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Abstract – Fast prototyping tools for power electronics 

and control systems are becoming handful players on 

effortlessly translating computer simulated results into 

real experimental validations, not abdicating reliability. 

Among many alternatives, PSIM distinguishes itself from 

other platforms by providing fixed-step time simulations 

and quick access to DSP programming. This work aims at 

showing a starting point for the interaction with the PSIM 

SimCoder module, and how to take advantage of its 

features to specifically develop codes employed on power 

converter applications and for educational purposes. The 

off-the-shelf TMS320F28335 Experimenter Kit is 

commonly chosen as target. Example cases accompanied 

by experimental results are provided for the 

implementation of an IIR filter, a PLL algorithm, and the 

generation of three-level PWM signal for single-phase 

converters. Yet, some discussions regarding the 

constraints of such tool are pointed out. 

 

Keywords – IIR filter, F28335, PLL, PSIM SimCoder, 

three-level PWM prototyping.  

I. INTRODUCTION 

Prototyping is a cumbersome and time consuming task, and 

has been for a long time a burden on experimentally validating 

theoretical methodologies in the power electronics field. The 

evolution of studies in such area would certainly be more 

accentuated if easily accessible and fast prototyping tools 

offered means for translating software simulations into 

physical setups [1]. For instance, considering the use of 

microcontrollers and digital processors, code generation and 

hardware configuration are possibly two development steps 

that require most attention and demand much effort.  

Having that in mind, PSIM offers a way of speeding those 

tasks up by automatically generating codes that can be 

immediately loaded onto digital signal processors (DSP), and 

specially offering support for TMS320F28335, which is 

extensively used on power converter applications. PSIM 

handles this code generation by creating C language projects 

from simulations with its SimCoder module, later compiling 

them into assembly instructions under a file with “.out” 

extension, which is thereafter available for loading onto DSPs 

for running on either RAM or Flash memory.  

Although this tool was discussed on a general level in other 

studies [2]-[3], no mentions have been made regarding the 

guidelines for interacting with it, neither suggestions on the 

advisable initial documentations to be considered have been 

proposed. Yet, even with a few dispersed videos over the 

internet, there remains a significant gap that leads to an 

ineffective search for adequate literature. 

Moreover, to the best knowledge of the authors, no real 

power electronic application examples running in a DSP using 

C generated projects from PSIM were found. Therefore, this 

work aims at experimentally presenting the implementation of 

some frequently used digital signal processing applications, 

such as infinite impulse response (IIR) filters, phase-locked 

loop (PLL) algorithms, and three level PWM generation for 

full-bridge inverters. Additionally, some experienced 

limitations of this tool, and their respective possible 

countermeasures, are discussed, trying to relieve prospective 

users of potential heavy efforts. Thus, under such 

considerations, the contributions of this work are settled. 

This work is organized as follows. Section II shortly 

discusses the functioning of the PSIM tool, the possibilities of 

use, the suggestion of some initial documentation to be 

reviewed, and also an overview of the DSP kit chosen for the 

experimental examples. Section III focuses on the 

experimental case of digitally implementing an IIR filter, a 

PLL algorithm, and creating a three-level PWM following an 

internal or external reference signal. Section IV summarizes 

some encountered limitations and Section V the conclusions. 

II. STARTING WITH PSIM SIMCODER 

The earliest step on getting along with auto-code generation 

tools is typically getting to know how powerful or limited the 

respective software is. PSIM is a simulation software that 

covers most of the major design applications on electrical and 

electronic circuits, as well as virtual modeling of renewable 

energy resources. Besides its typical use, it provides extension 

modules with focus on specific designs, such as motor drive, 

processor-in-loop, and FPGA implementation. Among those 

modules, the so-called SimCoder provides access to automatic 

code generation for DSPs by simply translating simulations 

into C language projects with configurations already set for 

embedding assembly instructions on hardware targets. 

