same time, the deformation and the
displacement of the structure are complied by the fluid forces, owing to this
dependency, the interaction between the fluid and the structure cannot be
considered as a linear problem. Thus, the whole coupled problem in most of
the cases is unlikely to be solved analytically, hence, it leads to solving FSI
problem numerically. Solving the coupled fluid-structure interaction problem
numerically clearly consists in the numerical solutions to the fluid flow and
the structural components involved in the system [100, 107].

The computational models are based on the equations which govern the
physics of the problem. Fluid motion is commonly described in a Eulerian
(spatial) formulation where the governing equations are written as the rate
of change of mass, momentum and energy in a control volume. Conversely
to fluid dynamics, the Lagrangian (material) formulation is employed for
the description of the governing equations of structural dynamics [22]. In
the Lagrangian formulation, the displacement or deformation of the solid is
followed in time relative to its initial position. The discretized solid-fluid in-
terface is changing in time and thereby causes a moving and deforming mesh
of the changing fluid domain with a grid velocity equal to the material ve-
locity at the fluid-solid interface [22]. Computational fluid dynamics (CFD)
and computational structural dynamics (CSD) have developed many effi-
cient approaches for solving various fluid and structure dynamics problems
numerically.

In some applications, the structural response to the fluid can be ignored
and only the dynamics of the fluid flow is sufficient to be considered. In
some other applications, the fluid forces are insignificant compared to other
forces exerted externally. Therefore, the structural problem may be solved
without taking into account the fluid flow response. Nevertheless, in many
applications the fluid forces and the structural deformations cannot be solved
independently and special approaches for the coupled solution of fluid and
structure dynamics problems are needed [100, 107]. Although many efficient
and sophisticated solvers have been developed for solving both fluid and
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structural problems, improving and developing solvers for modeling different
FSI problems are still challenges and goals to achieve.

1.2 Classification of Fluid-Structure Interaction
Approaches

In order to solve FSI problems, information has to be communicated between
the flow and structural fields. The approaches for solving fluid-structure in-
teraction problems can be broadly classified into partitioned and monolithic
approaches in terms of the underlying algorithmic approach and solution
strategy for information exchange [46].

1.2.1 Partitioned Approach

In the partitioned interaction approach [46, 85], the coupled problem is parti-
tioned into fluid and structural parts and each part is solved separately with
its own corresponding numerical approaches. The communication between
fluid and structural solvers is performed through interface conditions.

The major advantage of this coupling approach is that it permits the
use of existing developed, efficient and validated solvers for each of the fluid
and structure fields, and allows to treat the solution of each sub-problem
as a black box. Therefore, complexity of the fluid flow and arbitrary defor-
mation of the structure can properly be modeled based on the versatility
of the two solvers. Since the validation process is only constrained to the
interface communication, the only programming effort is to develop suitable
procedures for interaction between the solvers at the interface or interaction
surface [70, 107].

The main drawback of this approach comes from the explicit nature of
this coupling algorithm which may cause convergence problems. Since the
interface location and related variables are unknown and change in time, the
tracking and updating of the interface may become complicated and cause
divergence errors. Owning to these issues, the stability of the partitioned
approach is usually restricted by a maximum allowable time step. Therefore,
there is a limitation on the range of time steps that can be chosen even
though implicit time integration schemes are employed by the two solvers
individually [70, 107].

The partitioned method can further be categorized into weakly (loosely)
and strongly coupled algorithms [15, 46]. In both of these approaches, the
fluid and structure are solved independently. In the loose coupling method,
the fluid flow and structural variables are not updated iteratively to obtain
a converged solution for the interface at each time step. Conversely, sub-
iterations at each time step will be used in strong coupling to enforce the

3



1. Introduction

convergence of the fluid flow variables and the deformation and displacement
of the structure.

1.2.2 Monolithic Approach

In the monolithic approach [51, 98, 121], conversely to the partitioned cou-
pling strategy, both fluid and structure of the FSI problem are solved simul-
taneously in the same mathematical framework. For this purpose, a unified
formulation and algorithm needs to be developed to simulate the whole
fluid and structure domain. One unified system of equations resulting from
discretising the governing fluid and structural equations and taking into ac-
count the boundary conditions at the interface needs to be solved. Therefore,
a monolithic algorithm is used to solve the whole FSI problem [51, 98].

The monolithic algorithms are more difficult to develop and to pro-
gram, contrary to the partitioned coupling approach. Solving the whole
fluid-structure interaction problem simultaneously typically requires to re-
formulate the systems of equations and affects the spectrum of choices for
computational approaches that can be employed [70, 107]. Therefore, these
issues influence the ability and capability of a specific monolithic algorithm
in handling different coupling problems [129].

Nevertheless, the significant advantage of this approach is that there is
no need for handling coupling between different solvers and dealing with its
associated interface communication difficulties which may cause convergence
problems.

1.3 Computational Approaches

Typically, there are some solid boundaries in CFD problems, e.g. walls in
external and internal flows, and certainly in FSI problems. The mathemat-
ical modeling techniques and numerical methods for those flows and FSI
problems can be broadly categorized based on the nature of the underlying
meshes into body-conforming grid and non-conforming grid approaches, as
shown schematically in Figure 1.1.

1.3.1 Body-Conforming Grid Methods

In body-conforming grid methods, the interface boundary coincides with
the physical boundary of the solid body (cf. Figure 1.1(a)). The flow vari-
ables at the interface are parts of the solution, and grids need to conform
to the interface. In the case of a FSI problem, since the structure defor-
mation changes the interface location and velocity for the solid body, the
fluid domain should move or deform to capture the new location or shape
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(a) (b)

Figure 1.1: (a) Schematic of a body in a fluid flow with body conforming mesh.
(b) Schematic of a body in a fluid flow with body non-conforming mesh. Ωs is the
solid body, Ωf is the fluid domain and Γs is the solid boundary. The outer rectan-
gular frames are not representing the outer boundaries of the whole computational
domains, but of the extracted parts.

of the structure and to track the interface. Advancing the solution in time,
updating the mesh points in the fluid flow domain along with solid bound-
ary movement or deformation is unavoidable in this approach. Since all the
paths of the material (structure) points, including the moving boundary can
be followed at all times, the treatment of the moving boundaries is rather
straightforward from the Lagrangian viewpoint. However, in the fluid do-
main with the Eulerian viewpoint, the treatment of the moving boundary
is not trivial and special methods are required to match the Eulerian de-
scription of the fluid motion with the Lagrangian description of the moving
boundary. The main feature of body-conforming grid methods in FSI is that
they operate on dynamic grids. The most commonly used approach is the
Arbitrary Lagrangian-Eulerian (ALE) method [21]. ALE methods are prone
to be constrained when it comes to problems involving bodies with complex
geometry or undergoing large deformations.

1.3.2 Non-Conforming Grid Methods

In non-conforming grid methods, the governing equations are solved on a
fixed background mesh (primarily Cartesian grids) and the presence of the
solid body or the effect of the moving boundaries are taken into account
(cf. Figure 1.1(b)). The most notable method among non-conforming grid
methods is the immersed boundary method (IBM). In this approach, the
interface location and the boundary conditions are imposed as constraints
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on the governing equations or on nodes or cells near the interface, and the
fluid and structure equations can be solved independently on their own cor-
responding grids without any re-meshing procedure [10]. The presence and
the effect of the boundary can be treated as a diffused interface through a
body-forcing term in the Navier-Stokes equations, e.g. Peskin’s method [87],
or as a sharp interface by proper modification of the solution variables in
the vicinity of the immersed boundary [75].

Since in body-conforming grid methods the immersed boundaries coin-
cide with grid lines, the boundary conditions are directly applied to the fluid
flow governing equations. On the other hand, in non-conforming grid meth-
ods, the imposition of the boundary conditions needs to happen at the points
which are not the physical boundary, which it is the primary drawback of
this approach [75].

Since the IB methods employ Cartesian grids, they can easily reduce the
number of floating point operations per grid point or grid cell. Additionally,
they make the grid generation effortless which can be a cumbersome task
for body-conforming grid methods for complex geometries. Therefore, the
ease of handling complex geometries can be noted as a significant advantage
of non-conforming grid methods compared to the body-conforming grid ap-
proach. Particularly, non-body conforming grid methods can handle moving
boundaries with large deformation of the structure without requiring a so-
phisticated re-meshing strategy at each time step. Consequently, the use
of non-conforming grid methods like IBM will influence the computational
cost, simplicity and accuracy [75].

1.4 Application of Fluid-Structure Interaction

There are many highly elastic tissues in the human body. These tissues play
a significant role in the functionality and physiology of the human body
when the forces from internal fluid flow deform the tissues. Moreover, the
deformation and displacement of the tissues in return affect the fluid flows
inside the human body. The interaction between the fluid flow and the soft
tissues involved in the human upper airways is an interesting biomechanical
and biomedical application which can be studied. Disorders of the upper
airways are often associated with respiratory syndromes. Among these, ob-
structive sleep apnea syndrome (OSAS) and snoring are closely related to
the flow conditions in the upper airways.

1.4.1 Anatomy of Upper Airways

The respiratory system not only exchanges oxygen and carbon dioxide into
and from the blood, but is also involved in sound production and transferring
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fluids or solids into the digestive system. The respiratory system can be
broadly divided into the upper and lower airways [103]. The upper airways
which are considered in this study extends from the nostrils and the mouth
to the larynx.

Figure 1.2 presents an overview of the human upper airways. The in-
haled air enters from the nostrils and mouth opening and passes through
the nasal and oral cavities into the lungs. The nasal cavity, which is the
space between the floor of the skull and the roof of the mouth, is divided
by the nasal septum into two halves. Airflow enters in each half from the
outside through one of the two nose openings, known as the nostrils or the
external nares. The two openings from the nasal cavity into the pharynx
are the internal nares [110]. The first section of the mouth, known as the
oral cavity, is the beginning of the digestive system and plays a significant
role in communication. This space is bordered to the front and to the sides
by the two alveolar arches, which contain the teeth and to the roof of the
mouth. Toward the back it is bordered by the isthmus of the fauces which
is a part of the oropharynx directly behind the oral cavity. The nasal and
oral cavities are separated by the roof of the mouth known as the palate.
The bony, rigid part of the palate located towards the front of the mouth is
the hard palate. Directly attached to the hard palate is the soft palate, the
fleshy, deformable part. It tapers down to a hanging, flapping piece of tissue
called the uvula, the short tail end of the soft palate [110].

The airflow passing through nasal and oral cavities goes into the pharynx
which is a fibromuscular tube connecting the nasal and oral cavities to the
lower respiratory tract and the esophagus which is the digestive pathway.
The pharynx can be divided into three parts namely the nasopharynx, the
oropharynx, and the laryngopharynx [3]. The nasopharynx, which is the
upper part of the pharynx, is the space between the internal nares and the
soft palate and lies above the oral cavity. The oropharynx lying behind the
oral cavity, extends from the soft palate to the level of the hyoid bone.
The hyoid bone is located near the upper part of the epiglottis and is a
small bone in the neck. The laryngopharynx which is the caudal 1 part
of the pharynx lies below the hyoid bone. It lies inferior to the epiglottis
and extends to the location where this common pathway separates into the
larynx and esophagus [110]. The larynx is known as the voice box because
the vocal sound is produced in this part. It consists of the essential parts for
phonation such as the vocal folds, vestibular folds, and glottis. It is also the
pathway conveying air from the pharynx to the lungs. The larynx extends
from the upper border of the epiglottis to the trachea [28].

1Directed toward or situated in or near the tail or posterior part of the body.
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Figure 1.2: The human upper airways and its anatomical features in the sagittal
plane [42].

1.4.2 Obstructive Sleep Apnea Syndrome

The obstructive sleep apnea syndrome (OSAS) is a disorder identified by re-
curring incidents of partial and complete pharyngeal airways collapse during
sleep. These incidents can be classified into two groups, namely hypopnea
when airflow is reduced by at least 30% and lasting at least 10 seconds
and apnea when the pharyngeal airways are fully blocked and no airflow is
passing [3, 25, 68].

OSAS is clinically recognized by the symptoms of daytime sleepiness,
witnessed breathing interruptions, heavy snoring or awakenings because of
gasping or choking in the presence of at least 5 obstructive respiratory events
per hour of sleep [25].

The average frequencies of apnea or hypopnea events per hour gives the
apnea-hypopnea Index (AHI) or Respiratory Disturbance Index (RDI) re-
flecting the severity of OSAS in individuals. The diagnosis of the severity of
OSAS can be assessed by using these indices through a polysomnography,
or sleep study, which measures the number of apneas and hypopneas during
sleep. The definition of these indices have varied over time [25]. However,
individuals with AHI 6 5, 5 6 AHI 6 15 and 15 6 AHI 6 30 have been
classified as normal, mild and moderate OSAS, respectively. An AHI > 30
is considered as severe OSAS [133].
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Although the estimates and definitions often vary when dealing with
prevalence, OSAS affects 2 − 4% of the adult population [133], 9 − 24% of
the middle-age adults population and 1−4% of children [133, 134] according
to the reports. Since the diagnosis of OSAS has risen basically because of
an increased awareness of this condition and an increased obesity among
individuals, estimates show an increasing trend. Primarily due to anatomic
differences between males and females particularly in the pharyngeal airway,
men are more prone to suffer from OSAS [72]. In Norway, the prevalence of
this syndrome is highlighted in a report by the Akershus Sleep Apnea Project
[80], indicating that in the adult population (16302 individuals included)
16% having sleep apnea with severity of AHI > 5 and 8% having OSAS
with AHI > 15.

1.4.2.1 Risk Factors for OSAS

There are several risk factors that could predispose an individual to OSAS.
The risk factors include aging, male gender, obesity, familial genetics, smok-
ing, alcohol consumption and craniofacial abnormalities [63]. Furthermore,
there is increasing evidence that OSAS is an independent risk factor for an
adverse cardiometabolic risk 2[73]. However, obesity is generally known as
a primary factor for OSAS. About two-third of the patients with OSAS are
more than 20% above their ideal body weight [73]. Being closely related
to obesity, OSAS is a growing concern as obesity has become common and
more severe.

1.4.3 Snoring

Snoring is sound generated by vibration of single or multiple soft tissues in
the upper airways during sleep. According to estimates, 20-40% of the gen-
eral population is affected by snoring which has become a prevalent disorder
[133]. A population study among Australian men shows that up to 81% of
the middle-aged men snore for more than 10% of their sleep time [8].

Aside from an unwanted noise during sleep, snoring could be a symptom
of serious sleep disorders. Even though snoring does not necessarily mean
that one is suffering from OSAS, estimates show that 10% of the snorers are
at risk of OSAS [9] and OSAS sufferers typically have loud snoring [24].

Although the clinical implication of snoring is not completely clear, sev-
eral types of snoring have been identified similar to OSAS. Palatal snoring
happens with the majority of snorers when the soft palate is the main vi-
brating object. This type of snoring is classified by the mouth being either
closed or open. When the mouth is closed, the inspiratory air from the nares

2Cardiometabolic risk refers to the chances of having diabetes, heart disease or stroke.
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triggers the soft palate to oscillate and to temporarily obstruct the airway
in the nasopharynx. In the case when the airflow travels through both up-
per and lower sides of the soft palate (both mouth and nose are open), the
vibration of the soft palate between the tongue and the posterior pharyn-
geal wall can result in intermittent obstruction of the airways. Snoring may
also come from a collapse of the tongue or the pharyngeal wall itself which
is typically referred to as pharyngeal or non-palatal snoring. However, all
these cases encompass the excited vibration of the flexible parts of the up-
per airways leading to a considerable noise generation. Palatal snoring is
commonly loud with low frequencies compared to snoring generated from
vibration of the tongue or the pharyngeal wall [1, 84, 95]. The louder noise
and lower frequency of the soft palate oscillation compared to the other
tissues is primarily caused by its lower size and its lower stiffness [49].

The nasal cavity and its coupling with other parts in the upper airways
plays a significant role in snoring and sleep disorders. Since the obstructions
during sleep increase the air resistance, the nasal airflow is altered and may
trigger OSAS. Nevertheless, the correlation between nasal constrictions and
the progress of sleep disorders has not been fully understood [90, 96].

1.4.4 Treatment of OSAS and Snoring

Nowadays, there are several OSAS and snoring treatment possibilities with
varying invasiveness and effectiveness. Non-invasive treatments, particularly
for patients with less severe cases, is the first line treatment option. This
involves modifying their lifestyle, e.g., getting more exercise, controlling
weight, cessation of smoking and sedatives prior to sleep [2].

The continuous positive airway pressure (CPAP) device is the standard
tool for OSAS treatment that could be offered to all OSAS patients for being
used during sleep [31]. The CPAP device placed next to the patient’s bed
continuously pumps air under pressure through a sealed nose- or face mask
into the upper airways and lungs. Although it is an effective treatment in
most cases, some patients cannot tolerate the use of this machine every night
[137].

In more severe cases when non-invasive treatments have failed to pro-
vide a satisfactory effect, the only effective way to treat the condition is
surgery. The nasal surgery, such as septoplasty or turbinectomy, aims to in-
crease the airway volume in order to reduce the likelihood of airway collapse
[105]. OSAS patients who cannot tolerate a CPAP device and reject surgery
may consider oral appliances to treat their conditions. An oral appliances
tries to displace the mandible forwards in order to prevent the tongue from
collapsing backwards and to increase the airway volume [66].
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1.5 Motivation and Objectives

The present study is motivated by the intention to further understand the
flow dynamics in the human upper airways in order to explore computational
methods as a tool in enhancing diagnosis and treatment for OSAS and snor-
ing. Since clinical flow measurements in the upper airways are difficult to
perform on patients, flow experiments have frequently been performed on
mechanical models of the human airways. The vision is to establish compu-
tational models for the upper airways.

Considerable challenges are associated with setting up patient specific
CFD models and validating FSI models. In addition, the computational costs
in terms of computational time are significant in modeling the coupling be-
tween fluid flow and structural responses in the upper airways. Generally
in computational modeling, mesh generation is an expensive process. Par-
ticularly, when the surface of a structure like the soft palate is fitted by
body-conforming grids and experiences large deformations, extensive com-
putations are required to frequently update the mesh. The main goals of the
present dissertation have been detailed below.

� To develop a multi-block approach to decompose the computational do-
main and implement Message Passing Interface (MPI) into the existing
fluid solver in our research group to increase the geometric flexibility
for OSAS modeling and to take advantage of parallelization.

� To extend a high order finite difference method based on the ALE
approach to FSI of a simplified model of the soft palate in the pharynx.

� To develop an immersed boundary method (IBM) for the compressible
Navier–Stokes equations with complex and moving boundaries, partic-
ularly in the pharynx, employing high order finite difference operators
in order to avoid the computational cost of the moving mesh and to
improve the poor grid quality of body-fitted grids compressed or dis-
torted by deformable structures. The motivating goal is to allow the
simulation of computationally challenging moving boundary problems
with no requirements of the user to interact with mesh construction or
movement.

1.6 Outline and Contributions of the Thesis

The thesis is organized as follows. In Chapter 2, the compressible Navier–
Stokes equations in perturbation form are presented. Since general geome-
tries are treated by coordinate transformation, the formulation of the conser-
vative compressible Navier–Stokes equations in transformed coordinates is
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discussed here. A brief review of the strictly stable high order finite difference
method used in this study is presented. Low pass filters and non-reflecting
characteristic boundary conditions are outlined in this chapter. The imple-
mentation of the multi-block approach for our high order finite difference
operators is explained.

In Chapter 3, the Euler–Bernoulli beam theory and the derivation of the
equation of motion are discussed. Furthermore, we devise the modal analysis
of the Euler-Bernoulli beam equation with different boundary conditions at
the leading and trailing edges. The extension of the 1D structure model to a
2D inextensible plate model is presented. Numerical methods are presented
to discretize the structural models.

In Chapter 4, a brief overview on the arbitrary Lagrangian–Eulerian
(ALE) method is provided. In order to formulate the governing fluid flow
equations for FSI, a time-dependent coordinate transformation is discussed
here. The formulation of the ALE approach for the compressible Navier–
Stokes equations in perturbation form is presented. The multi-block ap-
proach is shown to provide geometric flexibility for a moving mesh with the
simplified model.

In Chapter 5, a general overview on the state-of-the-art immersed bound-
ary methods is provided. The boundary treatment with IBM is formulated
here. Two different reconstruction procedures are briefly discussed. Then,
we show the implementation of the IBM for the high order finite difference
operators used in this study. At the end, the treatment of the immersed
boundary in the case of moving boundaries is discussed.

In Chapter 6, we give a brief overview on the papers listed in the thesis
and present some selected results of our studies.

Chapter 7 summarizes the major conclusions and provides some sugges-
tions for future work.

The following publications form the basis of this dissertation and are
presented in the Appendix.

Journal Papers

� Paper I [53]: Khalili. M., Larsson, M., Müller, B., 2016. Interaction
between a simplified soft palate and compressible viscous flow. Journal
of Fluids and Structures 67, 85–105.

� Paper IV [55]: Khalili. M. E., Larsson, M., Müller, B., 2017. High order
immersed boundary method for compressible viscous flows based on
summation-by-parts operators. (Submitted for journal publication).
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� Paper V [57]: Khalili. M. E., Larsson, M., Müller, B., 2017. Immersed
boundary method for viscous compressible flows around moving bodies.
(Submitted for journal publication).

Conference Papers

� Paper II [54]: Khalili. M. E., Larsson, M., Müller, B., 2017. Compu-
tational study of flow-induced oscillation of a simplified soft palate.
Coupled Problems in Science and Engineering VII. CIMNE, pp. 582–
593.

� Paper III [56]: Khalili. M. E., Larsson, M., Müller, B., 2017. Immersed
boundary method for the compressible Navier-Stokes equations using
high order summation-by-parts difference operators; 12th International
Conference on Computational Fluid Dynamics In the Oil & Gas, Met-
allurgical and Process Industries. SINTEF, pp. 233–242.
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CHAPTER2
Mathematical Model of Fluid Flow

In this chapter, mathematical formulations of the fluid flow used
in the simulations are presented in detail. Numerical methods em-
ployed to discretize the governing equations in space and time are
discussed.

2.1 Compressible Navier–Stokes Equations

The compressible Navier–Stokes equations can be expressed in conservation
form as

∂U

∂t
+ ∇ · Fc(U) = ∇ · Fv(U,∇U), (2.1)

whereU, the vector of conservative variables, Fc(U), the inviscid flux tensor
and Fv(U,∇U), the viscous flux tensor are defined as

U =




ρ
ρu
ρE


 ,

Fc(U) =




ρu
ρuu
ρHu


+ p




0
I
0


 ,

Fv(U,∇U) =




0
τ

τ · u + κ∇T


 ,

where ρ, ρu, ρE denote density, momentum density and total energy density,
respectively. I stands for the unit tensor. The viscous stress tensor for a New-
tonian fluid under Stokes’ hypothesis is defined by τ = µ(∇u + (∇u)T ) −
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2
3µ∇ · u I. The equations of state for perfect gas constitute a reliable ther-
modynamic model for many gases under diverse conditions, particularly for
air at standard conditions. Thereby, the pressure is related to the internal
energy p = (γ−1)(ρE− 1

2ρ|u|2) with the ratio of specific heats γ =
cp
cv

= 1.4,
cp and cv are the specific heats at constant pressure and constant volume,
respectively. The viscosity coefficient µ is determined from the Sutherland
law µ(T ) = C1

T 1.5

T+C2
where the parameters C1 = 1.458 × 10−6kg/(msK0.5)

and C2 = 110.4K for air at standard conditions. The heat conduction coef-
ficient κ is derived by taking into account the constant Prandtl number Pr
= 0.72 and thus κ =

cp
Prµ.

2.1.1 Perturbation Formulation

Since in compressible low Mach number flows, the perturbation variables
U′ with respect to a reference state U0 are small, cancellation errors occur
when discretizing the Navier–Stokes equations. For instance, the pressure
perturbations p′ are much smaller than the stagnation pressure p0, i.e. p =
p0 + p′ and |p′| � p0. Cancellation errors can be minimized by discretizing
∂p′
∂x rather than ∂p

∂x [106]. Thus, the perturbation formulation is employed in
order to minimize cancellation errors while discretizing the Navier–Stokes
equations for compressible low Mach number flow [79, 106].

With regard to this concept, the conservative variables are expressed as

U(x, t) = U0(x, t) + U′(x, t). (2.2)

Generally, U0 and U are required to satisfy Eq. (2.1). The reference flow
state U0 may be chosen not to be constant, but to depend on x and t as an
unsteady base flow [78].

For the chosen reference flow state U0 = (ρ0, (ρu)0, (ρE)0)T , the per-
turbed conservative variables U′ = U − U0 = (ρ′, (ρu)′, (ρE)′)T can be
defined. The Navier–Stokes equations (2.1) in perturbation form [78] can
generally be expressed as

∂U′

∂t
+ ∇ · Fc′(U′,U0) = ∇ · Fv′(U′,∇U′,U0,∇U0), (2.3)

with the perturbed inviscid flux tensor

Fc′(U′,U0) =




(ρu)′

((ρu)0 + (ρu)′)u′ + (ρu)′u0

((ρH)0 + (ρH)′)u′ + (ρH)′u0


+ p′




0
I
0


 ,
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where the perturbed velocity, pressure and total enthalpy are

u′ =
(ρu)0 + (ρu)′

ρ0 + ρ′
− (ρu)0

ρ0
,

p′ = (γ − 1)

(
(ρE)′ − 1

2

(
(ρu′) · (u0 + u′) + (ρu)0 · u′

))
,

(ρH)′ = (ρE)′ + p′.

The perturbed viscous flux tensor is defined as

Fv′(U′,∇U′,U0,∇U0) =



0
τ ′

τ ′ · (u0 + u′) + τ 0 · u′ + (κ0 + κ′)∇T ′ + κ′∇T0


 ,

where

τ ′ = (µ0 + µ′)(∇u′ + (∇u′)T )− 2

3
(µ0 + µ′)∇ · u′ I+

µ′(∇u0 + (∇(u0)T )− 2

3
µ′∇ · u0 I,

µ′ = µ(T0 + T ′)− µ(T0),

T ′ =
p′
R − ρ′T0

ρ0 + ρ′
,

Here, R is the specific gas constant and µ is determined from the Sutherland
law with the non-dimensional Sutherland constant Sc = 110.4K

T0
,

µ

µ0
=
( T
T0

)1.5
(

1 + Sc
T
T0

+ Sc

)
,

κ′ = κ(T0 + T ′)− κ(T0).

Since in the perturbation form Eq. (2.3) the large contributions U0 from
∂U
∂t and p0 from the momentum flux are removed, it allows discretizations in
conservative form while minimizing cancellation errors for low Mach number
flows [78, 79, 106].

For the chosen constant stagnation flow stateU0 = (ρ0,0, (ρE)0)T , equa-
tions (2.3) are simplified. The conservative form of the 2D compressible
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Navier–Stokes equations in Cartesian coordinates in perturbation formula-
tion can be expressed as

U′t + Fc′x + Gc′
y = Fv ′x + Gv ′

y, (2.4)

where the subscripts in (2.4) denote derivatives, i.e. U′t = ∂U′
∂t ,F

′c
x = ∂F′c

∂x ,
etc. The conservative perturbation variables U′ are defined by




ρ′

(ρu)′

(ρv)′

(ρE)′


 =




ρ
(ρu)
(ρv)
ρE


−




ρ0

0
0

(ρE)0


 ,

and the inviscid (Fc′, Gc′) and viscous perturbation flux vectors (Fv ′, Gv ′)
are defined by Fc′ = Fc(U)− Fc(U0), etc.

Fc′ =




(ρu)′

(ρu)′u′ + p′

(ρv)′u′

((ρH)0 + (ρH)′)u′


 , Gc′ =




(ρv)′

(ρu)′v′

(ρv)′v′ + p′

((ρH)0 + (ρH)′)v′


 ,

Fv ′ =




0
τ ′xx
τ ′xy

u′τ ′xx + v′τ ′xy + κT ′x


 , Gv ′ =




0
τ ′yx
τ ′yy

u′τ ′yx + v′τ ′yy + κT ′y


 .

2.1.2 Non-Dimensional Variables

For convenience the variables in the 2D Navier–Stokes equations (2.4) are
non-dimensionalized with stagnation density ρ0, stagnation speed of sound
c0, a characteristic length L and stagnation pressure p0 =

ρ0c20
γ as reference

values. The non-dimensional quantities are defined as follows

t∗ = tc0
L , x

∗ = x
L , y

∗ = y
L , ρ

∗ = ρ
ρ0
, u∗ = u

c0
, v∗ = v

c0
,

T ∗ = T
T0
, p∗ = p

γp0
, E∗ = E

c20
, (ρE)∗ = ρE

ρ0c20
.

(2.5)

A special choice is made for specifying the non-dimensional viscosity µ∗

and the non-dimensional heat transfer κ∗ as

µ∗ =
1

Re0

µ

µ0
, κ∗ =

1

(γ − 1)Pr0Re0

κ

κ0
, (2.6)

where the stagnation Reynolds and Prandtl numbers are defined by
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Re0 =
ρ0c0L

µ0
, Pr0 =

cpµ0

κ0
. (2.7)

Employing this choice, the non-dimensional and dimensional forms of the
compressible Navier–Stokes equations (2.4) coincide.

