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Summary

This thesis focuses on development of a functioning, reliable and representative computa-
tion fluid dynamics model of milli-reactors in OpenFOAM in order to characterize them.
Characterization and validation of the model was done by residence time distribution ana-
lyses, where model data were compared with experimental measurements.

The model was developed for Fluitec reactor with CSE-X4 static mixer elements with
diameter of 21 mm. The residence time distribution was calculated for various flow condi-
tions in the laminar flow regime. The model followed the experimental procedure where
residence time distribution is measured by injection of tracer and evaluation of its concen-
tration at the outlet from the reactor.

The comparison of calculated and experimental integrated residence time distribution
curves showed good agreement. Although, it would be possible to improve the model if
more information of the experimental system were provided. It was also possible spot
some dead zones inside the reactor, but the experimental data suggest that it was not suc-
cessfully found all of them.
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Chapter 1
Introduction

Mixing is the very basic unit operation in chemical engineering and from process point of
view it is very simple, but if we look at the mixing process itself it can be very complicated.
Mixers are either active where usually a rotating propeller is mixing the fluid or static
where all parts of the mixer are fixed and the mixing is performed by flow of the fluid
around obstacles in the flow stream. Static mixers are nowadays gaining importance in
various fields and applications, because of their high performance and low maintenance
demands.

In order to avoid problems with scaling up of the processes from laboratory trials
to production size, it is currently put a great effort to switch from batch to continuous
processes. For production of specialized polymers and pharmaceutics, it seems the best
to use static mixer tube reactors with small dimensions since it is not required to produce
big amount rather then it is required to have tight control of the product quality, hence
milli-reactors.

Nowadays suitability of milli-reactors is investigated for production of polymers. In
present there are pilot trials in operation. The current aim is to be able to completely avoid
the pilot step in a process development. It would be very beneficial to be able to scale
up directly from laboratory trials to production scale without the pilot project in between.
With batch reactors this is not possible since the volume/area ratio is changing significantly
during the scale up. Hence there is a need to make an intermediate step to see the scale up
effect. On the other hand milli-reactors seem to be appropriate for this approach since it is
possible to keep the volume/surface ratio nearly constant or with very small changes.

In these days milli-reactors are used only in pilot scale and development of the product
is performed in batch reactors. It would be very beneficial if it was possible to use the
milli-reactors also in the product development. This would mean to scale the currently
operating reactors down into laboratory size, with keeping their performance. This issue
is currently under research and a big part of the research is done by computational fluid
dynamics.

Combination of polymers and very small dimension results in serious problems with
clogging and gel formation. It is expected that the gel formation occurs mainly in dead
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volume. Hence it is very important to locate these volumes and find a solution how to
minimize them either by adjustment of the operating conditions or by adjustment of the
reactor.

Even though CFD modeling is on very high level, it is still only an approximation
of real systems. So, there is need to compare the calculations with experimental data in
order to verify the model. After the model is verified and the error of approximation is
established, it is possible to use the model for predicting of the behavior of the system.

The main task of this thesis is to develop a reliable model of milli-reactor, which
consists of static mixer and heat exchanger. The flow in the reactors is modeled in terms
of residence time distribution and the results are compared with measured data.

There is a lot of research done in the field of static milli- and micro- mixers. The
research focuses on both the reactor development and the reactor characterization. Some
of the research is summarize in Chapter 2

An introduction to CFD is given in Chapter 3. There are presented and summarized
theoretical basics — equations and principles — of fluid dynamics and numerics.

The model is developed in OpenFOAM, an open source CFD toolbox. Another soft-
wares were used in pre- and post- processing of the model and the results. The used
software is briefly described in Chapter 4. The development and settings of the model are
also presented and described in this chapter.

Chapters 5 and 6 summarize the obtained results and conclude their meaning for the
future work.
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Chapter 2
Literature review

The current research is done in two main directions. One focuses on design and optimiza-
tion of the design of the mixers and the other is focused on characterization of the mixing
quality in current static mixers. Both of the fields use CFD modeling as a tool to obtain
the necessary information.

(a) Different views of one Kenics mixing ele-
ment. (Taken from [10].)

(b) Different views of one SMX mixing element.
(Taken from [10].)

(c) Geometry of staggered herringbone micromixer (SHM). (Modified from [22].)

Figure 2.1: Most researched geometries of static mixers.
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The main researched geometries of the static mixers are captured in Figure 2.1. The
Figures 2.1a and 2.1b are showing only one mixing element. In the reactor are these
mixing elements put after each other and the subsequent element is always rotated by 90°.

An extensive study was done in [4] to investigate the influence of the change in geo-
metrical parameters for staggered herringbone micromixer (see Figure 2.1c). The perfor-
mance of the mixer was quantified by spatial data statistics, maximum striation thickness
and residence time analyses. The modified parameters were groove depth, width and num-
ber of grooves per cycle. Particle tracking was used in order to visualize the mixing. One
quadrant of the reactor cross-section was filled with equidistant particles and their distri-
bution was observed at the cross-sections along the reactor for different parameter setups.
The homogeneity of spatial mixing was quantified by a variance of average square of a
difference between distance of the particles and distance between the equidistant particles:

var =
1

N − 1

N∑
i=1

(di − d̄R)2, (2.1)

where di is point-particle distance, d̄R expected mean distance and N is number of par-
ticles. “The ’well mixed’ criteria was set such that variance value of 0 corresponds to
uniform spatial distribution of tracer particles.” [4]

It was concluded that number of grooves per cycle does not have a significant impor-
tance on mixing quality. A large groove depth and thickness reduce the striation thickness
without increasing the pressure drop. Deep grooves improve the special mixing but the
wide grooves appear to cause a dead volume occurrence.

Group of scientists from Eindhoven University of Technology researched and opti-
mized the Sulzer SMX static mixer. [20] The analyses of the mixer was done by use of
Mapping Method, which is based on backward particle tracking [21]. It was investigated
the effect of three main geometrical parameters on the interface stretching and the mixing
efficiency. The changed parameters for SMX mixer are: the number of cross-bars, Nx, the
number of parallel cross-bars, Np and the angle between opposite cross-bars, θ.

Figure 2.2: The basic most simple
SMX mixing element. (Taken from
[20])

The CFD simulation was performed in Fluent 5,
which solves the Navier-Stokes equations. In or-
der to avoid the developing flow empty tube with
length of two times the diameter is added at the inlet
and the outlet. For standard SMX design the mesh
consists around 2 millions tetrahedral cells. In the
calculations the no-slip boundary condition is as-
sumed for walls and mixing element surfaces. It is
assumed a Newtonian fluid with condition yielding
in Reynolds number of 0.44.