A fundamental literature for starting with SimCoder is its 

manual [4], where one can understand how hardware targets 

are established for simulations, the circuit elements that might 

be used for such approach, as well as the means for digitally 

implementing desired circuits for the code generation. For a 

faster learning regarding of how properly set up the 

environment and circuit elements, it is important to already 

have the specifications of the experimental hardware (e.g., 

ADC and General Purpose Input/Output (GPIO) voltage 

levels, clock capacities, etc.) in mind. Digital implementation 

mailto:autor1@email.br,


 

of the simulated circuit is a fundamental need, since it is where 

the digital processor functioning converges to. Considering an 

educational view, this tool therein incorporates the learning of 

analog-to-digital conversion methodologies. 

Focusing on power converters, the most interesting 

possibilities are given, for instance, by the use of circuit 

elements for the following purposes: 

• Digital Input and Output: used for control actions, 

sensoring or as interrupt channels; 

•  ADC Converter: required for making physical sensored 

analog current and voltage signals available for the 

digital processing on the DSP; 

• Serial Communication Interface (SCI) and Serial 

Peripheral Interface (SPI): provide data transfer between 

host computer and DSP, and allow devices to 

communicate among themselves (e.g., for data transfer), 

respectively; 

• PWM Generator: allow the creation of modulation 

signals based on a given reference, allowing switches 

(e.g., transistors) to be controlled. Different switching 

frequencies, dead times, and carrier wave types are 

available from single- to three-phase cases; 

• C blocks: C codes may be used for handling data, 

employing algorithms, and controller implementation. 

For the particular case of this paper, the chosen hardware 

target was the TMS320F28335 Experimenter Kit [5], since it 

provides support for floating-point F28335 DSPs, which are 

highly employed in power converter applications. Besides, it 

presents accessible cost, and has a friendly docking station 

which eases prototyping and motivates educational uses. The 

key features of this kit are summarized in Table I, along with 

the major F28335 controlCARD [6] specifications. 

To learn how to use auto-generated codes of simulated 

circuits on DSPs, it is advisable to have a previous knowledge 

about how these processors can have their memories loaded 

with programs. For such task, the Code Composer Studio 

(CCS) software needs to be utilized, and [7] may be a useful 

reference. Once one knows how to accomplish that task, it will 

be clear how PSIM is able to generate C projects from 

simulations, considering DSP memory registers allocation and 

other set up configurations. 

By understanding the procedures discussed in [8], it is 

possible to learn how to completely integrate this fast 

prototyping tool with a real hardware target, from the most 

basic task of creating a digital circuit in PSIM, up to the 

loading and running of a programme with F28335 DSPs. The 

work presented in [2], in spite of being generic regarding the 

explanation of this entire process, is an interesting resource for 

assimilating the attractiveness of auto-code generation in 

converter applications and educational resources. 

The methodology here adopted, taking into consideration 

the aforementioned goals, structures the code generation 

operation with PSIM following the scheme in Fig. 1. From 

that, one can note that PSIM is able to configure the minimum 

elements responsible for the prototyping of a power converter, 

from receiving inputs, to the processing of data, and finally the 

creation of hardware output control commands. Outputs at this 

point mean PWM signals, or any other kind of digital 

command within the range of the DSP hardware limitation. It 

is highlighted the possibility to both use digital circuits or C 

TABLE I - Features of the Hardware Target 

F28335 Experimenter Kit + ControlCARD 

Feature Description Peripherals 

Clock 150MHz 18 PWM outputs 

CPU 32-Bit 8 32-Bit timers 

Memory 
256KB Flash 

68 KB RAM  

12-Bit ADC with 16 channels 

Anti-aliasing filter at ADC inputs 

Power Supply 5V Docking Station 

GPIO Pins 88 

5V and 3.3V Pins 

UART Communication through USB 
Wire-wrap and soldering prototype area 
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Fig. 1.  Range of PSIM auto-code generation for the F28335. 
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Fig. 2.  DAC MCP4922 proposed wiring connection. 

 

code blocks to create the desired logic for the output 

generation. 