2.1.3 Coordinate Transformation

In order to perform computations for general geometries, the Cartesian co-
ordinates (x, y) are transformed from the physical domain into curvilinear
coordinates (ξ, η) in the computational domain. The coordinate transforma-
tion can be expressed by the following relations

ξ = ξ(x, y),

η = η(x, y).
(2.8)

The chain rule for partial differentiation yields the following expressions

∂

∂x
= ξx

∂

∂ξ
+ ηx

∂

∂η
, (2.9)

∂

∂y
= ξy

∂

∂ξ
+ ηy

∂

∂η
, (2.10)

where the subscript notation is used to denote partial derivatives, i.e., ξx =
∂ξ
∂x , ηy = ∂η

∂y , etc.
Reversing the role of the independent variables, i.e., x = x(ξ, η) and

y = y(ξ, η), it can be concluded that

(
ξx ξy
ηx ηy

)
=

(
xξ xη
yξ yη

)−1

= J

(
yη −xη
−yξ xξ,

)
(2.11)

where J , the Jacobian defined as the ratio of the areas (volume in 3D) in
the computational domain to the physical domain, is defined as

J =
∂(ξ, η)

∂(x, y)
=

1

xξyη − yξxη
. (2.12)

In this way, the transformed 2D compressible Navier–Stokes equations in
perturbation form are expressed as

Û′t + F̂′ξ + Ĝ′η = 0, (2.13)

where
Û′ = J−1U′,
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F̂′ = J−1
(
ξx(Fc′ − Fv ′) + ξy(G

c′ −Gv ′)
)
,

Ĝ′ = J−1
(
ηx(Fc′ − Fv ′) + ηy(G

c′ −Gv ′)
)
.

The chain rule for partial differentiation provides the expressions for Carte-
sian derivatives in the viscous flux vectors Fv ′ andGv ′, e.g. u′x = u′ξξx + u′ηηx
and u′y = u′ξξy + u′ηηy.

2.2 Numerical Methods for Compressible Navier–Stokes
Equations

2.2.1 High Order Finite Difference Method

The high order finite difference method based on summation-by-parts (SBP)
operators [40, 41, 111] is employed for space discretization of the compress-
ible Navier–Stokes equations. This approach is based on the energy method,
which permits to derive well-posedness for the continuous problem and to
guarantee stability for the discrete problem. Both first and second spatial
derivatives can be approximated by high order difference operators with
built-in stability.

2.2.1.1 Energy Method

The energy method is a technique to prove sufficient conditions for well-
posedness of partial differential equations (PDE) and stability of difference
methods with general boundary conditions [40]. To demonstrate the energy
method, we apply the procedure to a simplified PDE, that is, rather than
analysing the full Navier–Stokes equations in this section, we only focus on
the 1D convection-diffusion equation as a model equation.

ut + aux = buxx, 0 ≤ x ≤ 1, t ≥ 0,
u(x, 0) = f(x),
u(0, t) = u(1, t) = g(t) = 0,

(2.14)

where a and b are assumed to be constant and positive, and u is the de-
pendent variable. The L2 scalar product for two real functions v and w is
defined by

(v, w) =
∫ 1

0 v(x)w(x)dx, (2.15)

which then defines the L2 norm of the continuous solution at time t and
energy E(t) = ‖u(·, t)‖2 = (u, u). Integration by parts states

(v, wx) = v(1)w(1)− v(0)w(0)− (vx, w).
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2.2. Numerical Methods for Compressible Navier–Stokes Equations

The energy method uses the definition of energy, product rule, PDE
(2.14), integration by parts, ‖ux‖2 ≥ 0, and the boundary conditions (2.14)
to arrive at

dE
dt = d

dt‖u(·, t)‖2 = (ut, u) + (u, ut)
= (−aux + buxx, u) + (u,−aux + buxx)

= −a
(
u2(1, t)− u2(0, t)

)
+ 2b

(
u(1, t)ux(1, t)− u(0, t)ux(0, t)

)

−2b(ux, ux) ≤ −a
(
u2(1, t)− u2(0, t)

)

+2b
(
u(1, t)ux(1, t)− u(0, t)ux(0, t)

)
= 0,

(2.16)

which yields a non-growing solution, i.e. E(t) ≤ E(0) = ‖f(x)‖2. Thus, the
energy is bounded by the initial condition.

2.2.1.2 Summation-By-Parts Operators

The SBP operators are constructed to guarantee a discrete energy estimate
similar to the continuous energy estimate above. The basis of getting such an
energy estimate is to satisfy integration by parts in the discrete sense called
Summation-by-parts (SBP) property [40, 113]. To outline this technique for
model problem (2.14), we consider uj = uj(t) the numerical solution of the
convection-diffusion equation at grid point xj = jh, j = 0, ..., N, with grid
spacing h = 1

N . The solution vector containing the solution at the discrete
grid points is u = (u0(t), u1(t), ..., uN (t))T . Using a difference operator Q
approximating the first derivative in space and using it twice, i.e. QQ, to
approximate ∂2

∂x2
, the semi-discrete form of the model equation can be ex-

pressed as
du
dt = −aQu + bQQu, uj(0) = f(xj). (2.17)

The discrete scalar product and corresponding norm and energy can be
defined by

(u,v)h = huTHv,
Eh(t) = ‖u‖2h = (u,u)h,

(2.18)

where H is a diagonal and positive definite matrix defined by

H = diag(HL, I,HR). (2.19)

The SBP property is satisfied by the difference operator Q, if

(u, Qv)h = uNvN − u0v0 − (Qu,v)h, (2.20)

or if Q can be written on the form hQ = H−1P for P satisfying

P + P T = EN − E0 = diag(−1, 0, ..., 0, 1), (2.21)
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whereE0 = diag(1, 0, ..., 0) andEN = diag(0, 0, ..., 1). Using the semi-discrete
equation (2.17), the definition of energy, product rule, integration by parts
and ‖ux‖2 ≥ 0, the energy estimate for the semi-discrete problem can be
obtained as
dE
dt = d

dt‖u(·, t)‖2 = (ut, u)h + (u, ut)h
= (−aQu+ bQQu, u)h + (u,−aQu+ bQQu)h

= −a
(
u2
N − u2

0

)
+ 2b

(
uN (Qu)N − u0(Qu)0

)

−2b(Qu,Qu)h ≤ −a
(
u2
N − u2

0

)
+ 2b

(
uN (Qu)N − u0(Qu)0

)
.

(2.22)
We would get non-growing energy in time if the homogeneous boundary

conditions could directly be imposed in (2.22). However, this will change the
difference operator Q such that its SBP property might be lost. To avoid
this problem, boundary conditions are weakly imposed by the simultaneous
approximation term (SAT) technique [14, 40]. A first derivative SBP opera-
tor with diagonal quadrature matrix H in (2.18) is of order O(h2s) accurate
central difference operator which is of order O(hs) accurate at and near
boundaries, where s = 1, 2, 3, 4. Such an SBP operator is globally O(hs+1)
accurate.

2.2.2 Present SBP Operators for Compressible Navier–Stokes
Equations

A globally fourth order SBP operator is employed in this study to discretize
the first ξ- and η- derivatives in Eq. (2.13). Therefore, the SBP operators for
∂
∂ξ and ∂

∂η correspond to the standard sixth order central difference opera-
tor in the interior, but degrade to third order accuracy near the boundary,
resulting in fourth order global accuracy [40, 111]. The difference operator
Q is written as

Q =
1

h




q1,1 q1,2 q1,3 q1,4 q1,5 q1,6 0 . . .
q2,1 0 q2,3 q2,4 q2,5 q2,6 0 . . .
q3,1 q3,2 0 q3,4 q3,5 q3,6 0 . . .
q4,1 q4,2 q4,3 0 q4,5 q4,6 q4,7 0 . . .
q5,1 q5,2 q5,3 q5,4 0 q5,6 q5,7 q5,8 0 . . .
q6,1 q6,2 q6,3 q6,4 q6,5 0 q6,7 q6,8 q6,9 0 . . .

. . . 0 −1
60

3
20

−3
4 0 3

4
−3
20

1
60 0 . . .

. . . . . . . . . . . . . . . . . . . . . . . . . . .




,

(2.23)
where qi,j ∈ R, i = 1, . . . 6 and j = 1, . . . , 9 are coefficients obtained by the
order conditions and the SBP property [40, 41, 111].
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2.2. Numerical Methods for Compressible Navier–Stokes Equations

Second derivatives of the viscous parts of F̂ξ
′
and Ĝη

′
Eq. (2.13) are

approximated here by applying the SBP operator for the first derivatives
operator twice.

2.2.3 Time Integration

The compressible Navier–Stokes equations discretized in space by a finite
difference method can be considered as a system of ordinary differential
equations (ODE), i.e.

dU′

dt
= F(t,U′), (2.24)

where
F(t,U′) = −J(QξF̂

′ +QηĜ
′), (2.25)

Qξ and Qη are the SBP operators in the ξ- and η- directions, respectively,
U′, F̂′ and Ĝ′ are defined in (2.13).

The classical fourth order explicit Runge–Kutta method is used for dis-
cretizing the compressible Navier–Stokes equations in time. The solution is
advanced from the time level n to the level n+ 1 as

U′n+1
= U′n +

∆t

6
(k1 + 2k2 + 2k3 + k4), (2.26)

where in the 4 Runge–Kutta stages ki, i = 1, ..., 4

k1 = F(tn,U′n),

k2 = F(tn +
∆t

2
,U′n +

∆t

2
k1),

k3 = F(tn +
∆t

2
,U′n +

∆t

2
k2),

k4 = F(tn + ∆t,U′n + ∆tk3).

2.2.4 Explicit Filters

Waves with wave number k = π
h , where h is the grid spacing, are not damped

by the viscous terms when applying the standard sixth order central differ-
ence operator for the first derivative twice. Studies by [128] provide strong
evidence that those waves can be successfully damped by applying spatial
filters when solving the transformed compressible Navier–Stokes equations
(2.13) by high order finite difference methods. To suppress spurious high
wavenumber oscillations, a pth (p even, here p = 6) order explicit filter is
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applied by modifying the numerical solution U′n+1
i,j at the end of the Runge–

Kutta stages according to

Ũ′
n+1
i,j = U′n+1

i,j −
(
D

(p)
ξ U′ +D(p)

η U′
)n+1

i,j
, (2.27)

whereD(p)
ξ andD(p)

η represent scaled central finite difference approximations

of the pth ξ− and η− derivatives, receptively. The difference operator D(p)
ξ

is defined by

(D
(p)
ξ U′)i,j =

(−1)p/2

2p
δpξU

′
i,j , (2.28)

which is a pth order approximation of (−1)p/2

2p ∆ξp ∂
pU′(i∆ξ,j∆η)

∂ξp . The difference
operator δpξ in (2.28) is defined by applying δ2

ξ
p
2 times, where δ2

ξU
′
i,j =

U′i+1,j − 2U′i,j + U′i−1,j . The same procedure is used for the η−direction,
i.e., D(p)

η in (2.27). The coefficient (−1)p/2

2p is chosen such that the wave with
wave number kxi = π

∆xi is annihilated. Here, p = 6 for the sixth order central
finite difference operator. Low pass filters are discussed in [79, 127] and their
boundary treatment in [79].

2.2.5 Non-Reflecting Characteristic Boundary Conditions

Non-reflecting characteristic boundary conditions are used at the inflow and
outflow boundaries to minimize wave reflections. The Navier–Stokes char-
acteristic boundary conditions (NSCBC) developed by [92] are employed to
approximate incoming waves. The main idea in the NSCBC approach is to
determine the amplitude of the waves entering into the computational do-
main. The determination of the amplitudes is built on the assumptions that
the flow is one-dimensional and inviscid, i.e., local one-dimensional invis-
cid (LODI) relations. Since fully non-reflecting conditions may lead to an
ill-posed problem [92], this approach is partially reflecting.

LODI relations associate the temporal evolution of the primitive vari-
ables (ρ, u, v, p), i.e., density, velocity components and pressure, to the wave
amplitudes Li, i = 1, ..., 4. The wave amplitudes L1 and L4 correspond to
the left and right travelling acoustic waves with the wave speed (u− c) and
(u + c), respectively, where c is the speed of sound. L2 is related to the
entropy wave of wave speed u and L3 the first vorticity wave of wave speed
u. LODI relations in transformed coordinates [79] are expressed as
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J−1




1 0 0 0
0 ρ 0 0
0 0 ρ 0
0 0 0 1

γ−1







ρt
ut
vt
pt


+




Û ρξ̂x ρξ̂y 0

0 Ûρ 0 ξ̂x
0 0 Ûρ ξ̂y
0 γp

γ−1 ξ̂x
γp
γ−1 ξ̂y Û 1

γ−1







ρξ
uξ
vξ
pξ


 = 0,

(2.29)

where ξ̂x and ξ̂y denote J−1ξx and J−1ξy, respectively, and Û = ξ̂xu+ ξ̂yv.
Employing characteristic analysis, the LODI system can be recast as

J−1




ρt
ut
vt
pt


+




L2 + |ξ̂|
c (L4 − L1)

−ξ̂yL3 + |ξ̂x|
ρ (L4 + L1)

ξ̂xL3 +
|ξ̂y |
ρ (L4 + L1)

c|ξ̂|(L4 − L1)|




= 0, (2.30)

where |ξ̂| =
√
ξ̂2
x + ξ̂2

y and the wave amplitudes Li, i, 1, ..., 4 are obtained as




L1

L2

L3

L4


 =




ρ
2
ξ̂x
|ξ̂|2uξ + ρ

2
ξ̂y

|ξ̂|2 vξ −
pξ

2c|ξ̂|
ρξ − pξ

c2

− ξ̂y

|ξ̂|2uξ + ξ̂x
|ξ̂|2 vξ

ρ
2
ξ̂x
|ξ̂|2uξ + ρ

2
ξ̂y

|ξ̂|2 vξ +
pξ

2c|ξ̂|



. (2.31)

Eqs. (2.30) and (2.31) provide a method to compute the incoming wave
amplitude to be imposed at the boundaries. At the inflow, a fixed velocity
and temperature are imposed. The imposed velocity at the inlet requires the
incoming acoustic wave amplitude to be equal, but opposite to the outgoing
acoustic wave amplitude L4 = −L1. As the inlet temperature is fixed, LODI
relations (2.29) give an estimate of the entropy wave amplitude as

L2 = (γ − 1) |ξ̂|c (L4 − L1)

= −2(γ − 1) |ξ̂|c L1.
(2.32)

The density ρ is computed at the inlet boundary from the continuity
equation.Imposing a constant pressure at the outlet requires L1 = L4. To
keep the reflections low and the pressure close to atmospheric pressure, the
incoming wave amplitude is set to

L1 = Lexact
1 + (−2cξx)−1K(p− patm), (2.33)
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where K is a relaxation coefficient and Lexact
1 is the exact value of L1, ob-

tained as

Lexact
1 =

(
− U

2c|ξ̂|ξx
+

1

2ξx

)
pexact
x (−2cξx), (2.34)

which pexact
x = −2µUmax

l2
.

Rudy and Strikwerda proposed the relaxation coefficient as K = σ(1 −
Ma2)(c/Lt), where Ma is the Mach number, c the sound speed, Lt the total
length of the domain and σ a constant value [97]. The optimum value σ =
0.25 derived by [97] is employed. For reverse flow (negative velocity in x-
direction) at the outlet, L1, L2 and L3 are set to zero.

2.3 Domain Decomposition

A multi-block grid is generated through a domain decomposition procedure.
First, the computational grid of the whole physical domain is considered
as a single block. Then, the domain is divided into several sub-domains (or
blocks) by selecting all the nodes lying in each sub-domain with specified
block boundaries. Next, each sub-domain is constructed individually. The
idea behind the multi-block approach is to obtain a geometric flexibility
for structured grids and to speed up the computations. Instead of solving
the governing equations for the whole domain as one block, the solution
is broken down into several pieces (blocks), in which the solution for one
Runge–Kutta stage can be computed separately. Distributing the domain
across several computational nodes requires less memory allocated to store
the data in each node than to store the data in a single node for the whole
grid.

The decomposition of the computational domain into blocks allows us
to accommodate geometric flexibility with high order operators, which will
be discussed in Section 4.3. Having an overlap region of grid points at the
block interfaces is needed to achieve a transfer of the numerical solution
from one block to another block. As discussed earlier, in our SBP operators
(2.23), the standard sixth order central finite difference method is used for
the interior grid nodes. In this study, the decomposition is performed on the
interior grid points and sufficiently far from the boundary modification of
our SBP operator. For the seven-point stencil of the standard sixth order
central finite difference method (2.35), a three-point overlap at each side of
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inter-block boundaries is required.

Q =




× × × × × ×
× 0 × × × ×
× × 0 × × ×
× × × 0 × × ×
× × × × 0 × × ×
× × × × × 0 × × ×

× × × 0 × × ×
× × × 0 × × ×
× × × 0 × × ×

. . . . . . . . . . . . . . . . . . . . .




.

(2.35)
The data at block interfaces are treated as block boundary conditions

which are updated after each Runge–Kutta stage. As illustrated in Figure 2.1,
the black points are located on the block boundary. The three red points in
the interior of the left block communicate their data to the overlapping white
points of the right block. Likewise, the three green points in the interior of
the right block communicate their data to the overlapping white points of
the left block. The inter-block communication between neighbouring blocks
is accomplished by using the Message Passing Interface (MPI) such that
each block is assigned to a single process. The data in the buffer arrays are
updated after each stage when all blocks have been processed.

Figure 2.1: Illustration of points overlapping along a line. The black points lie on
the block boundary, the red and green points are internal points in different blocks,
the white points are added ghost points which overlap the internal points in the
other block, and the arrows indicate the direction of data transfer between blocks.

Note that the above method provides synchronized boundary conditions
at the block interfaces. Therefore, the derivative of flow variables is computed
based on the values at the same time stage. This ensures that the solution
of the multi-block algorithm is exactly the same as that of the single block
algorithm.

The multi-block approach offers great flexibility in both implementation,
memory allocation and computation time for the solver, and also provides a
natural platform for parallel implementation. However, the disadvantage is

27
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that if a grid has a lot of blocks, the computational time could suffer because
of the explicit nature of the data communication between blocks.
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Figure 2.2: Ideal and observed speedup against the number of processes for the
fluid solver with one process per block.

To investigate the effects of parallelization on our flow solver, strong
scaling is chosen as a metric to show how simulating a given case will speed
up when more processes are used. With strong scaling, as the number of
cores increases, the problem size remains the same. A viscous channel flow
is considered at Re = 378 and Ma = 0.1. A 1280×2048 grid is used with
CFL = 0.1 and the case is solved for 1000 time steps. Figure 2.2 shows the
resulting speedup compared to the 6 processes.

The number of blocks was doubled by halving the blocks in the y−direction.
The test is made using one node with multiple cores. The scaling showing
the performance of our solver is good. However, as seen in Figure 2.2, the
theoretical behaviour would be linear. All simulations in our work are done
on the Kongull and Vilje clusters at NTNU with Intel Xeon E5-2670 8-core
CPUs.
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CHAPTER3
Mathematical Model of Structure

Deformation

In this chapter, structural models used for fluid-structure inter-
action simulations are presented. The computational approaches
and their procedures are stated.

3.1 The Euler-Bernoulli Beam Theory

A beam is a structural element in which one of its dimensions is much larger
than the other two dimensions. The axis of the beam is considered along
the longer dimension and a beam primarily resists loads applied laterally
to its axis. A cross-section normal to the longer axis is assumed to vary
smoothly along the span or length of the beam [7]. Several beam theories
have been developed based on various assumptions, and lead to different
levels of accuracy. One of the simplest and most useful of these theories was
first described by Leonhard Euler and Daniel Bernoulli in the 17th century
[44] and is commonly called Euler–Bernoulli beam theory.

In order to study the transverse motion of beams, the coupling between
the membrane forces (axial) and the transverse motion which is known as ge-
ometric nonlinearity, can be neglected [83, 112]. Therefore, the linear Euler–
Bernoulli beam theory is a simplification of the geometrically nonlinear the-
ory. If the membrane force of the beam is constant or it can be neglected,
which is valid for beams for small deformations, this theory can model the
structure appropriately [7]. Nonetheless, when the membrane force becomes
significant, like in the case of buckling and large deformations, the linear
theories become inaccurate. The Euler–Bernoulli beam theory does not take
into account the effect of the correction for transverse shear and rotatory
inertia [27, 83]. Moreover, it is assumed that the mass per unit length and
the stiffness of the beam remain constant along the length of the beam.
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3. Mathematical Model of Structure Deformation

This model is a valid approximation for thin beams under small transverse
deformations. Based on the Experimental measurements, these assumptions
are accurate for long, slender beams made of isotropic materials with rigid
cross-sections [7]. When one or more of these conditions are not met, the
predictions of Euler–Bernoulli beam theory can become inaccurate and the
need for a new model arises.

According to what is described above, the Euler–Bernoulli beam theory
can be summarized in three major assumptions. The essential assumption
is that no deformations happen in the plane of the cross-section, i.e. the
cross-section of the beam is infinitely rigid in its own plane. The second
and third assumptions are that the out-of-plane displacements of the cross-
section remain plane after deformation and normal to the neutral axis of the
beam, respectively [7].

Figure 3.1 shows a beam element with constant properties along its span
(x-direction) subjected to only two bending moments M , at the ends of the
element. y-direction indicates the transverse direction. The dashed rectangle
depicts the reference configuration of the beam element at the initial time.
Since the only applied load to beam is the bending moment, this type of
problem is often referred to as pure bending [7]. The cross-section of the
beam (a − b line in 2D) is assumed to be symmetric, and bending takes
place in that plane of symmetry. The line on the cross-section is called the
neutral axis which is not carrying any stresses.

Figure 3.1: Schematic of an infinitesimal element of the beam.

Considering Green’s Strain [100], ux and uy are displacements of the
member at any point in the x and y direction, respectively. x is along the
axis of the beam and y perpendicular to the axis. u and w are displacements
of the point at the middle plane of the beam along x− and y−directions,
respectively, as shown in Figure 3.1. The middle plane deflections of the
beam u,w, can be related to ux, uy, the deflections of any point on the
beam from Kirchhoff’s Hypothesis [83, 114].

30



3.1. The Euler-Bernoulli Beam Theory

Since the bending moment and physical properties are all constant along
the beam’s span, the deformation of the beam is identical at all points along
its axis. This results in a constant curvature, i.e. the beam deforms into a
curve of constant curvature as a circular arc, as illustrated in Figure 3.1.
In the initial configuration (cf. dashed reactangle in Figure 3.1), a cross-
section of the beam is a plane (line in 2D) perpendicular to the axis of the
beam x-direction. For a more realistic problem, e.g. a finite length beam
with specific boundary conditions and applied transverse loads, the bending
moment distribution varies along the span and the symmetry arguments
used for the above idealized problem no longer apply [7].

By the first Euler–Bernoulli assumption, the displacement field in the
plane of the cross-section consists only of one rigid body translation uy =
w(x), which is the vertical deflection of the neutral axis.

The second Euler–Bernoulli assumption implies an axial displacement
field consisting of a rigid body translation ux, and rigid body rotations θ(x)
as shown in Figure 3.1

ux(x) = u− yθ(x) (3.1)

As depicted in Figure 3.1 the plane a − b remains perpendicular to the
neutral axis c−d by the third Euler–Bernoulli assumption . This implies the
equality of the slope of the beam and of the rotation of the section θ = ∂w

∂x
[7].

The normal and shear strains can be evaluated from the displacement
field by employing the fundamental assumption of linear elasticity as follows

εyy =
∂uy
∂y

=
∂w

∂y
= 0, εxx =

∂ux
∂x

=
∂u

∂x
− y∂

2w(x)

∂x2
,

γxy =
∂ux
∂y

+
∂w

∂x
= 0

(3.2)

The following notation for the sectional deformations which depend only
on the spanwise variable can be introduced

ε̄ =
du

dx
, κ =

∂θ

∂x
≈ ∂2w

∂x2
, (3.3)

where ε̄ is is the sectional axial strain, κ the curvature along the beam and
θ is the slope of the deformed beam. Using these sectional strains, the axial
strain distribution εxx in (3.2), over the cross-section becomes

εxx = ε̄− yκ. (3.4)
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As mentioned above, the beam is assumed to be made of a linearly elastic,
isotropic material that obeys Hooke’s law σ = Eεxx where E is the Young
modulus. Note that the normal and shear stresses in the y or z directions
are considered to be zero. Therefore, the resultant normal force is zero.

∫

A
σdA =

∫

A
EεxxdA = Eε̄

∫

A
dA− Eκ

∫

A
ydA. (3.5)

Since the x−axis passes through the centroid of the cross-section of the
beam

∫
A ydA = 0. The resultant bending moment is expressed as

M(x, t) =

∫

A
σydA = Eεxx

∫

A
ydA− Eκ

∫

A
y2dA = −EIκ, (3.6)

where I =
∫
A y

2dA is the moment of inertia.

3.2 Plate Equation of Motion

In order to derive the equation of motion for transverse motion of a flexible
structure (thin plate in this study or beam as a general example), there are
various levels of complexity which can be added to the problem. The effects
of shear distortion, rotatory inertia and the effect of axial forces and axial
deformation can be mentioned as examples [27, 83]. Including all of these
factors can lead to a complicated model which would be difficult to solve and
distract us from the scope of our fluid-structure interaction investigation of
the axial deformation and the transverse motion of a thin plate.

Figure 3.2: Schematic of a plate under end bending moments and applied load.

As shown in Figure 3.2, a plate (beam) element of length dx is considered.
F (x, t) represents the applied transverse force, Q(x, t) is the internal shear
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force, M(x, t) denotes the internal moment, ms = ρsh is the mass per unit
length of the structure, h is the thickness. w(x, t) is the vertical deflection
of the thin plate. The equilibrium of forces in the vertical direction gives

F (x, t)dx+

(
Q(x, t) +

∂Q

∂x
dx

)
−Q(x, t) = msdx

∂2w

∂t2
, (3.7)

F (x, t) +
∂Q

∂x
= ms

∂2w

∂t2
. (3.8)

An equation for the shear force is required,Q(x, t), which will be obtained
by the sum of moments from the center of the beam element in Figure 3.2.

−
(
M(x, t) +

∂M

∂x
dx

)
+M(x, t) +

(
Q(x, t) +

∂Q

∂x
dx

)
dx

2
+Q(x, t)

dx

2
= 0.

(3.9)
Which simplifies

Q(x, t) =
∂M

∂x
(3.10)

Inserting (3.6) and (3.10) into (3.8), results in

ms
∂2w

∂t2
+

∂2

∂x2
KB

∂2w

∂x2
= F (x, t), (3.11)

where KB is the flexural rigidity or bending stiffness of the plate which is
defined as KB(x) = EI(x), E is the elastic Young modulus and I(x) is the
moment of inertia. The flexural rigidity can be expressed as

KB =
Eh3

12(1− ν2)
, (3.12)

where h is the flexible plate thickness and ν is Poisson’s ratio [108].

3.3 Modal Analysis

For the eigenvalue problem of the Euler–Bernoulli beam, i.e. free oscillation
case F(x, t) = 0, the thin plate equation of motion Eq. (3.11) becomes

ms
∂2w

∂t2
+KB

∂4w

∂x4
= 0 (3.13)

Transverse oscillation of the plate is an initial-boundary value problem
(IBVP) and involves a second order derivative with respect to time and
a fourth order derivative with respect to the space coordinates. Therefore,
both initial and boundary conditions are required to obtain a unique solution
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3. Mathematical Model of Structure Deformation

w(x, t). The solution to the problem given by Eq. (3.13) can be produced by
first obtaining the natural frequencies and mode shapes, and then expressing
the general solution as a summation of modal responses [81]. In each mode,
the system will oscillate in a fixed shape at a constant frequency, which
allows to separate the displacement function into two separate time and
space functions [115]. Thus, the displacement can be defined as

w(x, t) = A(x)B(t) (3.14)

where A(x) and B(t) take into account the spatial and temporal behaviour
of the plate. By inserting Eq. (3.14) into the eigenvalue problem Eq. (3.13)
and rearranging it, the free oscillation solution is obtained as

1

B(t)

d2B(t)

dt2
= − α

A(x)

d4A(x)

dx4
= −Ω2

m (3.15)

where α = KB
ms

. The constancy of the terms can be inferred by the in-
dependence of both sides to each other. Taking the constant value as the
eigenfrequency Ω2

m, i.e, the natural frequency of the beam, the two ordinary
differential equations can be obtained as

d4A(x)

dx4
− k4

mA(x) = 0 (3.16)

d2B(t)

dt2
+ Ω2

mB(t) = 0 (3.17)

where k4
m = Ω2

m
α . Solving these two ordinary differential equations (ODE),

the general solution of the problem based on linear combination of trigono-
metric functions can be obtained.

The solution of Eq. (3.16) can be expressed as

A(x) = C1 cos(kmx) + C2 sin(kmx) + C3 cosh(kmx) + C4 sinh(kmx) (3.18)

where the constants Ci, i = 1, ..., 4 can be found by the imposed boundary
conditions from the specific physical problem.

The solution of Eq. (3.17) can be expressed as

B(t) = C5 cos(Ωt) + C6 sin(Ωt) (3.19)

where the constants C5 and C6 can be found by the initial conditions.
Thus, the general solution of displacement w(x, t) = A(x)B(t), yields to
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3.3. Modal Analysis

w(x, t) =
(
C1 cos(kmx) + C2 sin(kmx) + C3 cosh(kmx)

+C4 sinh(kmx)
)
·
(
C5 cos(Ωt) + C6 sin(Ωt)

) (3.20)

Finally, the angular eigenfrequencies, i.e. natural frequencies of the beam
can be calculated as

Ωm = β2
m

√
KB

ms
(3.21)

The values βm = kmL, where L is the characteristic length of the beam, are
solutions to an eigenvalue equation depending on the boundary conditions,
as explained in the following sections.

