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A B S T R A C T

Objectives: Molecular markers provide valuable information about treatment response and prognosis in patients
with low-grade gliomas (LGG). In order to make this important information available prior to surgery the aim of
this study was to explore if molecular status in LGG can be discriminated by preoperative magnetic resonance
imaging (MRI).
Patients and methods: All patients with histopathologically confirmed LGG with available molecular status who
had undergone a preoperative standard clinical MRI protocol using a 3T Siemens Skyra scanner during
2008–2015 were retrospectively identified. Based on Haralick texture parameters and the segmented LGG FLAIR
volume we explored if it was possible to predict molecular status.
Results: In total 25 patients (nine women, average age 44) fulfilled the inclusion parameters. The textural
parameter homogeneity could discriminate between LGG patients with IDH mutation (0.12, IQR 0.10-0.15) and
IDH wild type (0.07, IQR 0.06-0.09, p = 0.005). None of the other four analyzed texture parameters (energy,
entropy, correlation and inertia) were associated with molecular status. Using ROC curves, the area under curve
for predicting IDH mutation was 0.905 for homogeneity, 0.840 for tumor volume and 0.940 for the combined
parameters of tumor volume and homogeneity. We could not predict molecular status using the four other
chosen texture parameters (energy, entropy, correlation and inertia). Further, we could not separate LGG with
IDH mutation with or without 1p19q codeletion.
Conclusions: In this preliminary study using Haralick texture parameters based on preoperative clinical FLAIR
sequence, the homogeneity parameter could separate IDH mutated LGG from IDH wild type LGG. Combined with
tumor volume, these diagnostic properties seem promising.
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1. Introduction

Low-grade glioma (LGG) is a relative rare intracranial neoplasm
with an incidence of 1/100,000/year [1]. The median age of diagnosis
is typically around 40, thus affecting otherwise healthy and young
adults. It is not recommended to rely solely on diagnostic imaging, and
the final diagnosis is usually based on histopathological assessment
after surgery (biopsy or resection) [2].

The clinical heterogeneity within LGGs is remarkable. Low-grade
gliomas are currently subclassified based on molecular markers, and
IDH status (wild-type or mutated) together with 1p19q codeletion
status now provides improved stratification and information about the
underlying molecular profile [3]. It has even been suggested that IDH
wild type (IDHwt), although morphologcally a LGG, resembles glio-
blastoma from a molecular and clinical point of view.

Much data from routine anatomical MRI images are not quantita-
tively analyzed in regular clinical practice and this is also true for pa-
tients with LGG [4]. Consequently, there are numerous variables to be
explored involving image intensity, shape and texture [5]. A study in
lung-, head and neck cancer patients demonstrated that quantitative
data from regular CT scans provided promising prognostic capabilities
[5]. There are several reports on machine-learning techniques and
multivariable imaging prediction models demonstrating prognostic
capabilities using either routine MRI or special MRI sequences in high-
grade glioma patients [6–9]. In a recent report on patients with high-
grade gliomas researchers found that quantitative data from a combi-
nation of MRI with metabolic information and anatomical MRI could
predict molecular status − hence provide non-invasive prognostic in-
formation [10]. Also, analysis of MRI from routine sequences with re-
spect to glioma image heterogeneity has been able to reliably separate
high-grade gliomas from LGG [11]. Taking it further, studies in LGG
using a radiomics approach for IDH prediction have demonstrated
promising results, especially when deep learning was applied [12,13].
Thus, it is likely that molecular status and prognosis in LGG patients can
be predicted from MRI phenotypes.

Based on our previous clinical research in LGGs we have clinical and
imaging data available, in addition to molecular profile [14]. In this
group of patients we now explore textural parameters from anatomical
MRIs using quantitative radiology to potentially predict molecular
status and/or malignant transformation.

2. Material and methods

2.1. Patients

This is a retrospective study including patients with newly diag-
nosed and histopathologically verified supratentorial diffuse LGG in the
time period from 2008 to 2016 with available digital preoperative 3T
MRI images from Siemens Skyra scanner (Siemens, Erlangen,
Germany). All patients were treated at St.Olavs hospital (Trondheim,
Norway). Clinical and radiological data was retrieved from medical
journals and earlier research projects. End of follow-up was 01st
January 2016.

2.2. Radiology

For textural analyses 3D Fluid Attenuated Inversion Recovery
(FLAIR) acquisitions with 1.00 mm slices and no inter-slice gap were
used. Echo time, repetition time, inversion time and flip angle (TE/TR/
TI/FA) was 389-394/5000/1800/120, thus with only slight variation in
TE. In addition, T1 weighted images with gadolinium (gadoterate me-
glumine) were available for the conventional clinical description (e.g.
concerning contrast enhancement), but not for the quantitative radi-
ology. These were done as 3D gradient echo sequences with 1.00 mm
slices and TE/TR/TI/FA being 2.92/2300/1100/8 or 2.96/2000/1100/
8 or 3.16/1900/900/9. Both FLAIR and T1 sequences where done with

1.00 × 1.00 mm pixel spacing in a 256 × 256 matrix.
All follow-up MRI exams until reoperation were reviewed according

to the criteria from the Response Assessment in Neuro-Oncology
(RANO) group [15]. Follow-up MRI-exams were performed every 6
months, with shorter intervals of 2–3 months if unclear findings or
possible sign of progression, and with intervals of up to 12 months after
years of stable disease and no remaining FLAIR-abnormalities.