It was concluded that the optimal design of
the SMX mixing element with square cross-section
obeys rule (n,Np, Nx) = (n, 2n − 1, 3n) where
n = 1, 2, 3, . . . is a design parameter. It was proved
that the basic design with n = 1 (see Figure 2.2),
e. i. design with one parallel bar and three crossing
bars (with angle θ = 90°) gives the best mixing for the lowest energy consumption and
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higher values of n yield in more compact mixers. Increasing the angle θ slightly increases
the interfacial stretching and decreases the pressure drop per element.

Eric Fourcade and his group developed a new method of calculation of average value
of the rate of striation thinning, α. [10] A laminar flow in Kenics (Fig. 2.1a) and SMX
(Fig. 2.1b) static mixer elements was investigated by CFD. The model was evaluated for
one element and for three subsequent elements. A particle tracking procedure was used on
the calculated flow field and compared to a laser induced fluorescence experiment.

This method was developed since the rate of striation thinning is predicted to have
an influence on molecular weight distribution in polymer production. [9] It uses CFD
calculated velocity field by POLY3DTM code. Particles are tracked in order to compare
striation thickness, s, at the inlet cross-section of a mixing element and at the outlet cross-
section of the element. The relation between striation thickness, s and rate of striation
thinning, α, is:

α(t) = −d ln s

dt
. (2.2)

The paper [10] shows issues that were found during the research, especially with finding
the striation thickness of particle streams which get split during their way through the
mixing element. Despite these issues it was possible to calculate the values of α. The
CFD and striation model was verified by pressure drop comparison (for the comparison
see [18]) and also by laser induced fluorescence.

Laser induced fluorescence is a non-invasive technique where fluorescent dye is ex-
cited by laser and the emitted light is measured by CCD camera and PC based image
capture. The emitted light is proportional to the dye concentration. The numerical and
experimental results showed a good resemblance. Hence, it could be concluded that the
way of calculation of the striation thinning parameter α is credible. It was also proven that
the average value of α is constant per element, which is in agreement with [17].

Staggered herringbone mixer (Figure 2.1c) and diagonal mixer (i. e. simplified SHM
with no direction change in the grooves) were investigated by J. Aubin et al. [3]. The
particle tracing was performed and consequently the variance of tracer dispersion was
evaluated together with rate of deformation and stretching. The simulation was done by
CFX5, where first a steady state solution of the velocity and pressure field was obtained
and then the vector equation of motion was integrated. Water at 25°C and 1 atm was
used as operated fluid with Re ≈ 2. Standard boundary conditions were used — no-slip
boundary at all walls, constant pressure at the outlet (P = 0).

The 2 480 equally distributed particles were injected in upper right corner of the cross-
section and their distribution was observed on number of cross-sections through the mixer.
The results were compared with experimental data obtained by Stroock et al. [22] and it
showed good agreement. The conclusion was the same for both [3] and [22], that 3 cm
of the staggered herringbone mixer are sufficient in order to get fully mixed flow with a
Peclet number < 106.
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Chapter 3
Theory

This chapter provides a brief overview of basics of computational fluid dynamics. The
basic equations will be presented and described as well as the basics of numerical methods.

3.1 Introduction to CFD
"Computational fluid dynamics (CFD) is the art of replacing the integrals or partial
derivatives (as the case may be) in governing equations with discretized algebraic forms,
which in turn are solved to obtain numbers for the flow field values at discrete points in
time and/or space." [2]

Computational fluid dynamics predicts behavior of a fluid in terms of mass trans-
fer, temperature transfer, chemical reaction and other related phenomena. The predic-
tion is based on mathematical description of the problem and its numerical solution. The
equations describing the behavior appear in partial differential, integral or algebraic form.
These equations form a set which is then solved numerically.

CFD is used in various fields from aerospace engineering to sport equipment devel-
opment. Its wide use is tightly connected with the growth of computational power and
capacity. In present CFD is used as research tool as well as design tool. The modeling is
used in cases where experiments are not capable of giving all the necessary information or
it is impossible to carry out the experiment.

CFD was originally solved by user-designed programs. These were designed to meet
the particular needs of the user. Today specialized programs are available. They are de-
veloped either by commercial companies, which sell them to the users, or by open source
communities. In the specialized programs often many models are already implemented
which require just simple adjustments for particular application.

Since the user base is significantly growing also the CFD programs are getting more
available and easier to use. Nowadays, there are available several programs dealing with
CFD solution, both in commercial and open source domain. In commercial domain, pro-
bably the best know are FLUENT, CFX and COMSOL; in open source community the
most widely used codes are OpenFOAM, SU2 and Code_Saturn.
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Since to solution is done numerically by a computer, it is necessary to discretize the
domain in time and space. The time discretization is done by the solver code, of the space
discretization is usually taken care by another software coupled with the solver during so
called pre-processing. Pre-processing includes definition of the geometry and the mesh
(grid) creation. After the mesh is created the problem is ready to be solved. Results
of the simulation can be visualized and processed in the following step, so called post-
processing. Some of the codes have pre- and post-processing tools incorporated in them,
but for complex problems it is usually beneficial to use specialized software. Also this
software can be found as open source as well as commercial package.

3.2 Mathematical basis of CFD
Three basic physical principles applied in CFD are:

• conservation of mass;

• conservation of energy;

• Newton’s second law.

These principles are mathematically represented by governing equations (continuity equa-
tion, energy equation and momentum equation, respectively). The equations can be either
differential or integral depending on the application and the used discretization scheme.
Either one of the types can have conservation or non-conservation form depending on
a frame of reference. From mathematical point of view all four equations are equivalent,
even though the appearance differ significantly and it is possible to transform one into an-
other with simple adjustments. Derivation of these equations is very nicely shown in [2,
Chapter 2] and this section is going to give a brief overview of it.

It is assumed that reader is well educated in substantial derivative, divergence and
basics of calculus. (For revision see e. g. [2, pp. 43–49].)

Four basic models of flow are used while deriving the governing equations. For deriva-
tion one uses either a control volume fixed in space, where the fluid is moving through it
(Figures 3.1a and 3.1c), or the control volume is moving along with the fluid, so that the
same fluid particles are always in the same control volume (Figures 3.1b and 3.1d). Also,
one uses either a finite volume (Figures 3.1a and 3.1b) or infinitesimally small volume
(Figures 3.1c and 3.1d). According to which model is picked to derive the governing
equations different forms are obtained. The forms and the models used to obtain them are
summarized in Table 3.1.

Even though most of the softwares are case oriented and basic user does not have to
take care about actual form of the governing equations it is necessary to have an insight to
the mathematics.

3.2.1 Continuity equation
Continuity equation is the result of applying the mass conservation principle. For pur-
poses of this report an infinitesimally small control volume moving with the flow was
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(a) Finite control volume
fixed in space.

(b) Finite control volume
moving with the fluid.