3.3.1 Cantilevered Plate

The cantilevered beam is clamped at the leading edge and free at the trailing
edge where no constraints are applied and it can deflect freely. In this case,
the boundary conditions at the leading edge for the displacement w(x =

0) = 0, and the slope of the tangent of the deformed beam ∂w
∂x

∣∣∣
x=0

= 0.

At the trailing edge the bending moment ∂2w
∂x2

∣∣∣
x=L

= 0 and the shear force
∂3w
∂x3

∣∣∣
x=L

= 0. Solving the linear system derived for the four constants from
Eq. (3.20), gives

C1 = −C3

C2 = −C4 = C3
cos(kmL)+cosh(kmL)
sin(kmL)+sinh(kmL)

(3.22)

Therefore, the cantilevered beam has the following natural modes

Am(x) = C3

((
cosh(kmx)− cos(kmx)

)

− cosh(kmL)+cos(kmL)
sinh(kmL)+sin(kmL)

(
sinh(kmx)− sin(kmx)

))

m = 1, 2, 3, . . .∞

(3.23)

where C3 denotes the amplitude scaling constant and km = βm/L the charac-
teristic wavenumber obtained by finding the roots of an eigenvalue equation.
The coefficients βm are obtained from

cosh(βm) cos(βm) + 1 = 0, (3.24)

The five first values of βm, m = 1, ..., 5, are rounded: 1.8751, 4.6941,
7.8548, 10.9955, 14.1372. The modal configurations of the cantilevered plate
are shown in Figure 3.3.

35



3. Mathematical Model of Structure Deformation

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
−1.5

−1

−0.5

0

0.5

1

1.5

X

 

 

mode 1 mode 2 mode 3 mode 4 mode 5

Figure 3.3: The first five eigenfunctions Am(x) for cantilevered flexible plate with
C3 = 1 in Eq.(3.23).

3.3.2 Hinged Free-End Plate

This model is similar to the previous one except that at the leading edge a
hinge, i.e. a support mechanism, permits the beam to rotate. In this case the
boundary conditions at the leading edge for the displacement w(x = 0) = 0

and the bending moment ∂2w
∂x2

∣∣∣
x=0

= 0. At the trailing edge the bending

moment ∂2w
∂x2

∣∣∣
x=L

= 0 and the shear force ∂3w
∂x3

∣∣∣
x=L

= 0. The constants can
be obtained as

C1 = C3 = 0

C2 = C4
sinh(kmL)
sin(kmL)

(3.25)

The eigenfunction can be expressed as

Am(x) = C2

(
sin(kmx) + sin(kmL)

sinh(kmL) sinh(kmx)
)

m = 1, 2, 3, . . .∞
(3.26)

where C2 denotes the amplitude. The coefficients βm are obtained from

tan(βm)− tanh(βm) = 0, (3.27)

The five first values of βm, m = 1, ..., 5, are rounded: 0, 3.9266, 7.0686,
10.2102, 13.3518. Note that the first mode associated to the first solution of
the singularity condition corresponding to the system has a rigid rotation at
the leading edge [81]. The modal configurations of the hinged free-end plate
are shown in Figure 3.4.
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Figure 3.4: The first five eigenfunctions Am(x) for hinged free-end flexible plate
with C2 = 1 in Eq.(3.26).

3.4 Inextensible Plate

The various flexible structural models can be categorized based on whether
the extensibility of the structure (beam) is considered in the model or not.
If a model neglects this extensibility, the structure is said to be inextensible
[36]. That is, the arc length of the structure always remains the same as
it initially was. On the other hand, if a model can not preserve its initial
arc length the structural model is said extensible. When a external force
is applied to the structure in this case, the structure can be compressed or
elongated [60].

In this section, a beam model that models the thin plate as an inexten-
sible thin plate will be described. Moreover, in this model we assume that
the plate deflections remain small. In this model, a two-dimensional section
of the plate is represented. Described within a Lagrangian coordinate s (de-
fined as the arc length along the plate measured from the leading edge),
X(s, t) describes the instantaneous configuration of the plate.

To develop the governing equations, the free body diagram of a thin
plate (beam) element subjected to an applied load is considered as illus-
trated in Figure 3.5. The geometrical configuration of the plate is X =
(x(s, t), y(s, t))T where s is the arc length along the Lagrangian coordinate.
M(s, t) is the bending moment, Q(s, t) is the transverse shear force, and
F(s, t) is the Lagrangian force exerted on the flexible plate and T (s, t) is the
applied axial force called tension.

The local normal n which points towards the local curvature center and
tangent vector τ are defined as
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3. Mathematical Model of Structure Deformation

Figure 3.5: Schematic of an element under end bending moments, applied load,
internal shear load and applied axial force.

τ =
∂X

∂s
, n =

∂τ

∂s
=
∂2X

∂s2
. (3.28)

Under the Euler–Bernoulli assumption (cf., Section 3.1), i.e. plane sections
preserve their planarity and are normal to the deflected plate axis, the mo-
ment can be expressed as a function of curvature along the beam κ

M = −KBκ = −KB
∂2X

∂s2
· n, (3.29)

where KB = EI is the flexural rigidity of the plate (bending stiffness) with
E the Young modulus and I the moment of inertia of the cross-section of
the thin plate, κ is the curvature. This curvature is defined as the rate of
change of the direction of the tangent line with respect to the arc length s.
Since a uniform plate is assumed in the formulation, the bending stiffness
is not variable along the plate length. Therefore, the transverse shear force
can be obtained by using the Euler–Bernoulli assumption as

Q(s, t) =
∂M

∂s
= − ∂

∂s

(
KB

∂2X

∂s2

)
· n. (3.30)

Imposing the translational equilibrium for an infinitesimal element per-
pendicularly loaded and neglecting higher order infinitesimal contributions,
the equilibrium condition of forces leads to
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3.4. Inextensible Plate

F(s, t)ds+

(
T (s, t)τ (s, t) +

∂

∂s

(
(T (s, t)τ (s, t)

)
ds

)
− T (s, t)τ (s, t)

+

(
Q(s, t) +

∂Q

∂s
ds

)
−Q(s, t) = msds

∂2X(s, t)

∂t2
.

(3.31)

Inserting Eq. (3.30) into Eq. (3.31) and cancelling terms result in

F(s, t) +
∂

∂s

(
T (s, t)τ (s, t)

)
− ∂2

∂s2

(
KB

∂2X

∂s2

)
= ms

∂2X(s, t)

∂t2
, (3.32)

wherems is the excessive mass per unit length of the structure, i.e.ms = ρsh,
where ρs is the density of the plate, and h is its thickness. τ (s, t) is the
tangent unit vector and T (s, t) is the tension. The tension T (s, t) functions as
a Lagrangian multiplier (in the same spirit as pressure for incompressibility)
to enforce the inextensibility constraint of the plate, such that the local
stretching of the plate satisfies d

dt |∂X∂s |= 0. The inextensibility constraint of
the plate [50, 118], can be expressed as

∂X

∂s
· ∂X
∂s

= 1. (3.33)

Following the previous studies [50, 118], the tension T in this model is
determined by a Poisson equation derived by inserting the constraint of
inextensibility Eq. (3.33) into the dot product of ∂X

∂s and the s−derivative
of the plate dynamical equation Eq. (3.32)

∂X

∂s
· ∂

2

∂s2

(
T
∂X

∂s

)
=
ms

2

∂2

∂t2

(∂X
∂s
· ∂X
∂s

)
−ms

∂2X

∂t∂s
· ∂

2X

∂t∂s
− ∂X
∂s
· ∂
∂s

(
FB+F

)
,

(3.34)
where FB = ∂Q

∂s is the bending force which is obtained by Eq. (3.30).
The boundary conditions are specified at the leading edge (s = 0) and at

the trailing edge (s = L) of the plate. The free-end boundary condition at
the trailing edge is imposed by assuming that the tension, bending moment
and shear force are zero

T (L, t) = 0,
∂2X

∂s2

∣∣∣
s=L

= 0,
∂3X

∂s3

∣∣∣
s=L

= 0. (3.35)

At the leading edge two types of boundary conditions can be considered
as mentioned in Section 3.3. One is the hinged boundary condition (support
mechanism),
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3. Mathematical Model of Structure Deformation

X|s=0 = X0,
∂2X

∂s2

∣∣∣
s=0

= 0. (3.36)

The other one is the clamped boundary condition which is expressed as

X|s=0 = X0,
∂X

∂s

∣∣∣
s=0

= (cos θ, sin θ). (3.37)

3.5 Numerical Methods for Euler–Bernoulli Beam Model

3.5.1 Newmark Time Integration Method

The Newmark method also known as the Newmark-beta method has been
one of the most commonly used integration scheme for problems in struc-
tural dynamics since Nathan M. Newmark introduced it in 1959 [82], mainly
because of its improved stability characteristics [18]. This method approxi-
mates the displacement and the velocity at time t+ ∆t by employing trun-
cated Taylor expansions and assuming that the displacement, velocity and
acceleration are known at the time instant t. The Taylor series employed to
express the derivation are as follows

wt+∆t = wt + ∆tẇt +
∆t2

2
ẅt +

∆t3

6

...
wt + . . . (3.38)

ẇt+∆t = ẇt + ∆tẅt +
∆t2

2

...
wt + . . . (3.39)

where ẇ, ẅ and ...
w denote ∂w

∂t ,
∂2w
∂t2

and ∂3w
∂t3

, respectively. Neglecting the high
order terms and modifying the highest order terms in (3.38) and (3.39) yields

wt+∆t = wt + ∆tẇt +
∆t2

2
ẅt + β

...
wt, (3.40)

ẇt+∆t = ẇt + ∆tẅt + γ
...
wt, (3.41)

where β and γ are parameters that define the method. By assuming linear
acceleration in each time step

...
w =

ẅt+∆t − ẅt
∆t

, (3.42)

The equations are truncated and expressed as the standard form of the
Newmark’s equations

wt+∆t = wt + ∆tẇt +
(

(
1

2
− β)ẅt + βẅt+∆t

)
∆t2, (3.43)

ẇt+∆t = ẇt +
(

(1− γ)ẅt + γẅt+∆t

)
∆t. (3.44)
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3.6. Numerical Methods for Inextensible Plate

Unconditional stability is guaranteed for 2β > γ > 1
2 . The most accurate

scheme of the Newmark family which preserves energy for linear systems is
the trapezoidal rule, for which the parameters are β = 1

4 and γ = 1
2 [6, 52].

3.5.2 Finite Difference Method

The partial differential equations for a small deflection of a thin plate are
converted to a system of simultaneous algebraic equations employing finite
difference operators. The standard second order central difference approxi-
mation at grid point xi, is written as follows

∂2w(xi)

∂x2
≈ wi+1 − 2wi + wi−1

∆x2
. (3.45)

Furthermore, the standard second order difference operator for the fourth
derivative is obtained by applying twice the difference operator Dxx = δ2x

∆x2

defined by the right hand side of (3.45). Therefore, using a similar approxi-
mation twice, the fourth order spatial derivatives can be approximated as

∂4w(xi)

∂x4
≈ wi+2 − 4wi+1 + 6wi − 4wi−1 + wi−2

∆x4
. (3.46)

3.6 Numerical Methods for Inextensible Plate

The discretisation of the governing equation of the plate motion (3.32) along
s is performed on a staggered grid following [50]. The plate is discretized
with a finite number of Lagrangian points Xi. The plate tension is defined at
the interfaces of the grid cells, and other variables are defined at the primary
grid points in the centers of the grid cells, as shown in Figure 3.6.

Figure 3.6: Schematic diagram of staggered grid discretization on the plate along
its Lagrangian coordinate s.

Then, the numerical procedure for the non-dimensionalised form of Eqs.
(3.32) and (3.34) is as follows

X∗ = 2Xn
i −Xn−1

i , (3.47)
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F∗B = −Dss(KB DssX
∗)ni , (3.48)

(DsX
∗)i+ 1

2
·
(
Ds(Ds(T

n+ 1
2

i+ 1
2

DsX
∗))
)

=

ms

1− 2(DsX ·DsX)n
i+ 1

2

+ (DsX ·DsX)n−1
i+ 1

2

2∆t2
−

ms(DsV ·DsV)n
i+ 1

2

− (DsX
∗)n
i+ 1

2

·
(
Ds(F

∗
B + Fn)

)
i+ 1

2

,

(3.49)

ms
Xn+1
i −X∗i

∆t2
=
(
Ds(T

n+ 1
2DsX

n+1)
)
i
+ (FB)n+1 + Fni , (3.50)

where Ds and Dss are the second order accurate difference operators for the
first and second derivatives along s, respectively, and X∗ is the predicted
position of the plate. Employing X∗ to calculate the tension helps to re-
duce the error. The tension is computed at the intermediate time step, i.e.
tn+ 1

2 and is employed to update the position of the plate, i.e. Xn+1. The
velocity of the plate is defined as Vn

i = (Xn
i −Xn−1

i )/∆t. Fn denotes the
force exerted externally on the structure and is obtained explicitly at time
level n. Equations (3.49) and (3.50) constitute diagonally dominant tri- and
pentadiagonal linear systems, which are solved by LU decomposition with-
out pivoting, i.e. by the Thomas algorithm and a similar algorithm for the
pentadiagonal linear system. The condition for diagonal dominance of the
matrix in Eq. (3.50) is KB

∆t2

∆s4
6 1

4 .
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CHAPTER4
Arbitrary Lagrangian–Eulerian Method

This chapter provides a brief overview on the arbitrary Lagrangian–
Eulerian (ALE) method for fluid-structure interaction (FSI). The
formulation of the ALE approach for our FSI solver is presented.
The technique of re-meshing is discussed.

4.1 Introduction

There are two different mathematical representations of continuum mate-
rials: the Lagrangian formulation and the Eulerian formulation. In the La-
grangian approach, the individual material particles can easily be tracked
because the coordinate system moves with material. However, the coordi-
nate system is fixed in the Eulerian approach and the material particles
pass through a stationary closed domain. Since the main weakness of the
Lagrangian description is that it suffers to follow large distortions in the
computational domain, a purely Lagrangian method for the kinematical de-
scription of the fluid domain is not able to conveniently track strong distor-
tions happening often in the fluid domain [21]. However, if fluid motions are
described in Eulerian coordinates, strong distortions can easily be handled
because the coordinate system is fixed in space and convection terms are
used to describe the fluid transport [21]. Applying an ALE formulation to
FSI, the governing equations for the fluid flow can be modeled in a purely
Eulerian formulation, while the purely Lagrangian formulation is employed
to model the structure domain. The arbitrary Lagrangian–Eulerian (ALE)
method provides a hybrid description of the Lagrangian method and the Eu-
lerian method [48]. The coordinate system in the ALE method is associated
with a moving mesh, allowing a smooth transition between the Lagrangian
method and the Eulerian method.

Using the ALE method, the fluid grid is permitted to deform at an ar-
bitrary velocity to guarantee a body-conforming fluid grid. The significant
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advantage of a body-conforming grid is the correspondence of the moving
boundary with the grid lines such that the geometrical discontinuities can
be accurately incorporated in the computation. Furthermore, no approxima-
tion is required for the analysis of quantities at the moving boundary, i.e.,
wall shear stress and pressure.

In the ALE formulation of a deforming fluid grid, the velocity of the
moving walls is imposed. In the FSI case the velocity at the interface is equal
to the velocity of the solid material at the interface (no-slip condition). The
grid velocity û has to be included in the Navier–Stokes equations as follows

D

Dt
=

∂

∂t
+ (u− û) · ∇ (4.1)

Note that the time derivative of material changes D
Dt observed at a given

point in the Lagrangian formulation, is transformed into the Eulerian for-
mulation by D

Dt = ∂
∂t + u · ∇. When the ALE formulation (4.1) is applied

to a computational mesh, the case û = 0 yields the Eulerian formulation
for a stationary domain, while û = u yields the Lagrangian formulation.
Grid point positions and velocities in the fluid domain are determined by
the motion of the structure at the boundary.

This body-conforming mesh method causes some difficulties when ap-
plied to FSI problems. The process of mesh generation is still manual in
most of the cases. Generation of a body-conforming grid automatically is
not always possible. Therefore, it is preferable to eliminate the user inter-
vention and to seek an automatic meshing procedure. Furthermore, in many
cases, the quality of the generated mesh is not satisfactory. If the boundaries
move too much, the quality of the fluid grid definitely degenerates and the
large displacement of a point may cause the volume of the element or cell
to become negative, giving rise to the failure of the simulation [13, 109]. For
small deformations of the structure, the moving mesh method is often em-
ployed to deform the grid points and to provide the motion of the boundary.
On the contrary, for large geometrical deformation of the structure, using
moving mesh may lead to highly distorted meshes and eventually cause a
breakdown of the calculation as mentioned above. In the case of moving
mesh, the topology of the mesh and the resolution of the computational do-
main should be adjusted. This can be performed by re-meshing along with
information mapping. Information mapping is employed for transferring the
flow field data from the old grid to the new one. This may, however, cause
numerical errors. Since frequent re-meshing slows down the computation, it
is in most cases undesirable [13, 109].
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Navier–Stokes Equations

4.2 Arbitrary Lagrangian–Eulerian Formulation for the
Compressible Navier–Stokes Equations

In this section, the ALE approach is formulated to handle the fluid flow
in Eulerian description using moving fluid grids and the flexible structure
in a Lagrangian formulation using stationary structure grids. For moving
meshes, i.e., time-dependent geometries, the coordinate transformation will
also depend on time. Thus, for each time instant the mapping (Eq. (2.8)) will
change. The time-dependent coordinate transformation can be expressed as

t = τ,
x = x(ξ, η, τ),
y = y(ξ, η, τ),

(4.2)

where τ is the time in transformed coordinates. The transformed 2D com-
pressible Navier–Stokes equations in perturbation form [91] can be expressed
as

Û′τ + F̂′ξ + Ĝ′η = 0, (4.3)

where Û′ = J−1U′, and the transformed flux vectors are

F̂′ = J−1
(
ξtU

′ + ξx(Fc′ − Fv ′) + ξy(G
c′ −Gv ′)

)
,

Ĝ′ = J−1
(
ηtU

′ + ηx(Fc′ − Fv ′) + ηy(G
c′ −Gv ′)

)
.

(4.4)

The chain rule for partial differentiation provides the expressions for
Cartesian derivatives in the viscous flux vectors Fv ′ and Gv ′, e.g.

u′x = u′ξξx + u′ηηx,
u′y = u′ξξy + u′ηηy.

(4.5)

The Jacobian determinant of the transformation is J−1 = xξyη − xηyξ
and time-dependent metric terms are

J−1ξx = yη, J−1ξy = −xη, ξt = −xτξx − yτξy,
J−1ηx = −yξ, J−1ηy = xξ, ηt = −xτηx − yτηy.

(4.6)

In the time-dependent coordinate transformation of the fluid flow do-
main, the local velocities of the fluid domain ẋ = xτ and ẏ = yτ are sub-
tracted from the fluid velocity to define the contravariant velocity compo-
nents U = ξx(u− ẋ) + ξy(v − ẏ) and V = ηx(u− ẋ) + ηy(v − ẏ) which yield
simple expressions for the transformed inviscid flux vectors F̂c and Ĝc [94].
The ξ− and η− directions in (4.6) are discretized by the globally fourth
order accurate SBP operator (2.23). Moving mesh is implemented to update
the whole fluid domain in each time step.
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Solving fluid flow on a moving mesh, the numerical scheme should satisfy
the Geometric Conservation Law (GCL) for mathematical consistency [128].
This law states that

(J−1)τ + (J−1ξt)ξ + (J−1ηt)η = 0, (4.7)

where the time derivatives of the computational coordinates ξ and η are
calculated from the grid point velocities ẋ = xτ , ẏ = yτ as follows, cf. (4.6)

ξt = −ξxẋ− ξyẏ, ηt = −ηxẋ− ηyẏ. (4.8)

Then, the 2D Navier–Stokes equations in ALE formulation [91] are given by

U′τ = 1
J−1 (−F̂′ξ − Ĝ′η − (J−1)τU

′), (4.9)

where the transformed flux vectors F̂′ and Ĝ′ are defined in (4.4).

4.3 Moving Mesh

The multi-block structured grid approach discussed in Section 2.3 is em-
ployed to accommodate geometric flexibility with high order operators in
order to represent the simplified geometry in the upper airways.

Figure 4.1: Multi-block topology of the computational domain for the simplified
geometry of the upper airways. The three upper blocks are detached in the figure
for illustration of the three-point overlap, shown with magenta lines.

Figure 4.1 shows 6 blocks to decompose the computational domain as an
example. Blocks 1, 3 and 5 have the lower channel wall as their southern
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boundaries and the rigid plate, flexible plate and the line between the trail-
ing edge of the flexible plate and the outlet, respectively, as their northern
boundaries, cf. lower plot in Figure 4.1. The upper neighbouring blocks 2,
4 and 6 with the upper channel wall as their northern boundaries are set
apart in the upper plot of Figure 4.1 to show the overlapping regions.

Figure 4.2: Schematic of how the deformed mesh is generated, given the displace-
ment of the structure (red dots) and initial configuration (white dots).

The computation using mesh update is parallelized by dividing the blocks
into smaller blocks with overlaps. However, the mesh structure and resolu-
tion in a sub-domain are often strongly affected by the other sub-domain.
The mesh is updated by an automatic remesh in each time step using the
positions and velocities of the flexible structure at the boundary and a linear
interpolation for interior points in the fluid domain as shown in Figure 4.2.
The white lines represent the initial configuration of the structure and com-
putational domain. Black lines are the new mesh of the domain, the red lines
and circles illustrate the structure deformation and the purple lines show the
displacement of the grid nodes at the new time level compared to the initial
ones.
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CHAPTER5
Immersed Boundary Method

This chapter provides a general overview on the state-of-the-art
immersed boundary methods. The developed model is defined and
the procedures for applying it to complex geometries and moving
boundaries are presented.

5.1 Introduction

The term immersed boundary method was initially introduced by Peskin in
1972 [87] and particularly designed to deal with elastic (deforming) bound-
aries to simulate blood flow in a cardiovascular system. Since then, the
immersed boundary method (IBM) which is a Cartesian grid-based method
has gained a growing interest in computational fluid dynamics for solving
complex and moving boundary problems. Nowadays, the immersed bound-
ary methods can broadly be classified into two major categories, namely a
continuous forcing approach and a discrete (or direct) forcing [75]. These
approaches are also called diffuse and sharp interface methods, respectively.

In the first category which was originated by Peskin [87, 88], a contin-
uous forcing function is included in the momentum equation in the entire
domain. Thus, a diffused boundary representing the effect of a solid body
on the flow field is associated with the force distribution on the fluid. Many
methods have been developed to determine the body force on the fluid. In
the case of elastic boundaries, the IB is represented by a set of massless elas-
tic fibres and the location of these fibres is tracked using Lagrangian method
by allowing a few massless points to move with the local fluid flow velocity.
The forcing function can be defined by a sharp delta function with a smooth
distribution to represent the applied force by the IB on the fluid flow. The
boundary force can be determined by a distribution function on a particular
segment at a time instant obtained by the boundary configuration at that
time [87, 89]. If a rigid boundary is considered, a feedback forcing can be
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5. Immersed Boundary Method

used [34, 61, 99]. The main idea is to make the fluid at rest on the immersed
surface (no-slip boundary condition) by applying a body force. Since the
applied body force is unknown, it must be calculated in some feedback way
to employ the velocity on the boundary. Therefore, the force is dependent
on the difference between the interpolated velocity at the boundary and the
desired boundary condition. This approach and its subsequent developments
have been successfully used for a multitude of applications in incompressible
fluid flow [131]. The significant advantage of continuous forcing approaches
is that they are independent of the underlying spatial discretization. How-
ever, the major drawbacks of these types of IBM are that they may not only
induce spurious oscillations, but also numerical instability issues particularly
for unsteady flows at high Reynolds numbers due to the inherent stiffness
of the source terms [34, 35].

Conversely, in the discrete forcing approach (sharp interface method), the
governing equations are discretized on a Cartesian grid without computing
any forcing term directly. In this approach, the presence of the solid surface
imposed on the fluid is considered by adjusting the discretization in the
vicinity of the immersed boundary in order to take the boundary conditions
at the IB into account directly. Therefore, these sharp-interface approaches
are better suited for higher accuracy than the diffuse-interface approaches.
The sharp-interface methods have also been developed in different distinct
formulations to deal with the fluid-solid interface.

For instance, Ye et al. [132] proposed an approach for simulating convec-
tion dominated flows on a collocated (non-staggered) grid called a cut-cell
method (also named Cartesian grid method). This method was firstly in-
troduced by Clarke et al. [17] for inviscid flows and has then been applied
to viscous flows [122, 124, 132]. In the cut-cell method, a finite volume
scheme is designed to represent the conservation laws for cells cut by the
immersed boundary, while the flow away from the IB can be discretized by
using standard methods. Since the cut-cell method is based on the finite
volume method, it strictly preserves the conservation of mass, momentum
and energy particularly in the vicinity of the immersed boundary. Therefore,
the significant advantage of this method is to precisely impose the boundary
conditions at the body and to be conservative. However, the wide range of
possibilities of geometrical shapes for cut-cells (complex polyhedral cells)
causes to difficulties in extending the method to 3D and implementing it
for arbitrarily complex geometries. Furthermore, a large number of special
treatments is needed to implement and formulate the boundary conditions
in cells cut by the immersed boundary. Nevertheless, there have been some
improvements in its implementation in recent years [39, 45, 59, 101, 102].

In another group of sharp-interface methods, the presence of forcing term
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is taken into account at the fluid nodal points in the vicinity of the fluid-
solid interface as a velocity corrector such that the boundary conditions at
the immersed body are satisfied. In this way, a forcing term does not need
to be calculated, but the boundary conditions are incorporated through the
reconstruction of the local flow field around the immersed interface. Thus,
the flow field is locally reconstructed by satisfying the actual values of the
boundary conditions through appropriate interpolation. The main advantage
of this method is that a forcing term never needs to be evaluated, because
the forcing is directly realized by the boundary conditions. Therefore, the
method is termed as the direct forcing approach. The approach was first
proposed by Mohd–Yusof [76] for spectral methods. In this work, the effect
of the body force is calculated by determining the difference between the
mirrored velocity at the internal points inside the body with the velocity at
the external points outside the body to enforce the tangential velocity at
the immersed boundary. In this procedure, the presence of force counteracts
the errors between the calculated velocities and the physical velocity profile
at the immersed body.

Fadlun et al. [26] further implemented the discrete-time forcing approach
to a three-dimensional finite difference method on a standard marker-and-
cell (MAC) staggered grid, as suggested by [76] and showed that this ap-
proach is more efficient. In contrast to the work by Mohd–Yusof [76], their
interpolation scheme does not depend on the mirrored velocity points inside
the solid body. Linear interpolations for reconstruction of velocity at the grid
point nearby the solid body boundary is used. The interpolation directions
in the method proposed by Fadlun et al. [120] was either the streamwise di-
rection or the transverse one (as illustrated in Figure 5.1(a)). The choice of
direction which is arbitrary, makes it problematic for complex configuration.

A better reconstruction scheme of the fluid points near the immersed
boundary was proposed by Balaras [4], who performs the reconstruction
along the normal line to the body surface (as illustrated in Figure 5.1(b)).
This approach eliminates the ambiguities associated with interpolation along
grid lines used by Fadlun et al. [26]. However, this method was applicable
to flows with immersed boundaries that are aligned with one coordinate di-
rection, e.g, two-dimensional or axisymmetric shapes [33]. This restriction
is alleviated by Gilmanov et al. [32, 33] who extends the method to arbi-
trarily complex, three-dimensional immersed boundaries by employing an
unstructured, triangular grid for discretizing the body surface. They also
extended their immersed boundary methods to moving-body simulations
at different Reynolds numbers [32, 130]. Gilmanov et al. [32] extended the
method to arbitrarily complex moving bodies by employing a second or-
der hybrid staggered/non-staggered grid approach. The reconstruction is
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5. Immersed Boundary Method

carried out along the normal line to the body surface based on [33] by em-
ploying a quadratic interpolation scheme. Yang and Balaras [130] developed
embedded-boundary formulations for laminar and turbulent flows interact-
ing with moving boundaries. They introduced the concept of field-extension
to treat the points emerging from a moving solid body to the fluid [130].

(a) Unidirectional interpolations. (b) Interpolation along normal line.

Figure 5.1: Illustration of the flow field reconstruction near the immersed boundary
employing different interpolation stencils to obtain the values at the forcing points.

Tseng and Ferziger [120] developed the concept of immersed boundary
approaches proposed by Fadlun et al. [26] and Verzicco et al. [126] by means
of a ghost cell approach originated in [71]. In their approach, a higher order
representation of the IB is accomplished by employing ghost cells inside the
solid body (as shown in Figure 5.2(a)) rather than fluid points in the vicinity
of the IB. Ghost cells are defined as cells within the solid body having at
least one neighbouring cell inside the fluid domain. The significant concept
behind this approach was to compute the flow variables at these ghost cells
such that the boundary condition at the IB are satisfied. This approach is
commonly referred to the ghost cell immersed boundary method (GCIBM).
In this approach, an interpolation scheme needs to be devised for each ghost
cell to directly incorporate the boundary conditions at the immersed body
surface. To overcome the issues of reconstruction schemes, Majumdar et
al. [71] and Kim et al. [58] investigated linear and quadratic stencils for
a variety of two-dimensional laminar flows with finite difference and finite
volume solvers. Ghias et al. [29] developed a finite difference-based ghost
cell method for compressible viscous flows. Mittal et al. [74] showed the
large potential of the ghost cell approach to deal with different problems,
including highly complex geometries, moving and deforming bodies. They
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[29, 74] constructed interpolation operators in the normal direction to the IB
in order to simplify the implementation of Neumann boundary conditions
at the IB. Furthermore, the concept of the image point is introduced, which
is the mirror of the ghost-cell point along the normal direction of the body
surface (as shown in Figure 5.2(b)).