2.3. Image interpretation

A radiologist experienced with LGG assessment and segmentation
(H.K.B) performed the semiquantitative data interpretation and did the
tumor segmentation in 3D Slicer as previously described [16]. He was
blinded for clinical result and molecular status while evaluating the
following: contrast enhancement (no, patchy, nodular and ring-like),
corpus callosum involvement (yes, no), tumor borders, main tumor
side, volume in milliliters, and mass effect (no, mild, conspicuous).
Tumor borders were radiological classified as 1) well-defined when the
border between tumor an normal appearing brain was sharp; 2) par-
tially absent (vague) when this border was still visible, but more dif-
fuse; and 3) absent when tumor growth was very diffuse and this border
was hardly possible to establish [16].

2.4. Texture analysis

Radiologists familiar with quantitative radiology (T.B.B and Y-H.Z)
analyzed images after the segmentation procedure as described above.
Haralick textural features were extracted from the segmented tumor
volume in the MR image material [17]. The analysis was limited to
energy, entropy, homogeneity, inertia and correlation, as previous
studies have shown some features to be redundant [18]. Also, textural
features have shown potential using quantitative radiology to predict
IDH mutation in LGG previously [13]. Each feature was calculated
based on the grey level co-occurrence matrices (GLCM) computed for
all voxels in the segmented tumor volume. Each texture feature de-
scribes a relation of voxels with their local neighborhood, as detailed in
Table 1. The signal intensities in the MR image data was rescaled to
0–256 grey levels for GLCM calculations. The GLCM was computed
using 256 bins and using offsets in all 26 directions. The texture fea-
tures were computed using an in-house written plug-in for ImageJ
1.50e [19].

Table 1
Description and equation of texture analysis parameters.

Energy Describes the similarity of voxels in the region

∑ p i j( , )
i j,

2

Entropy Describes the disorder in the distribution of gray
levels in the region.

∑− p i j log p i j( , ) ( ( , ))
i j,

Correlation Describes the correlation between voxel pairs in
the region

∑
⎜ ⎟
⎛
⎝

− − ⎞
⎠

i j

i μx j μy p i j

σx σy
,

)( ( , )

Homogeneity (Inverse
Difference Moment)

Describes the homogeneity of the co-occurrence
pairs

∑
+ −

p i j( , )
i j

i j
,

1
1 ( )2

Inertia (Contrast) Describes the variation in signal intensities

∑ −i j p i j( ) ( , )
i j,

2

i and j refers to the bins in the grey level co-occurrence matrices, p(i,j) to the value of the
marginal-probability at point (i,j).

A.S. Jakola et al. Clinical Neurology and Neurosurgery 164 (2018) 114–120

115



2.5. Molecular markers

The IDH mutational status and 1p19q codeletetion status were
analyzed as previously described in detail [14].

2.6. Ethics

The regional ethical committee of Central Norway approved this
project (reference 2016/1377). All patients have provided written in-
formed consent.

2.7. Statistics

Data are presented as median values (interquartile range, IQR).
Mean difference was tested using Mann-Whitney U test with tie cor-
rection. Statistical significance was defined at a level of p < 0.05.
Statistical analysis was done using R 3.2.3, Vienna, Austria.

3. Results

In total, 25 patients fulfilled the inclusion criteria. Of those nine
were women and average age was 44. In total, 20 patients had IDH
mutation and 5 were IDH wild type. For additional details, see Table 2.

3.1. Quantitative radiology and IDH mutation status

Imaging characteristics and quantitative MRI data are presented in
Table 3. The textural parameter homogeneity was significantly different
depending on IDH mutation status, as shown in Fig. 1. A descriptive
presentation of individual patients in relation to molecular profile (i.e.
IDHwt, IDHmut, IDHmut and 1p19q codeletion) is presented in Fig. 2.
In addition, imaging examples of low- and high homogeneity are pre-
sented in Fig. 3. Other textural parameters showed no significant cor-
relations to IDH mutation status. ROC curves for IDH mutation status
showed good classification results for both homogeneity and tumor
volume, and when combining homogeneity and tumor volume in cor-
relation to IDH status by logistic regression of a generalized linear
model, we demonstrate good classification results as seen in Fig. 4. The
area under the curve (AUC) for predicting IDH mutation was 0.905 for
homogeneity, 0.840 for tumor volume and 0.940 for the combined
parameters of tumor volume and homogeneity.

3.2. Radiology and malignant transformation

No significant correlation to hazard ratio for time to transformation
was detected for either of the radiological parameters (data not shown).

4. Discussion

This exploratory study shows that quantitative radiological para-
meters from routine MRI scans were able to separate IDHmut and
IDHwt in LGGs. The texture marker of homogeneity was the most
promising, and together with LGG volume good diagnostic capabilities
were demonstrated.