(c) Infinitesimal control volu-
me fixed in space.

(d) Infinitesimal control volu-
me moving with the fluid.

Figure 3.1: Model of a flow. (Adapted from [2].)

Table 3.1: Summary of flow model — equation form relations.

Used model Obtained form of governing equations
Fixed finite volume integral conservation form
Moving finite volume integral non-conservation form
Fixed infinitesimal volume differential conservation form
Moving infinitesimal volume differential non-conservation form

chosen as the flow model for which the continuity equation will be derived. Differential
non-conservation form will be obtained and then it will be shown how to transform it into
different forms.

The model is pick such that mass of the control volume m is constant, the volume V
and the density ρ are variable. Which are dependant as the basic physics define:

m = ρV. (3.1)

The fact that the mass is constant can be expressed so that the time rate of change of
the mass of the fluid element is zero as the element moves along the flow, which reflects
precisely the physical meaning of the substantial derivative. So in terms of equations it
can be written:

Dm
Dt

= 0. (3.2)
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By combining equations (3.1) and (3.2), we get:

D(ρV)

Dt
= VDρ

Dt
+ ρ

DV
Dt

= 0,

or
Dρ
Dt

+ ρ

[
1

V
DV
Dt

]
= 0. (3.3)

The term in the brackets is exactly the definition of the divergence of the velocity ∇ · V.
Hence substituting this expression into equation (3.3) we obtain:

Dρ
Dt

+ ρ∇ · V = 0 . (3.4)

This is partial differential equation in non-conservation form describing the mass con-
servation, so called continuity equation. Another form of the continuity equation can be
derived in two ways. First the direct derivation, as it was done above but using a different
flow model. Second option is the indirect derivation, which means to take the form derived
before, e. g. form in equation (3.4) and transform it. If one is interested in conservation
form of differential equation, the manipulation is fairly simple. Mathematical definition of
substantial derivative is applied on the first term in equation (3.4), so

Dρ
Dt

=
∂ρ

∂t
+ (V · ∇ρ) . (3.5)

The chain rule of∇ operator is

∇ · (ρV) ≡ (V · ∇ρ) + (ρ∇ · V) . (3.6)

By combining equations (3.4), (3.5) and (3.6) the partial differential conservation form of
the continuity equation is obtained

∂ρ

∂t
+∇ · (ρV) = 0 . (3.7)

In some cases it may be better (more convenient) to use the integral form. Again
two ways are possible. Since we already derived two forms of the continuity equation,
it is simpler to transform them into integral form, in contrast to performing a complete
derivation. For mass to be conserved it is assumed that equation (3.7) has to be valid in
every point of the system. For arbitrary volume V drawn in space it has to be valid:∫∫∫

V

[
∂ρ

∂t
+∇ · (ρV)

]
dV = 0,

or ∫∫∫
V

∂ρ

∂t
dV +

∫∫∫
V

∇ · (ρV) dV = 0. (3.8)
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The divergence theorem from vector calculus is applied to the second term of equation
(3.8) and time derivative is taken out of the integral from the first term. The integral
conservation form is obtained:

∂

∂t

∫∫∫
V

ρ dV +

∫∫
S

(ρV) · dS = 0 . (3.9)

It would be possible to continue in transforming one form into another, but it is not
necessary since the operations are the same.

3.2.2 Momentum equation
Physical principle involved in derivation of momentum equation is Newton’s second law:

F = ma. (3.10)

For derivation of momentum equation it was decided to use an infinitesimally small
fluid element moving with the flow as shown on Figure 3.1d. This choice was made
because then the derivation of momentum equation and energy equation is quite similar.
Newton’s second law is a vector relation, hence it can be split into scalar relations, one
along each axes (cartesian coordination system is assumed). On the element several forces
act. The forces are of two types — body forces and surface forces.

Figure 3.2: Acting forces on an infinitesimally small, moving element in x direction. (Adapted from
[2].)

The body forces act directly on the mass of the element. These are e. g. gravita-
tional, electric and magnetic. The surface forces act directly on the surface of the element.
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Sources of the surface forces are pressure distribution and shear and normal stress. These
forces are shown on Figure 3.2. When all the acting forces in x direction are summed up:

Fx =

[
−∂p
∂x

+
∂τxx
∂x

+
∂τyx
∂y

+
∂τzx
∂z

]
dx dy dz + ρfxdx dy dz. (3.11)

Mass of the element can be expressed:

m = ρ dx dy dz. (3.12)

And the acceleration in x direction is rate of change of the x component of the velocity, so

ax =
Du
Dt

. (3.13)

The same could be done for y and z directions accordingly. The set of three (one for
each coordinate) partial differential equations in non-conservation form is then obtained.

ρ
Du
Dt

= −∂p
∂x

+
∂τxx
∂x

+
∂τyx
∂y

+
∂τzx
∂z

+ ρfx, (3.14)

ρ
Dv
Dt

= −∂p
∂y

+
∂τxy
∂x

+
∂τyy
∂y

+
∂τzy
∂z

+ ρfy, (3.15)

ρ
Dw
Dt

= −∂p
∂z

+
∂τxz
∂x

+
∂τyz
∂y

+
∂τzz
∂z

+ ρfz. (3.16)

These three equations (3.14 – 3.16) are called Navier-Stokes equations to honor M.
Navier and G. Stokes — who both obtained the same solution independently on each other
in the first half of 19th century. The conservation form and integral forms can be obtained
in the same manner as was explained in section 3.2.1 where it is necessary to deal with the
left hand side of Navier-Stokes equations only. The shear stress description is dependent
on type of fluid (Newtonian/non-Newtonian). In practice most of the fluids are assumed to
be Newtonian, which means that shear stress is proportional to the velocity gradients. For
Newtonian fluids Stokes derived:

τxx = λ(∇ · V) + 2µ∂u∂x , (3.17)

τyy = λ(∇ · V) + 2µ∂v∂y , (3.18)

τzz = λ(∇ · V) + 2µ∂w∂z , (3.19)

τxy = τyx = µ
[
∂u
∂y + ∂v

∂x

]
, (3.20)

τxz = τzx = µ
[
∂u
∂z + ∂w

∂x

]
, (3.21)

τyz = τzy = µ
[
∂v
∂z + ∂w

∂y

]
. (3.22)

Where µ is molecular viscosity and λ is second viscosity, for which Stokes made hypothe-
sis:

λ = −2

3
µ. (3.23)
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3.2.3 Energy equation

The energy equation reflects the energy conservation principle. Again the derivation is
focused on infinitesimally small fluid element moving with the flow, so it is similar to the
derivation of the momentum equation. Change of energy inside the element is caused by
two sources — net flux of heat into the element and rate of work due to body and surface
forces.