(a) Schematic of interpolation stencil with
ghost point.

(b) Schematic of interpolation stencil
using image point.

Figure 5.2: Illustration of the flow field reconstruction near the immersed boundary
using different interpolation stencils to find the values at the ghost points.

The main difference between the works by Fadlun et al. [26], Balaras
[4] and Gilmanov et al. [33] and the ghost cell immersed boundary method
is that, in [29, 74, 120], the velocity field at the so-called forcing nodes
(fluid points with at least one neighbouring point inside the solid body) is
reconstructed by employing a linear interpolation scheme along either an
arbitrary grid line or a well-defined normal line (cf. Figure 5.1). On the
other hand, in the ghost cell IB by Mittal et al. [74] and Tseng and Ferziger
[120], the solution is reconstructed at the ghost cells to impose the geometric
existence of the immersed boundary and to satisfy the discretization stencil
at the closest fluid point to the immersed boundary (cf. Figure 5.2). Both
aforementioned strategies adopt the solid wall boundary conditions directly
in their formulations. Therefore, they can represent the immersed boundary
sharply.

The major advantage of this group of sharp interface methods (direct
forcing) is that they will potentially result in a direct control over the overall
numerical accuracy and stability, even though they are highly dependent on
the discretization stencil. In comparison to the other sharp interface meth-
ods such as the cut-cell method, the direct forcing or flow-reconstruction
approach is simpler in implementation and formulation. In contrast to other
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methods, the implementation does not increase the computational cost sig-
nificantly. The interpolation is the key principle for the reconstruction in
this IB method. There are a number of options available for constructing
the interpolation schemes in [71]. Higher order interpolation methods can
be used as better options for problems in which the higher accuracy at the
near-wall region with sufficient local resolution is required.

However, most attention on immersed boundary methods has been de-
voted to incompressible flow [75]. Although a few IB methods for viscous
compressible flows and acoustic wave propagation problems have been de-
veloped [104], works on viscous compressible flows are still scarce. De Palma
et al. [19] and de Tullio et al. [20] developed an IB methods to deal with
compressible turbulent flows over a circular cylinder and an airfoil using
a direct forcing approach with a linear interpolation and inverse-distance
weighted interpolation, respectively. Even though in the study by [20] local
grid refinement is used, both of these methods lead to locally first order
accurate approaches. In the compressible IB method of Ghias et al. [29], a
finite difference based ghost cell method is developed using a bilinear inter-
polation to determine the ghost cell values. Their method was successfully
tested for flows over a circular cylinder and an airfoil at low Mach numbers
showing second order accuracy locally and globally.

Furthermore, the vast majority of existing immersed boundary formu-
lations particularly for viscous compressible flows are up to second order
accurate except for the studies by [12, 104]. Since Reynolds numbers are the
reason to increase the resolution in the simulation, employing a high order
approach could immensely boost the capability of the immersed boundary
method. It is of interest to develop a high order approach to expand the
applications of the immersed boundary method [136], especially for com-
pressible flows where acoustics is of great importance. Acoustic field com-
putations need high order formulations in order to minimize the dispersion
and dissipation errors. In addition, not only the order of accuracy of the
approximation in the interior and at the boundary of the fluid domain, but
also the sharpness of the interface is important in order to restrict the am-
plitude and phase errors produced by waves interacting with the boundary
[104].

In recent years, several efforts have been made to develop high order
immersed boundary methods [12, 30, 62, 67, 104, 135]. The higher order
ghost cell IBM for solving the linearized perturbed compressible equations
for acoustic problems using a compact finite difference scheme was developed
by Seo and Mittal [104]. Zhou et al. [135] developed a high order matched
interface for elliptic equations with discontinuous coefficients and singular
sources, and showed that it can be combined with an explicit high order finite
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difference method to discretize the whole computational domain. Multiple
ghost nodes along each spatial direction are used to treat the jump condi-
tions across the immersed boundary. A fourth order IBM for the Laplace
and heat equations was developed by Gibou and Fedkiw [30], where the
Laplacian is discretized employing a five-point finite difference stencil. The
values of the variables at the two layers of ghost nodes are determined by
one-dimensional polynomial extrapolations. Linnick and Fasel [67] presented
a fourth order immersed boundary method based on a compact scheme for
solving the incompressible Navier–Stokes equations in a stream-function-
vorticity formulation. High order correction terms for the jump conditions
across the interface are introduced in their boundary treatment. The Pois-
son equation is not solved by a high order approach. Their method has the
advantage of keeping the order of accuracy at the interface through the use
of a jump function by modifying the differentiation scheme at the interface.
That IBM was successfully applied to compressible flow by Brehm et al.
[12]. The main feature of their new immersed boundary method [12] is that
the coefficients of the irregular finite difference stencils in the vicinity of the
immersed boundary are optimized to promote numerical stability.

5.2 Immersed Boundary Treatment

In this study, a multi-dimensional ghost point methodology is employed to
impose the boundary conditions at the immersed boundary. The method is
devised from the beginning for efficient and accurate solution of flows with
complex and moving boundaries [55–57].

The basic idea in this method is to compute the value of the flow variables
at each of the ghost points (referring to three layers of points inside the solid
body adjoining the immersed boundary) such that the boundary conditions
at the immersed boundary are satisfied. As illustrated in Figure 5.3, the
procedure begins by determining the immersed boundary and then identify-
ing the solid points, i.e. the nodes lying inside the solid body, and the fluid
points, i.e. the nodes lying outside the body in the fluid domain. The ghost
points (denoted by GP) are identified as the solid nodes that lie adjacent to
the immersed boundary and have at least one neighbour node in the fluid
domain with the standard sixth order central difference stencil at the ghost
point. The image point (denoted by IP) can be found by extending a normal
probe, i.e. a line normal to the immersed boundary, from the ghost point to
intersect with the immersed boundary at the body intercept point (denoted
by BI) such that the body intercept point lies at the midpoint of the line
connecting the ghost point and the image point. Once the flow variables at
the image point are computed, the ghost point variables can be determined
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by imposing the boundary conditions.

Figure 5.3: Schematic of points used to determine the flow variables at a ghost
point adjacent to an immersed boundary.

The first step is to identify the ghost points. Therefore, it needs to specify
whether a grid node is a fluid point or a solid point. This task is the classical
problem of point-in-polygon for a 2D problem in computational geometry,
i.e. given a point in space and a polygon whose geometry is defined by
its boundaries (edges), determining whether the point is located inside or
outside the polygon. The ray-casting algorithm is used in this study [43].
The ray-casting method works by casting a random half-infinite x−ray from
a given point and counting the number of intersections between the ray and
polygon edges. Once the intersections are identified it is straightforward to
determine the grid point status. If the number of intersections is odd then
the point is located inside the polygon (point B in Figure 5.4(a)), otherwise
it is located outside (point A in Figure 5.4(a)).

Once the task of identifying of ghost points is accomplished, the normal
distance is calculated to find the body intercept point and then the image
point is determined by extending the normal line an equal distance across
the boundary. The normal distance d from the ghost grid point to the surface
of the geometry is obtained by a point-line distance algorithm. The surface
of the geometry is discretized by body marker points making up the surface
segment. The normal vector n at the surface segment is calculated from the
geometric coordinates of the points involved in the surface segment. Once
the vector r between the ghost point and the closest body marker point is
identified, the normal distance is computed by projecting this vector onto
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the normal vector of the corresponding surface segment as illustrated in
Figure 5.4(b).

(a) (b)

Figure 5.4: (a) Schematic of ray-casting method for 2D point-in-polygon problem.
(b) Schematic of point-normal line distance algorithm.

Once the BI and the corresponding IP have been identified, a reconstruc-
tion procedure is needed to find the values at the ghost points by taking into
account the boundary conditions directly.

5.2.1 Reconstruction Procedure

The reconstruction is built by a polynomial employing the nodal values in
the fluid domain and the boundary conditions at the interface. Two kinds of
interpolation methods are considered in the present study: bilinear interpo-
lation and weighted least squares method which are analyzed and discussed
in detail in our Paper III [56] and Paper IV [55].

5.2.1.1 Bilinear Interpolation

In the case of bilinear interpolation in 2D, the interpolating polynomial
involves four nodes and hence four nodal values need to be specified. The
bilinear interpolation for a generic variable φ can be expressed as

φ(x, y) = C1 + C2x+ C3y + C4xy (5.1)

The four unknown coefficients Ci, i = 1, .., 4, can be determined using val-
ues at the four nodes surrounding the image point. Thus, the variable at the
image point is reconstructed through bilinear interpolation using unknown
coefficients and known flow variables at surrounding fluid nodes. However,
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the approach can be reformulated such that new coefficients are only depen-
dent on the coordinates of the image point and the geometry of the grids
[56, 74]. Thus, the image point value can be expressed as

φIP =

4∑

i=1

αiφi, (5.2)

where αi, i = 1, ..., 4, are coefficients depending on the coordinates only. The
reformulation is discussed in detail in the Appendix C of our Paper III [56].

There might occur some spacial cases when a ghost point is close to
the immersed boundary such that, its corresponding image point does not
have four surrounding fluid points. One case would be that the ghost point
itself is part of the interpolation scheme. Since the ghost point value in an
interpolation scheme would be unknown, the ghost point is then replaced by
the body intercept point where the values are determined by the boundary
conditions, cf. Figure 5.5(a).

The second case would be that two interpolation points lie inside the
immersed body, one at the corresponding ghost point itself and one at an-
other ghost point. The procedure we used to handle this case is to repeat
the above steps for the other ghost point as well, cf. Figure 5.5(b).

(a) (b)

Figure 5.5: (a) Schematic of the situation when one surrounding interpolation point
is a body intercept. (b) Schematic of the situation when two of the surrounding
interpolation points are body intercepts.

Therefore, the value of the variable at the ghost point is computed by
employing a linear approximation along the normal probe which takes into
account the boundary condition at the body intercept. For a Dirichlet bound-
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ary condition at the body φ(xBI, yBI) = φBI, the ghost point value can gen-
erally be obtained from 1

2(φIP + φGP) = φBI, which can be expressed as

φGP =

(
2−

∑

j∈G
αj

)
φBI −

∑

i/∈G
αiφi, (5.3)

where G is the set of body intercepts that are part of the interpolation stencil
in special cases.

For a Neumann boundary condition at the immersed boundary ∂φ(xBI,yBI)
∂n =

(∂φ∂n)BI, the second order central difference approximation is applied along
the normal probe. Note that for Neumann boundary condition the value of
(∂φ∂n)BI are part of the interpolation points, in those spacial cases mentioned
above. Therefore, the value at the image point can generally be obtained as

φIP =
∑

j∈G
αj

(
∂φ

∂n

)

BI
+
∑

i/∈G
αiφi (5.4)

Thereby to second order, the general formulation for a inhomogeneous Neu-
mann boundary condition is obtained form φIP−φGP

4l =
(
∂φ
∂n

)
BI
, which can

be expressed as

φGP =

(∑

j∈G
αj −4l

)(
∂φ

∂n

)

BI
+
∑

i/∈G
αiφi, (5.5)

where 4l is the length of the normal probe from the ghost point to the
image point.

5.2.1.2 Weighted Least Squares Method

To extend the boundary treatment to high order and to obtain more ac-
curate values at the ghost points that are close to the immersed boundary,
a high order polynomial interpolation combined with the weighted least
squares method [69, 104] is used, here referred to as WLSQ method. In
this approach, the value at the ghost point is determined by imposing the
boundary condition at the body intercept point employing a third order
polynomial to ensure at least fourth order accuracy of the flow reconstruc-
tion. In particular, a generic variable φ is approximated around the body
intercept point (xBI, yBI) as follows

φ(x′, y′) ≈
r∑

i=0

r∑

j=0

Ci,j x
′ i y′ j , i+ j 6 r, (5.6)

where r is the order of the polynomial, x′ = x − xBI and y′ = y − yBI are
the local coordinates, and Ci,j are the coefficients which link the boundary
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intercept point to neighbouring points. The number of polynomial coeffi-
cients to be determined is p = (f(r) =)10 for a third order polynomial in
the 2D case. Following [69, 104], the data points are chosen within a circular
(spherical in 3D) region of radius R around the body intercept point, as
shown in Figure 5.6.

Figure 5.6: Schematic of polynomial approach for boundary treatment.

The unknown coefficientsC can be determined by minimizing the weighted
least squares error for q data points.

minC

q∑

n=1

(wn(VnC− φn))2, (5.7)

where n is the nth data point and wn is the weighting function. The choice
of weighting function and more discussions of WLSQ method can be found
in our Paper IV [55]. V is the Vandermonde matrix V = {VT

1 ,V
T
2 , ...,V

T
q }T

and

Vn = {1, x1y0, x0y1, ..., xr−1y0, x0yr−1, ..., xr−2yr−1, xr−1yr−2, xry0, x0yr}.
(5.8)

The coefficients Ci,j which are the solution of the weighted least squares
problem in Eq. (5.7) are given by

C = (WV)+Wφ, (5.9)

where the superscript + indicates the pseudo-inverse of a matrix. C and φ
are the coefficients and the data variables φn(x′, y′), respectively. W is the
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weighting matrix. The pseudo-inverse of matrix (WV) is computed by sin-
gular value decomposition (SVD) [93]. Multiplying by the weighting matrix
gives M = (WV)+W which is a p× q matrix.

Therefore, for a given Dirichlet boundary condition at the body, φ(xBI, yBI) =
φBI, the ghost point value can be evaluated as

φGP =
φBI −

∑q
n=2M(1, n) · φ(x′n, y

′
n)

M(1, 1)
. (5.10)

For a given Neumann boundary condition at the body, ∂φ∂n(xBI, yBI) = ζ,
the ghost point value is computed as

φGP =
ζ −∑q

n=2

(
nxM(2, n) + nyM(3, n)

)
· φ(x′n, y

′
n)

nxM(2, 1) + nyM(3, 1)
, (5.11)

where nx and ny are the components of the unit vector normal to the bound-
ary.

5.3 Immersed Boundary Method for Summation-by-parts
Operators

As mentioned in Section 2.2.2, the high order SBP operators employed in
this study for spatial discretization correspond to the sixth order central
finite difference method at interior grid points. Thus, they require three
layers of ghost points inside the immersed boundary in order to maintain
the overall high order of accuracy, as shown in Figure 5.7.

Determining the ghost point values along the aforementioned normal
probe works well for handling all layers of ghost points inside the solid body.
However, it is constrained to second order accuracy [74], as investigated in
detail in our Paper III [56] and Paper IV [55]. To achieve higher accuracy
for the IBM, the WLSQ can also be used. Despite the advantage of the
WLSQ obtaining high order accuracy, it has to be noted that because in this
approach the ghost point is part of the interpolation formulation and it is
located outside the domain, it needs to keep the ghost point close to the body
intercept point by using fine grids. Furthermore, care has to be taken to have
a sufficient number of data points to ensure that the solution is well-defined.
On the other hand, by using the image point and bilinear interpolation a
second order accurate solution will be achieved. For image points located too
close to the immersed boundary, i.e., where one or two ghost points might
be part of the interpolation scheme as discussed above in Section 5.2.1.1, the
body intercept points need to be used instead which leads to losing a bit of
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Figure 5.7: Schematic of 3 layers of ghost points inside immersed body on a Carte-
sian mesh.

accuracy in the weighting coefficients in the interpolation scheme. Therefore,
to take advantage of the good features of these two approaches and make it
compatible to our solver, a hybrid treatment is employed. In this approach,
each layer of ghost points is treated differently. The first layer of ghost points
is treated by using a third-order polynomial combined with the WLSQ in
order to obtain a higher accuracy near the IB. The second and third layers
of ghost points are treated by finding the image points of the corresponding
ghost points and using bilinear interpolation to find the values at the image
points as illustrated in Figure 5.8.

In this study, second derivatives of the viscous parts of F̂ξ
′
and Ĝη

′
in the

transformed compressible Navier–Stokes equations (2.13) are approximated
by applying the SBP operator for the first derivatives ∂

∂ξ and ∂
∂η , twice.

However, successively applying the first derivative operator makes the sten-
cil wider, which requires a special treatment for the immersed boundary
method. For the proper treatment to avoid wider stencils in computing the
second derivative, the first derivatives of the viscous fluxes are computed
up to and including the ghost points in the third layer of ghost points as
boundary points and using the globally fourth order SBP operator (2.23) as
discussed in Section 2.2.2. The first derivatives of the viscous and inviscid
fluxes, i.e. F̂′ξ and Ĝ′η in Eq. (2.13) are approximated by the standard sixth
order central difference method. Using this procedure, we ensure that also
the derivatives of the inviscid and viscous fluxes at the fluid points closest
to the immersed boundary are computed with high order. Note that the
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Figure 5.8: Schematic of hybrid treatment, WLSQ method is used for the first layer
of ghost point and bilinear interpolation for the second and third layers.

values at the points flagged as solid points are enforced to be zero at the
end of each Runge–Kutta stage to avoid obtaining non-physical values for
these points lying inside the solid body.

5.4 Moving Boundaries

In this immersed boundary method, the ghost point values need to be up-
dated when the boundaries move. Since the fluid flow equations are solved
on a Cartesian grid, all that is needed is to update the values at the ghost
points at the beginning of each stage of the Runge–Kutta method. Moving
the solid body to the new location at the new time level n+1, cf. Figure 5.9,
the body intercept points are updated. Next, it is required to recompute the
values at the image points and then to obtain the ghost point values prior to
advancing the fluid flow equations in time. The algorithm of IBM for moving
boundaries from time level n to n+ 1 is described in detail in our Paper V
[57].

5.5 Freshly Emerged Fluid Points

One issue encountered with moving boundaries in sharp interface methods
is the so-called fresh-cell problem [123, 125] or freshly emerged fluid point.
This term refers to the situation where a node inside the solid body which
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is a solid point at one time step, emerges into the fluid domain at the next
time step as the immersed boundary moves across the fixed Cartesian grid.
Figure 5.9 shows a 2D schematic where the boundary motion from time level
n to time level n+1 leads to the appearance of freshly emerged fluid points.

Figure 5.9: Schematic of emergence of fresh fluid points due to the boundary motion
from time level n to time level n + 1, the interpolation stencil is in color for one
representative freshly emerged fluid point.

Basically, the spatial discontinuity causes a temporal discontinuity, i.e.
the solution at a node changing from solid to fluid from one time step to the
next is discontinuous in time because of the moving boundary. Obviously,
it is not possible to devise a straightforward temporal discretization of the
governing equations for these fresh fluid points, because these points do not
have a settled time history [11]. Udaykumar et al. [123] dealt with this issue
by combining the freshly emerged fluid points with adjoining fluid points for
the first time step right after appearing the freshly emerged fluid point in the
fluid domain. In Udaykumar et al. [125] a relatively different approach was
chosen to address this issue. The velocity in the freshly emerged fluid point
was determined for one time step by applying an interpolation procedure
taking the neighbouring points into account [11].

A similar strategy [74, 123] is adopted in the present study. The values
of the fresh fluid points are initialized from the neighbouring points sur-
rounding it. As illustrated in Figure 5.9, a normal probe is extended from
the fresh fluid node to the immersed boundary at the new time level n+ 1
and this intersects at the body intercept point (BI). An image point (IP)
corresponding to the body intercept is then determined and the four nodes
surrounding the image point are identified. One of these nodes is necessarily
the fresh fluid point itself which is replaced by the body intercept point.
Applying a bilinear interpolation in the quadrilateral defined by the four
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points surrounding the image point, i.e. three fluid points and the BI point
at time level n+ 1, the value at the fresh fluid point is obtained.

It is worth mentioning that since the explicit numerical methods are
constrained by the CFL condition, the immersed boundary motion and thus
the time step size is also subject to a similar constraint. Therefore at any
given time step the layer of fresh fluid points can at most be one grid layer
deep [74]. Therefore, any node that is a freshly emerged fluid point at a
given time step was necessarily a ghost point at the previous time step. This
is particularly true, in the current IBM where three layers of ghost points
are employed.
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CHAPTER6
Summaries of Thesis Papers

This chapter provides a brief overview on the papers listed in the
thesis and presents some selected results.

6.1 Paper I: Interaction Between a Simplified Soft Palate
and Compressible Viscous Flow

This paper presents numerical simulations of the fluid-structure interaction
(FSI) of a simplified 2D model of the upper airways [53], as illustrated in
Figure 6.1. This is a well-established model wherein a flexible plate rep-
resenting the soft palate is mounted at the trailing edge of a rigid plate
representing the hard palate. The rigid plate separates the upper and lower
channel flows modeling the flow in the oral and nasal tracts, which interact
with the flexible plate and then combine into a single channel flow repre-
senting the flow in the pharynx [5, 117].

(a) Schematic of the computational model (b) The anatomy of
upper airways.

Figure 6.1: (a) Computational model and (b) real geometry.

The flow-induced oscillation of the soft palate in the pharynx is studied.
The soft palate in this paper is modeled as a flexible plate by the linearized
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Euler–Bernoulli thin beam theory. The arbitrary Lagrangian–Eulerian for-
mulation is used for handling FSI. The modal analysis of the cantilevered
plate is carried out and the computed frequencies of the plate are compared
with the corresponding second mode eigenfrequencies of the structure. We
tested plates with different mass, stiffness and damping parameters to inves-
tigate the oscillation behavior of the flexible plate under different material
parameters. We looked into the total, kinetic and strain energies for all cases
considered, and found that the oscillation of the plate remains stable.

Figure 6.2: Time sequence showing vorticity contour plots, both inlets are open
at Re = 378 and Ma = 0.01. The contour levels are from −0.2 s−1 to 0.2 s−1
corresponding to −5 × 10−5 6 (5×U)zL/c0 6 5 × 10−5 and −5 × 10−3 6
(5×U)zL/U 6 5 × 10−3. Snapshots at tc0/L = 180 for large and elongated
channels, respectively. Snapshot at tc0/L = 320 for elongated channel.

In Figure 6.2, the vorticity contours for the case when both inlets are
open at Re = 378 and Ma = 0.01 is shown. To ensure that the outlet
boundary conditions in this channel do not affect the vortices, we repeated
this simulation for a longer channel. Figure 6.2 shows the results. The length
of the outlet blocks (from trailing edge of the plate towards outlet boundary
and the number of grid points in these blocks have been doubled (6L instead
of 3L in Figure 1 of the paper [53]). The first and second snapshots show
the status of the vortices at the same time for these two different channels.
The results for the two different channel lengths are in good agreement.
The third snapshot in Figure 6.2 shows the vorticity contours for elongated
channel at tc0/L = 320.

The acoustic pressure signal is analyzed to study the effect of plate oscil-
lation on generating sound. Although at the given boundary conditions the
quarter wave mode, i.e. f0 = (1−Ma2)( c

4Lt
) where Ma is Mach number, c
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Viscous Flow
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Figure 6.3: (a) and (c) Time history of acoustic pressure p′/(ρ0c20) at inlet and
outlet, respectively; (b) and (d) Spectrum of pressure signal. The fluid flow is at
Re = 378 and Ma = 0.01. The flexible plate was released at tc0/L = 2000.

the speed of sound and Lt is the total length of the channel, is identified as
the dominant frequency, the frequency of the sound produced by the plate
oscillation is in good agreement with the frequency of the plate oscillation
f = 91.5Hz. However, the quarter wave frequency and its harmonics dom-
inate the oscillation frequency, as long as the acoustic waves have not yet
decayed sufficiently. Figure 6.3 illustrates the time history of the acoustic
pressure and the frequency of the acoustic pressure spectrum for this simu-
lation. After turning on the fluid-structure interaction at tc0/L = 2000, the
frequency of the oscillation of the flexible plate can be observed better due
to the decayed acoustic wave amplitudes.
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6.2 Paper II: Computational Study of Flow-induced
Oscillation of a Simplified Soft Palate

This paper is an extension of Paper I where a more faithful biomechanical
system by modeling the motion of a two-dimensional inextensible flexible
plate is studied [54]. This paper presents a two-dimensional numerical sim-
ulation to study fluid-structure interaction of a simplified model of the soft
palate in the pharynx for uniform inhalation.

In many previous studies [5, 47, 116], linear structural mechanics was
taken into account by using the one-dimensional Euler–Bernoulli beam equa-
tion. In this study another structural model has been developed by includ-
ing an inextensibility condition, however, only for a hinged free-end flexible
plate.

Vortex dynamics is assessed for the coupled fluid-structure system when
both inlets are open. Closer inspection of the pressure fields shows that the
plate oscillation produces a strong acoustic wave near the trailing edge of
the plate. The complexity of the reflections and the vicinity of the inlet
boundary, where uniform flow is imposed to the trailing edge lead to a
build-up of vortices near the inlet as shown in Figure 6.4.

Figure 6.4: The left column shows the time sequence of vorticity contour plots,
ωzL
c0

, and the right column presents the corresponding acoustic pressure contour
plots, p′

ρ0c0
, at Re = 378 and Ma = 0.1.
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Equations Using High Order Summation-by-parts Difference Operators

6.3 Paper III: Immersed Boundary Method for the
Compressible Navier–Stokes Equations Using High
Order Summation-by-parts Difference Operators

This paper introduces the initial development of the immersed boundary
method for our fluid solver [56]. In this paper, the ghost point IB ap-
proach has been adopted for a high order finite difference method based
on summation-by-parts (SBP) operators to provide an accurate and effi-
cient approach for studying low Mach number compressible viscous flows.
The immersed boundaries are treated as sharp interfaces by enforcing the
solid wall boundary conditions via flow variables at ghost points using bilin-
early interpolated flow variables at the image points of corresponding ghost
points. Using this strategy, second order convergence is achieved even by us-
ing a fourth order finite difference method, as we investigated in this paper.
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Figure 6.5: Streamlines for computed flow past a circular cylinder at Re = 20 and
Ma = 0.03.

Figure 6.6: Vorticity contours for computed flow past a circular cylinder at Re =
100 and Ma = 0.25.
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The methodology is applied to compute steady and unsteady flow prob-
lems to demonstrate its versatility as well as its accuracy. The flow past a
circular cylinder for moderate values of Reynolds number and Mach num-
ber is assessed. Figure 6.5 shows streamlines for Re = 20 and Ma = 0.03.
Figure 6.6 presents the instantaneous spanwise vorticity ωz contours for
Re = 100 and Ma = 0.25 indicating the presence of the von Kármán vortex
street.
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Compressible Flows based on Summation-by-parts Operators

6.4 Paper IV: High Order Immersed Boundary Method for
Viscous Compressible Flows based on
Summation-by-parts Operators

This paper is a significant extension of Paper III, because in this paper,
a high order immersed boundary method is devised [55]. Two different in-
terpolation schemes are tested to compute values at the ghost points. The
first method provides the bilinearly interpolated flow variables at the im-
age points of the corresponding ghost points, as we discussed in Paper III,
and the second method applies the boundary condition at the immersed
boundary by using the weighted least squares (WLSQ) method with high
order polynomials. The spatial accuracy of the two different reconstruction
procedures are separately verified by solving the steady state heat equation.
High order accuracy is achieved by the WLSQ method. A hybrid treatment
is used for flow past a circular cylinder. The convergence results for flow
past a circular cylinder at Re = 20 and Ma = 0.03 and Ma = 0.1 confirm
that the current fluid flow solver with the hybrid treatment of the immersed
boundary is globally third order accurate, as shown in Figure 6.7 for Re =
20 and Ma = 0.1. Figure 6.7 shows the norms of the relative errors of the
primitive variables ρ, u, v, p when the grid size changes.
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Figure 6.7: L2 and L∞ norms of the relative errors of the velocity components,
density and pressure computed at various grid levels for flow past a circular cylinder
at Re = 20 and Ma = 0.1.

Finally, the versatility of the present method in dealing with complex
immersed boundaries is demonstrated by simulating flows in the sagittal
cross-section of the upper airways of an obstructive sleep apnea patient. In
the present study, the cross-section of the upper airways for a patient in the
study by [77], a 67-year-old man who showed great improvement in AHI
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(Apnea Hypopnea Index) after a septum plastic surgery in the nasal cavity
is considered. In Figure 6.8(a), the computational grid for the 2D geometry
of the upper airways in the sagittal plane is shown. A Cartesian grid with
a total 991 × 381 grid points is employed and the domain is resolved with
uniform grid spacing. Figure 6.8(b) presents the vorticity contours at time
instant tc0/D = 1060 for fluid flow at Re = 2000 and Ma = 0.1.

(a)

(b)

Figure 6.8: (a) Computational grid for upper airway simulation (every 3rd grid
point is plotted). The boundary of the flow domain is shown in white. (b) Vorticity
contours for flow in the human upper airway at Re = 2000 and Ma = 0.1.
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around Moving Bodies

6.5 Paper V: Immersed Boundary Method for Viscous
Compressible Flows around Moving Bodies

In this paper, the immersed boundary method developed for moving bound-
aries by employing high order SBP operators is presented [57]. As in Paper
III, the boundary conditions of the immersed moving boundaries are en-
forced through a linear reconstruction procedure employing image points
and ghost points. The values at the image points are computed by bilinear
interpolation using four nodal fluid points surrounding the image points. Nu-
merical simulations for compressible viscous flows induced by a transversely
oscillating circular cylinder in free-stream and a harmonic in-line oscillating
circular cylinder in quiescent fluid are presented and compared with experi-
ments and incompressible fluid flow simulations which used body-conforming
grid methods.