The use of Haralick texture parameters for diagnostic classification
of tumors has been studied for several cancer types. The homogeneity
parameter, also known as “inverse difference moment”, is a comparison
of the signal intensity levels dispersed in the volume. A volume with
smaller differences in MRI signal between neighboring voxels will result

Table 2
Patient, treatment and tumor characteristics.

N = 25

Age, mean (SD) 44 (14)
Female, n (%) 9 (36)
Seizure, n (%) 15 (60)
Resection, n (%) 25 (100)
Histopathology, n (%)
Astrocytoma IDHwt 5 (20)
Astrocytoma IDHmut 9 (36)
Oligodendroglioma 11 (44)

Radiotherapy, n (%)
After primary surgery 2 (8)
After redo surgery 8 (33)
Unknown/Missing 1

Chemotherapy, n (%)
Upfront 0
At progression/transformation 8 (33)
Unknown/Missing 1

Later tumor resection, n (%) 10 (40)
Progression during follow-up, n (%) 10 (40)
Malignant transformation during follow-up, n (%) 8 (32)
Significant contrast enhancement 1 (4)
Verified with histopathology 7 (28)

Deceased during follow-up, n (%) 3 (12)

Table 3
Imaging characteristics.

Energy, median (IQR) 0.0009 (0.0004–0.0010)
Entropy, median (IQR) 7.9 (7.2–8.0)
Homogeneity, median (IQR) 0.12 (0.09–0.13)
Inertia, median (IQR) 329 (213–514)
Correlation, median (IQR) 0.0010 (0.0009–0.0020)
Contrast enhancement, n (%)
No 19 (76)
Patchy 5 (20)
Nodular 1 (4)
Ring-like 0

Corpus callosum involvement, n (%) 2 (8)
Tumor border, n (%)
Absent 6 (24)
Vague 9 (36)
Conspicuous 10 (40)

Mass effect, n (%)
No 17 (68)
Mild 7 (28)
Conspicuous 1 (4)

Main tumor side, n (%)
Left 13 (52)
Right 12 (48)

Main lobe involved, (%)
Frontal 12 (48)
Temporal 6 (24)
Insula 7 (28)

Eloquencea, n (%) 10 (40)
Tumor volume, median in ml (IQR) 27 (7–37)

IQR denotes interquartile range.
a As defined by Chang et al. [42].

Fig. 1. Difference in homogeneity between patients with (median 0.12, IQR 0.10–0.15)
and without (median 0.07, IQR 0.06–0.09) IDH mutation (p = 0.005). Whiskers show
minimum and maximum value. There was a significant difference in homogeneity when
comparing groups.
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in higher homogeneity compared to one with larger differences, thus
allowing quantification of tumor homogeneity/heterogeneity.
Homogeneity has previously been used to identify mutation status in
lung cancer [20] and to predict response to chemotherapy in breast

cancer [21].
The results from our study suggest worse prognosis for tumors with

lower homogeneity (i.e high tumor heterogeneity). This has also been
seen in other studies of determining cancer prognosis through textural
tumor heterogeneity [22–24]. Interestingly another recent study also
reports that textural homogeneity is significantly lower in LGG patients
with IDHwt compared to those with IDHmut [13]. This is also in line
with findings of increased MRI heterogeneity in high-grade gliomas
since IDHwt LGG much resembles high-grade gliomas from a biological
point of view [11]. The cause of the higher heterogeneity has been
suggested to be hypoxia or tumor angioneogenesis [22,25]. Based on
the aggressive clinical course of IDHwt LGG, these are also expected
from a biological perspective to exhibit higher heterogeneity [14].
However, to establish a definite relationship between LGG mutation
status, biological heterogeneity and radiological textural homogeneity
prospective validation studies are needed.

Tumor growth rate has in LGG been the most consistent radiological
prognostic marker [26]. Growth rate is associated with molecular
classification since 1p19q codeleted LGG demonstrate slower growth
rates [27]. Still, estimations of growth rate requires several scans with
potential treatment delay and given that IDHwt tumors hold prognosis
similar to glioblastomas, any delay should be avoided. Hence, separ-
ating LGGs at time of radiological diagnosis into either likely IDHwt or
IDHmut is of a practical clinical value.

Other recent reports have presented approaches to predict mole-
cular status in LGG [12,13,28,29–31,32]. A recent study analyzed the
oncometablite 2-hydroxyglutarate (2HG) by the means of MR spectro-
scopy in the clinical setting, and with a threshold of 2 mM 2HG the AUC
was 0.88 for detection of IDHmut [28]. MR spectroscopy with mon-
itoring of 2HG can also be used to monitor treatment response and
tumor progression in IDHmut gliomas [32]. There is also a report on
dynamic changes in textural homogeneity in relation to tumor response
in lung cancer patients [23]. However, whether quantitative markers
from routine MRI sequences can be used to monitor the course of the
disease/treatment response remains to be seen.

Mazurowski and co-authors analyzed the shape of the tumor on
FLAIR images and found that IDHwt had a more irregular shape, but
with sensitivity limited to only 80% [29]. Nevertheless, this observation
was supported by Yu et al., concluding that “ […] the tumor with IDH1
mutation presents as more compact, more spherical and more rounded
than the one with wild-type IDH1” [13]. Thus, this may at least serve as
a simple, clinically detectable, sign of IDH mutation status.