Energy of the element has two contributors, internal energy due to random motion of
the molecules and kinetic energy due to motion of the element. The total energy is the
sum of unit internal and kinetic energy multiplied with mass defined as equation (3.12).
Then the rate of change of total energy of the element is substantial derivative of the total
energy.

DE
Dt

= ρ
D
Dt

(
e+

V 2

2

)
dx dy dz. (3.24)

Energy fluxes associated with the moving element are captured on Figure 3.3. To
keep the figure simple only energy fluxes in x direction are shown. The energy fluxes
influencing the total energy of the element are also in y and z direction.

Figure 3.3: Energy fluxes associated with an infinitesimally small, moving element in x direction.
(Adapted from [2].)

Net flux of heat into element has two sources. Volumetric heating q̇ is caused by
absorption or emission of heat radiation. And conduction causes heat transfer across the
surfaces (q̇x, q̇y , q̇z). On conductivity is applied Fourier’s law

q̇i = −k∂T
∂i

i = x, y, z. (3.25)

Net flux of heat into element is then sum of these two effects (described mathematically
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on Figure 3.3) in all the directions.

Q̇ =

[
ρq̇ +

∂

∂x

(
k
∂T

∂x

)
+

∂

∂y

(
k
∂T

∂y

)
+

∂

∂z

(
k
∂T

∂z

)]
dx dy dz. (3.26)

Rate of work originates from body and surface forces exerted on the element. It can
be shown (see [1]) that work caused by a force acting on a moving element is equal to the
product of the force and the component of velocity in the direction of the force. Hence
for the body forces acting on the element moving with velocity V in vector form one can
write:

ρf · V(dx dy dz).

The work done by the surface forces is simply the particular force multiplied by according
velocity component. E. g. pressure work in x direction:[

up−
(
up+

∂(up)

∂x
dx
)]

dy dz = −∂(up)

∂x
dx dy dz.

The total net flux of the work is then summary of all particular works in all the directions.

W =

[
−
(
∂(up)

∂x
+
∂(vp)

∂y
+
∂(wp)

∂z

)
+
∂(uτxx)

∂x
+
∂(uτyx)

∂y

+
∂(uτzx)

∂z
+
∂(vτxy)

∂x
+
∂(vτyy)

∂y
+
∂(vτzy)

∂z
+
∂(wτxz)

∂x
+
∂(wτyz)

∂y

+
∂(wτzz)

∂z

]
dx dy dz + ρf · V(dx dy dz). (3.27)

The energy equation can be written as:

DE
Dt

= Q̇+W. (3.28)

Now the equations (3.24), (3.26) and (3.27) are substituted into equation (3.28) the final
partial differential non-conservation form of energy equation is obtained.

ρ
D
Dt

(
e+

V 2

2

)
= ρq̇ +

∂

∂x

(
k
∂T

∂x

)
+

∂

∂y

(
k
∂T

∂y

)
+

∂

∂z

(
k
∂T

∂z

)
−
(
∂(up)

∂x
+
∂(vp)

∂y
+
∂(wp)

∂z

)
+
∂(uτxx)

∂x
+
∂(uτyx)

∂y
+
∂(uτzx)

∂z
+
∂(vτxy)

∂x
+
∂(vτyy)

∂y

+
∂(vτzy)

∂z
+
∂(wτxz)

∂x
+
∂(wτyz)

∂y
+
∂(wτzz)

∂z
+ ρf · V. (3.29)

3.2.4 Summary
The above derived equations are base of CFD and even though user does not have to put
them into most programs it is necessary to have at least a little overview of them to get
a better insight into the problems. The governing equations at given form are not con-
sidering any reaction occurring as the fluid flows. To consider the reaction simply source
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reaction terms are added only to the energy and continuity equation since the momentum
equation is not significantly influenced by the reaction.

In ordinary physics the three equations for momentum (3.14 – 3.16) are called Navier-
Stokes equations. In the CFD practice on the other hand all the equations for viscous
flow (derived above) are called Navier-Stokes. Equations describing the inviscid flows are
simplification of the above derived equations. Terms for diffusion, conduction, dissipation
and transport phenomena of viscosity terms are neglected. This set of simplified equation
is in CFD community called Euler equations. Continuity equation does not contain any of
these terms so it stays the same as equation (3.4). The momentum equations (3.14 – 3.16)
get much simpler, as

ρ
Du
Dt

= −∂p
∂x

+ ρfx, (3.30)

ρ
Dv
Dt

= −∂p
∂y

+ ρfy, (3.31)

ρ
Dw
Dt

= −∂p
∂z

+ ρfz. (3.32)

And also energy equation (3.29) gets much simpler.

∂

∂t

[
ρ

(
e+

V 2

2

)]
+∇ ·

[
ρ

(
e+

V 2

2

)
V
]

=

ρq̇ −
(
∂(up)

∂x
+
∂(vp)

∂y
+
∂(wp)

∂z

)
+ ρf · V. (3.33)

3.3 Discretization schemes
For complex problems the direct analytical solution of the governing equations is not pos-
sible, so the numeric solution is done. Numeric solutions are done by computers which
operate on discrete domain and are not able to handle continuous problems. The discretiza-
tion of partial differential equations is then of a great importance.

The discretization is in very simple terms transformation of the partial differential
equation into set of algebraic equations. Three basic schemes are used in todays practice.
For simple geometries all three give the same solution matrix, for more complicated or
irregular geometries the solution can differ very significantly.

Finite difference method (FDM) was derived and published first. [19] FDM substi-
tutes the partial derivatives by series expansion (usually Taylor’s expansion), where the
high order terms are neglected. This method is easy to use for simple geometries but is
not well suitable for complicated irregular geometries. And more importantly it does not
conserve mass, momentum and energy.

Most widely used is finite volume method (FVM). In this scheme the domain is split
into finite number of small volumes. The governing equations are integrated over the vol-
umes assuming linear variation of dependent variables. Results are representation of each
volume element in the center of the volumes and the values at edges and faces are obtained
by interpolation between neighboring volumes. The only limitation for the volumes is that
they must not overlap, otherwise they can have any shape and size. For irregular cell shapes
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(e. g. tetrahedral, polyhedral) is the bookkeeping demanding, but since the scheme is used
for some time, the solvers are well developed and are reliable. This scheme conserves
mass, energy and momentum by definition, hence the very wide use (approximately 80%
of the available codes). On the other hand, the method suffer from numerical diffusion,
when simple numerics are used.

Finally the finite element method (FEM) is gaining importance. From physical point
of view it is not very beneficial, because the discretized terms do not have a physical
importance. On the other hand the scheme is very beneficial from programming point of
view, since it is required the same effort for any geometry. It offers the highest accuracy
and it is excellent for diffusion problems. Although it is not well suited for fast flows and it
is relatively slow for large problems. This method integrates the governing equations over
element or volume after having been multiplied by a weight function (Galerkin’s method
of weighted residuals). [23] Dependent variables are represented by shape functions which
differ depending on used cell shapes.