In a transversely oscillating circular cylinder immersed in free-stream
[37, 38], the oscillation amplitude A and the excitation frequency fe are
two important parameters. The transverse motion of the cylinder is given
by a harmonic oscillation in y-direction. We performed the computations at
Re = 185,Ma = 0.25, A

D = 0.2 where D is the diameter of the cylinder and
0.8 6 fe/fo 6 1.2 where fo is the natural shedding frequency for a stationary
cylinder. Figure 6.9 presents the instantaneous streamlines with modulus
velocity contours in the left column and instantaneous spanwise vorticity
ωz contours in the right column when the cylinder is at its highest upper
position. It is observed that the wake pattern changes as fe/f0 increases.

In the case of an in-line oscillating cylinder in a fluid initially at rest
[23], there are two non-dimensional parameters that characterize the flow
induced by the motion of the cylinder. The first one is the Reynolds number
Re = UmaxD

ν where Umax is the maximum velocity of the cylinder during
oscillation, D the diameter of the cylinder and ν is the kinematic viscosity of
the flow at rest. The second one is the Keulegan–Carpenter number KC =
Umax
Dfe

where fe is the excitation frequency of the oscillation. The translational
motion of the cylinder is given by a harmonic oscillation in x-direction.

Fig. 6.10 shows instantaneous spanwise vorticity ωz contours in the left
column when the cylinder is at two different phase positions (2πft = 0◦,
288◦). The contours of the instantaneous acoustic pressure fluctuation p̃′ =
p′(x, y, t) − p̄′(x, y) non-dimensionalized by ρ0c

2
0 are presented in 6.10, in

the right column clearly show the presence of the generated acoustic waves
inside the domain. The pressure perturbation p′(x, y, t) is reduced by the
mean pressure p̄′(x, y) integrated over some periods of vortex shedding.
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(a) fe/fo = 0.8

(b) fe/fo = 1

(c) fe/fo = 1.2

Figure 6.9: Instantaneous streamlines and velocity modulus distribution (left col-
umn) and instantaneous vorticity contours (right column) of transversely oscillation
of cylinder at Re = 185, Ma = 0.25 and A/D = 0.2 for different fe/f0 = 0.8, 1, 1.2.
In all frames, the location of the cylinder is at its extreme upper position for all
values.
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(a) 0◦

(b) 288◦

Figure 6.10: Instantaneous vorticity contours of in-line oscillation in left column
and instantaneous acoustic pressure fluctuation p̃′ in right column, for two different
phase angle positions 2πfet = (a) 0◦, (b) 288◦ at Re = 100, KC = 5 and Ma =0.03.
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6.6 Contributions to Papers

The manuscripts were written by me. The numerical simulations and the
analysis of numerical results reported in the manuscripts were performed by
me. M. Larsson and B. Müller contributed with insightful comments around
the details of the manuscripts and reported results and the arrangements of
the contents. The compressible Navier–Stokes code based on SBP operators
for body-conforming grids using NSCBC was developed by B. Müller and
extended to an ALE solver by M. Larsson before starting my Ph.D. project.
The structural models were developed by me. Implementation of the multi-
block approach using MPI and development of the IBM were performed by
me. M. Larsson contributed with suggestions and discussions around the
details of the implementation.
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CHAPTER7
Concluding Remarks

7.1 Conclusions

The main findings and achievements of both fluid-structure interaction simu-
lations for a simplified model of the upper airways and the immersed bound-
ary method to study fluid flow over bodies with complex and moving bound-
aries are discussed.

7.1.1 FSI Simulation on the Upper Airways

To take a step towards the understanding of disorders of the obstructive
sleep apnea syndrome and snoring induced by fluid-structure interaction
(FSI), we have developed a simplified model of the upper airways. The in-
spiratory airflow is described by the 2D compressible Navier–Stokes equa-
tions, and the soft palate is modeled as a flexible plate by the linearized
Euler–Bernoulli thin beam theory and further by a 2D inextensible beam.
FSI is handled by the arbitrary Lagrangian–Eulerian (ALE) formulation.
Moving mesh compatibility with high order SBP operators is achieved by
developing a multi-block approach. The dynamics of the vortices produced
by the interaction of the fluid flow and the structure is investigated. Several
cases are presented to investigate the oscillation behaviour of the flexible
plate under different material parameters of mass, damping and stiffness.
For all cases considered, the oscillation of the plate remains stable. In order
to identify the effect of plate oscillation as a source of sound generation, the
acoustic pressure is analyzed.

7.1.2 IBM for Complex and Moving Boundaries

Aside from good features of body-conforming methods like the ALE method
for CFD and FSI problems as discussed in Section 1.3, body-conforming ap-
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proaches face some issues related to the mesh generation and mesh defor-
mation for complex geometries.

A ghost-point immersed boundary for the compressible Navier–Stokes
equations to deal with complex and moving boundaries on fixed Cartesian
grids is devised by employing high order SBP difference operators. The im-
mersed boundaries are treated as sharp interfaces by enforcing the solid wall
boundary conditions via flow variables at ghost points using either bilinearly
interpolated flow variables at image points or a high-order interpolation us-
ing a weighted least squares method. A hybrid method is applied to achieve
an efficient and high order immersed boundary method (IBM) formulation
with SBP operators. The methodology is applied to compute steady and
unsteady flow problems demonstrating its versatility as well as its accuracy.
The present method is then applied to the sagittal cross-section of the real
geometry of a human upper airways to demonstrate its capability for dealing
with complex geometries in practical applications.

The current IBM is extended to handle moving boundaries. The new
IBM is verified and validated for a transversely oscillating circular cylinder
and an in-line oscillating circular cylinder.

7.2 Future Outlook

There are many opportunities for extending the scope of this dissertation.
This section presents some of these directions.

In the present dissertation, a preliminary study was performed to examine
the fluid-structure interaction in the upper airways. The development of FSI
models for diagnosis and treatment of OSAS or snoring may favour simplified
and efficient models for clinical analysis. However, idealised models need
to be verified and validated by realistic models and clinical experiments,
respectively, in order to appropriately assess their accuracy and assumptions.
Therefore, three-dimensional (3D) FSI models with patient-specific features
permitting to study OSAS and snoring in detail are required.

In this study, a linear elastic deformation model is used with thin plate
mechanics. However, the soft tissues involved in the upper airways and the
soft palate undergo displacements and deformations beyond the linear range.
Therefore, non-linear elastic models with thickness can represent them more
accurately.

In order to ensure the energy transfer between the numerical methods
of the fluid and structure solvers, the traction boundary condition can be
derived in the simultaneous approximation terms (SAT) framework to ob-
tain a strictly stable method. Furthermore, more acoustic studies can be
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performed to investigate the relations between the frequency spectrum of
sound waves and model parameters.

There is room for improvement of the present ghost-point immersed
boundary method. It would be desirable to increase the second order spatial
accuracy of enforcing boundary conditions at ghost points using bilinearly
interpolated flow variables at image points. Future research can consider
alternative formulations of enforcing boundary conditions using irregular
discrete operators near the immersed boundary. Higher order polynomial
methods can be used to obtain the values at the image points for high
Reynolds number flows. Applying SBP finite difference operators for self-
adjoint operators can improve the overall accuracy for second derivatives as
well.

Moreover, the block structured grid employed in the present study can
be improved by employing adaptive mesh refinement (AMR) approaches.
AMR methods can be used to obtain solutions with the same accuracy as
the uniform grid methods on fine grids, but at a lower computational cost
by distributing the structured mesh more efficiently in certain regions.

We found the developed IB method to be robust, versatile and ready to be
applied to other settings. The solver can be further developed to accommo-
date more complex simulations, particularly 3D patient specific geometries
of the upper airways. Therefore, 3D flows around stationary, flexible surfaces
and flow-induced vibrations can be explored in the future for applications
in biological flows.

While the IBM was only applied to fluid flows around moving bodies, the
interaction between fluid flows and deforming bodies can be investigated by
the same strategy.
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Abstract

Fluid–structure interaction in a simplified 2D model of the upper airways is simulated to study
flow–induced oscillation of the soft palate in the pharynx. The goal of our research has been a better
understanding of the mechanisms of the Obstructive Sleep Apnea Syndrome and snoring by taking
into account compressible viscous flow. The inspiratory airflow is described by the 2D compressible
Navier–Stokes equations, and the soft palate is modeled as a flexible plate by the linearized Euler–
Bernoulli thin beam theory. Fluid–structure interaction is handled by the arbitrary Lagrangian–
Eulerian formulation. The fluid flow is computed by utilizing 4th order accurate summation by
parts difference operators and the 4th order accurate classical Runge–Kutta method which lead
to very accurate simulation results. The motion of the cantilevered plate is solved numerically
by employing the Newmark time integration method. The numerical schemes for the structure
are verified by comparing the computed frequencies of plate oscillation with the associated second
mode eigenfrequency in vacuum. Vortex dynamics is assessed for the coupled fluid-structure system
when both airways are open and when one airway is closed. The effect of mass ratio, rigidity and
damping coefficient of the plate on the oscillatory behaviour is investigated. An acoustic analysis
is carried out to characterize the acoustic wave propagation induced by the plate oscillation. It is
observed that the acoustic wave corresponding to the quarter wave mode along the length of the
duct is the dominant frequency. However, the frequency of the plate oscillation is recognizable in
the acoustic pressure when reducing the amplitude of the quarter wave mode.

Keywords: Fluid-structure interaction (FSI); High order finite difference method; Cantilevered
flexible plate; Acoustics; Obstructive sleep apnea syndrome (OSAS)

1. Introduction

Fluid structure interaction (FSI) refers to a phenomenon where a flow field interacts with
compliant or elastic structures. The behaviour of many dynamic systems is influenced by the
interaction between the fluid flow and structural components that are involved in the system. This
interaction happens in a wide range of phenomena such as flapping of insect wings, the flutter of5

flags, the vibration of bridges and structures and the aeroelasticity of aircraft wings. With growing
interest in the multidisciplinary field of biomedical and biomechanical engineering, a vast amount

∗Corresponding author
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of research has been conducted to comprehend fluid-structure interaction in physiological systems
in the human body (Tian et al., 2014; Wu and Cai, 2014; Larsson and Müller, 2012).

One of the prime examples of FSI in biomechanical systems is the dynamics of the upper10

airways where the interaction between inspiratory and expiratory airflow with soft tissues may lead
to flow-induced instabilities. Disorders of the upper airways are often associated with respiratory
syndromes. Among these, obstructive sleep apnea (OSA) and snoring are closely related to the
flow conditions in the upper airways. Obstructive sleep apnea syndrome (OSAS) is one of the most
prevalent types of sleep-disordered breathing caused by repetitive collapse of the soft tissues in the15

upper airways. Estimates show that OSAS affects 2–4% of the adult population (Young et al., 1993).
The significant consequence of OSAS is sleep fragmentation which can lead to increased daytime
sleepiness, fatigue-related accidents and risk of cardiovascular diseases (Malhotra and White, 2002).
Even though snoring does not necessarily mean that one has sleep apnea, estimates show that 10%
of snorers are at risk of OSAS (Bertram, 2008).20

In recent years, the fluid flow over a cantilevered plate has been a reliable theoretical model
not only for many engineering applications but also for many biomechanical systems like human
palatal snoring (Kuhl and DesJardin, 2012; Huang and Zhang, 2013). Computational models have
been increasingly employed to model upper airways. In most of the investigations, inviscid flow
has been assumed to develop numerical models for flow-induced instabilities (Guo and Päıdoussis,25

2000; Howell et al., 2009; Shoele and Mittal, 2016). A cantilevered beam immersed in a channel
flow has been investigated by Auregan and Depollier (1995) both analytically and experimentally
to understand snoring. They employed linear small deflection beam theory and neglected frictional
losses. Quasi-parallel flow was assumed and the pressure on the beam was estimated by mass con-
servation and the Bernoulli equation. Huang (1995) modeled a cantilevered elastic plate immersed30

in an axial flow, and also conducted wind tunnel experiments to verify theoretical results for palatal
snoring. The governing equation for linear plate bending was solved by using finite expansion of
orthogonal in vacuum modes. Although the viscous effect of circulation was implicitly imposed by
the Kutta–Joukowski condition at the free trailing edge of the plate, viscosity was neglected and
potential flow theory was used. He found that fluid loading resulting from the interaction of the35

wake vortices is responsible for the irreversible energy transfer in the flow–induced instability.
Linear instability of thin elastic plates with different leading and trailing edge conditions in

2D channel flow was investigated by Guo and Päıdoussis (2000). Similar to the work done by
Auregan and Depollier (1995), the 1D linear plate equation was solved by applying the Galerkin
method where plate deflections were recast in the form of an expansion series of orthogonal beam40

functions. A Fourier transform technique was applied to solve the perturbation pressure from the
potential flow equations. They found that single-mode and coupled-mode flutter are dominant
modes for plates with a free trailing edge and free-free edge, respectively. However, the instability
of plates with either clamped or pinned boundary condition at edges may occur through first-mode
divergence exceeding other types of instability modes (Guo and Päıdoussis, 2000).45

Tang and Päıdoussis (2007, 2008) performed computational investigations of non-linear large
deflection of cantilever plates using the inextensibility condition surrounded by axial flow. The flow
was assumed purely inviscid even if a separate viscous drag was coupled into the plate equation,
and the imposed pressure difference on the plate was estimated using an unsteady lumped vortex
model. Their analytical results show that if critical flutter velocity and frequency increase, the50

drag coefficient will increase. Furthermore, in experimental results they observed sudden flutter
vibration at critical velocities. However, the onset of oscillation will be more unlikely, if the flow

2



velocity is reduced from an initial plate flutter. They demonstrated the possibility of a hysteresis
phenomenon by including an unsteady von Kármán vortex street in their simulation. Conduct-
ing more theoretical investigations on the effect of trailing edge wakes on plate instability, they55

concluded that longer plates together with higher critical frequencies cause higher ratios of plate
vibration velocity to wake-induced flow velocity, and thus a smaller effect of wake-induced flow
velocities on the plate.

In contrast to the studies mentioned above, Balint and Lucey (2005) and Tetlow and Lucey
(2009) included viscous effects directly in their instability analysis by solving the Navier–Stokes60

equation in a 2D channel surrounding a cantilever plate. Whereas Balint and Lucey (2005) modeled
the motion of a thin plate using linear plate theory under differential pressure, Tetlow and Lucey
(2009), added a tension term defined as the skin friction force acting on both the upper and lower
sides of the plate. In both studies, the finite element method was employed in order to solve the
unsteady, laminar Navier–Stokes equations in a channel geometry with inlet boundaries above and65

below the flexible plate and to estimate fluid loads interfacing with the plate. Their fluid solver was
explicitly coupled to the structural finite difference solver. Based on their numerical results, when
both upper and lower inlets are open, a flutter-type instability is initiated at a critical Reynolds
number, while if one of the inlets is closed, a divergence-type instability occurs at a critical velocity.
Although Tetlow and Lucey (2009) imposed a constant pressure drop along the channel rather than70

assuming velocity-driven flow, flutter instabilities similar to those found by Balint and Lucey (2005)
were observed.

In this paper, we use a compressible viscous flow model to simulate the flow-induced oscillation
of the soft palate in the pharynx by a simplified 2D model (cf. Fig.1). We couple the compressible
flow in the pharynx to a cantilevered thin plate model of the soft palate in an arbitrary Lagrangian-75

Eulerian (ALE) formulation by using a two-way explicit coupling. A high order finite difference
method based on summation by parts (SBP) (Strand, 1994; Svärd and Nordström, 2014) is used
for the spatial discretization of the compressible Navier–Stokes equations. The classical fourth
order explicit Runge–Kutta scheme is applied for time integration for the sake of accuracy and easy
parallelization. The Newmark time integration method and central finite difference method are80

used to solve the linearized Euler–Bernoulli thin beam model. To achieve geometric flexibility with
high order operators for this simplified model in the upper airways, the multi block structured grid
approach is employed. We investigate the effect of material properties on the oscillation behaviour
of the flexible plate. Using compressible fluid flow permits us to investigate the acoustic waves
inside the channel and also the effect of flexible plate oscillation on sound generation.85

The paper is organized as follows. In Section 2, the models for fluid flow, structure and their
coupling by FSI are presented. In Section 3, first the verification of the structure scheme is per-
formed. Next, the numerical simulation of the plate oscillation for flow with artificially increased
Mach numbers up to 0.02 and Reynolds numbers up to 756 is presented. Then, the effects of plate
properties on the plate oscillation induced by the flow are examined, and finally the results of the90

acoustic analysis are shown. Conclusions are stated in Section 4.
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(a) Schematic of the computational model (b) The anatomy of up-
per airways.

Figure 1: Computational model and real geometry.

2. Model

2.1. Fluid flow

In the present study, the 2D compressible Navier–Stokes equations in perturbation form are
solved. The perturbation formulation is employed to minimize cancellation errors when discretiz-
ing the Navier–Stokes equations for compressible low Mach number flow (Sesterhenn et al., 1999;
Müller, 2008). The conservative form of the 2D compressible Navier–Stokes equations in perturba-
tion formulation can be written as

U′t + Fc′x + Gc′
y = Fv ′x + Gv ′

y (1)

where U′ = U−U0 is the vector of conservative perturbation variables with U = (ρ, ρu, ρv, ρE)T

the vector of the conservative variables and U0 = (ρ0, 0, 0, (ρE)0)T the stagnation values.95

The conservative perturbation variables U′ and the inviscid (Fc′, Gc′) and viscous perturbation
flux vectors (Fv ′, Gv ′) are defined by Fc′ = Fc(U)− Fc(U0), etc.

U′ =




ρ′

(ρu)′

(ρv)′

(ρE)′


 ,

Fc′ =




(ρu)′

(ρu)′u′ + p′

(ρv)′u′

((ρH)0 + (ρH)′)u′


 , Gc′ =




(ρv)′

(ρu)′v′

(ρv)′v′ + p′

((ρH)0 + (ρH)′)v′


 ,

Fv ′ =




0
τ ′xx
τ ′xy

u′τ ′xx + v′τ ′xy + κT ′x


 , Gv ′ =




0
τ ′yx
τ ′yy

u′τ ′yx + v′τ ′yy + κT ′y


 ,

where t is physical time and x and y are the Cartesian coordinates. ρ denotes density, u and v
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the x- and y-direction velocity components, E the specific total energy, T the temperature and100

κ the heat conduction coefficient calculated from the constant Prandtl number Pr = 1. ρ0, (ρE)0

and (ρH)0 denote the stagnation values of density, total energy density and total enthalpy density,
respectively. The perturbation variables are given as follows
ρ′ = ρ− ρ0, (ρu)′ = (ρu), (ρE)′ = ρE − (ρE)0, (ρH)′ = (ρE)′ + p′

u′ = (ρu)′

ρ0+ρ′ , τ ′ = µ(∇u′ + (∇u′)T )− 2
3µ(∇ · u′)I, T ′ = p′/R−ρ′T0

ρ0+ρ′105

Here, R is the specific gas constant and µ is the viscosity which is determined from the Sutherland
law µ

µ0
= ( TT0 )1.5[(1 + Sc)/(

T
T0

+ Sc)] with non-dimensional Sutherland constant Sc = 110
301.75 .

Since perfect gas is considered, the pressure perturbation can be related to the conserva-
tive perturbation variables p′ = (γ − 1)[(ρE)′ − 1

2((ρu′ · u′))], where the ratio of specific heats
γ = cp/cv = 1.4 for air.110

The viscous flux vectors Fv ′ and Gv ′ are the same as for the standard conservative form,
except for using the temperature perturbation T ′ instead of temperature T for the heat flux terms.
The momentum density and velocity perturbations are taken as the same as their unperturbed
counterparts, i.e. (ρu)′ = ρu (Larsson and Müller, 2009). For convenience the variables are non-
dimensionalized with ρ0, stagnation speed of sound c0, L the length of the flexible plate and ρ0c

2
0 as

reference values. In order to generalize the geometry for the human upper airways, the equations
of motions are transformed from the physical domain (x, y) to the computational domain (ξ, η) by
the following relations, and obviously for time-dependent geometry the transformation depends on
time as well.

t = τ
x = x(ξ, η, τ)
y = y(ξ, η, τ).

(2)

Thus, the transformed 2D compressible Navier–Stokes equations in perturbation form are expressed
as

Û′τ + F̂′ξ + Ĝ′η = 0, (3)

where Û′ = J−1U′, F̂′ = J−1(ξτU
′+ ξx(Fc′−Fv ′) + ξy(G

c′−Gv ′)) and Ĝ′ = J−1(ητU
′+ ηx(Fc′−

Fv ′)+ηy(Gc′−Gv ′)). The chain rule for partial differentiation provides the expressions for Cartesian
derivatives in the viscous flux vectors Fv ′ and Gv ′, e.g. u′x = u′ξξx + u′ηηx and u′y = u′ξξy + u′ηηy.
The Jacobian determinant of the transformation is J−1 = xξyη − xηyξ and time-dependent metric
terms are

J−1ξx = yη, J−1ξy = −xη, J−1ξτ = −xτξx + yτξy,

J−1ηx = −yξ, J−1ηy = xξ, J−1ητ = −yτxξ + xτyξ.
(4)

2.1.1. Numerical schemes

The high order finite difference method based on SBP operators (Strand, 1994; Gustafsson,
2008; Gustafsson et al., 1995) is employed for space discretization of the compressible Navier–
Stokes equations. We use a globally fourth order SBP operator to discretize the first ξ- and η-

derivatives in (4) and (3) and apply them twice to approximate the viscous parts of F̂ξ
′

and Ĝη
′
.115

The SBP operators for ∂
∂ξ and ∂

∂η correspond to the sixth order central difference operator in the
interior but degrade to third order accuracy near the boundary, resulting in fourth order global
accuracy (Gustafsson, 2008). This approach is based on the energy method, which permits us
to derive well-posedness for the continuous problem and to guarantee stability for the discrete
problem. The summation by parts operators and the stability criteria are discussed in detail in the120

Appendix.
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For the time integration process, the classical fourth order explicit Runge–Kutta method is
used. A time step size 4t corresponding to CFL = 0.333 is chosen to ensure stability.

The multi-block structured grid approach is employed to represent the simplified geometry in
the upper airways. Fig. 2(a) shows that we employ 6 blocks. Blocks 1, 3 and 5 have the lower125

channel wall as their southern boundaries and the rigid plate, flexible plate and the line between
the trailing edge of the flexible plate and the outlet, respectively, as their northern boundaries, cf.
lower plot in Fig. 2(a). The upper neighbouring blocks 2, 4 and 6 with the upper channel wall
as their northern boundaries are set apart in the upper plot of Fig. 2(a) to show the overlapping
regions. The decomposition of the computational domain into blocks allows us to accommodate130

geometric flexibility with high order operators. Having an overlap region of grid points at the
block interfaces, a smooth transition of the numerical solution from one block to another block is
achieved. For the seven-point stencil of the standard sixth order central finite difference method, a
three-point overlap at each side of inter-block boundaries is added cf. Fig.2(b). The black points
are located on the non–overlapping block boundary. The three red points in the interior of the135

left block communicate their data to the overlapping white points of the right block. Likewise,
the three green points in the interior of the right block communicate their data to the overlapping
white points of the left block. The inter-block communication between neighbouring blocks is
accomplished by using the Message Passing Interface (MPI) such that each block is assigned to a
single process, enabling parallel solution of the flow field.140

This fluid solver has been validated in previous investigations (Müller, 2008; Larsson and Müller,
2012) for single-domain structured grids.

2.1.2. Boundary conditions

Adiabatic no-slip boundary conditions are applied on the walls and the fluid-structure interface.
At the inflow, the velocities in the x- and y-directions are imposed using a uniform inlet profile
normal to the boundary, u(x = 0, t) = U0 and v = 0. In addition, the inlet temperature is set to
T = T0 = 310 K. The outlet pressure is set to atmospheric pressure, i.e., p′ = p− p0 = p− patm = 0
Pa. Non-reflecting characteristic boundary conditions are employed at the inflow and outflow
boundaries to minimize wave reflections. The Navier–Stokes characteristic boundary conditions
(NSCBC) developed by Poinsot and Lele (1992) are employed to approximate incoming waves
based on local one-dimensional inviscid (LODI) relations. The primitive variables can be related
to the wave amplitude (Li) by LODI relations. The amplitudes of the characteristic waves are
L1 = λ1( ∂p∂x − ρc∂u∂x), L2 = λ2(c2 ∂ρ

∂x −
∂p
∂x), L3 = λ3( ∂v∂x) and L4 = λ4( ∂p∂x + ρc∂u∂x). Since fully

non-reflecting conditions may lead to an ill-posed problem (Poinsot and Lele, 1992), this approach
is partially reflecting. Imposing a constant pressure at the outlet requires L1 = −L4. To keep the
reflections low and pressure close to atmospheric pressure, the incoming wave amplitude is set to

L1 = K(p− patm), (5)

where K is the relaxation coefficient. Rudy and Strikwerda proposed the relaxation coefficient as
K = σ(1−Ma2)(c/Lt) where Ma is the Mach number, c the sound speed, Lt the total length of the145

domain and σ a constant value (Rudy and Strikwerda, 1980). The optimum value σ = 0.25 derived
by Rudy and Strikwerda (1980) is employed. For reverse flow (negative velocity in x-direction) at
the outlet, L1, L2 and L3 are set to zero.

6



(a) Block-structure topology of the computational domain. The three
upper blocks are detached in the figure for illustration of the three-point
overlap, shown with magenta lines.

(b) Illustration of points overlapping along a line.
The black points lie on the block boundary, the
red and green points are internal points in dif-
ferent blocks, the white points are added ghost
points which overlap the internal points in the
other block, and the arrows indicate the direc-
tion of data transfer between blocks.

Figure 2: Multiblock topology used for the simplified geometry of the upper airways.

2.2. The structure model

In the present study, the motion of the thin plate is based on the linear Euler–Bernoulli thin
beam theory. This theory provides the correlation between the deflection of the beam and the
applied load. In the Euler–Bernoulli thin beam theory, the deflection is assumed to be unidirectional
in the normal direction of the thin beam. Thus, deflection occurs only as a result of bending; the
shear-deformation and normal strains are neglected. There is no contribution from the fluid shear
stress, i.e., viscous effects on the plate are ignored and only the difference in fluid pressure is
accounted for. The oscillation of the flexible plate is constrained to vertical direction without any
stretch along the horizontal direction. The governing equation for the vertical displacement φ(x, t)
is expressed as

ρsh
∂2φ
∂t2

+ d∂φ∂t +B ∂4φ
∂x4

= −δp, (6)

where ρs, h, d and B denote respectively the density, thickness, flexural rigidity and structural150

damping of the plate, and δp denotes the applied pressure load. The flexural rigidity B is defined by
B = Eh3/[12(1− ν2)], where E and ν are the elastic modulus and Poisson ratio, respectively. The
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variables in Eq. (6) are non-dimensionalized with respect to the stagnation density ρ0, stagnation
speed of sound c0 and the length of the flexible plate L, in the same way as for the fluid solver.

The equation for calculating the energy of the plate per unit width can be derived by multiplying155

Eq. (6) by φ̇ = ∂φ
∂t and integrating over the length of the plate L (Balint and Lucey, 2005).

d
dt




Et︷ ︸︸ ︷
1

2
ρsh

∫ L

0
φ̇2dx

︸ ︷︷ ︸
Ek

+
1

2
B

∫ L

0
(φxx)2dx

︸ ︷︷ ︸
Es


 =

∫ L

0
(−δp)φ̇dx

︸ ︷︷ ︸
Ẇ

− d

∫ L

0
φ̇2dx

︸ ︷︷ ︸
Ḋφ

. (7)

The left hand side of the Eq. (7) is the time derivative of the total energy of the plate Et composed
of the kinetic and strain energies, Ek and Es, respectively. The right hand side represents the rate
of work done by the fluid on the plate Ẇ and the rate of energy dissipation due to damping of the
plate Ḋφ.160

2.2.1. Computational methods

The Newmark time integration method (Newmark, 1959) is employed for solving Eq.(6) implic-
itly. The displacement and velocity from time step t are integrated to t +4t using the relations

φ̇n+1 = φ̇n + [(1− γ) φ̈n + γφ̈n+1]4t, (8)

φn+1 = φn + φ̇n4t+ [(
1

2
− β)φ̈n + βφ̈n+1]4t2, (9)

where γ and β are parameters of the Newmark scheme and φ̈n+1 is the acceleration at the new
time level.

The most accurate, unconditionally stable scheme of the Newmark family is used. Its coefficients
are β = 1/4 and γ = 1/2. The scheme is second order accurate and preserves the energy for the165

linear system (Hughes, 2012). The standard second order central difference discretization is used
for the fourth order spatial derivative (φxxxx)n+1

j ≈ 1
4x4 (φn+1

j+2 − 4φn+1
j+1 + 6φn+1

j − 4φn+1
j−1 + φn+1

j−2 ).
The integration scheme works by first computing the updated displacement and applying it to
obtain the structure acceleration at the new time level, and then finding the updated velocity of
the structure.170

2.2.2. Boundary conditions

The cantilevered flexible plate is clamped at the leading edge and free at the trailing edge. For
a clamped configuration the first two nodes are stationary. The continuous and discrete boundary
conditions read

φ(0, t) = 0, φ1 = 0,
∂φ(0,t)
∂x = 0, φ1 = φ2.