Others have again used more advanced MRI techniques including
techniques for perfusion, diffusion, oxygen metabolism and neovascu-
larization [30,31]. Apparent diffusion coefficient (ADC) was more
promising than relative cerebral blood volume (rCBV) in separating
IDHmut from IDHwt due to large overlap in the rCBV values [30].
However, a model with a combination of rCBV, ADC value, tumor vo-
lume and contrast enhancement was promising with an AUC of 0.84.

Fig. 2. Presentation of individual patients MRI FLAIR homogeneity in relation to molecular status, example cut-offs are given at 0.08 and 0.11.

Fig. 3. Tumor with high homogeneity, 0.202 (upper) and low homogeneity, 0.065
(lower).
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However, when excluding anaplastic gliomas and analyzing LGG se-
parately, the model only had AUC of 0.74 and 75% sensitivity of de-
tecting IDHmut. Thus, the complexity of that model in light of the
moderate diagnostic properties is likely to limit its clinical usefulness
[30]. Similar to our study, tumor volume is associated with molecular
class where IDHmut tend to be larger than IDHwt LGGs, but the overlap
was too large to use this as the only radiological parameter [30]. Fi-
nally, cerebral metabolic rate of oxygen has been reported to be lower
in IDHmut LGG [31]. However, the diagnostic capabilities from quan-
titative texture analyses in routine FLAIR images, without any addi-
tional scanning time, seems comparable to or more promising than
other and more advanced techniques. This is also supported by two
recently published and partly overlapping studies, where AUC of 0.916
and 94% sensitivity for detection of IDH1 mutation was achieved using
deep learning radiomics [12,13]. These numbers are comparable to our
findings and should encourage further studies, and efforts should be
used to overcome the barrier of standardized MR parameters to have
broader clinical impact. Deep learning using large data may prove to be
a valuable method in this regard [12,33].

Another technology that may facilitate quantitative radiology in the
analysis of brain tumors is the emergence of synthetic MRI [34]. Syn-
thetic MRI values can be standardized in retrospect, which opens up to
easier application of quantitative radiology reducing scanner and
parameter variability that currently limit the clinical usefulness of
quantitative radiology today [34]. However, it remains to be seen if the
artifacts more often observed in T2 and FLAIR images obtained from
synthetic MRI data will hamper its use in LGG [34].

After the WHO 2016 classification incorporating molecular markers
in glioma classification, interobserver variability in glioma sub-
classification is likely much reduced [2]. A reliable label (i.e. biological
profile) is likely to improve radiological predictive models. There is
now sufficient evidence to demonstrate the feasibility of radiogenomics
also for LGG patients, indicating that imaging can potentially become

an important supplement to molecular analysis for hybrid classification
[29,35]. For IDH classification, this hybrid is of lesser relevance since
IDH mutation is an early common event with homogenous distribution
throughout the tumor volume, but for other molecular events the in-
tratumor heterogeneity is tremendous and radiology can thus provide
important information of a much larger volume than typical biopsies
[36–39].

5. Limitations

Due to the current limitations with respect to standardization of
scan parameters, our study is just preliminary without any validation
cohort. As this barrier may be reduced in the near future by the pos-
sibility of post-hoc scan adjustment, our preliminary results are very
encouraging and should stimulate further research. It should be noted
that some studies using homogeneity as textural parameter use a dif-
ferent mathematical formula that has similar properties but is not di-
rectly comparable to the one used in our study [22,40,41]. This high-
lights the difficulty in making direct comparisons between studies until
consensus on which mathematical formula to use is achieved is
achieved. Finally, a direct comparison with other potential valuable
techniques for radiogenomics, such as MR spectroscopy or diffusion
weighted images, was not performed since these exams were either
lacking or non-standardized (e.g. different scanners and different hos-
pitals).

In conclusion, this study indicates that quantitative radiology is
promising in the determination of IDH molecular status in LGG. The
capability of the texture variable homogeneity to separate IDHmut from
IDHwt seems comparable or even more promising than most reported
radiogenomic parameters to date.

Fig 4. ROC curves for IDHmutation status correlated
to homogeneity (upper left), tumor volume (upper
right) and a logistic regression of a generalized linear
model combining homogeneity and tumor volume
(lower left).

A.S. Jakola et al. Clinical Neurology and Neurosurgery 164 (2018) 114–120

118



Funding details

This work was supported by the The Norwegian Cancer Society;
under Grant 5703787; Agreement concerning research and education of
doctors under Grant ALFGBG-695611.

Disclosure statement

The authors report no conflicts of interest.

Acknowledgement

None.

References

[1] A.S. Jakola, K.S. Myrmel, R. Kloster, et al., Comparison of a strategy favoring early
surgical resection vs a strategy favoring watchful waiting in low-grade gliomas,
JAMA 25 (October) (2012) 1–8, http://dx.doi.org/10.1001/jama.2012.12807
1386639 [pii] PubMed PMID: 23099483 Eng.