3.3.1 Finite volume vs. Finite element
Both methods are using integral forms of the governing equations but integrating them
over different control volumes. The finite volume method uses weighted residual pro-
cedure, where the residual over whole domain is required to be zero, hence to close the
balances (conserve energy, momentum and mass). Finite element does not guarantee the
conservation for all applications, since the solution criteria is to optimize for other quanti-
ties than that to make the residuals zero.

Finite volume method takes artificial volume with desired node as center and then uses
Gauss’s (divergence) theorem for transforming the volume integrals into surface integrals.
Which are then split in terms of fluxes, hence the 3D cases are transfer to infinite number
of 1D problems [11] which are then solved.

Finite element method on the other hand uses linear or quadratic shape functions for
the relations between two nodes for which the ’exact’ solution is then found.

Idelsohn and Oñate [11] are showing that in simple cases both methods are actu-
ally equal and give the same results. Fallah et al. [7] makes a point that finite volume
method can be viewed as special case of finite element with non-Galerkin weighting. The
Galerkin’s approach for finite elements uses weighting function W which is then defined
as Wi = Ni where Ni are shape functions corresponding to node i. The finite volume
procedure can be viewed as special form with weighting function

W =

{
1 in the control volume,
0 elsewhere.

(3.34)

In general it can be said that one method is better for some application and the second
for other applications. Finite elements perform better for mechanical properties problems
and incompressible flows at low Reynolds numbers. Finite volumes deal better with com-
pressible flows and with flows at high Reynolds numbers. There are new finite elements
solvers and algorithms developed in commercial sector which should be able to deal with
high Reynolds numbers and still conserve quantities and have better accuracy then finite
volume methods.
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3.4 Mesh
A mesh (or grid) is basically a discretized representation of the geometry for which the
calculations are done. In finite volume method the mesh cells represent the volumes for
which the discretized solution is made. The properties of the mesh influence the speed of
the convergence, time needed to solve the problem and the accuracy of the solution. It
also influences the usage of the RAM memory. In general it can be said, that the finer
(denser) the mesh is, the more accurate, time consuming and RAM using the solution is.
Few properties are used to describe the mesh.

Figure 3.4: Comparison of two meshes. (Taken from [12].)

Density (granularity) of the cells describes how many cells are in an unit volume.
Density can be constant throughout the whole mesh, but it is very common to vary the
density. Near the walls or at regions where big gradients are expected is used a finner
mash, than in the fluid body. However change of the size of the cells has to be smooth.
The neighbor cells size variation should not exceed 20%.

Other properties are related to the size and shape of the cells. When only two dimen-
sional calculations are done triangular, convex quadrilateral or hexagonal shapes are used.
In three dimensional cases the most common shapes are tetrahedron, hexahedron and half-
hexahedron or polyhedrons (honeycombs). These shapes and more are shown on Figure
3.5.

Skewness (asymmetry) of the cells is in ideal case 0 in worst case 1. There are two
methods to obtain skewness. First is based on equilateral shape of the cells.

skewness =
optimal size of cell− actual size of cell

optimal size of cell
, (3.35)

where size means area (in 2D cases) or volume (in 3D cases). To illustrate each term see
Figure 3.6. This calculation method is applicable only on triangles and tetrahedrons.

Other scheme is applicable to all shapes (necessary for pentahedrons) and it is based
on difference from normalized angle.

skewness = max

[
θmax − θe
180°− θe

;
θe − θmin

θe

]
, (3.36)
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Figure 3.5: Shape of the cells. (Adapted from [12].)

Figure 3.6: Skewness based on equilateral shape of the cells. (Adapted from [12].)

where θmax and θmin are maximal and minimal angle in the cell respectively and θe is
angle in equiangular cell (60° for triangle, 90° for cube).

Another property of the mesh is aspect ratio, which is ratio between edges/faces of
the cells. Ideal value is 1 which means equilateral shape. For one-dimensional flows it
is not necessary to keep the aspect ratio at 1, but for poly-dimensional flow it is highly
recommended.

3.5 Pre-processing

In theory pre-processing is everything that is preparing the numerical problem, though in
practice only geometry and mesh definition is referred to as pre-processing.

In technical practice it is usual that the geometry of a model is defined from the design
drawings of the equipment. This requires the design drawings to be done in a form treat-
able by a computer, e. g. drawn in designing software such as AutoCAD, Pro/Engineer
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or other (e. g. Figure 3.7a). The image analyses is the newest development in geometry
definition domain. This approach is applicable in e. g. medicine (see Figure 3.7b).

(a) Pro/Engineer drawing of a desired
equipment.

(b) Summary of steps used to construct
a mesh from magnetic resonance im-
ages. (Taken from [16].)

Figure 3.7: Geometry representation.

Next stage of the pre-processing is the mesh creation from the given geometry. For
very simple geometries it is usually possible to write the source code of the mesh directly
in the modeling software language. Things get more complicated with more complex
or irregular geometries. For this purpose there is usually a software tool implemented
which is capable of generating a mesh by itself while given e. g. surface representation
of the geometry. Alternatively there is possibility to import the mesh from the software
specialized in mesh generation. For very complicated geometries the last option is usually
the best. The meshing software is in some cases part of the CFD package (Gambit in
Fluent package) or it is the third party software (Netgen, Salome, etc.).

3.6 Residence time distribution

The residence time distribution (RTD) of a chemical reactor is a probability distribution
function that describes the amount of time that a fluid element could spend inside the re-
actor. There are two main functions describing the residence time distribution as proposed
by Danckwerts [6].

The first function is E-function. Integral of the function Edt between t1 and t2 gives
the fraction of material that has “age” between t1 and t2. The graphical representation of
the E-function is called differential residence time distribution curve and it is defined as:

∞∫
0

E(t)dt = 1. (3.37)

In fact it is a response at the outlet of a system to an impulse of a tracer at the inlet.
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F-function is called cumulative distribution and it is defined as the fraction of material
that spends less than time t1 in the system [24]:

F (t1) =

t1∫
0

E(t)dt = 1. (3.38)

Graphical representation of the dependence of the F-function value on time (or normalized
time by the average residence time) is referred to as integrated residence time distribution
curve. It can be obtained as response at the outlet of a reactor to the step change at the
inlet.

It was found by Danckwerts [6] that for ideal reactors with perfect mixing the F- and
E-functions obey relations:

F (t) = 1− e−t/θ, (3.39)

E(t) =
1

θ
e−t/θ, (3.40)

where θ is the ideal plug flow residence time defined by Eq. 3.42. These equations are
applicable to ideal continuous stirred tank reactors. When series of CSTRs are considered
the residence time distribution curves tend to become closer to the plug flow as the number
of tanks increases (see Figure 3.8. This suggests that pipe reactors can be approximated
by series of CSTRs. Péclet number and Bodenstein number are tightly connected with this
phenomenon. The definition of the dimensionless quantities will be given further in the
text.