An interesting alternative related to SPI communication 

with PSIM, beyond the primary one, which is transferring data 

among devices, is the ability to program DAC hardware. This 

application is very helpful since it allows the analysis of digital 

reference signals that are used inside the DSP program, 

supporting troubleshooting of the circuit’s logic. In this paper, 

a 12-Bit MCP4922 DAC was programmed and is used for 

explaining this claim through real examples. The material 

found in [9], along with the respective example found within 

PSIM’s installation directory, is sufficient for rapidly 

implementing such component. 

The schematic depicted in Fig. 2 may be used as reference 

for the connection of this particular DAC model with the 

Experimenter Kit. Under such wiring, this model provides two 

analog outputs (VoutA and VoutB), that range from Vss to VDD. 

VrefA and VrefB are the reference inputs for channels A and B, 

and the shutdown pin (SHDN) needs to be high when the DAC 

is active. LDAC is the synchronization input, while SDI is the 

SPI data input pin, and SCK is the SPI clock input. The Chip 

Select pin is CS, and NCs are not connected pins. 

Accordingly, examples can be described with the intention 

of showing the feasibility of this tool and explaining 

possibilities for fast implementations in power converter 

prototypes or the offering of educational material with 

practical and theoretical content. 



 

III. EXAMPLE CASES WITH PSIM AND F28335 

Here the suitability of the auto-code generation with PSIM 

is proved to be feasible through the experimental evaluation 

of educational examples. Such cases focus on the digital 

implementation of filters, and single-phase inverter 

applications (synchronism algorithm and PWM generation). 

 

 A. IIR Filter 

Digital filters are interesting alternatives for separating 

desired frequency components in audio and image processing, 

filtering voltage and current signals under nonsinusoidal 

conditions to be used in control references for active power 

filters [10], and many other applications [11].  

As described in [12], IIR filters are as notch filters, giving 

infinite gains in selected frequencies, and allowing the 

filtering in determined bands. For instance, considering the 

purpose of identifying components in a polluted signal, it 

would be enough to use a band-pass approach [13]. 

Thus, for this example it is considered a band-pass filter 

with desired center frequency (ω0) defined to be 60 Hz, with a 

passing-band (ωc) of 4 Hz. In a digital implementation, we 

must account for the discretization of the filter, which may be 

obtained by a Bilinear Transformation, resulting in the 

difference equation given in (1). 

 
a0.y(k) = b0.x(k) + b1.x(k-1) + b2.x(k-2) – a1.y(k-1) – a2.y(k-2) (1) 

 

Where, “y” and “x” are the respective output and input of 

the filter at a “k” sample. Their aggregated coefficients, “an” 

and “bn”, were calculated considering a sampling frequency 

(fs) of 12 kHz, being limited by the 32-bit precision of the 

F28335, and are shown in Table II. 

The difference equation (1) was implemented within a 

Simplified C Code block, and the PSIM schematic was 

developed as presented in Fig. 3. One can note that this 

scheme faithfully follows the methodology discussed in 

Fig. 1, in which the IIR filter output is viewed in an 

oscilloscope by means of a DAC. Depending on the features 

of one’s data acquisition circuit, the ADC block from 

SimCoder module gives the flexibility on accepting such 

measurements as AC or DC inputs. 

In AC mode, if the input signal presents any offset level, it 

is removed automatically. On the opposite, if operating in DC 

mode, any undesired offset value should be removed by means 

of an additional routine. Here it is presented the latter case, 

reinforcing the goal of educational contribution.  

The simulation result of such circuitry is depicted in Fig. 4. 

That is the expected outcome, considering that the Fourier 

Series [12] decomposes a square wave as the sum of infinite 

sinusoidal signals of odd multiple frequencies. Finally, the 

code automatically generated by PSIM from the simulation in 

Fig. 3 was loaded into the DSP through CCS. 