(10)

For a free end configuration it is assumed that the bending moment and shear force are zero at
the last node. Thus, we have

∂2φ(L,t)
∂x2

= 0, φN−1 = 2φN−2 − φN−3,
∂3φ(L,t)
∂x3

= 0, φN = 3φN−2 − 2φN−3.
(11)
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2.3. Fluid-structure interaction

The Arbitrary Lagrangian–Eulerian (ALE) formulation is employed to handle the fluid flow in175

Eulerian description using moving fluid grids and the plate structure in a Lagrangian formulation
using stationary structure grids. In the time-dependent coordinate transformation of the fluid
flow domain, the grid point velocities ẋ and ẏ are subtracted from the fluid velocity to define the
contravariant velocity components U = ξx(u− ẋ) + ξy(v− ẏ) and V = ηx(u− ẋ) + ηy(v− ẏ) which

yield simple expressions for the transformed inviscid flux vectors F̂c and Ĝc (Pulliam and Steger,180

1980). The mesh update is implemented by remeshing the whole fluid domain in each time step
using the positions and velocities of the flexible structure at the boundary and a linear interpolation
for interior points in the fluid domain.

Solving fluid flow on a moving mesh, the numerical scheme should satisfy the Geometric Con-
servation Law (GCL) for mathematical consistency (Visbal and Gaitonde, 2002). This law states
that

(J−1)τ + (J−1ξt)ξ + (J−1ηt)η = 0, (12)

where the time derivatives of the computational coordinates ξ and η are calculated from grid point
velocities ẋ = xτ , ẏ = yτ as follows

ξt = −ξxẋ− ξyẏ, ηt = −ηxẋ− ηyẏ. (13)

Then, the 2D Navier–Stokes equations in ALE formulation (Peyret et al., 1975) are given by

U′τ = 1
J−1 (−F̂′ξ − Ĝ′η − (J−1)τU

′), (14)

where F̂′ = J−1(ξtU
′ + ξxF

′ + ξyG
′) and Ĝ′ = J−1(ηtU

′ + ηxF
′ + ηyG

′) are the transformed flux
vectors.185

The coupling between the fluid and the structure is handled by an explicit, two-way method
where forces and deformations are exchanged between the flow and the deformable structure in
each time-step, as shown in Figure 3. The fluid and structure interact with each other by applying
equal vertical displacement and velocity at the interface, satisfying the no-slip and adiabatic wall
boundary conditions.190

Generate initial 

fluid grid t = 0

Fluid solver 

Force of flow on

 structure interface

Structure solver

Update fluid grid

Grid velocities t = t + Δt

t    tmax

No

Yes

Output solution

End 

Figure 3: Schematic of two way coupling model.
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3. Results and discussion

3.1. Verification of structure solver in vacuum

3.1.1. Eigenmode analysis

The numerical schemes for the structural model have been verified through the plate oscillation
in vacuum associated with its eigenmodes. Following the work by Balint and Lucey (2005), d and
δp in Eq. (6) are set to zero. Assuming a harmonic vibration of time dependency eiωt, Eq. (6)
can be rewritten based on the harmonic vibration. Thus, for vibration in vacuum, the cantilevered
plate has the eigenfunctions

φm(x) = A [(cosh(kmx)− cos(kmx))− cosh(kmL)+cos(kmL)
sinh(kmL)+sin(kmL) (sinh(kmx)− sin(kmx))],

m = 1, 2, 3, . . .∞
(15)

where A denotes the amplitude scaling constant and km = βm/L the characteristic wavenumber
obtained by finding the roots of an eigenvalue equation. The coefficients βm are obtained from

coshβm cosβm + 1 = 0. (16)

The five first values of βm, m = 1, ..., 5, are 1.875, 4.694, 7.855, 10.996, 14.137. The angular eigen-
frequencies can be calculated as

ωm = k2
m

√
B/(ρsh). (17)

The modal configurations of the cantilevered plate are shown in Figure 4.

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
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−0.5
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1.5

X

 

 

mode 1 mode 2 mode 3 mode 4 mode 5

Figure 4: The first five eigenfunctions φm(x) with A = 1 in Eq.(15).

3.1.2. Comparison with analytical solution195

Our numerical schemes have been first verified and tested by simulating plate oscillation in
vacuum associated with the second eigenmode of the structure. The physical properties of the
flexible structure were taken the same as in the study by Balint and Lucey (2005), namely m =
2.6 kg/m2, B = 4.92 kN m and the length of the flexible structure L = 2 m. The number of grid
points for discretizing the plate was set to N = 201 and the time step size was set to ∆t = 5×10−6

200

s. The plate was initially deformed using the amplitude A = 0.01 m in Eq. (15). Figure 5 illustrates
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the time variation of the plate deformation, the displacement of the tip position and the oscillating
frequency. The frequency is calculated by performing a fast Fourier transform (FFT) on the time
history of the tip displacement of the plate. The error between the analytical solution of the second
mode eigenfrequency ω2 = 38.1366 Hz in Eq. (17) and the computed frequency ω2 = 38.0906 Hz205

amounts to 0.12 %.
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Figure 5: (a) Sequence of flexible plate deformation in the second eigenmode, (b) time history of the displacement of
the trailing edge (tip), (c) oscillation frequency of displacement of trailing edge (tip).

3.2. Problem description and initial conditions for fluid–structure interaction

The problem domain consists of a horizontal channel with an interior wall representing the hard
and soft palate along the center-line (cf. Fig. 1), dividing the inlet boundary into an upper and
a lower inlet. We allow the inlet boundary to operate in two different configurations: one where210

both inlets have uniform inflow of air, and one where only the upper inlet has inflow while keeping
the lower inlet at zero velocity. The flexible plate has length L = 8 mm, and the streamwise length
and duct height (H) are 40 mm and 9.6 mm, respectively, cf. Fig.1(a).

The flexible plate is initially displaced using an eigenfunction. To initialize the flow field, we
keep the flexible plate fixed in its initial position and integrate the flow solver in time from stagnant215

flow U′ = 0, except for the inlet velocity, until an approximately steady state flow solution has been
reached. Thereafter, the flexible plate is released from its initial position and allowed to interact
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with the flow.
As mentioned above, for a linear cantilevered plate with length L and flexural rigidity B, the

vertical displacement φm(x) of the mth eigenmode can be described by Eq. (15). In the present220

study, only the second eigenmode is considered for the initial plate displacement, mainly due to
the fact that this mode has been known to be responsible for the soft palate flutter (Huang, 1995).

3.3. Verification of fluid–structure interaction

To assess the validity of the present solver, grid independence was investigated by computing
the oscillation frequency of the flexible plate on coarse and fine grids. The fluid density was set225

to ρ = 1.18 kg/m3 based on T = 301.75 K. We used the Reynolds number Re = ρUL
µ = 378 and

the Mach number Ma = U
c0

= 0.01 based on inlet velocity (U = 0.32 m/s), speed of sound and
length of the plate. The speed of sound was deliberately reduced to speed up the computation. The
dynamic viscosity and other fluid properties were calculated as discussed in section 2.1. The initial
tip amplitude was given by φ(L, 0)/H = 0.2. The elastic modulus and Poisson ratio were E = 880230

MPa and ν = 0.3333, respectively, with a plate density of ρs = 2477 kg/m3, plate thickness of
h = 10−5 m and an undamped thin plate, i.e., d = 0 N s/m3. Therefore, the plate is modeled as an
infinitely thin 1D plate with the thickness parameter h chosen to obtain the desired second mode
eigenfrequency. Using these values, the analytical second mode frequency in vacuum determined by
Eq. (17) is 100 Hz. Numerically, the second in vacuum eigenfrequency is computed with N = 101235

grid points and ∆tc0/L = 0.001 as 99.18 Hz which agrees well with the analytical value with a
0.82% error.

Fig. 6 shows the time history of the tip displacement from coarse to fine grids. Since the
solution on the last two fine grids agree quite well, the 501×201 grid is adopted as a sufficiently
fine grid. The oscillation frequency and the time variation of the plate deformation for the fine grid240

are shown in Fig. 7. The oscillation frequency of the flexible plate for the fine grid is obtained at
91.5 Hz (corresponding to the non-dimensional frequencies, f∗c0 = f L

c0
= 0.022875 based on speed

of sound c0 and f∗U = f LU = 2.2875 based on inlet velocity U). Note that the in vacuum second
mode frequency for the undamped flexible plate has been obtained by setting the external force
(pressure difference) to zero in Eq. (6). However, in the simulation of fluid–structure interaction245

the pressure difference provides the external force which drives the plate oscillation. According
to the measurements performed by Brietzke and Mair (2006), the palatal oscillation frequency of
snoring ranges from 21 to 323 Hz with an average of 89.4 Hz.

In the following, the temporal discretization error of the fluid–structure interaction is investi-
gated for the tip displacement of the plate. The parameters are identical to those used for the250

501×201 fine grid in section 3.3 while varying the time step sizes. The tip displacement of the
flexible plate is plotted versus time for five cycles of oscillation in Fig. 8. The time step sizes ∆t
are varied such that the CFL numbers become CFL ≈ 1/3, 1/6, 1/12 and 1/24. Fig. 8 shows that
the time history of the tip displacment is hardly affected by the time step size.

3.4. Simulation of plate oscillation255

3.4.1. Both inlets open

The time sequence of vorticity contours for the case when both inlets are open is shown in Fig.
9. The initial tip displacement is φ(L, 0)/H = 0.2, Re = 378 and Ma = 0.01. At time tc0/L = 0
(when the flexible plate is released from its initial displacement after steady state has been reached),
boundary layers have been established at the channel walls, rigid and flexible structures and the260
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Figure 6: Test of grid independence, time history of tip displacement.
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Figure 7: (a) Oscillation frequency of displacement of trailing edge (tip) for the fine grid, (b) sequence of flexible
plate deformation for five cycle oscillations, the initial and final deformation are marked by solid blue line and red
dashed lines, respectively.

flow is already separated from the trailing edge. At tc0/L = 8 corresponding to tU/L = 0.08, the
third vortex leaving the trailing edge is observed. The first and second vortices are about to pair
and create a strong vortex at tc0/L = 13. The fourth vortex is about to separate from the tip of
the plate at tc0/L = 25. The leading vortex rolls up at tc0/L = 39. The vortex shedding from the
trailing edge repeats itself almost symmetrically. The vortices formed as a result of the oscillation265

of the flexible plate and the interaction with the fluid flow are convected downstream. During the
processes, the interaction between the vortices sometimes leads to vortex pairing.

To ensure that the outlet boundary conditions in this channel do not affect the vortices, this
simulation is repeated for a longer channel. Fig. 10 shows the results. The only difference between
Fig. 10 and Fig. 9 is that the length of the outlet blocks (from trailing edge of the plate towards270

outlet boundary in Fig. 1) and the number of grid points in these blocks have been doubled (6L
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Figure 8: Test of time step independence, time history of tip displacement for five cycles of oscillation.

instead of 3L in Fig.1). The first and second snapshots show the status of the vortices at the same
time for these two different channels. Except for the vortex close to the outlet being a little smaller
and a little closer to centerline in the simulation with the longer channel at the considered time
instant, the results for the two different channel lengths are in excellent agreement.275

3.4.2. Lower inlet closed

Fig. 11 represents the results of vorticity contours when the lower inlet is closed. The initial
tip amplitude is φ(L, 0)/H = 0.1, Reynolds number and Mach number based on inlet velocity
U=0.64 m/s are equal to 756 and 0.02, respectively. The leading vortices are already shed before
the structure was released. At tc0/L = 9, the leading vortex rolls up. The vortices near the trailing280

edge roll down at tc0/L = 27. At tc0/L = 48, the leading vortex is becoming weakened and
pairing of the vortices near the trailing edge is observed. The vortex shedding tends to propagate
towards the lower part of the domain, since the lower inlet is closed. Clearly, the vortex shedding
is unsymmetrical. Vortex pairing occurring quite often creates a complex vortical structure.

3.5. The effect of plate properties285

Since one of the surgical treatments of OSAS and snoring involves soft palate implants, the flow
induced oscillation of the flexible plate with different material parameters is studied in this section.
The structural model is governed by three parameters: mass, damping and stiffness. We used these
parameters as control parameters to investigate the oscillation behaviour of the flexible structure
in the fluid flow. The non-dimensional mass, rigidity and damping are defined as

m∗ =
ρsh

Lρ0
, B∗ =

B

L3ρ0c2
0

, d∗ =
d

ρ0c0
. (18)

Dividing these non–dimensional rigidity and damping of the plate by Ma2 and Ma, respectively,
gives us the non–dimensional quantities for B and d in incompressible flow using U2 instead of
c2

0 and U instead of c0, respectively. In order to examine the oscillation behaviour of the flexible
structure, the Reynolds number and Mach number are fixed at 378 and 0.01, respectively. Figures
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Figure 9: Time sequence showing vorticity contour plots, both inlets are open at Re = 378 and Ma = 0.01. The
contour levels are from −0.2 s−1 to 0.2 s−1 corresponding to −5×10−5 6 (5×U)zL/c0 6 5×10−5 and −5×10−3 6
(5×U)zL/U 6 5× 10−3.

12, 14 and 16 illustrate the effect of changing the parameters on the displacement of the trailing290

edge.
The range of values of the non-dimensional mass is m∗ = 1.31− 5.24, as shown in Fig 12.

The largest mass ratio decreases the oscillation frequency of the flexible plate to 61.06 Hz (non–
dimensional frequency based on speed of sound f∗c0 = f L

c0
= 0.015265 and based on inlet velocity
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Figure 10: Time sequence showing vorticity contour plots, both inlets are open at Re = 378 and Ma = 0.01. The
outlet blocks of two lower plots have a length of 6L instead of 3L, cf. in Fig. 1, of the upper plot. The contour
levels are from −0.2 s−1 to 0.2 s−1 corresponding to −5 × 10−5 6 (5×U)zL/c0 6 5 × 10−5 and −5 × 10−3 6
(5×U)zL/U 6 5× 10−3.

Figure 11: Time sequence showing vorticity contour plots, lower inlet is closed at Re = 756 and Ma = 0.02.
The contour levels are from −0.2 s−1 to 0.2 s−1 corresponding to −5 × 10−5 6 (5×U)zL/c0 6 5 × 10−5 and
−5× 10−3 6 (5×U)zL/U 6 5× 10−3.
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Figure 12: Time history of the tip displacement with
different non-dimensional masses for undamped flexible
plate (d∗=0) and fixed rigidity (B∗ = 1.3× 10−4).
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Figure 13: Evaluation of total energy E∗t , strain energy
E∗s and kinetic energy E∗k of the plate in vacuum for
m∗ = 2.62, B∗ = 1.3× 10−4 and d∗ = 0 .

f∗U = f LU = 1.5265) compared to the smallest one which enhances the oscillation frequency to 106.8295

Hz (f∗c0 = 0.0267 and f∗U = 267). Figure 13 shows the total energy E∗t , strain energy E∗s and
kinetic energy E∗k of the plate in vacuum when the plate properties are m∗ = 2.62, B∗ = 1.3×10−4

and d∗ = 0. It indicates that in the in vacuum situation the total energy of the plate remains
nearly constant. Figure 14 gives the oscillation behaviour of the trailing edge as a representative
of the flexible plate motion for three different non-dimensional rigidities. It is observed that for300

the higher rigidity case (B∗ = 2.6 × 10−4) in the absence of damping, the oscillation frequency is
higher, i.e. f = 122 Hz (f∗c0 = 0.0305 and f∗U = 3.05) than for B∗ = 1.3×10−4 and B∗ = 6.6×10−5

when f = 91.5 Hz (f∗c0 = 0.022875 and f∗U = 2.2875) and f = 64 Hz (f∗c0 = 0.016 and f∗U = 1.6),
respectively. The non-dimensional total energies (E∗t (t) = E∗s (t) + E∗k(t)) for these three different
rigidities are illustrated in Fig. 15 showing oscillatory decrease (stable oscillation) of total energy305

for these cases. Furthermore, the transfer of energy between fluid flow and plate leads to larger
amplitudes in the oscillation of the total energy compared to Fig. 13. Here, a warning is in place for
the simulation with the largest stiffness B∗ = 2.6× 10−4. Our standard approach led to increasing
total energy for B∗ = 2.6 × 10−4, d∗ = 0 and m∗ = 2.62. Close inspection showed that the
displacement of the structure developed high wavenumber oscillations. Solving the Euler–Bernoulli310

beam equation not as usual at every fluid time step, but at every other fluid time step led to a
larger structure time step size, i.e., ∆ts = 2∆tf . Choosing the time step size for the structure
computation twice as large as the time step size for the flow computation, has a stabilizing effect
and suppresses the numerical instability. Fig. 16 shows that in the presence of damping, the plate
is gradually losing its oscillatory behaviour and reaches an undeformed shape. Fig. 17 compares315

the non-dimensional rate of work done by the fluid on the plate without damping and with two
different damping coefficients. As expected, the damping coefficient has a large effect on whether
the oscillations are damped or not.

3.6. Acoustic analysis

In this section, the acoustic pressure signal is analyzed to study the effect of plate oscillation320

on generating sound. Figs. 18 (a) and (c) demonstrate the time history of the acoustic pressure

17



0 50 100 150 200 250
−0.4

−0.3

−0.2

−0.1

0

0.1

0.2

0.3

φ
L
/H

tc0/L

 

 

B
*
=2.6 × 10

−4
B

*
=1.3 × 10

−4
B

*
=6.6 × 10

−5

Figure 14: Time history of the tip displacement with
different non-dimensional rigidities for undamped flexi-
ble plate (d∗=0) and fixed mass (m∗ = 2.62). Note ∆ts
= 2∆tf was used for B∗ = 2.6× 10−4.
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Figure 15: Evaluation of plate’s total energy E∗t for three
different rigidities (d∗ = 0, m∗ = 2.62). Note ∆ts =
2∆tf was used for B∗ = 2.6× 10−4.
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Figure 16: Time history of the tip displacement with
different non-dimensional dampings and fixed mass and
rigidity (m∗ = 2.62, B∗ = 1.3× 10−4).
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Figure 17: Variation of the non-dimensional rate of work
done by the fluid on the plate (m∗ = 2.62, B∗ = 1.3 ×
10−4).

for the simulation between tc0/L = 0 and tc0/L = 240. The flexible plate has its second mode
initial configuration with φ(L, 0)/H = 0.1 as initial tip displacement. The Reynolds number and
Mach number are 378 and 0.01, respectively. The initial flow field for this study was determined
by simulating the flow field from U′ = 0, except for the inlet velocity, with the flexible plate fixed325

at its second mode position with φ(L, 0)/H = 0.1. The simulation was run until tc0/L = 40,
when steady state was approximately reached. The approximate solution was used as the initial
condition for the present FSI for which the initial time was set as tc0/L = 0. The acoustic pressure
is recorded at four points, two points at y = H/4 and y = 3H/4 both near the inlet x = Lt/10
and near the outlet x = 9Lt/10, where Lt is the total length of duct and H the height of the330
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duct. The acoustic pressure is transformed to a spectrum by applying the fast Fourier transform
(FFT), as shown in Figs. 18 (b) and (d). In the Fourier transform of the pressure signal, the
frequencies as a consequence of the plate oscillation and the eigenfrequencies of the duct can be
clearly distinguished.
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Figure 18: (a) and (c) Time history of acoustic pressure p′/(ρ0c
2
0) at inlet and outlet, respectively; (b) and (d)

Spectrum of pressure signal. The fluid flow is at Re = 378 and Ma = 0.01, the structure data are as in section 3.4,
except for the initial tip displacement φ(L, 0)/H = 0.1. The flexible plate was released at tc0/L = 40 corresponding
to tc0/L = 0 in plots (a) and (c).

The eigenfrequencies for an acoustically closed end duct with imposed velocity at inlet and
outlet pressure (Selle et al., 2004) can be obtained as

fn = (2n+ 1)(c/(4Lt)) (19)

These represent the odd modes in terms of n = 0, 1, ..., where c is the speed of sound and Lt335

the total length of the duct (Selle et al., 2004). The first three modes predicted by Eq. (19) are
observed in Fig. 18(b) and (d). It shows that the three first acoustic resonance frequencies of the
duct appear in the spectrum of the computed pressure both near the inlet (Fig. 18(b)) and even
clearer near the outlet (Fig. 18(d)).

We investigated means to reduce the reflections of the acoustic waves in the domain by means340

of non-reflecting boundary conditions with a simple scaling (Selle et al., 2004) and non-reflecting
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boundary condition with plane wave masking (Polifke et al., 2006). However, the results using those
approaches are not presented, because they were similar to the results obtained by the conditions
explained in subsection 2.1.2. This similarity of the results obtained with the boundary conditions
outlined in subsection 2.1.2 and with those by Selle et al. (2004) and Polifke et al. (2006) is not345

surprising, because those are also based on NSCBC by Poinsot and Lele (1992) like ours.
The spectrum analysis in Fig. 18(b) and (d) shows that the 1/4 wave mode (cf. Eq. (20))

pointed out by Selle et al. (2004) as the quarter wave mode frequency is dominant compared to the
other harmonics and the frequency of plate oscillation.

f0 = (1−M2)(c/(4Lt)) (20)

Figure 19: Time sequence showing acoustic pressure contour plots for the first two cycles of oscillation, Re = 378
and Ma = 0.01, the structure data are as in section 3.4, except for the initial tip displacement φ(L, 0)/H = 0.1.
The outflow pressure is at p = p∞ and the contour levels are from −3 Pa to 3 Pa corresponding to −2.48× 10−3 6
p′/(ρ0c

2
0) 6 2.48× 10−3.

Fig. 19 shows the acoustic pressure contours for this simulation. At tc0/L = 0, low and
high pressure regions are located over and below the flexible structure, respectively, because the
flow there is accelerated and decelerated respectively. When the flexible structure is released at
tc0/L = 0, the flow field periodically changes. However, the pressure field is dominated by acoustic350

waves travelling back and fourth in the channel. As the inlet velocity is fixed, the acoustic pressure
waves will be reflected at the inlet. When the acoustic waves hit the outlet, their amplitude will
be reduced due to the partly non–reflecting property of Rudy and Strikwerda (1980) boundary
treatment, cf. subsection 2.1.2. Thus, the simulated amplitudes of the acoustic pressure waves
decrease by interaction with the right boundary. Viscous attenuation contributes to damping of355
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the acoustic waves. Eventually, the acoustic wave amplitudes decay, which can be observed in Fig.
20.
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Figure 20: Time history of acoustic pressure p′/(ρ0c
2
0) at inlet. The fluid flow is at Re = 378 and Ma = 0.01, the

structure data are as in section 3.4, except for the tip displacement φ(L, t)/H = 0 which the plate is a stationary
straight splitter.

Therefore, we define a cutoff time tc0/L = 2000 to allow the acoustic pressure to decay. The
simulation is repeated with the steady state computation run until tc0/L = 2000. Compared
to the previous simulation, the flexible plate is not released from its second mode position with360

φ(L, 0)/H = 0.1 at tc0/L = 40, but at tc0/L = 2000. Fig. 21 illustrates the time history of the
acoustic pressure and the frequency of the acoustic pressure spectrum for this simulation. After
turning on the fluid–structure interaction at tc0/L = 2000, the frequency of the oscillation of the
flexible plate can be observed better due to the decayed acoustic wave amplitudes. Fig. 22 shows
the results of the acoustic pressure contours for this simulation.365

In Figure 21, a very noisy signal is observed compared to Fig. 18 which is associated with a
very complicated behaviour of waves over a long period of time. Since the structure has a curved
form, more complex reflections of the pressure waves travel through the computational domain.
A plane wave hitting a plate allows reflected waves going out in many directions, hitting the
top and bottom walls of the channel. Then these reflected waves interact and make a complex370

interference pattern which leads to build up a very noisy pressure field. Three acoustic resonance
frequencies corresponding to the first three eigenfrequencies of the duct are not as sharp and are
more damped compared to those of the previous simulation (cf. Fig. 18) and relatively shifted,
particularly high frequencies cf. f = 600 Hz (non–dimensional frequencies f∗c0 = f L

c0
= 0.15 and

f∗U = f LU = 15) and 1000 Hz (f∗c0 = 0.25 and f∗U = 25). The quarter wave mode f = 200 Hz375

(f∗c0 = 0.05 and f∗U = 5) is no longer dominant. The fundamental frequency of the soft palate
model oscillation f = 91.5 Hz (f∗c0 = 0.022875 and f∗U = 2.2875) and some harmonics can be
observed. The plane waves travelling through the channel change to the circular wave nears the
trailing edge (as can be seen in Fig. 19 at tc0/L = 0 and in Fig. 22 at tc0/L = 2000) when the
plate starts to oscillate. The resonance frequency f = 490 Hz can be identified as a consequence of380

this phenomenon in both figures 18(b) and 21(b). This acoustic resonance frequency corresponds
to the eigenfrequency of each of the two ducts from the inlet to the trailing edge of the flexible
plate, i.e., f = c/(4(Lrigid plate + Lflexible plate)) = 500 Hz (f∗c0 = 0.125 and f∗U = 12.5 ).
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Figure 21: (a) and (c) Time history of acoustic pressure p′/(ρ0c
2
0) at inlet and outlet, respectively; (b) and (d)

Spectrum of pressure signal. The fluid flow is at Re = 378 and Ma = 0.01, the structure data are as in section 3.4,
except for the initial tip displacement φ(L, 0)/H = 0.1. The flexible plate was released at tc0/L = 2000.

4. Conclusions

A numerical approach for a simplified model of fluid–structure interaction for the soft palate385

in the upper airways is developed. This FSI model for the interaction between the inspiratory
airflow through nose and mouth with the soft palate has been modeled as compressible viscous flow
over a cantilevered flexible plate in a duct. The coupling between the fluid and the structure is
handled in an arbitrary Lagrangian–Eulerian (ALE) formulation with an explicit, two–way coupling
strategy where forces and deformations are exchanged between the flow and plate at the end of390

every time step. Strict stability and high order accuracy are obtained by employing summation
by parts (SBP) difference operators, which are 6th order accurate in the interior and 3rd order
accurate near the boundaries (Svärd and Nordström, 2014). To achieve high accuracy and easy
parallelization, the 4th order explicit Runge–Kutta method is applied for time integration. The
motion of the cantilevered flexible plate is obtained by solving the linearized Euler–Bernoulli thin395

beam equation. The numerical method for computing the structure equation is based on the 2nd

order central finite difference method and the most accurate and unconditionally stable scheme of
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Figure 22: Time sequence showing acoustic pressure contour plots for the first two cycles of oscillation, Re = 378
and Ma = 0.01, the structure data are as in section 3.4, except for the initial tip displacement φ(L, 0)/H = 0.1.
The outflow pressure is at p = p∞ and the contour levels are from −3 Pa to 3 Pa corresponding to −2.48× 10−3 6
p′/(ρ0c

2
0) 6 2.48× 10−3.

the Newmark family.
The dependence of oscillation frequencies of the plate on the grid is studied by varying the

number of grid points. The frequencies of plate are compared with the corresponding second mode400

eigenfrequencies of the structure to assess the required number of grid points. The dynamics of
the vortices produced by the interaction of the fluid flow and the structure is investigated when
both the upper and lower inlets are open and when only the upper inlet is open the lower one
closed. The numerical simulations of FSI show that when both inlets are open the vortices are
more stable than when one inlet is closed. Having one inlet closed creates a very complex vortical405

structure. Several cases are presented to investigate the oscillation behaviour of the flexible plate
under different material parameters. For all cases considered, the oscillation of the plate remains
stable. The highest rigidity evokes a warning. Close inspection showed that the displacement of the
structure developed high wavenumber oscillations. Choosing the time step size for the structure
computation twice as large as the time step size for the flow computation, has a stabilizing effect and410

suppresses the numerical instability. Finally, in order to identify the effect of plate oscillation as a
source of sound generation in the evaluation of snoring, the acoustic pressure is analyzed. Although
at the given boundary conditions the quarter wave mode is identified as dominant frequency, the
frequency of the sound produced by oscillation is in good agreement with the frequency of the
plate oscillation. However, the quarter wave frequency and its harmonics dominate the oscillation415

frequency, as long as the acoustic waves have not yet decayed sufficiently.
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Appendix A. Summation by parts operators

To demonstrate the SBP operators, we apply the procedure to a simplified PDE, that is, rather
than analysing the full Navier–Stokes equations in this section, we only focus on the 1D convection–
diffusion equation as a model equation.

ut + aux = buxx, 0 ≤ x ≤ 1 t ≥ 0
u(x, 0) = f(x)
u(0, t) = u(1, t) = g(t) = 0

(A.1)

where a and b are assumed to be constant and positive, and u is the dependent variable.425

The basis of getting such an energy estimate is to satisfy integration by parts in the discrete
sense called Summation–By–Parts (SBP) property (Gustafsson, 2008; Svärd and Nordström, 2014).
To outline this technique for model problem (A.1), we consider uj = uj(t) the numerical solution of
the convection–diffusion equation at grid point xj = jh, j = 0, ..., N, with grid spacing h = 1

N . The
solution vector containing the solution at the discrete grid points is u = [u0(t), u1(t), ..., uN (t)]T .
Using a difference operator Q approximating the first derivative in space, the semi-discrete form of
the model equation can be expressed as

du
dt = −aQu + bQQu, uj(0) = f(xj) (A.2)

The discrete scalar product and corresponding norm and energy can be defined by

(u,v)h = huTHv,
Eh(t) = ‖u‖2h = (u,u)h

(A.3)

where H is a diagonal and positive definite matrix defined by H = diag(HL, I,HR). The SBP
property is satisfied by the difference operator Q, if

(u, Qv)h = uNvN − u0v0 − (Qu,v)h (A.4)

or if Q can be written on the form hQ = H−1P for P satisfying

P + P T = EN − E0 = diag(−1, 0, ..., 0, 1) (A.5)

where E0 = diag(1, 0, ..., 0) and EN = diag(0, 0, ..., 1). Using the semi–discrete equation A.2, the
energy estimate for the semi–discrete problem can be obtained as

dE
dt = d

dt‖u(·, t)‖2 = (ut, u)h + (u, ut)h
= (−aQu+ bQQu, u)h + (u,−aQu+ bQQu)h
= −a[u2

N − u2
0] + 2b[uN (Qu)N − u0(Qu)0]

−2b(Qu,Qu)h ≤ au2
0 + 2b[uN (Qu)N − u0(Qu)0].