The average residence time of the fluid element is given as a first moment of the age
distribution and it can be calculated:

t̄ =

∫∞
0
tE(t)dt∫∞

0
E(t)dt

=

∞∫
0

tE(t)dt. (3.41)

For ideal plug flow is the average residence time equal to θ, where:

θ =
V

V̇
, (3.42)

where V is the volume of the reactor and V̇ is the volumetric flow of the fluid.
So called second central moment of the residence time distribution is very important

for comparison of the RTD curves for various systems. The second central moment indi-
cates the variance, σ2, of the RTD around the mean value:

σ2 =

∞∫
0

(t− θ)2E(t)dt. (3.43)

3.7 Important dimensionless quantities
Dimensionless quantities appear through out the engineering science. When it comes to the
fluid flow the most important and most generally known is Reynolds number. Reynolds

20



Figure 3.8: Integrated residence time distribution curves for increasing number of CSTRs in series.

number as used in this work is defined as:

Re =
UdHρ

η
=
UdH
ν

, (3.44)

where U is the mean velocity, ρ is the density, η is the dynamic viscosity, ν is kinematic
viscosity and dH is a hydraulic diameter which can be found as:

dH =
4V

A
=

4 · free volume
wetted surface

. (3.45)

Another very important measure is the Schmidt number which compares the effects
of viscous diffusion and mass diffusion. In another words it shows which phenomenon —
diffusion of mass or diffusion of momentum — is dominating. It is defined as:

Sc =
η

ρD
=

ν

D
, (3.46)

where D is the mass diffusivity.
For heat transfer it used the Prandtl number, which is an equivalent to the Schmidt

number. This number is a ratio of diffusion of momentum and diffusion of heat. It is
defined as:

Pr =
η

ρα
=
ν

α
=
cpη

k
, (3.47)

where α is the thermal diffusivity, cp is the specific heat and k is the thermal conductivity.
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Péclet number is a comparison between the advection and diffusion of desired physi-
cal property. The axial Péclet number for tube is defined as:

Peax =
UdR
Dax

, (3.48)

where dR is the diameter of a tube and Dax is mass diffusivity in axial direction. For tube
reactors it was found that the axial Péclet number can be approximated as a function of
Reynolds and Schmidt numbers [5]:

1

Peax
=


1

Re · Sc
+
Re · Sc

192
for 1 < Re < 2000 and 0.23 < Sc < 1000,

3 · 107

Re2.1
+

1.35

Re1/8
for 3 · 103 < Re < 105.

(3.49)
In European literature, especially German, the Péclet number is often related to the

Bodenstein number and it has its benefits [5]. As reader can see in Equation 3.48 the
axial Péclet number is related to the diameter of the tube. On the other hand Bodenstein
number compares the same quantities with respect to the length of the tube, L, so it can be
calculated as:

Bo =
UL

Dax
= Peax ·

L

dR
. (3.50)

The extreme cases of the Bodenstein number are:

• continuous stirred tank reactor (CSTR) Bo = 0;

• plug flow reactor (PFR) Bo→∞.

The main benefit of the Bodenstein number is, that it was found to be very simple parame-
ter which can be used to find number of CSTRs is series which approximate a tube reactor
in order to obtain same residence time distribution. The number of CSTRs can be found:

n =
Bo

2
. (3.51)

In literature [5] are also presented simple correlations for the variance of the residence
time distribution normalized by the average residence time distribution, σ2

θ related to the
Bodenstein number. The approximation depends on the system. Three types of the systems
are proposed — opened system, closed system and semi-opened system. These three
systems are captured on Figure 3.9.

The approximations for opened, semi-opened and closed systems are respectively:

σ2
θ =

2

Bo
+

8

Bo2
, (3.52)

σ2
θ =

2

Bo
+

3

Bo3
, (3.53)

σ2
θ =

2

Bo
− 8

Bo2
[1− exp(−Bo)]. (3.54)
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Figure 3.9: System types for approximation of the RTD variance.
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Chapter 4
Modeling

This chapter will take a brief insight into the modeling part of the solution. It will describe
the software used for solution and also the modeled geometry and conditions.

4.1 OpenFOAM
“The OpenFOAM® (Open Field Operation and Manipulation) CFD Toolbox is a free,
open source CFD software package produced by OpenCFD Ltd. It has a large user base
across most areas of engineering and science, from both commercial and academic orga-
nisations. OpenFOAM has an extensive range of features to solve anything from complex
fluid flows involving chemical reactions, turbulence and heat transfer, to solid dynamics
and electromagnetics.” [13]

Figure 4.1: Required folder structure of
a case in OpenFOAM®. [14]

OpenFOAM® is Linux based toolbox which in-
cludes pre- and post-processing, meshing and solu-
tion of the problems. It is based on C++ routines,
which makes it very powerful tool since anybody
can adjust the routines for their particular need, only
requirement is a knowledge of C++ programing lan-
guage. It does not have any graphical interface and
it runs via Linux terminal so a special folder struc-
ture is required. The description of all the folders
and files is very precisely done in the user guide
[14] and it is unnecessary to get into details on this
level. But brief description is needed to get at least
a small insight into problem definition.

In folder system three main files are located.
In these files the application is defined. The
file controlDict contains general information
about the solution, such as application (solver), ini-
tial and end time and time step of solution, interval
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in which results are written, etc. There are many standard solvers available in Open-
FOAM, the difference between them is in system they can apply to [14, p. U-83–U-87]. In
dictionary fvSchemes user has to define numerical schemes for terms like derivatives,
divergences, Lapacians, etc. File fvSolution controls the equation solvers, tolerances
and algorithms used for solution. Also a convergence criteria is set here.

Folder constant contains several properties, e. g. when turbulent modeling is done,
it contains properties for Reynolds averaging, transportation properties, etc. Most impor-
tantly in this folder is located directory polyMesh which contains information about the
mesh.

The time directories are filled with results by the solver itself in intervals defined in
controlDict as the solution proceeds. The directory 0 contains information about the
initial and boundary conditions and it has to be defined by the user.

This is the basic structure, which may not vary for different application. There might
be some additional files and folders, but the basic ones are always there.

The case is executed by series of commands in the terminal. The sequence is dependent
on the application and command to actually execute the solution is same as the name of
the solver used. So e. g. when solver icoFoam is chosen to be used, user just opens the
terminal in the case directory (after setting all the necessary properties and defining the
mesh) and executes command icoFoam and the problem is solved.