By using a function generator, a unitary square wave signal 

with offset was connected to the selected ADC input pin, and 

the output processed by the IIR filter running on the physical 

DSP was watched by pinching an oscilloscope probe in the 

respective DAC output pin. From Fig. 5 it is possible to see 

the input signal with offset (1-blue), the input after the offset 

removal algorithm (2-cyan) and the filter output (4-green) 

giving the expected result. Note that the experimental result 

TABLE II - IIR Filter Coefficients 
a's Value b's Value 

a0 1.000000000 b0 0.001045930 

a1 -1.996923387 b1 0.000000000 

a2 0.997908139 b2 -0.001045930 

 

 
Fig. 3.  PSIM circuitry for the IIR filter. 

 
Fig. 4.  Simulation result for the IIR filter in PSIM. 

 
Fig. 5.  Experimental result of the IIR filter. 

 

matches the simulated one. 

  
 B. PLL 

PLL synchronism algorithms have been playing a key role 

on grid connected DC-AC power converters. They are 

significantly important to regulate energy injection into grids, 

when compliance requirements need to be met, as well as for 

providing adequate power quality interventions, which is the 

case of active power filters and multifunctional inverters. The 

PLL methodology proposed in [14] is here adopted for the 

exemplification of how other phase detection algorithms 

might be implemented in DSPs using PSIM generated codes. 

Looking at single-phase inverters, this methodology 

consists on synthesizing an orthogonal signal from the 

fundamental frequency of a reference voltage, as depicted in 

Fig. 6. Such operation lies on the idea of attaining the dot 

product (dp) between the orthogonal (x+) and the reference 

signal (x), comparing it with a null reference (d*
p), and using 

the respective error into a PI controller for adjusting the 

angular frequency (ωx) of this orthogonal unitary signal, 

aiming at zero error. For educational purposes, or even fast 

learning for prototyping use, [13] presents a very accessible 



 

explanation for this PLL methodology and facilitated 

directions for its implementation in PSIM.  

Employing such methodology, and also following a 

similar circuitry approach as the IIR filter, the PSIM schematic 

depicted in Fig. 7 was built. Once again a squared wave is 

chosen as input signal, aiming to show that, even under very 

nonsinusoidal voltage conditions, the PLL should be able to 

synthesize an orthogonal component of the fundamental 

frequency from the mentioned input. 

 An interesting feature of such algorithm is the ability to 

provide a unitary orthogonal reference that can be used to 

synthesize any other multiple signal, meaning variant in 

multiple frequencies or even with phase displacements and 

amplitude variations. In Fig. 8 it is possible to notice that, from 

a square wave reference (in green), the PLL detects a unitary 

sinusoidal orthogonal signal (in red), and also allows the 

generation of a signal in-phase with the fundamental 

frequency of the input (in blue).  

The experimental implementation is made likewise, 

generating the code from PSIM and loading onto the 

hardware. The result is shown in Fig. 9, where one can note 

the in-phase (2-cyan) and quadrature (orthogonal) (4-green) 

signals created from a square wave reference with offset (1-

blue). Yet, in Fig. 10 it is shown how the in-phase reference 

may be handled for creating a 3rd harmonic signal (4-green). 

This functionality given by the flexibility of some PLL 

algorithms, for instance, is highly useful when generating 

control references for an active power filter responsible for 

selectively mitigating harmonic pollution in a grid. 

 

 C. Three-level PWM Generation 

Concerning operation control of power converters, the 

pulse width modulation (PWM) is one of the most used 

techniques. SimCoder elements can generate this type of 

digital signals based on a given reference. Taking the 

SimCoder “1-ph PWM” element as example, it allows full-

bridge single-phase inverters [15] to be controlled by the 

respective output modulation signals.  

This PWM generation is done by comparing a carrier 

wave, which may be configured as a sawtooth or triangular 

signal, with the control reference. However, the SimCoder 

PWM elements can create a two-level modulation, which 

results in inverter outputs synthesized by +VDC and –VDC 

voltage levels. The work in [2] controls a single-phase inverter 

through PSIM generated code based on this type of 

modulation. Although effective, with a three-level PWM, also 

called unipolar modulation [15], lower harmonic content is 

generated, being more suitable for active filtering 

applications. The difference between the above mentioned 

modulation and the two-leveled one, consists in generating as 

output, three voltage levels (+ VDC, 0, –VDC). 