(A.6)

24



We would get non-growing energy in time if the homogeneous boundary conditions could directly
be imposed in (A.6). However, this will change the difference operator Q such that its SBP property
might be lost. To avoid this problem, boundary conditions are weakly imposed by the simultaneous
approximation term (SAT) technique (Gustafsson, 2008). A first derivative SBP operator with
diagonal quadrature matrix H in A.3 is a O(h2s) accurate central difference operator which is430

O(hs) accurate at and near boundaries s = 1, 2, 3. Such an SBP operator is globally O(hs+1)
accurate.

Appendix B. Time step selection

We solve the compressible Navier–Stokes equations explicitly in time. Hence, the time step
is restricted by the stability region of the Runge–Kutta method. To analyse the approach for the435

model (A.1), we consider that the x–derivative is approximated by a standard central pth order finite

difference operator Q
(p)
x and the time–derivative by an explicit Runge–Kutta method. Therefore,

the von Neumann stability analysis leads to the stability condition 4t(−aQ̂(p) + b(Q̂(p))
2
) ∈ S,

where Q̂(p) and S are the Fourier transform of Q
(p)
x and the stability domain of the Runge–Kutta

method, respectively. The stability condition for SBP operators is more restrictive, due to the440

requirement 4t‖ − aQ(p)
x + bQ

(p)
x )

2
‖h ≤ R1 < R, where the open semicircle {z ∈ C | |z| < R and

Real(z) < 0} is contained in the stability domain S (Kreiss and Wu, 1993). For the standard sixth

order difference operator, i.e., (Q
(6)
x u)j = 1

604x(uj+3 − 9uj+2 + 45uj+1 − 45uj−1 + 9uj−2 − uj−3),

the Fourier transform is Q̂(6) = i
4x [3

2 sin(k4x) − 3
10 sin(2k4x) + 1

30 sin(3k4x)], where k is the

wave number. Thus, the von Neumann stability condition for Q
(6)
x and the classical fourth order445

Runge–Kutta reads CFL = |a|4t
4x ≤ 1.783 for b = 0 and V NN = |b|4t

4x2 ≤ 1.124 for a = 0 (Larsson

and Müller, 2009).
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Abstract. Two-dimensional numerical simulations are employed to study fluid structure
interaction of a simplified model of the soft palate in the pharynx for uniform inhalation.
We take a next step towards a better biomechanical system by modeling the motion of
an inextensible flexible plate. The improved structural model discretized by a low order
difference method permits us to simulate the two-dimensional motion of the flexible plate.
The inspiratory airflow is described by the Navier–Stokes equations for compressible flow
solved by a high order difference method. The explicitly coupled fluid structure interaction
model is based on the Arbitrary Lagrangian–Eulerian formulation.

1 Introduction
Fluid structure interaction (FSI) refers to the interaction of a flexible structure with

fluid flow where the fluid and structure interact over a shared interface. FSI gives rise to
a rich variety of physical phenomena with applications in many fields of engineering and
biomechanics. One of the prime examples of FSI in biomechanical systems is the dynamics
of the upper airways where the interaction between inspiratory and expiratory airflow with
soft tissues may lead to flow-induced oscillations and instabilities. Failure to maintain the
patency of the upper airway during sleep characterizes obstructive sleep apnea (OSA), a
common and disabling disorder wherein the soft palate obstructs the upper airways for
prolonged periods of time during sleep. OSA and snoring are closely related to the flow
conditions in the upper airways. Snoring is often considered a minor affliction. But when
snoring is heavy, it is often associated with the more crippling condition known as OSA.
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(a) Schematic of the computational model (b) The anatomy of up-
per airways.

Figure 1: Computational model and real geometry.

Estimates show that the obstructive sleep apnea syndrome (OSAS) affects 2–4% of the
adult population [1] and 10% of snorers are at risk of OSAS [2].

A cantilevered flexible plate immersed in two-dimensional channel flow has previously
been shown to capture FSI representative of respiratory airflow and soft-palate dynamics
in the upper airway [3, 4, 5, 6]. This is a well-established model wherein a flexible plate
representing the soft palate is mounted downstream of a rigid plate representing the hard
palate. The rigid plate separates the upper and lower channel flows modeling the flow in
the oral and nasal tracts, which interact with the flexible plate motion and then combine
into a single channel flow representing the flow in the pharynx, as illustrated in Fig. 1. In
these studies, an inviscid flow model was used and viscous effects were implicitly modeled
either through the imposition of the Kutta–Joukowski condition [3, 5, 6] or an applied
channel resistance [4].

Latterly, researchers have modeled the effects of fluid viscosity explicitly for the laminar
regime of Reynolds numbers [7] and investigated constant pressure-drop boundary condi-
tions [8]. In these studies across the low-to-high range of Reynolds numbers, thin plates
have been observed to lose their stability at a critical value of flow speed or Reynolds
number based on channel height. The destabilization mechanism has been attributed to
an irreversible energy transfer from the fluid flow to the plate arising from a phase dif-
ference between fluid pressure and plate motion owing to the finite length of the flexible
plate [6, 7, 9]. Recently, compressible viscous flow has been employed for this model to
characterize the acoustic wave propagation induced by the plate oscillation [10].

In all the studies mentioned above, linear structural mechanics was taken into account
by using the one-dimensional Euler–Bernoulli beam equation. Another structural model
has been developed by including an inextensibility condition, however, in the interaction
with potential flow [11]. Apparently, the soft palate undergoes displacements beyond the
linear range, particularly during episodes of obstructed breathing. The soft tissue in the
palate is also nearly incompressible and is subjected to fluid friction in a viscous flow field.
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Accordingly, the present work accounts for those effects and thereby yields a more
faithful biomechanical FSI model. To achieve this, we extend our previous cantilevered
plate model [10] to a two-dimensional elastic plate model having an inextensibility condi-
tion immersed in compressible viscous flow. This paper presents the development of the
improved FSI model and then demonstrates its applicability in simulating flow-induced
oscillation of a flexible plate and the characterization of its behaviour in the upper airway.

After outlining the flow and structure models as well as their coupling for FSI, the in-
vacuum oscillation of the plate is presented through a verification study of the structural
mechanism. Thereafter, the FSI model is used to simulate the flow-induced oscillation of
a flexible plate.

2 Model
2.1 Fluid flow

The fluid motion is described by the 2D compressible Navier–Stokes equations in per-
turbation form. The perturbation formulation is employed to minimize cancellation errors
when discretizing the Navier–Stokes equations for compressible low Mach number flow
[12, 13, 14]. The conservative form of the 2D compressible Navier–Stokes equations in
perturbation formulation can be written as

U′t + Fc′
x + Gc′

y = Fv ′
x + Gv ′

y , (1)

where U′ = U − U0 is the vector of conservative perturbation variables with U =
(ρ, ρu, ρv, ρE)T the vector of the conservative variables and U0 = (ρ0, 0, 0, (ρE)0)T the
stagnation values. For a complete description of the compressible flow equations, see [10].

2.1.1 Discretization of the compressible Navier–Stokes equations

The high order finite difference method based on summation by parts (SBP) opera-
tors [15, 16, 17] is employed for space discretization of the compressible Navier–Stokes
equations. We use a globally fourth order SBP operator to discretize the first derivatives
and apply them twice to approximate the second derivatives in the viscous terms. The
SBP operators correspond to the sixth order central difference operator in the interior,
but degrade to third order accuracy near the boundary resulting in fourth order global
accuracy [16]. This approach is based on the energy method, which permits us to de-
rive well-posedness for the continuous problem and to guarantee stability for the discrete
problem. For the time integration process, the classical fourth order explicit Runge–Kutta
method is used. The multi-block structured grid approach is employed to represent the
simplified geometry in the upper airways.

Adiabatic no-slip boundary conditions are applied at the walls and the fluid-structure
interface. At the inflow, the velocities in the x- and y-directions are imposed using a
uniform inlet profile normal to the boundary, u(x = 0, t) = U0 and v = 0. In addition,
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the inlet temperature is set to T = T0 = 310 K. The outlet pressure is set to atmospheric
pressure, i.e., p′ = p− p0 = p− patm = 0 Pa. The Navier–Stokes characteristic boundary
conditions (NSCBC) developed by [18] are employed at the inflow and outflow boundaries
to minimize wave reflections. The details of this numerical algorithm and boundary
conditions can be found in our previous publication [10].

2.2 The structure model
The plate model is central in order to obtain physical results for simulating the soft

palate motion. In the present study, the soft palate is modeled as a two–dimensional,
massive, flexible and inextensible plate. This model provides the correlation between
the elastic deflection of the plate and the applied force. The flexible plate has its own
material density ρs, different from the surrounding fluid density ρf . The flexibility allows
the plate to bend and to react to the force applied by the fluid flow and the flexural force
generating a restoring force. Taking into account the inextensibility constraint, the length
of the plate remains constant even if an external force is acting on it.

The dynamics of the plate in Lagrangian coordinate s along its undeformed reference
configuration can be described by the following equation [19]

ρs
∂2X
∂t2

= ∂

∂s

(
T
∂X
∂s

)
− ∂2

∂s2

(
KB

∂2X
∂s2

)
+ ρsg + F, (2)

where s is the arclength, X = (x(s, t), y(s, t))T denotes the material position of the
plate, T is the tension along the Lagrangian coordinate s, KB is the flexural rigidity, g
the gravitational acceleration, and F is the force applied on the plate by the surrounding
fluid. Furthermore, ρs is the actual line density of the plate defined as the line density
difference between the thin plate and the surrounding fluid ρs = ρ − ρfA, where ρ is
density of the plate, ρf the density of the fluid and A is the cross sectional area of the
plate.

The inextensibility constraint of the plate [20, 19], i.e. the local stretching of the plate
satisfies d

dt
|∂X
∂s
|= 0, can be expressed as

∂X
∂s
· ∂X
∂s

= 1. (3)

Following the previous studies [20, 19], the tension T in this model is determined by
a Poisson equation derived by inserting the constraint of inextensibility Eq. (3) into the
dot product of ∂X

∂s
and the s−derivative of the plate dynamical equation Eq. (2)

∂X
∂s
· ∂

2

∂s2

(
T
∂X
∂s

)
= ρs

2
∂2

∂t2

(
∂X
∂s
· ∂X
∂s

)
− ρs

∂2X
∂t∂s

· ∂
2X

∂t∂s
− ∂X

∂s
· ∂
∂s

(
FB + F

)
(4)

where FB is the bending force which by using the Euler–Bernoulli assumption for a
thin flexible plate is expressed as
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FB = − ∂2

∂s2

(
KB

∂2X
∂s2

)
(5)

The non-dimensional parameters are chosen with respect to the stagnation density ρ0,
stagnation speed of sound c0 and the length of the flexible plate L, in the same way as
for the fluid solver.

The boundary conditions are specified at the free end (s = L) and at the fixed end at
(s = 0) of the plate. The free end boundary condition at the trailing edge is imposed by
assuming that the tension, bending moment and shear force are zero

T (L, t) = 0, ∂2X
∂s2

∣∣∣∣
s=L

= 0, ∂3X
∂s3

∣∣∣∣
s=L

= 0 (6)

The support mechanism at the leading edge is taken into account as

X|s=0 = X0,
∂2X
∂s2

∣∣∣∣
s=0

= 0 (7)

2.2.1 Discretization of the structure model

The discretisation of the governing equation of the plate motion (2) along s is per-
formed on a staggered grid following [19]. The plate is discretized with a finite number
of Lagrangian points Xi. The plate tension is defined at the interfaces of the grid cells,
and other variables are defined at the primary grid points in the centers of the grid cells,
as shown in Fig. 2

Figure 2: Schematic diagram of staggered grid discretisation on the plate along its Lagrangian coordi-
nate.

Then, the numerical procedure for the non-dimensionalised form of Eqs. (2) and (3) is
as follows

X∗ = 2Xn
i −Xn−1

i (8)
F∗B = −Dss(KB DssX∗)ni (9)
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(DsX∗)i+ 1
2
·

(
Ds(Ds(T

n+ 1
2

i+ 1
2
DsX∗))

)
= ρs

1− 2(DsX ·DsX)n
i+ 1

2
+ (DsX ·DsX)n−1

i+ 1
2

2∆t2 −

ρs(DsV ·DsV)ni+ 1
2
− (DsX∗)ni+ 1

2
·

(
Ds(F∗B + Fn)

)

i+ 1
2
(10)

ρs
Xn+1
i −X∗i

∆t2 =
(
Ds(T n+ 1

2DsXn+1)
)

i
+ (FB)n+1 + G g

|g| + Fn
i (11)

where Ds and Dss are the second order accurate difference operators for the first and
second derivatives along s, respectively, and X∗ is the predicted position of the plate.
Employing X∗ to calculate the tension helps to reduce the error. The tension is computed
at the intermediate step, i.e. tn+ 1

2 and is employed to update the position of the plate, i.e.
Xn+1. The velocity of the plate is defined as Vn

i = (Xn
i −Xn−1

i )/∆t. Fn denotes the force
exerted by the fluid flow on the structure and is obtained explicitly using the fluid solver
at time level n. G is defined as the non-dimensional gravity G = gL/c2

0. Equations (10)
and (11) constitute diagonally dominant tri- and pentadiagonal linear systems, which are
solved by LU decomposition without pivoting, i.e. by the Thomas algorithm and a similar
algorithm, respectively. The condition for diagonal dominance of the matrix in Eq. (11)
is KB

∆t2
∆s4 6 1

4 .

2.3 Fluid structure interaction
To handle the fluid flow in Eulerian description using moving fluid grids and the plate

structure in a Lagrangian formulation using stationary structure grids, the Arbitrary
Lagrangian–Eulerian (ALE) formulation is appropriately employed. Considering the ve-
locity of the fluid grids ẋ and ẏ in the time-dependent coordinate transformation of the
fluid flow domain, the grid point velocities are subtracted from the fluid velocity to define
the contravariant velocity components U = ξx(u−ẋ)+ξy(v−ẏ) and V = ηx(u−ẋ)+ηy(v−ẏ)
which yield simple expressions for the transformed inviscid flux vectors F̂c and Ĝc [21].
The mesh update is implemented by remeshing the whole fluid domain in each time step
using the positions and velocities of the flexible structure at the boundary and a linear
interpolation for interior points in the fluid domain.

Solving fluid flow on a moving mesh, the numerical scheme should satisfy the Geometric
Conservation Law (GCL) for mathematical consistency [22], which leads to the 2D Navier-
Stokes equations in ALE formulation [23] being expressed as

U′τ = 1
J−1 (−F̂′ξ − Ĝ′η − (J−1)τU′). (12)

An explicit, two-way method where forces and deformations are exchanged between the
flow and the deformable structure in each time-step is employed to handle the coupling
between the fluid and the structure. The fluid and structure interact with each other
by applying equal displacement and velocity at the interface, satisfying the no-slip and
adiabatic wall boundary conditions. The force exerted by the fluid flow on the plate at
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Figure 3: Time history of the y-coordinate position of the trailing edge of the plate subjected to only
gravity, without bending force KB = 0. The solid line shows the present model, circles present the results
of the study performed by Huang et al. [19] and diamonds represent the results of the study done by
Favier et al. [24].

time level n in equations (10) and (11) is given by Fn = −(pnU − pnL)n, where pU and pL
are the pressures on the upper side and lower side of the plate, respectively, and n is the
outer unit vector normal to the plate.

3 Results and discussion
3.1 Verification of structure solver in vacuum

The accuracy of the numerical model of the plate has been first tested and verified by
simulating the oscillation and bending of the plate subjected to the gravity force in the
absence of surrounding fluid, i.e. a pendulum with gravity acting in the x−direction. The
plate was initially deformed by using the following initial configuration

X(s, 0) = X0 + s(cos θ, sin θ), s ∈ [0, L], (13)
where L is the length of the plate, θ is an angle and X0 = (0, 0). This particular

configuration within the small angle approximation is considered in previous studies [19,
24]. Following them, the test is first performed by setting the initial angle of the plate
to θ = 0.01π with a flexural stiffness KB = 0 and non-dimensional gravity equivalent to
γ = 10. The length of the plate is L = 1, and it is discretized by N = 101 grid points
along the Lagrangian coordinate s. The time variation of the y coordinate of the trailing
edge is monitored and shown in Fig. 3.

A second verification test is performed for a larger initial deflection angle θ = 0.1π and
by including the non-dimensional bending force with KB = 0.01. Fig. 4 illustrates the
y-displacement of the trailing edge and the time variation of the plate deformation.

The results obtained in Figures 3 and 4(a) are in good agreement in comparison with

7



M. Khalili, M. Larsson and B. Müller

0 5 10 15 20
−0.5

−0.4

−0.3

−0.2

−0.1

0

0.1

0.2

0.3

0.4

0.5

y(
L
,t
)

t

 

 

Present study Huang et al. Favier et al.

(a)

0 0.2 0.4 0.6 0.8 1
−0.4

−0.3

−0.2

−0.1

0

0.1

0.2

0.3

0.4

y(
s,
t)

x(s, t)

(b)

Figure 4: (a) Time history of the y-coordinate position of the trailing edge of the plate subjected to only
gravity γ = 10, with bending force KB = 0.01. The solid line shows the present model, circles present
the results of the study performed by Huang et al. [19] and diamonds represent the results of the study
done by Favier et al. [24], (b) The sequence of superposition of the plate from up to down between time
0− 0.8.

the available numerical results [19, 24].

3.2 Numercal results of FSI
Having established the credibility of the structural model, we now couple the structure

and fluid models to investigate their interaction. The computational domain is a rect-
angular channel with 0 ≤ x ≤ 9L and 0 ≤ y ≤ 4L where L is the length of the flexible
plate. The flexible plate modeling the soft palate is attached to a rigid plate with length
L representing the hard palate. The origin of the rigid plate is located in the middle of
the height of the channel. Therefore, the leading edge of the flexible plate is placed at
(L, 2L). Overall, the computational domain is discretized by 581× 281 grid points in lon-
gitudinal and transversal directions, respectively. The Reynolds number Re = ρUL

µ
= 378

and the Mach number Ma = U
c0

= 0.1 are used based on the inlet velocity, density, viscos-
ity, speed of sound and the plate length. The nondimensional line density ρs

ρ0L
is 1, and

the nondimensional flexural rigidity KB

ρ0c2
0L

3 = 0.0001 is used. The plate is discretized by
N = 81 grid points and ∆tc0

L
= 0.001 is chosen. The initial configuration of the flexible

plate is a straight line like in the previous section with θ = −0.04π. The flexible plate
has been fixed to its initial displacement until an approximately steady state flow solution
is reached at tc0

L
= 60 . Then, the flexible plate is released from its initial position and

allowed to interact with the flow.
Fig. 5 represents the y-displacement of the trailing edge and the time variation of the

plate deformation. The amplitude of the oscillation is decreasing, and the frequency is
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about fL
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Figure 5: (a) Time history of the y-coordinate position of the trailing edge of the plate in FSI. (b)
Sequence of flexible plate deformation from tc0/L = 60 to tc0/L = 105, the initial and final deformation
are marked by the red solid line and the blue dashed line, respectively.

Fig. 6 shows the instantaneous spanwise vorticity contours in the left column and the
corresponding pressure field on the right at five time instants. The plate is released to
oscillate at nondimensional time tc0/L = 60. The plate oscillation produces a strong
acoustic wave near the trailing edge of the plate. The wave hits the top and bottom wall
of the channel and the reflected waves propagate into the domain, hitting waves newly
produced by oscillating plate and waves reflected at the inlet. These reflected waves
interact and produce a complex interference pattern which leads a very noisy pressure field.
The complexity of the reflections and vicinity of the inlet boundary imposing uniform flow
to the trailing edge lead to a build-up of vortices near the inlet. Behind the trailing edge
of the oscillating plate, a complex vorticity pattern is observed.

4 Conclusions
In the present study, we have implemented a two-dimensional structure model to in-

teract with compressible viscous flow in order to simulate the fluid structure interaction
for a simplified model of the soft palate in the pharynx. The soft palate is modeled as a
deformable inextensible plate. The FSI algorithm is based on the Arbitrary Lagrangian–
Eulerian formulation with an explicit, two-way coupling strategy. The 2D compressible
Navier–Stokes equations are computed by highly stable high order summation by parts
(SBP) difference operators. The explicit Runge–Kutta method is applied for time inte-
gration. The structure model is solved by an implicit second order difference method to
determine the flexible plate motion. The accuracy of the structural solver has been as-
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Figure 6: The left column shows the time sequence of vorticity contour plots, ωzL
c0

, and the right column
presents the corresponding acoustic pressure contour plots, p′

ρ0c0
, at Re = 378 and Ma = 0.1.
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sessed through comparisons with previous numerical results. The flow-induced oscillation
of the plate is simulated for low Reynolds and Mach numbers. Strong acoustic waves are
produced by the oscillating plate. Complex pressure and vorticity patterns are observed.
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ABSTRACT
A ghost-point immersed boundary method is devised for the
compressible Navier–Stokes equations by employing high order
summation-by-parts (SBP) difference operators. The immersed
boundaries are treated as sharp interfaces by enforcing the solid wall
boundary conditions via flow variables at ghost points using bilin-
early interpolated flow variables at mirror points. The approach is
verified and validated for compressible flow past a circular cylinder
at moderate Reynolds numbers.

Keywords: High order finite difference method, Immersed
boundary method, Compressible viscous flow .

NOMENCLATURE

Greek Symbols
ρ Mass density
µ Dynamic viscosity
τ Viscous stress tensor
γ Ratio of specific heats
κ Heat conduction coefficient
φ Generic variable
G Set of body intercept points that are part of the inter-

polation stencil
Λ Parameter
σ Source term in steady state heat equation
ξ,η Transformed coordinates in computational domain

Latin Symbols
t Physical time
E Specific total energy
H Total entalpy
p Pressure
Sc Sutherland constant
T Temperature
U Vector of conservative variables
V Vandermonde matrix
x,y Cartesian coordinates in physical domain
J−1 Jacobian determinant

Sub/superscripts
GP Ghost point
IP Image point
BI Body intercept
c′ Conservative perturbation
ν′ Viscous perturbation

INTRODUCTION

Many applications in engineering, biology and medicine in-
volve low and moderate Reynolds number flow problems
with complex boundaries between fluid and structure. Sim-
ulating these problems with conventional methods requires
the process of generating high quality and body-conforming
grids which is challenging and time-consuming. Recently,
there has been a growing interest in the development of non-
boundary conforming methodologies for the solution of the
Navier–Stokes equations (Mittal and Iaccarino, 2005). In
such methods, the requirement that the grid should conform
to a solid boundary is dropped, and the effect of the im-
mersed boundary of the solid body on the flow is introduced
through the proper treatment of the solution variables near
the boundary. The basic advantage of these formulations is
the simplicity compared with conventional body-conforming
grid generation, especially in cases of complex stationary or
moving boundaries where the demand for regeneration or de-
formation of the grid is eliminated. Therefore, efficient non
boundary conforming strategies with robust Cartesian coor-
dinate solvers can directly be applied to a wide range of flow
problems.
Over the past decades a variety of non-body conforming
approaches with various degrees of accuracy and complex-
ity have been proposed. The so-called immersed-boundary
method (IBM) was introduced by (Peskin, 1972). IB meth-
ods are categorized into continuous forcing and discrete (di-
rect) forcing approaches. In the first category, a continuous
forcing term is added to the governing equations to repre-
sent the interaction between the immersed boundary and the
fluid, and a discrete Dirac–delta function is used to smooth
this singular force on the Euler grid (Peskin, 1972; Gold-
stein et al., 1993; Saiki and Biringen, 1996). Numerous
modifications and improvements have been implemented in
this category (Haeri and Shrimpton, 2012; Sotiropoulos and
Yang, 2014). The second category, including the sharp in-
terface method, mimics the presence of a surface force ex-
erted by the boundary on the fluid by adjusting the discretiza-
tion in the vicinity of the immersed boundary in order to di-
rectly take into account the boundary conditions at the IB (Ye
et al., 1999; Fadlun et al., 2000; Mohd-Yusof, 1997; Balaras,
2004). The ghost cell immersed boundary (GCIB) method as
sharp interface method is proposed in the studies by (Tseng
and Ferziger, 2003; Ghias et al., 2007; Mittal et al., 2008).
Ghost cells are defined as a layer of cells within the solid
body having at least one nearby point in the fluid domain



i.e., adjoining to the immersed boundary. The flow variables
at the ghost points are calculated with the boundary condi-
tions at the immersed boundary and the flow variables at
grid points near the IB in the fluid domain. The presence
of the immersed boundary is introduced by the flow vari-
ables at the ghost points. The idea of image points inside the
fluid domain is adopted to ensure suitable weighting coeffi-
cients in the reconstruction formula in order to avoid numeri-
cal instability caused by the large, negative weighting coeffi-
cients in the extrapolation formulation (Tseng and Ferziger,
2003). The ghost point method has shown large potential to
deal with different fluid-solid interaction problems, includ-
ing those involving highly complex geometries and moving
or deforming bodies (Mittal et al., 2008).
In the IBM, all the equations can be solved on a body non-
conformal, Cartesian grid which does not require to be up-
dated for moving or deforming bodies. Due to the flexibil-
ity of the method, many different types of IBM have been
developed in incompressible and compressible flow solvers.
However, most of the attention on IBM is devoted to incom-
pressible flows (Mittal and Iaccarino, 2005). Works on vis-
cous compressible flows are still scarce and a few IBM for
viscous compressible flows has been developed (De Palma
et al., 2006; Ghias et al., 2007; de Tullio et al., 2007; Brehm
et al., 2015). Due to the different nature of the Navier–Stokes
equations for compressible and incompressible flows, i.e. the
requirement of equation of state for compressible flows, there
are differences in implementation of the boundary conditions
between these two types of equations as well as in the spatial
discretisation schemes employed.
In this study, the ghost point IB approach has been
adopted for a high order finite difference method based on
summation-by-parts operators (SBP) to provide an accurate
and efficient approach for studying low Mach number com-
pressible viscous flows. The major ambition of the present
work is to extend this approach for fluid structure interaction
(FSI) in the upper airways to study the obstructive sleep ap-
nea syndrome. The main focus in our study is subsonic flow
which permits us to characterize the acoustic wave propa-
gation induced by the structure oscillation in FSI to obtain
a better understanding of snoring. The proposed approach is
verified and validated for two dimensional flows over a circu-
lar cylinder. In the following sections, a brief review of the
governing equations and their numerical solution is given.
Then, the IB approach is described in detail. Finally, results
are provided and compared with numerical and experimental
ones available in the literature.

MODEL DESCRIPTION

Governing equations

The 2D compressible Navier–Stokes equations in perturba-
tion form are solved. To minimize cancellation errors when
discretizing the Navier–Stokes equations for compressible
low Mach number flow, the perturbation formulation is em-
ployed (Sesterhenn et al., 1999; Müller, 2008). The conser-
vative form of the 2D compressible Navier–Stokes equations
in perturbation formulation can be written as

U′t +Fc′
x +Gc′

y = Fv′
x +Gv′

y (1)

where U′ = U−U0 is the vector of conservative perturba-
tion variables with U= (ρ,ρu,ρv,ρE)T the vector of the con-
servative variables and U0 = (ρ0,0,0,(ρE)0)

T the stagnation
values.

The conservative perturbation variables U′ and the inviscid
(Fc′, Gc′) and viscous perturbation flux vectors (Fv′, Gv′) are
defined by Fc′ = Fc(U)−Fc(U0), etc.