4.2 Geometry
The considered geometry was based on Fluitec CSE-X4 mixing elements. There are two
main reasons for this choice. First, the CSE-X4 mixing element is the simplest mixing ele-
ment supplied by Fluitec and second the experimental data for residence time distribution
are available.

The CSE-X4 mixing element contains four cross-bars and three parallel cross-bars.
The modeled geometry has a diameter of 21 mm and the baffle width of 2.2 mm (see Figure
4.2a). This geometry was constructed in Ansys® DesignModeler. Since this elements are
not supplied individually but as a sequence of six elements, the modeled geometry was
constructed accordingly (see Figure 4.2b).

Since technical drawings were not available for the CSE-X4 mixing element, it was
necessary to measure the dimensions by caliper and than reproduced into the drawing.
The drawn element contained so called short edges, sliver faces and discontinuities which
were required to be repaired. Hence cleanup and repair tools provided by DesignModeler
were used. These tools automatically detect and repair the problematic parts of geometry.
The short edges could cause some artificial obstacle in flow and could cause false flow
changes.

As the first set of models for various properties was solved, it was found that flow de-
tachment and backflow appears. Description of the backflow issue and why it is necessary
to eliminate it is given in Chapter 5. In order to avoid this problem several adjustments
of the model as well as of the modeled geometry were tested. It appeared to be the best
option to add a tube with a small diameter at the end of the reactor which unifies the flow
direction and the volumue addition is insignificant compare to the reactor, so the RTD
is not influenced. Also this modeled design is a better representation of the experiments,
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(a) One CSE-X4 mixing element. (b) Six CSE-X4 mixing elements.

Figure 4.2: Geometry of Fluitec CSE-X4 mixing elements.

since in laboratory the measurements are also done in a thinner tube behind the reactor and
not directly after the last mixing element. The modeled geometry is shown on Figure 4.3.
The figure shows a cutting plane through the center of the reactor. The modeled geometry
consists of 6 mixing elements which have a 0.8 mm gap between each other. After the last
baffle 2 mm free space is left and then a 10 mm tube with a diameter of 5 mm is added.
The evaluation of the residence time distribution was done at the end of the thin tube.

Figure 4.3: Geometry used for the modeling.

4.3 Mesh
The mesh of the desired geometry was constructed in Ansys® Gambit. There were used
size functions ensuring denser mesh near walls and around corners where big changes of
variables were expected.
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The final mesh contained around 28 millions of tetrahedral cells. This resolution was
chosen in order to avoid grid dependent solution. In order to decrease the solution time, the
mesh was transfered from tetrahedral cells to polyhedral. This transfer resulted in decrease
of number of cells, so the final mesh has 6.3 millions of polyhedral cells. This resolution
gives in average 1 million of cells per mixing element which is reasonable, it guarantees
grid independent solution (according to grid dependence analysis performed during earlier
research in industry) in reasonable solution time.

For laminar flows it might be possible to take advantage of the symmetry of the geome-
try. The geometry has two symmetry planes, XZ- and YZ-plane. It should be possible to
use only one quarter of the geometry, hence of the mesh, which would cause the decrease
the number of the calculated cells to one quarter. For a lack of time it was not possible
to test if the solution while using symmetry planes would be in agreement with complete
solution without the symmetry planes. So it was decided to use the full geometry.

4.4 Model description

The residence time distribution analysis was performed in two steps. First the steady
state flow field was calculated for given flow conditions and subsequently a passive scalar
transport was calculated on the obtained velocity field and evaluated at the outlet boundary.
This procedure copies the experimental method, where a tracer (passive scalar) is injected
into a flowing liquid and its concentration in time is measured on the outflow from the
reactor.

The flow field was obtained for wide range of Reynolds numbers in laminar flow
regime. The laminar regime was picked because the reactors are operated in laminar
regime so the experimental data are available only for laminar flow. For the scalar trans-
port range of Schmidt numbers was chosen such that desired range of Bodenstein numbers
were investigated.

In the following text settings of the numerical solution will be described briefly. For so-
lution of the flow field and the scalar transport was necessary to use two different settings,
so two sets of files fvSolution and fvScheme were used. These files are showed in
Appendix A and B respectively.

For solution of the flow field was used solver simpleFoam. This solver is a steady-
state solver for turbulent flow, according to the user guide [14]. But it is possible to use it
also for laminar modeling, when the turbulence is switched off in the solver. This solver
deals with pressure p and velocity U.

The pressure equation is solved with generalized geometric-algebraic multi-grid solver
(GAMG) with Gauss-Seidel smoother with tolerance 10−7 and relative tolerance 10−2

which specifies convergence of one iteration. The convergence criteria is specified to be
10−7. One corrector for pressure is applied for non-orthogonal cells. This option is set to
be on the safe site since the mesh orthogonality is very good.

The preconditioned bi-conjugate gradient solver (PBiCG) with (asymmetric) diagonal
incomplete-LU preconditioner was chosen for velocity solution. The tolerance for one ite-
ration was set to 10−8 and relative tolerance to 10−3. The solution is considered converged
when residuals of each direction component of velocity becomes lower than 10−7.
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Relaxation of the solution is set to be 0.3 for pressure and 0.7 for velocity. These values
were taken according to advice from more experienced users and seemed to be reasonable.

The solution of the tracer concentration T was performed also by preconditioned bi-
conjugate gradient solver (PBiCG) with (asymmetric) diagonal incomplete-LU precon-
ditioner. Since tracer concentration requires transient solution the relative tolerance is
specified to be 0 forcing the solution to converge at each time step, where convergence
criteria for one time step is specified to be 10−6. Also for tracer concentration there is set
one non-orthogonal corrector to avoid eventual issues with mesh non-orthogonality.

29



30



Chapter 5
Results and discussion

As the first set of models for various properties was solved, it was found that slight flow
detachment appears directly after the last baffle, even for small Reynolds numbers, which
causes a back-flow problem. It is necessary to avoid the back-flow at the outlet plane to be
able to calculate representative residence time distributions. If one would calculate RTD
with back-flow one would not know the residence time of the volumes that are flowing in
at the outlet boundary. This issue is displayed on Figure 5.1 where the red zone behind
the mixing element represents the region of pressure lower than pressure at the outlet
boundary. This pressure distribution causes that the fluid flows into the red region.

Figure 5.1: Flow detachment zone illustration.
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As was mentioned above first the velocity fields for various flow conditions were cal-
culated. Since the flow conditions were chosen such that the flow is in the laminar regime
with low Reynolds numbers, the solution is linear in the dependent variables. This means
that when one parameter is changed, the solution changes linearly. That results in self
similarity of the results for different modeled cases while normalized by the maximal ve-
locity. One representative result is presented in Figure 5.2. The result is shown on a cutting
plane through the reactor. The fluid flows in positive z-direction (i. e. from left to right).
The thinning at the end of the reactor is removed from the view in order to maximize the
displayed region.