The proposed open loop scheme in Fig. 11 is utilized as 

example of unipolar PWM generation using SimCoder blocks. 

Note that two single-phase PWM blocks (I and II) are used, 

being each one configured for different PWM modules. For 

such topology, the modulation signal “m” generates digital 

complementary commands (A and B ports) for the first leg of 

the inverter (switches: upper S1_PWM and lower S4_PWM), 

and for the second leg (upper S3_PWM and lower S2_PWM). 

Note that the modulation signal of the second leg goes through  
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Fig. 6.  Methodology of PLL algorithm. 

 
Fig. 7.  PSIM circuitry for the PLL synchronism algorithm. 

 
Fig. 8.  Simulation result for the PLL in PSIM. 

 
Fig. 9.  Experimental result of the PLL algorithm. 

 
Fig. 10.  DSP generating a 3rd harmonic signal from the PLL output. 

 

a negative unitary gain to generate the 180° phase 

displacement required for the unipolar modulation, as shown 

in Fig. 12. It is reinforced that using C blocks in auto-code 

generation provides scalability of the tool, for instance, 

allowing easier manipulation of variables for several 

applications. The mentioned scalability is justified by the 

capability of providing a more flexible way to handle a 

reference signal used in the PWM generation. The 

explanations of the following two examples allows a better 

understanding of this statement. 

x 



 

 
Fig. 11.  PSIM circuitry for the PWM generation example. 

Fig. 12.  Three-level PWM generation. 

 
Fig. 13.  PWM generated with a constant reference. 

 
Fig. 14.  12kHz three-level PWM over a low-pass filter. 

 

For educational purposes, an example of PWM generation 

is given by using the PWM block “I” from Fig. 11. For this 

case, it is considered a triangular carrier wave with 1V peak-

to-peak, 0V offset and 1kHz of switching frequency. For the 

reference “m”, it is proposed the implementation of a RMS 

(root mean square) algorithm responsible for calculating this 

respective value from a sinusoidal input, which is generated 

by using a function generator set for creating a 60Hz 

sinusoidal signal, with 2V peak-to-peak, as shown in the 

experimental result of Fig. 13. The RMS calculation is 

performed inside the C block with very few code instructions. 

The mentioned RMS value is then used as the reference 

signal for the PWM. For such case, the respective RMS value 

(4-green) is close to the 0.707V expected. Thus, the duty cycle 

of the PWM is around 70%, as depicted in the PWM digital 

pin output (2-cyan) of the “port A”, and its complementary 

“port B” (3-purple). 

Furthermore, consider the circuitry of Fig. 11 without 

modifications: a three-level PWM generation is used to 

command a full-bridge inverter [16], as also shown in Fig. 15. 

The AC output voltage of the inverter is given by the 

combination of the modulation levels, having positive voltage 

supply when “S1_PWM” is closed, and negative when 

“S3_PWM” is closed. For such case, in both PWM blocks (I 

and II), a carrier wave with 2V peak-to-peak, -1V offset, and 

12kHz as switching frequency is considered. Just as 

previously, the earlier PLL algorithm is employed and its 

unitary output signal is set as the reference “m” of the PWM.  

Since the output of the PWM digital pins are pulsed 

signals, on a such high frequency, it is not very straightforward 

to present those results on a didactic way. Therefore, the AC 

output signal generated under a three-level PWM is shown in 

Fig. 14 by passing the difference of the digital outputs pins 

(S1_PWM and S3_PWM) on a low pass filter implemented on 

the oscilloscope. One can note that, giving an input reference 

with offset (1-blue) for the ADC, the PLL synthesizes the in-

phase signal (4-green), and the three-level PWM output, 

which is passed through the filter (M-red), adequately follows 

its control reference. 