[2] D.N. Louis, A. Perry, G. Reifenberger, et al., The 2016 World Health Organization
classification of tumors of the central nervous system: a summary, Acta
Neuropathol. 131 (June (6)) (2016) 803–820, http://dx.doi.org/10.1007/s00401-
016-1545-1 PubMed PMID: 27157931; eng.

[3] D.J. Brat, R.G. Verhaak, K.D. Aldape, et al., Comprehensive, integrative genomic
analysis of diffuse lower-grade gliomas, N. Engl. J. Med. 372 (June (26)) (2015)
2481–2498, http://dx.doi.org/10.1056/NEJMoa1402121 PubMed PMID:
26061751 PubMed Central PMCID: PMCPMC4530011. eng.

[4] R.J. Gillies, P.E. Kinahan, H. Hricak, Radiomics images are more than pictures, they
are data, Radiology 278 (February (2)) (2016) 563–577, http://dx.doi.org/10.
1148/radiol.2015151169 PubMed PMID: 26579733 PubMed Central PMCID:
PMCPMC4734157.eng.

[5] H.J. Aerts, E.R. Velazquez, R.T. Leijenaar, et al., Decoding tumour phenotype by
noninvasive imaging using a quantitative radiomics approach, Nat. Commun. 5
(2014) 4006, http://dx.doi.org/10.1038/ncomms5006
PubMedPMID:24892406;PubMedCentralPMCID:PMCPMC4059926.eng.

[6] B.M. Ellingson, M.G. Malkin, S.D. Rand, et al., Volumetric analysis of functional
diffusion maps is a predictive imaging biomarker for cytotoxic and anti-angiogenic
treatments in malignant gliomas, J. Neurooncol. 102 (March (1)) (2011) 95–103,
http://dx.doi.org/10.1007/s11060-010-0293-7 PubMed PMID: 20798977 PubMed
Central PMCID: PMCPMC3033973. eng.

[7] E.I. Zacharaki, N. Morita, P. Bhatt, et al., Survival analysis of patients with high-
grade gliomas based on data mining of imaging variables, AJNR Am. J.
Neuroradiol. 33 (June (6)) (2012) 1065–1071, http://dx.doi.org/10.3174/ajnr.
A2939 PubMed PMID: 22322603; PubMed Central PMCID: PMCPMC4373623. eng.

[8] K.E. Emblem, M.C. Pinho, F.G. Zollner, et al., A generic support vector machine
model for preoperative glioma survival associations, Radiology 275 (April (1))
(2015) 228–234, http://dx.doi.org/10.1148/radiol.14140770 PubMed PMID:
25486589 eng.

[9] L. Macyszyn, H. Akbari, J.M. Pisapia, et al., Imaging patterns predict patient sur-
vival and molecular subtype in glioblastoma via machine learning techniques,
Neuro Oncol. 18 (March (3)) (2016) 417–425, http://dx.doi.org/10.1093/neuonc/
nov127 PubMed PMID: 26188015; PubMed Central PMCID: PMCPMC4767233.
eng.

[10] B. Zhang, K. Chang, S. Ramkissoon, et al., Multimodal MRI features predict iso-
citrate dehydrogenase genotype in high-grade gliomas, Neuro Oncol. (June) (2016),
http://dx.doi.org/10.1093/neuonc/now121 PubMed PMID: 27353503; Eng.

[11] K. Skogen, A. Schulz, J.B. Dormagen, et al., Diagnostic performance of texture
analysis on MRI in grading cerebral gliomas, Eur. J. Radiol. 85 (April (4)) (2016)
824–829, http://dx.doi.org/10.1016/j.ejrad.2016.01.013 PubMed PMID:
26971430 eng.

[12] Z. Li, Y. Wang, J. Yu, et al., Deep learning based radiomics (DLR) and its usage in
noninvasive IDH1 prediction for low grade glioma, Sci. Rep. 7 (July (1)) (2017)
5467, http://dx.doi.org/10.1038/s41598-017-05848-2 PubMed PMID: 28710497
PubMed Central PMCID: PMCPMC5511238. eng.

[13] J. Yu, Z. Shi, Y. Lian, et al., Noninvasive IDH1 mutation estimation based on a
quantitative radiomics approach for grade II glioma, Eur. Radiol. 27 (August (8))
(2017) 3509–3522, http://dx.doi.org/10.1007/s00330-016-4653-3 PubMed PMID:
28004160 eng.

[14] A.S. Jakola, A.J. Skjulsvik, K.S. Myrmel, et al., Surgical resection versus watchful
waiting in low-grade gliomas, Ann. Oncol. (May) (2017), http://dx.doi.org/10.
1093/annonc/mdx230 PubMed PMID: 28475680 eng.

[15] M.J. van den Bent, J.S. Wefel, D. Schiff, et al., Response assessment in neuro-on-
cology (a report of the RANO group): assessment of outcome in trials of diffuse low-
grade gliomas, Lancet Oncol. 12 (June (6)) (2011) 583–593, http://dx.doi.org/10.
1016/S1470-2045(11)70057-2 PubMed PMID: 21474379.