Figure 5.2: Isocontours of the velocity magnitude in the cutting plane through the middle of the
reactor. Flow direction from left to right.

On Figure 5.3 is captured comparison between experimentally measured RTD curve
and RTD curve computed by CFD model in OpenFOAM. The computed curve is in agree-
ment with the experimental data. The slight difference is very small and can be caused by
various factors. The factors can be such as:

• uncertainty of the measurement;

• numerical diffusion;

• inaccuracy of the Bo number correlation.

The experimental data were provided without further specification of the experimental
system so the only comparison measure was the Bodenstein number. The range of Bo-
denstein numbers covered by the experiment was very narrow. Since all the data were
provided very late, it was impossible (for the lack of time) to do further calculations in
order to compare the model for more modeled cases. So only one modeled case fit in the
experimental range.

The longer tail in the experimental data suggests that there is a dead volume inside
of the static mixer. Even though the model was developed to perform RTD analyses it is
possible to spot dead volume in some regions of the geometry.
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Figure 5.3: Comparison of experimental data and results of CFD model.

The Figure 5.4 shows how the reactor is filled with tracer after 1 residence time (time
normalized by residence time of ideal plug flow). The blue region shows the trace concen-
tration above 95 %.The red circle indicates the region where the mixing is delayed.

Although, the dead volume was found the extension of the tail part of the integrated
RTD curve suggests that there is more dead volume in the real system. In order to find all
of the dead volume it would be necessary to obtain more information of the experimental
system and develop a more precise model of the system. Since all of this information were
not available by the end of the project, it was impossible to obtain more precise data.

The results showed that the residence time distribution is dependent only on the pro-
duct Re · Sc regardless on what particular values Re and Sc have which is in agreement
with the theory. It can be assumed that similar correlation as Eq. 3.49 between the Péclet
number and the product Re · Sc can be found also for the static mixers. Since it was pos-
sible to solve the model for narrow range of Bodenstein numbers it would not be reliable
to find this correlation with the available calculations.

On Figure 5.5 are displayed the integrated residence time distribution curves calcu-
lated by the CFD model. It can be observed the general trend of narrower residence time
distribution for higher Bodenstein numbers (Bo1 > Bo2 > Bo3 > Bo4). This trend is
also in agreement with the theory [5, p. 334] and with the experimental data.
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Figure 5.4: Reactor filled with tracer after 1 residence time.

Figure 5.5: Residence time distribution curves for different Bodenstein numbers.
Bo1 > Bo2 > Bo3 > Bo4
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Chapter 6
Conclusion

In this thesis a residence time distribution analysis was performed for Fluitec static mixer
reactor with CSE-X4 mixing elements. The tracer injection experiment was reproduced
by computation fluid dynamics modeling. The model contained of two parts, first velocity
fields were calculated for various laminar flow conditions and then transport of the passive
scalar was evaluated. The passive scalar change (tracer injection) was performed as a step
change at the inlet boundary and it was evaluated at the outlet from the reactor. It gave
integrated residence time distribution curves which were compared with the experimental
data.

CFD modeling revealed that even for flows with low Reynolds numbers the flow de-
tachment occurs at the leaving edge of the mixing element. In order to correctly calculate
the residence time distribution it was necessary to avoid the backflow at the outlet bound-
ary. The geometry modification, by adding a thin tube at the end of the geometry, was
chosen to be the best solution for unifying the flow direction through the outlet boundary.

The resulting integrated residence time distribution curve of one case was compared
with available experimental data. The results showed good agreement between the ex-
periment and the model. The slight difference between the curves suggest that the model
did not capture all the dead volume occurring in the reactor. More information about
the experiment would be needed in order to refine the model accordingly to obtain better
agreement.

It was found that the width of the RTD is dependent only on product Re · Sc and not
on the particular values of the two. This suggests that basic theory, such as Equations 3.49
and 3.52 – 3.54, of the pipe flow is applicable also to the static mixer reactors and similar
correlations between variance of the RTD and the Bodenstein number, or the product Re ·
Sc, could be found.

The time schedule and computation capacity did not allow to calculate the RTD for
broader range of Bodenstein numbers. It would not be then reliable to find a correlation
between the product Re · Sc and variance for the static mixer.

In future work it may be beneficial to investigate possibility of using symmetry planes
in the modeled geometry, hence decreasing significantly the computation time and com-
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putation power demands. In order to use the model in future research, it is necessary to
obtain a better description of the experimental procedure to setup the modeled conditions
accordingly. Then it would be possible to verify the model confidently.

When the flow model is well developed and verified, it will be possible to implement
reactions and population balances. This would result in complex model of the whole
reaction process, which could be used to predict the behavior of the reactive mixture under
various reaction conditions.
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Appendix A
fvSolution
Settings for simpleFoam

solvers
{

p
{

solver GAMG;
tolerance 1e-7;
relTol 0.01;
smoother GaussSeidel;
nPreSweeps 0;
nPostSweeps 2;
cacheAgglomeration true;
nCellsInCoarsestLevel 10;
agglomerator faceAreaPair;
mergeLevels 1;

}

U
{

solver PBiCG;
preconditioner DILU;
tolerance 1e-08;
relTol 0.001;

}
}

SIMPLE
{

nNonOrthogonalCorrectors 1;
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residualControl
{

p 1e-7;
U 1e-7;

}
}

relaxationFactors
{

p 0.3;
U 0.7;

}

Settings for scalarTransportFoam
solvers
{

T
{

solver PBiCG;
preconditioner DILU;
tolerance 1e-06;
relTol 0;

}
}

SIMPLE
{

nNonOrthogonalCorrectors 1;
}
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Appendix B
fvScheme
Settings for simpleFoam

ddtSchemes
{

default steadyState;
}

gradSchemes
{

default Gauss linear;
grad(p) Gauss linear;
grad(U) Gauss linear;

}

divSchemes
{

default none;
div(phi,U) Gauss linear;

}

laplacianSchemes
{

default none;
laplacian(nuEff,U) Gauss linear corrected;
laplacian((1|A(U)),p) Gauss linear corrected;

}

interpolationSchemes
{

default linear;
interpolate(U) linear;
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}

snGradSchemes
{

default corrected;
}

fluxRequired
{

default no;
p ;

}

Settings for scalarTransportFoam
ddtSchemes
{

default Euler;
}

gradSchemes
{

default Gauss linear;
}

divSchemes
{

default none;
div(phi,T) Gauss limitedLinear 1;

}

laplacianSchemes
{

default none;
laplacian(DT,T) Gauss linear corrected;

}

interpolationSchemes
{

default linear;
}

snGradSchemes
{

default corrected;
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}

fluxRequired
{

default no;
T ;

}
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