It is restated that the most adequate way to evaluate the 

PWM generation, by auto generating code from PSIM, would 

be watching the real voltage and current outputs of a physical 

inverter. However, since an experimental inverter prototype is 

still under development, these particular results will be 

presented in a future work. Moreover, the designer must just 

keep in mind that, for more elaborated cases, memory and 

processing capacity are limited in the F28335. Therefore it is 

advisable, for instance, to create a “set bit – clear bit” 

interruption routine [17] within the CCS compiled code to 

ensure correct operation. 

IV. DISCUSSIONS ON CONSTRAINTS 

For the purpose of acquainting beginner users before 

committing effort to learn how to use this tool, the following 

points are risen: 

• Elements availability: due to the fact that the SimCoder 

environment only accepts digital domain simulation, 

there is a limited number of elements that can be used. 

For instance, only a few digital filters for fast design are 

provided, forcing the user to create his/her own, through 

Z domain functions or C blocks, as in the example earlier 

shown here; 

• C blocks: one must keep in mind that, if any C codes are 

desired to be used for handling data, only simplified 

blocks are available. In such blocks, under such 

application, the available code prompt works as a 

"main()" function. Therefore, if one defines any other C 

functions inside it, those will not be accessible for the 

sequential running of the DSP code. That happens 

because PSIM’s automatic generation allocates such 

codes inside interruption calls. Hence, one would have a 

function definition inside such interruptions, which are 

also functions. A possible way out of that could be 

through the adequacy of the code inside the CCS; 

• PWM Generators: this may be one of the most critical 

constraints of this tool, and it is directed to users who 

wish to employ closed loop control schemes for  

 



 

converters. It is very important for the user to know that all 

the respective PWM generation blocks, as the “1-ph 

PWM” aforementioned, have an inherited digital unit 

delay (Z-1) in their construction [4]. The impact of that 

relates to likely unstable conditions of the system on 

simulations. For example, Fig. 15-a presents a simulation 

scheme to show the condition of such instability. 

Looking at this last particular PWM simulation, the inverter 

was supposed to act as a multifunctional unit, injecting all the 

active and non-active currents drawn by the nonlinear load. 

Disregarding the above-mentioned delay, Fig. 15-c shows the 

outcome of the unstable condition. On the opposite, when this 

delay is accounted for in the controller design, the inverter 

current (in blue) follows the reference (in red), resulting in the 

desired behavior depicted in Fig. 15-b. In Fig. 16 the control 

scheme adopted for the inverter is presented, where “Ci(s)” is 

the controller transfer function, “Gi(s)” is the inverter model, 

and “Ki” is the current transducer gain. “PWM(s)” stands for 

the dynamic of the modulation, and “VDC” is the inverter static 

gain. 

Since remodeling controllers is not a trivial task, it is also 

mentioned that another possibility to work around that issue 

would be to simulate with a higher carrier frequency, 

multisampling the output and making the delay irrelevant in a 

steady-state condition [16]. Finally, when it comes to 

applications where faster and more precise PWMs are needed 

there is the possibility to use external PWM modules 

connected to the I2C (Inter-Integrated-Circuit) bus of the 

F28335 Kit. However one must keep in mind that there are no 

SimCoder elements for that, requiring I2C codes to be 

implemented with C blocks. 

Currently, some ongoing work is focusing on effectively 

controlling a single-phase inverter in a closed loop scheme by 

using DSP codes generated from PSIM. 

 
a)

b) c)

 
Fig. 15.  Accounting for the delay of PWM generation block. 
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Fig. 16.  Block diagram of current control with three-level PWM. 

V. CONCLUSIONS 

Auto-code generation for DSP programming using PSIM is 

an interesting tool and can provide a fast prototyping 

alternative for the project of power converters. Moreover, it 

was shown that it could be well suited for educational 

purposes, once it allows easy experimental handling. 

Nonetheless, several limitations, such as the unit delay 

inherited on PWM generation elements, and the implications 

of Simplified C blocks with functions, were pointed out. Thus, 

it is finally concluded that, by taking those issues into 

consideration when building PSIM simulations, the 

employment of the SimCoder module offers a reliable and 

accessible way to program DSPs.  
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