[16] H.K. Bo, O. Solheim, A.S. Jakola, et al., Intra-rater variability in low-grade glioma
segmentation, J. Neurooncol. (November) (2016), http://dx.doi.org/10.1007/
s11060-016-2312-9 PubMed PMID: 27837437; Eng.

[17] R.M. Haralick, Statistical and structural approaches to texture, Proc. IEEE 67 (5)
(1979) 786–804, http://dx.doi.org/10.1109/PROC.1979.11328.

[18] R.W. Conners, M.M. Trivedi, C.A. Harlow, Segmentation of a high-resolution urban
scene using texture operators, Comput. Vision Graphics Image Process. 25 (3)
(1984) 273–310, http://dx.doi.org/10.1016/0734-189X(84)90197-X.

[19] C.A. Schneider, W.S. Rasband, K.W. Eliceiri, NIH Image to ImageJ: 25 years of
image analysis, Nat. Methods 9 (July (7)) (2012) 671–675 PubMed PMID:
22930834 PubMed Central PMCID: PMCPMC5554542. eng.

[20] E. Ozkan, A. West, J.A. Dedelow, et al., CT gray-level texture analysis as a quan-
titative imaging biomarker of epidermal growth factor receptor mutation status in
adenocarcinoma of the lung, Am. J. Roentgenol. 205 (5) (2015) 1016–1025, http://
dx.doi.org/10.2214/AJR.14.14147 2015/11/01.

[21] N. Michoux, S. Van den Broeck, L. Lacoste, et al., Texture analysis on MR images
helps predicting non-response to NAC in breast cancer, BMC Cancer 05 (August
(15)) (2015) 574, http://dx.doi.org/10.1186/s12885-015-1563-8 PubMed PMID:
26243303 PubMed Central PMCID: PMCPMC4526309.eng.

[22] F. Tixier, C.C. Le Rest, M. Hatt, et al., Intratumor heterogeneity characterized by
textural features on baseline 18F-FDG PET images predicts response to concomitant
radiochemotherapy in esophageal cancer, J. Nucl. Med. 52 (March (3)) (2011)
369–378, http://dx.doi.org/10.2967/jnumed.110.082404.

[23] G.J.R. Cook, M.E. O’Brien, M. Siddique, et al., Non-small cell lung cancer treated
with erlotinib: heterogeneity of 18F-FDG uptake at PET—association with treat-
ment response and prognosis, Radiology 276 (3) (2015) 883–893, http://dx.doi.
org/10.1148/radiol.2015141309 PubMed PMID: 25897473.

[24] S.C. Chan, K.P. Chang, Y.D. Fang, et al., Tumor heterogeneity measured on F-18
fluorodeoxyglucose positron emission tomography/computed tomography com-
bined with plasma Epstein-Barr Virus load predicts prognosis in patients with pri-
mary nasopharyngeal carcinoma, The Laryngoscope 127 (January (1)) (2017)
E22–E28, http://dx.doi.org/10.1002/lary.26172 PubMed PMID: 27435352; eng.

[25] B. Ganeshan, V. Goh, H.C. Mandeville, et al., Non-small cell lung cancer: histo-
pathologic correlates for texture parameters at CT, Radiology 266 (January (1))
(2013) 326–336, http://dx.doi.org/10.1148/radiol.12112428 PubMed PMID:
23169792 eng.

[26] J. Pallud, M. Blonski, E. Mandonnet, et al., Velocity of tumor spontaneous expan-
sion predicts long-term outcomes for diffuse low-grade gliomas, Neuro Oncol.
(February) (2013), http://dx.doi.org/10.1093/neuonc/nos331 nos331 [pii] [doi].
PubMed PMID: 23393207; Eng.

[27] C. Goze, C. Bezzina, E. Goze, et al., 1P19Q loss but not IDH1 mutations influences
WHO grade II gliomas spontaneous growth, J. Neurooncol. 108 (May (1)) (2012)
69–75, http://dx.doi.org/10.1007/s11060-012-0831-6 (PubMed PMID: 22392125
eng).

[28] A. Tietze, C. Choi, B. Mickey, et al., Noninvasive assessment of isocitrate dehy-
drogenase mutation status in cerebral gliomas by magnetic resonance spectroscopy
in a clinical setting, J. Neurosurg. (March) (2017) 1–8, http://dx.doi.org/10.3171/
2016.10.jns161793 PubMed PMID: 28298040 eng.

[29] M.A. Mazurowski, K. Clark, N.M. Czarnek, et al., Radiogenomics of lower-grade
glioma: algorithmically-assessed tumor shape is associated with tumor genomic
subtypes and patient outcomes in a multi-institutional study with the cancer
genome atlas data, J. Neurooncol. (May) (2017), http://dx.doi.org/10.1007/
s11060-017-2420-1 PubMed PMID: 28470431;eng.

[30] K. Leu, G.A. Ott, A. Lai, et al., Perfusion and diffusion MRI signatures in histologic
and genetic subtypes of WHO grade II-III diffuse gliomas, J. Neurooncol. (May)
(2017), http://dx.doi.org/10.1007/s11060-017-2506-9 PubMed PMID: 28547590
eng.