U′ =




ρ′
(ρu)′

(ρv)′

(ρE)′


 ,

Fc′=




(ρu)′

(ρu)′u′+ p′

(ρv)′u′

((ρH)0 +(ρH)′)u′


 ,Gc′=




(ρv)′

(ρu)′v′

(ρv)′v′+ p′

((ρH)0 +(ρH)′)v′


 ,

Fv′=




0
τ′xx
τ′xy

u′τ′xx + v′τ′xy +κT ′x


 ,Gv′=




0
τ′yx
τ′yy

u′τ′yx + v′τ′yy +κT ′y


 ,

where t is physical time and x and y are the Cartesian coordi-
nates. ρ denotes density, u and v the x- and y-direction veloc-
ity components, E the specific total energy, T the tempera-
ture and κ the heat conduction coefficient calculated from the
constant Prandtl number Pr = 0.72. ρ0, (ρE)0 and (ρH)0 de-
note the stagnation values of density, total energy density and
total enthalpy density. The perturbation variables are defined
as:

ρ′ = ρ−ρ0, (ρu)′ = (ρu),

(ρE)′ = ρE− (ρE)0, (ρH)′ = (ρE)′+ p′, u′ =
(ρu)′

ρ0 +ρ′
,

τ′ = µ(∇u′+(∇u′)T )− 2
3

µ(∇ ·u′)I, T ′ =
p′/R−ρ′T0

ρ0 +ρ′

Here, R is the specific gas constant and µ is the vis-
cosity which is determined from the Sutherland law
µ
µ0

= ( T
T0
)1.5[(1+Sc)/(

T
T0
+Sc)] with the non-dimensional

Sutherland constant Sc =
110

301.75 .
Since perfect gas is considered, the pressure perturbation
can be related to the conservative perturbation variables by
p′ = (γ−1)[(ρE)′− 1

2 ((ρu′ ·u′))], where the ratio of specific
heats γ = cp/cv = 1.4 for air.
The viscous flux vectors Fv′ and Gv′ are the same as for the
standard conservative form, except for using the temperature
perturbation T ′ instead of temperature T for the heat flux
terms. The momentum density and velocity perturbations
are taken as the same as their unperturbed counterparts, i.e.
(ρu)′ = ρu (Larsson and Müller, 2009). For convenience the
variables are non-dimensionalized with ρ0, stagnation speed
of sound c0 and ρ0c2

0 as reference values. In order to general-
ize the geometry for non-uniform Cartesian grids, the equa-
tions of motions are transformed from the physical domain
(x,y) to the computational domain (ξ,η) by the following
relations,

x = x(ξ,η)
y = y(ξ,η) (2)

Thus, the transformed 2D compressible Navier–Stokes equa-
tions in perturbation form are expressed as:

Û′t + F̂′ξ + Ĝ′η = 0 (3)

where Û′ = J−1U′, F̂′ = J−1(ξx(Fc′−Fv′)+ ξy(Gc′−Gv′))
and Ĝ′ = J−1(ηx(Fc′−Fv′)+ηy(Gc′−Gv′)). The chain rule
for partial differentiation provides the expressions for Carte-
sian derivatives in the viscous flux vectors Fv′ and Gv′, e.g.



u′x = u′ξξx +u′ηηx and u′y = u′ξξy +u′ηηy. The Jacobian deter-
minant of the transformation is J−1 = xξyη−xηyξ and metric
terms are

J−1ξx = yη, J−1ξy =−xη,

J−1ηx =−yξ, J−1ηy = xξ.
(4)

Numerical methodology

The summation-by-parts (SBP) operator Q is an approxima-
tion to the first ξ- and η- derivatives in (4) and (3). In the
interior, it corresponds to the standard sixth order central
operator, while being third order accurate near the bound-
aries. Through a special boundary treatment, SBP opera-
tors permit energy estimates for discrete problems similar to
those for the continuous ones that are approximated. There-
fore, SBP operators can yield strictly stable schemes for gen-
eral boundary conditions (Strand, 1994; Gustafsson et al.,
1995; Gustafsson, 2008). The global order of accuracy of
the present SBP operator Q is fourth order (Müller, 2008).
The energy method and the summation-by-parts operators
are discussed in the Appendix A and B, respectively.
Second derivatives of viscous parts of F̂ξ

′
and Ĝη

′
are ap-

proximated by applying the SBP operator for first derivatives
twice. However, successively applying the first derivative op-
erator makes the scheme wider, which requires special treat-
ment for the immersed boundary method, and will be dis-
cussed in section boundary conditions below. Spurious high
wave number oscillations are suppressed by a sixth order ex-
plicit filter (Visbal and Gaitonde, 2002; Müller, 2008). The
classical fourth order explicit Runge–Kutta method is em-
ployed for time integration.

Immersed boundary formulation

The sharp interface method is well suited for compressible
viscous flow, due to imposing the boundary conditions at im-
mersed boundaries, without computing any forcing term and
introducing any force distribution function. The ghost point
immersed boundary method employed in this study is based
on the ghost cell immersed boundary approach for second
order methods (Ghias et al., 2007; Mittal et al., 2008).
The basic idea in this method is to compute the value of the
flow variables at each of the ghost points (referring to the
layer of points inside the solid body adjoining the immersed
boundary) such that the boundary conditions at the immersed
boundary are satisfied. As illustrated in Fig. 1, the procedure
begins by determining the immersed boundary and then dis-
tinguishing the solid points, i.e. the nodes lying inside the
solid body, and the fluid points, i.e. the nodes lying outside
the body in the fluid domain. The ghost points (denoted by
GP) are identified by those nodes that lie inside the body and
adjacent to the immersed boundary which have at least one
neighbour node in the fluid domain with the difference sten-
cil centered at the ghost point. The image point (denoted by
IP ) can be found by extending a normal probe, i.e. a line
normal to the immersed boundary, from the ghost point to
intersect with the immersed boundary at the body intercept
point (denoted by BI) such that the body intercept point lies
at the midpoint of the line connecting the ghost point and the
image point. Once the flow variables at the image point are
computed, the ghost point variables can be determined by im-
posing the boundary conditions. In other words, the general
strategy is to compute the flow variables at the image point
by taking into account the nodal values at the surrounding
fluid points and then use the boundary conditions to obtain
the values at the ghost point.

Among the available options for determining the flow vari-
ables at the image points, the computationally most effi-
cient scheme will be the bilinear interpolation scheme in
2D (Ghias et al., 2007; Mittal et al., 2008) where the flow
variables are linearly interpolated from four nodal points
surrounding the image points. This interpolation scheme
leads to a nominally second order accuracy of the immersed
boundary condition. The high order SBP operator used in
this study for spatial discretization, corresponding to the
sixth order central finite difference method at interior grids,
requires three layers of ghost points inside the immersed
boundary in order to maintain the overall high order of ac-
curacy, as shown in Fig. 2.
In the case of bilinear interpolation, the interpolating polyno-
mial involves four nodes and hence four nodal values need to
be specified. The bilinear interpolation for a generic variable
φ can be expressed as

φ(x,y) =C1 +C2x+C3y+C4xy. (5)

Figure 1: Schematic of points used to interpolate the variable lo-
cated at a ghost point.

Figure 2: Schematic of 3 layers of ghost points inside immersed
body on a Cartesian mesh.



The four unknown coefficients Ci, i = 1, ..,4, can be deter-
mined using values at the four nodes surrounding the im-
age point. Thus, the variable at the image point is recon-
structed through bilinear interpolation using unknown coef-
ficients and known flow variables at surrounding fluid nodes.
The four weighting coefficients are evaluated as the solution
of the linear system

VC = φ, (6)

where
C = {C1,C2,C3,C4}T (7)

is the vector of the unknown coefficients and

φ = {φ1,φ2,φ3,φ4}T (8)

is the vector of the four surrounding node values. The matrix
V is the Vandermonde matrix which is expressed as

V =




1 x1 y1 x1y1
1 x2 y2 x2y2
1 x3 y3 x3y3
1 x4 y4 x4y4


 (9)

In this classical formulation, the unknown coefficient values
Ci, i = 1, ...,4, would depend on the solution at each time
step. However, the approach can be reformulated such that
new coefficients are only dependent on the coordinates of the
image point and the geometry of the grids. The reformula-
tion is discussed in detail in Appendix C. Thus, the image
point value can be expressed as

φIP =
4

∑
i=1

αiφi (10)

where αi, i = 1, ...,4, are coefficients depending on the co-
ordinates only. They can be established once the grid, im-
mersed boundary and image point coordinates are specified.
When a ghost point is close to the immersed boundary, its
corresponding image point might not have four surround-
ing fluid points. One case would be that the ghost point
itself is part of the interpolation scheme. Since the ghost
point value in an interpolation scheme would be unknown,
the ghost point is then replaced by the body intercept point
where the values are determined by the boundary conditions,
cf. Fig. 3.
For Dirichlet boundary condition in this case, the corre-
sponding row in Eq. (9) is replaced by

φBI(x,y) =C1 +C2 xBI +C3 yBI +C4 xBIyBI (11)

where xBI and yBI are the coordinates of the body intercept
point. Thereby, for a Dirichlet boundary condition the linear
system corresponding to Eq.(6) for this case becomes




1 x1 y1 x1y1
1 x2 y2 x2y2
1 x3 y3 x3y3
1 xB yB xByB







C1
C2
C3
C4


=




φ1
φ2
φ3
φBI


 (12)

For a Neumann boundary condition, the variable gradient at
the body intercept is known instead of the actual value. The
most obvious choice in such a case is to use the specified
gradient value ∂φBI

∂n to compute the value at the image point.
The gradient of φBI at the boundary can be determined by
taking the normal derivative of Eq.(11),

∂φBI

∂n
=C2nx +C3ny +C4(yBInx + xBIny) = ζ (13)

where nx and ny are the components of the unit vector normal
to the boundary.
Thus, the linear system corresponding to Eq.(6) for this case
becomes




1 x1 y1 x1y1
1 x2 y2 x2y2
1 x3 y3 x3y3
0 nx ny yBInx + xBIny







C1
C2
C3
C4


=




φ1
φ2
φ3
ζ


 (14)

As shown in Fig. 4, it might also be the case that two inter-
polation points would lie inside the immersed body, one at
the corresponding ghost point itself and one at another ghost
point. The procedure we used to handle this case is to repeat
the above steps for the other ghost point as well, resulting in
a Vandermonde matrix where another row is also replaced by
Eqs. (11) or (13) in the same way as the fourth row, in con-
trast to (Ghias et al., 2007; Mittal et al., 2008). Applying our
procedure for this case, it is no longer necessary to solve a
coupled linear system by using iterative processes like (Ghias
et al., 2007; Mittal et al., 2008). This situation does not pose
any consistency issues and ensures that the interpolation pro-
cedure for the image point is well-posed without affecting
the accuracy of the interpolation.
The value of the variable at the ghost point is computed by
employing a linear approximation along the normal probe
which takes into account the boundary condition at the
boundary intercept. For a Dirichlet boundary condition this
can generally be expressed as

φBI =
1
2 (φIP +φGP)+O(4l2) (15)

where 4l is the length of the normal probe from GP to IP.
Solving for φGP using Eq. (15) and neglecting the truncation
gives

φGP =

(
2− ∑

j∈G
α j

)
φBI−∑

i/∈G
αiφi (16)

Figure 3: Schematic of the situation when one surrounding inter-
polation point is the boundary intercept.



where G is the set of body intercepts that are part of the in-
terpolation stencil. For a Neumann boundary condition on
the immersed boundary, the following second-order central-
difference is written along the normal probe

(
∂φ
∂n

)BI =
φIP−φGP

4l
+O(4l2) (17)

Thereby, the general formulation for a non-homogeneous
Neumann boundary condition is expressed as

φGP =

(
∑
j∈G

α j−4l

)
(

∂φ
∂n

)BI + ∑
i/∈G

αiφi (18)

Boundary conditions

The no-slip boundary condition at the immersed bound-
ary for a stationary body is considered. Thereby, Dirichlet
boundary conditions are employed for the velocity compo-
nents at the IB. For each velocity components, the corre-
sponding value at the body intercept φBI = 0 is set in Eq.
(11). Applying the no-slip condition at the body surface,
the convective flux contribution should be zero. The pres-
sure gradient normal to the immersed interface is set zero
as a boundary layer approximation, ∂p

∂n = ∂φBI
∂n = 0 in Eq.

(13). The boundary condition for the temperature depends
on the whether the immersed surface of the body is adiabatic
or isothermal. Assuming an adiabatic boundary condition at
the immersed body, the temperature gradient normal to the
surface ∂T

∂n = 0 is set to zero by enforcing a zero density

gradient ∂ρ
∂n = 0. Thus, for the variables ρ and p Neumann

boundary conditions are employed. According to the bound-
ary conditions considered for the immersed body, the values
of the conservative perturbation variables at the ghost points
are determined once the flow variables at the image points

Figure 4: Schematic of the situation when two of the surrounding
interpolation points lie inside the immersed body.

are interpolated using:

ρ′GP = ρ′IP
(ρu)′GP =−(ρu)′IP
(ρv)′GP =−(ρv)′IP
(ρE)′GP = (ρE)′IP

(19)

As mentioned above, applying the first derivative approxi-
mation twice for computing the second derivative will make
the stencil wider. For the proper treatment of wide stencils in
computing the second derivative, the first derivatives of the
viscous terms are computed up to and including the ghost
points, treating the solid points inside the ghost point layers
as domain boundaries when employing the differencing sten-
cil. Using this procedure, we ensure that the derivatives of
the viscous fluxes at the fluid points closest to the immersed
boundary are computed with high order.
Non-reflecting characteristic boundary conditions are em-
ployed at the inflow and outflow boundaries to minimize
wave reflections. The Navier–Stokes characteristic boundary
conditions (NSCBC) developed by (Poinsot and Lele, 1992)
are employed to approximate incoming waves based on lo-
cal one-dimensional inviscid (LODI) relations. The primi-
tive variables can be related to the wave amplitude (Li) by
LODI relations. The amplitudes of the characteristic waves
are L1 = λ1(

∂p
∂x −ρc ∂u

∂x ), L2 = λ2(c2 ∂ρ
∂x −

∂p
∂x ), L3 = λ3(

∂v
∂x )

and L4 = λ4(
∂p
∂x +ρc ∂u

∂x ). Since fully non-reflecting condi-
tions may lead to an ill-posed problem (Poinsot and Lele,
1992), this approach is partially reflecting. Imposing a con-
stant pressure at the outlet requires L1 =−L4. To keep the
reflections low and the pressure close to atmospheric pres-
sure, the incoming wave amplitude is set to

L1 = K(p− patm) (20)

where K is a relaxation coefficient. Rudy and Strikwerda
proposed the relaxation coefficient as K = Λ(1−Ma2)(c/Lt)
where Ma is the Mach number, c the speed of sound, Lt
the total length of the domain and Λ a parameter (Rudy and
Strikwerda, 1980). The optimum value Λ = 0.25 derived by
(Rudy and Strikwerda, 1980) is employed. For reverse flow
(negative velocity in x-direction) at the outlet, L1, L2 and
L3 are set to zero. A similar boundary treatment at inflow
and outflow was used by (Khalili et al., 2016).

RESULTS

In order to assess the accuracy of the immersed boundary
methodology, a two-dimensional steady state heat problem is
first solved. Then, the IBM is applied to a two-dimensional
flow past a circular cylinder at a range Reynolds numbers to
demonstrate the ability and performance of the method for
simulating compressible viscous flow.

Steady state heat equation

To verify the order of spatial accuracy of the current im-
mersed boundary scheme, a steady state heat transfer prob-
lem has been considered. Since the ghost point immersed
boundary method is second-order accurate (Ghias et al.,
2007; Mittal et al., 2008), care has been taken to maintain
a second-order spatial accuracy in the imposition of bound-
ary conditions on the immersed boundary. The steady state
heat equation reads

∇2T = σ (21)



where σ is a source term, i.e. −κσ is the rate of heat genera-
tion per unit volume. The exact solution for this case in polar
coordinates can be expressed as

T (r) = σ
r2

4
+A ln(r)+B (22)

where A and B depend on the boundary conditions type and
their values.
The numerical solution by means of IBM is implemented
to solve Eq.(21) in Cartesian coordinates. The second and
fourth order central finite difference methods for second
derivatives are employed for spatial discretization of the reg-
ular fluid points.

T (2)
xx = (Ti+1−2Ti +Ti−1)/∆x2 (23)

T (4)
xx = (−Ti+2 +16Ti+1−30Ti +16Ti−1−Ti−2)/(12∆x2)

(24)
The temperature distribution is solved between two concen-
trical cylinders with inner and outer diameters Dinner = 3.5
and Douter = 8.5, respectively, embedded in a square domain
of edge length L = 10. The σ = −0.45 is chosen and the
temperatures of the inner and outer cylinders are Tinner = 5
and Touter = 10, respectively. The immersed boundary ap-
proach is implemented at the cylinder interfaces. The results
from different grids on a uniform Cartesian grid (N×N) from
N = 100 to 1000 are compared with the exact solution to
compute the L2 and L∞ norms. Fig. 5 shows the errors for
different grids.
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Figure 5: L2 and L∞ norms computed at various grid levels with
IBM for 2D steady heat Eq. (21).

The first, second and third–order convergence rates are also
included in Fig. 5 for reference. This figure indicates that
a second-order rate of convergence has been achieved by
the Poisson solver for Dirichlet boundary conditions at im-
mersed boundaries. The error are slightly lower for the fourth
order difference method than for the second order one.

Flow past circular cylinder

To verify and validate the present immersed boundary treat-
ment for a compressible flow solver, the benchmark flow over
a circular cylinder is firstly simulated at the Reynolds num-
bers of 20 and 40 based on the free-stream velocity and di-
ameter of the cylinder. It is known that steady flow over a
circular cylinder can persist up to Reynolds numbers of about
40. The free-stream Mach number for the simulation is set as
a small number Ma = 0.03 in order to be comparable to the
simulations performed using incompressible solvers. Then,
the unsteady flow over a circular cylinder has been chosen

to verify the proposed IB method at the Reynolds number of
100 and Mach number 0.25.
The computational domain size is 90D×40D where D is the
diameter of the cylinder. The center of the cylinder is lo-
cated at the point (20D,20D) of the coordinate system. The
computational domain is sizeable to reduce the effects of do-
main boundaries and wave reflections form the inlet and out-
let boundaries. It has been observed that those could lead to
a momentous error when computing the lift and drag coef-
ficients. In the present work, the block structured computa-
tional domain has been discretized with non-uniform Carte-
sian grids, where the block corresponding to the cylinder has
a much finer grid spacing of (∆x = ∆y = D/25) at Re = 20
and 40, and grid spacing of (∆x = ∆y = D/50) at Re = 100.
At these grid resolutions, the lift and drag coefficients are
sufficiently converged. Sufficient grid resolution around the
cylinder is crucial to obtain the drag and lift coefficients ac-
curately. Additionally, to capture the von Kármán vortex
shedding, the wake region needs to be resolved properly.
The grid spacing ∆x and ∆y was smoothly stretched from
(∆x = ∆y = D/25 at Re = 20 and 40, and ∆x = ∆y = D/50
for Re=100 to ∆x = ∆y = D/2 near the inflow, outflow, top
and bottom boundaries. Symmetry boundary conditions are
applied on the top and bottom of the computational domain.
At the inflow, the velocities in the x- and y-directions are im-
posed using a uniform inlet profile normal to the boundary,
u(x = 0, t) = U∞ and v = 0. In addition, the inlet tempera-
ture is set to T = T0 = 310 K. The outlet pressure is set to
atmospheric pressure, i.e., p′ = p− p0 = p− patm = 0 Pa.
The drag and lift coefficients are defined as CD = FD

1
2 ρ∞U2

∞D
and

CL =
FL

1
2 ρ∞U2

∞D
, respectively, where FD and FL are the drag and

lift forces. The total force on the cylinder is given by the sum
of the pressure and viscous force integrated over the cylin-
der surface F = −∮

pB · n ds +
∮

τB · n ds where n is the
outer unit vector normal to the cylinder, and pB and τB are
pressure and the viscous stress tensor on the body surface,
respectively. These quantities are based on the evaluation of
surface pressure and viscous stress. The procedure used to
compute these surface quantities needs some explanation. In
the current solver, four nodes surrounding a body-intercept
point corresponding to the first layer of ghost points are iden-
tified and then a bilinear interpolation is used to estimate the
pressure and viscous stress tensor at the body intercept. The
viscous stress at the involved ghost points and fluid points
are computed in a straightforward manner by using our high
order method.
Figs. 6 - 9 show streamlines and vorticity contours for Re =
20 and Re = 40, respectively. The geometrical properties of
the vortices behind the cylinder are schematically illustrated
in Fig. 10 (Canuto and Taira, 2015). The quantitative com-
parison of these parameters as well as the drag coefficient
with available numerical and experimental results are given
in Table 1.
Fig. 11 presents the instantaneous spanwise vorticity ωz con-
tours for Re = 100 indicating the presence of the von Kár-
mán vortex street. The vortex shedding leads to time-varying
lift and drag forces until they reach to a periodic oscillatory
form. The Strouhal number St = f D

U∞
, where f is the vortex

sheding frequency, is computed from the temporal variation
of the lift coefficient. Due to the unsteadiness of the flow, the
comparison of the average values of the lift and drag coeffi-
cients as well as the amplitude of the sinusoidal variation in
time of the lift and drag coefficients is central. The results for
the time-averaged lift and drag coefficients, the amplitude of
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Figure 6: Streamlines for computed flow past a circular cylinder at
Re = 20 and Ma = 0.03.

Figure 7: Vorticity contours for computed flow past a circular
cylinder at Re = 20 and Ma = 0.03.
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Figure 8: Streamlines for computed flow past a circular cylinder at
Re = 40 and Ma = 0.03.

Figure 9: Vorticity contours for computed flow past a circular
cylinder at Re = 40 and Ma = 0.03.

Table 1: Comparison of computed data with available numerical
and experimental data at Re = 20 and Re = 40. (Exp.)
indicates the experimental results.

Re = 20
Ma L a b θ(deg) CD

(Tritton, 1959)(Exp.) - - - - - 2.09
(Dennis and Chang, 1970) 0 0.94 - - 43.7 2.05

(Coutanceau and Bouard, 1977)(Exp.) - 0.93 0.33 0.46 45.0 -
(Fornberg, 1980) 0 0.91 - - 45.7 2.0

(Linnick and Fasel, 2003) 0 0.93 0.36 0.43 43.5 2.06
(De Palma et al., 2006) 0.03 0.93 0.36 0.43 44.6 2.05

(Canuto and Taira, 2015) 0 0.92 0.36 0.42 43.7 2.07
Present study 0.03 0.93 0.36 0.43 43.9 2.05

Re = 40
Ma L a b θ(deg) CD

(Tritton, 1959)(Exp.) - - - - - 1.59
(Dennis and Chang, 1970) 0 2.35 - - 53.8 1.52

(Coutanceau and Bouard, 1977)(Exp.) - 2.13 0.76 0.59 53.8 -
(Fornberg, 1980) 0 2.24 - - 55.6 1.50

(Linnick and Fasel, 2003) 0 2.28 0.72 0.60 53.6 1.52
(De Palma et al., 2006) 0.03 2.28 0.72 0.60 53.8 1.55

(Canuto and Taira, 2015) 0 2.24 0.72 0.59 53.7 1.54
Present study 0.03 2.22 0.72 0.59 53.1 1.52

their changes as well as the Strouhal number of the present
study are compared to published results in Table 2. Table 1
and 2 confirm that for the present study all results compare
very well with results reported in the literature.

Figure 10: Definitions of the relevant geometrical parameters of
the symmetric deperation region behind the cylinder
(Canuto and Taira, 2015).

Figure 11: Vorticity contours for computed flow past a circular
cylinder at Re = 100 and Ma = 0.25



Table 2: Comparison of computed data with available numerical
and experimental data at Re = 100.

Re = 100
Ma St CD CL

(Berger and Wille, 1972) 0 0.16-0.17 - -
(Liu et al., 1998) 0 0.165 1.35 ±0.012 ±0.339

(Linnick and Fasel, 2003) 0 0.166 1.34±0.009 ±0.333
(Mittal et al., 2008) 0 - 1.35 -

(Karagiozis et al., 2010) 0.25 0.168 1.336 ±0.319
(Canuto and Taira, 2015) 0.25 0.163 1.378 ±0.325

Present study 0.25 0.1667 1.33±0.013 ±0.323

CONCLUSION

In this paper, we have combined highly stable high-order
SBP operators with an immersed boundary method which
permits us to use Cartesian grids for arbitrary geometries for
solving the compressible Navier–Stokes equations accurately
and efficiently. SBP operators which are 6th order accurate
in the interior and 3rd order accurate near the boundaries is
employed. To achieve high accuracy and easy paralleliza-
tion, the 4th order explicit Runge–Kutta method is applied.
The methodology is applied to compute steady and unsteady
flow problems to demonstrate its versatility as well as its ac-
curacy. The flow past a circular cylinder for moderate values
of Reynolds number and Mach number is assessed. A good
agreement with available experimental and numerical results
is achieved.
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APPENDIX A. ENERGY METHOD

To demonstrate the energy method, we apply the procedure
to a simplified PDE, that is, rather than analysing the full
Navier–Stokes equations in this section, we only focus on
the 1D convection–diffusion equation as a model equation.

ut +aux = buxx, 0≤ x≤ 1 t ≥ 0
u(x,0) = f (x)
u(0, t) = u(1, t) = g(t) = 0

(25)

where a and b are assumed to be constant and positive, and u
is the dependent variable. The L2 scalar product for two real
functions v and w is defined by

(v,w) =
∫ 1

0 v(x)w(x)dx (26)

which then defines the L2 norm of the continuous solution at
time t and energy E(t) = ‖u(·, t)‖2 = (u,u). Using integra-
tion by parts (v,wx) = v(1, t)w(1, t)− v(0, t)w(0, t)− (vx,w),
the energy method leads to

dE
dt = d

dt ‖u(·, t)‖
2 = (ut ,u)+(u,ut)

= (−aux +buxx,u)+(u,−aux +buxx)
=−a[u2(1, t)−u2(0, t)]+2b[u(1, t)ux(1, t)−u(0, t)ux(0, t)]
−2b(ux,ux)≤ au2(0, t)+2b[u(1, t)ux(1, t)−u(0, t)ux(0, t)]
= 0

(27)
which yields a non growing solution, i.e.
E(t)≤ E(0) = ‖ f (x)‖2. Thus, the energy is bounded
by the initial condition.

APPENDIX B. SUMMATION BY PARTS OPERATORS

(Khalili et al., 2016)
The SBP operators are constructed to guarantee a discrete
energy estimate similar to the continuous energy estimate
above.

ut +aux = buxx, 0≤ x≤ 1 t ≥ 0
u(x,0) = f (x)
u(0, t) = u(1, t) = g(t) = 0

(28)

where a and b are assumed to be constant and positive, and u
is the dependent variable.
The basis of getting such an energy estimate is to satisfy in-
tegration by parts in the discrete sense called Summation–
By–Parts (SBP) property (Gustafsson, 2008; Svärd and
Nordström, 2014). To outline this technique for model
problem (28), we consider u j = u j(t) the numerical so-
lution of the convection–diffusion equation at grid point
x j = jh, j = 0, ...,N, with grid spacing h = 1

N . The solution
vector containing the solution at the discrete grid points is
u = [u0(t),u1(t), ...,uN(t)]T . Using a difference operator Q
approximating the first derivative in space, the semi-discrete
form of the model equation can be expressed as

du
dt =−aQu+bQQu, u j(0) = f (x j) (29)

The discrete scalar product and corresponding norm and en-
ergy can be defined by

(u,v)h = huT Hv,
Eh(t) = ‖u‖2

h = (u,u)h
(30)

where H is a diagonal and positive definite matrix defined
by H = diag(HL, I,HR). The SBP property is satisfied by the
difference operator Q, if

(u,Qv)h = uNvN−u0v0− (Qu,v)h (31)

or if Q can be written on the form hQ = H−1P for P satisfy-
ing

P+PT = EN−E0 = diag(−1,0, ...,0,1) (32)

where E0 = diag(1,0, ...,0) and EN = diag(0,0, ...,1). Using
the semi–discrete equation 29, the energy estimate for the
semi–discrete problem can be obtained as

dE
dt = d

dt ‖u(·, t)‖
2 = (ut ,u)h +(u,ut)h

= (−aQu+bQQu,u)h +(u,−aQu+bQQu)h
=−a[u2

N−u2
0]+2b[uN(Qu)N−u0(Qu)0]

−2b(Qu,Qu)h≤ au2
0 +2b[uN(Qu)N−u0(Qu)0].

(33)

We would get non-growing energy in time if the homoge-
neous boundary conditions could directly be imposed in (33).
However, this will change the difference operator Q such that
its SBP property might be lost. To avoid this problem, bound-
ary conditions are weakly imposed by the simultaneous ap-
proximation term (SAT) technique (Gustafsson, 2008). A
first derivative SBP operator with diagonal quadrature ma-
trix H in (30) is a O(h2s) accurate central difference operator
which is O(hs) accurate at and near boundaries s = 1,2,3.
Such an SBP operator is globally O(hs+1) accurate.

APPENDIX C. REFORMULATION OF COEFFI-
CIENTS

The four unknown coefficients Ci, i = 1, ..,4 can be deter-
mined using values of the four variables surrounding the im-
age point. It can be expressed as

C = V−1{φ} (34)



where V is the Vandermonde matrix corresponding to the bi-
linear interpolation scheme for four surrounding nodes. The
value at the image point can be expressed as

φIP =
[

1 xIP yIP xIPyIP
]



C1
C2
C3
C4


 (35)

The vector in bracket can be expressed as

VIP =
[

1 xIP yIP xIPyIP
]
=

4

∑
i=1

αiVi (36)

where Vi is the ith row of V and αi depends on the coordinates
of the image point and the four surrounding nodes.
Thereby, the matrix equation for α can be written as




1
xIP
yIP

xIPyIP


=




1 1 1 1
x1 x2 x3 x4
y1 y2 y3 y4

x1y1 x2y2 x3y3 x4y4







α1
α2
α3
α4




(37)
By rearranging, α can be obtained as

α = V−T VT
IP. (38)

Thus, the value at the image point can be expressed as

φIP = φT V−T VT
IP (39)

Inserting the result obtained in Eq. (38), the value at the
image point can obtained be as

φIP =
4

∑
i=1

αiφi (40)
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