[31] A. Stadlbauer, M. Zimmermann, M. Kitzwogerer, et al., MR imaging-derived oxygen
metabolism and neovascularization characterization for grading and IDH gene
mutation detection of gliomas, Radiology 283 (June (3)) (2017) 799–809, http://
dx.doi.org/10.1148/radiol.2016161422 PubMed PMID: 27982759 eng.

[32] C. Choi, J.M. Raisanen, S.K. Ganji, et al., Prospective longitudinal analysis of 2-
Hydroxyglutarate magnetic resonance spectroscopy identifies broad clinical utility
for the management of patients with IDH-mutant glioma, J. Clin. Oncol. 34
(November (33)) (2016) 4030–4039, http://dx.doi.org/10.1200/jco.2016.67.1222
PubMed PMID: 28248126 eng.

[33] Y. LeCun, Y. Bengio, G. Hinton, Deep learning, Nature 521 (May (7553)) (2015)
436–444, http://dx.doi.org/10.1038/nature14539 PubMed PMID: 26017442 eng.

[34] L.N. Tanenbaum, A.J. Tsiouris, A.N. Johnson, et al., Synthetic MRI for clinical
neuroimaging: results of the magnetic resonance image compilation (MAGiC) pro-
spective, multicenter, multireader trial, AJNR Am. J. Neuroradiol. 38 (June (6))
(2017) 1103–1110, http://dx.doi.org/10.3174/ajnr.A5227 PubMed PMID:
28450439 eng.

[35] K. Aldape, M.L. Simmons, R.L. Davis, et al., Discrepancies in diagnoses of neuroe-
pithelial neoplasms, Cancer 88 (10) (2000) 2342–2349, http://dx.doi.org/10.1002/
(sici)1097-0142(20000515)88:10<2342:aid-cncr19>3.0.co;2-x.

[36] A. Sottoriva, I. Spiteri, S.G. Piccirillo, et al., Intratumor heterogeneity in human
glioblastoma reflects cancer evolutionary dynamics, Proc. Natl. Acad. Sci. U. S. A.
110 (March (10)) (2013) 4009–4014, http://dx.doi.org/10.1073/pnas.1219747110
1219747110 [pii]. PubMed PMID: 23412337; PubMed Central PMCID:
PMC3593922.eng.

[37] H. Suzuki, K. Aoki, K. Chiba, et al., Mutational landscape and clonal architecture in
grade II and III gliomas, Nat. Genet. 47 (May (5)) (2015) 458–468, http://dx.doi.
org/10.1038/ng.3273 PubMed PMID: 25848751; eng.

[38] N.J. Szerlip, A. Pedraza, D. Chakravarty, et al., Intratumoral heterogeneity of re-
ceptor tyrosine kinases EGFR and PDGFRA amplification in glioblastoma defines
subpopulations with distinct growth factor response, Proc. Natl. Acad. Sci. U. S. A.
109 (February (8)) (2012) 3041–3046, http://dx.doi.org/10.1073/pnas.
1114033109 1114033109 [pii]. PubMed PMID: 22323597; PubMed Central
PMCID: PMC3286976. eng..

[39] N. Andor, T.A. Graham, M. Jansen, et al., Pan-cancer analysis of the extent and

A.S. Jakola et al. Clinical Neurology and Neurosurgery 164 (2018) 114–120

119

http://dx.doi.org/10.1001/jama.2012.12807
http://dx.doi.org/10.1001/jama.2012.12807
http://dx.doi.org/10.1007/s00401-016-1545-1
http://dx.doi.org/10.1007/s00401-016-1545-1
http://dx.doi.org/10.1056/NEJMoa1402121
http://dx.doi.org/10.1056/NEJMoa1402121
http://dx.doi.org/10.1148/radiol.2015151169
http://dx.doi.org/10.1148/radiol.2015151169
http://dx.doi.org/10.1148/radiol.2015151169
http://dx.doi.org/10.1038/ncomms5006
http://dx.doi.org/10.1038/ncomms5006
http://dx.doi.org/10.1007/s11060-010-0293-7
http://dx.doi.org/10.1007/s11060-010-0293-7
http://dx.doi.org/10.3174/ajnr.A2939
http://dx.doi.org/10.3174/ajnr.A2939
http://dx.doi.org/10.1148/radiol.14140770
http://dx.doi.org/10.1148/radiol.14140770
http://dx.doi.org/10.1093/neuonc/nov127
http://dx.doi.org/10.1093/neuonc/nov127
http://dx.doi.org/10.1093/neuonc/nov127
http://dx.doi.org/10.1093/neuonc/now121
http://dx.doi.org/10.1016/j.ejrad.2016.01.013
http://dx.doi.org/10.1016/j.ejrad.2016.01.013
http://dx.doi.org/10.1038/s41598-017-05848-2
http://dx.doi.org/10.1038/s41598-017-05848-2
http://dx.doi.org/10.1007/s00330-016-4653-3
http://dx.doi.org/10.1007/s00330-016-4653-3
http://dx.doi.org/10.1093/annonc/mdx230
http://dx.doi.org/10.1093/annonc/mdx230
http://dx.doi.org/10.1016/S1470-2045(11)70057-2
http://dx.doi.org/10.1016/S1470-2045(11)70057-2
http://dx.doi.org/10.1007/s11060-016-2312-9
http://dx.doi.org/10.1007/s11060-016-2312-9
http://dx.doi.org/10.1109/PROC.1979.11328
http://dx.doi.org/10.1016/0734-189X(84)90197-X
http://refhub.elsevier.com/S0303-8467(17)30343-8/sbref0095
http://refhub.elsevier.com/S0303-8467(17)30343-8/sbref0095
http://refhub.elsevier.com/S0303-8467(17)30343-8/sbref0095
http://dx.doi.org/10.2214/AJR.14.14147
http://dx.doi.org/10.2214/AJR.14.14147
http://dx.doi.org/10.1186/s12885-015-1563-8
http://dx.doi.org/10.1186/s12885-015-1563-8
http://dx.doi.org/10.2967/jnumed.110.082404
http://dx.doi.org/10.1148/radiol.2015141309
http://dx.doi.org/10.1148/radiol.2015141309
http://dx.doi.org/10.1002/lary.26172
http://dx.doi.org/10.1148/radiol.12112428
http://dx.doi.org/10.1148/radiol.12112428
http://dx.doi.org/10.1093/neuonc/nos331
http://dx.doi.org/10.1093/neuonc/nos331
http://dx.doi.org/10.1007/s11060-012-0831-6
http://dx.doi.org/10.1007/s11060-012-0831-6
http://dx.doi.org/10.3171/2016.10.jns161793
http://dx.doi.org/10.3171/2016.10.jns161793
http://dx.doi.org/10.1007/s11060-017-2420-1
http://dx.doi.org/10.1007/s11060-017-2420-1
http://dx.doi.org/10.1007/s11060-017-2506-9
http://dx.doi.org/10.1007/s11060-017-2506-9
http://dx.doi.org/10.1148/radiol.2016161422
http://dx.doi.org/10.1148/radiol.2016161422
http://dx.doi.org/10.1200/jco.2016.67.1222
http://dx.doi.org/10.1200/jco.2016.67.1222
http://dx.doi.org/10.1038/nature14539
http://dx.doi.org/10.3174/ajnr.A5227
http://dx.doi.org/10.3174/ajnr.A5227
http://dx.doi.org/10.1002/(sici)1097-0142(20000515)88:10<2342:aid-cncr19>3.0.co;2-x
http://dx.doi.org/10.1002/(sici)1097-0142(20000515)88:10<2342:aid-cncr19>3.0.co;2-x
http://dx.doi.org/10.1073/pnas.1219747110
http://dx.doi.org/10.1073/pnas.1219747110
http://dx.doi.org/10.1073/pnas.1219747110
http://dx.doi.org/10.1038/ng.3273
http://dx.doi.org/10.1038/ng.3273
http://dx.doi.org/10.1073/pnas.1114033109
http://dx.doi.org/10.1073/pnas.1114033109
http://dx.doi.org/10.1073/pnas.1114033109


consequences of intratumor heterogeneity, Nat. Med. (November) (2015), http://
dx.doi.org/10.1038/nm.3984 PubMed PMID: 26618723; Eng..

[40] D. Groheux, A. Martineau, L. Teixeira, et al., 18FDG-PET/CT for predicting the
outcome in ER+/HER2- breast cancer patients: comparison of clinicopathological
parameters and PET image-derived indices including tumor texture analysis, Breast
Cancer Res. 19 (January (1)) (2017) 3, http://dx.doi.org/10.1186/s13058-016-
0793-2.

[41] M. Nakajo, M. Jinguji, M. Nakajo, et al., Texture analysis of FDG PET/CT for

differentiating between FDG-avid benign and metastatic adrenal tumors: efficacy of
combining SUV and texture parameters, Abdom. Radiol. (June) (2017), http://dx.
doi.org/10.1007/s00261-017-1207-3.

[42] E.F. Chang, J.S. Smith, S.M. Chang, et al., Preoperative prognostic classification
system for hemispheric low-grade gliomas in adults, J. Neurosurg. 109 (5) (2008)
817–824, http://dx.doi.org/10.3171/JNS/2008/109/11/0817 PubMed PMID:
18976070.

A.S. Jakola et al. Clinical Neurology and Neurosurgery 164 (2018) 114–120

120

http://dx.doi.org/10.1038/nm.3984
http://dx.doi.org/10.1038/nm.3984
http://dx.doi.org/10.1186/s13058-016-0793-2
http://dx.doi.org/10.1186/s13058-016-0793-2
http://dx.doi.org/10.1007/s00261-017-1207-3
http://dx.doi.org/10.1007/s00261-017-1207-3
http://dx.doi.org/10.3171/JNS/2008/109/11/0817
http://dx.doi.org/10.3171/JNS/2008/109/11/0817

	Quantitative texture analysis in the prediction of IDH status in low-grade gliomas
	Introduction
	Material and methods
	Patients
	Radiology
	Image interpretation
	Texture analysis
	Molecular markers
	Ethics
	Statistics

	Results
	Quantitative radiology and IDH mutation status
	Radiology and malignant transformation

	Discussion
	Limitations
	Funding details
	Disclosure statement
	Acknowledgement
	References




