
A GUIDELINE FOR EMPLOYING PSIM ON POWER CONVERTER

APPLICATIONS: PROTOTYPING AND EDUCATIONAL TOOL

A. M. S. Alonso1, F. P. Marafão1, D. I. Brandao2, E. Tedeschi3 and J. F. Guerreiro4

1Universidade Estadual Paulista (UNESP), Sorocaba – SP, Brazil
2Federal University of Minas Gerais (UFMG), Belo Horizonte – MG, Brazil

3Norwegian University of Science & Technology (NTNU), Trondheim, Norway
4Universidade Estadual de Campinas (UNICAMP), Campinas – SP, Brazil

e-mail: eng.amalonso@gmail.com, fmarafao@sorocaba.unesp.br, dibrandao@ufmg.br, elisabetta.tedeschi@ntnu.no,

joel.engeletrica@gmail.com

Abstract – Fast prototyping tools for power electronics

and control systems are becoming handful players on

effortlessly translating computer simulated results into

real experimental validations, not abdicating reliability.

Among many alternatives, PSIM distinguishes itself from

other platforms by providing fixed-step time simulations

and quick access to DSP programming. This work aims at

showing a starting point for the interaction with the PSIM

SimCoder module, and how to take advantage of its

features to specifically develop codes employed on power

converter applications and for educational purposes. The

off-the-shelf TMS320F28335 Experimenter Kit is

commonly chosen as target. Example cases accompanied

by experimental results are provided for the

implementation of an IIR filter, a PLL algorithm, and the

generation of three-level PWM signal for single-phase

converters. Yet, some discussions regarding the

constraints of such tool are pointed out.

Keywords – IIR filter, F28335, PLL, PSIM SimCoder,

three-level PWM prototyping.

I. INTRODUCTION

Prototyping is a cumbersome and time consuming task, and

has been for a long time a burden on experimentally validating

theoretical methodologies in the power electronics field. The

evolution of studies in such area would certainly be more

accentuated if easily accessible and fast prototyping tools

offered means for translating software simulations into

physical setups [1]. For instance, considering the use of

microcontrollers and digital processors, code generation and

hardware configuration are possibly two development steps

that require most attention and demand much effort.

Having that in mind, PSIM offers a way of speeding those

tasks up by automatically generating codes that can be

immediately loaded onto digital signal processors (DSP), and

specially offering support for TMS320F28335, which is

extensively used on power converter applications. PSIM

handles this code generation by creating C language projects

from simulations with its SimCoder module, later compiling

them into assembly instructions under a file with “.out”

extension, which is thereafter available for loading onto DSPs

for running on either RAM or Flash memory.

Although this tool was discussed on a general level in other

studies [2]-[3], no mentions have been made regarding the

guidelines for interacting with it, neither suggestions on the

advisable initial documentations to be considered have been

proposed. Yet, even with a few dispersed videos over the

internet, there remains a significant gap that leads to an

ineffective search for adequate literature.

Moreover, to the best knowledge of the authors, no real

power electronic application examples running in a DSP using

C generated projects from PSIM were found. Therefore, this

work aims at experimentally presenting the implementation of

some frequently used digital signal processing applications,

such as infinite impulse response (IIR) filters, phase-locked

loop (PLL) algorithms, and three level PWM generation for

full-bridge inverters. Additionally, some experienced

limitations of this tool, and their respective possible

countermeasures, are discussed, trying to relieve prospective

users of potential heavy efforts. Thus, under such

considerations, the contributions of this work are settled.

This work is organized as follows. Section II shortly

discusses the functioning of the PSIM tool, the possibilities of

use, the suggestion of some initial documentation to be

reviewed, and also an overview of the DSP kit chosen for the

experimental examples. Section III focuses on the

experimental case of digitally implementing an IIR filter, a

PLL algorithm, and creating a three-level PWM following an

internal or external reference signal. Section IV summarizes

some encountered limitations and Section V the conclusions.

II. STARTING WITH PSIM SIMCODER

The earliest step on getting along with auto-code generation

tools is typically getting to know how powerful or limited the

respective software is. PSIM is a simulation software that

covers most of the major design applications on electrical and

electronic circuits, as well as virtual modeling of renewable

energy resources. Besides its typical use, it provides extension

modules with focus on specific designs, such as motor drive,

processor-in-loop, and FPGA implementation. Among those

modules, the so-called SimCoder provides access to automatic

code generation for DSPs by simply translating simulations

into C language projects with configurations already set for

embedding assembly instructions on hardware targets.

A fundamental literature for starting with SimCoder is its

manual [4], where one can understand how hardware targets

are established for simulations, the circuit elements that might

be used for such approach, as well as the means for digitally

implementing desired circuits for the code generation. For a

faster learning regarding of how properly set up the

environment and circuit elements, it is important to already

have the specifications of the experimental hardware (e.g.,

ADC and General Purpose Input/Output (GPIO) voltage

levels, clock capacities, etc.) in mind. Digital implementation

mailto:autor1@email.br,

of the simulated circuit is a fundamental need, since it is where

the digital processor functioning converges to. Considering an

educational view, this tool therein incorporates the learning of

analog-to-digital conversion methodologies.

Focusing on power converters, the most interesting

possibilities are given, for instance, by the use of circuit

elements for the following purposes:

• Digital Input and Output: used for control actions,

sensoring or as interrupt channels;

• ADC Converter: required for making physical sensored

analog current and voltage signals available for the

digital processing on the DSP;

• Serial Communication Interface (SCI) and Serial

Peripheral Interface (SPI): provide data transfer between

host computer and DSP, and allow devices to

communicate among themselves (e.g., for data transfer),

respectively;

• PWM Generator: allow the creation of modulation

signals based on a given reference, allowing switches

(e.g., transistors) to be controlled. Different switching

frequencies, dead times, and carrier wave types are

available from single- to three-phase cases;

• C blocks: C codes may be used for handling data,

employing algorithms, and controller implementation.

For the particular case of this paper, the chosen hardware

target was the TMS320F28335 Experimenter Kit [5], since it

provides support for floating-point F28335 DSPs, which are

highly employed in power converter applications. Besides, it

presents accessible cost, and has a friendly docking station

which eases prototyping and motivates educational uses. The

key features of this kit are summarized in Table I, along with

the major F28335 controlCARD [6] specifications.

To learn how to use auto-generated codes of simulated

circuits on DSPs, it is advisable to have a previous knowledge

about how these processors can have their memories loaded

with programs. For such task, the Code Composer Studio

(CCS) software needs to be utilized, and [7] may be a useful

reference. Once one knows how to accomplish that task, it will

be clear how PSIM is able to generate C projects from

simulations, considering DSP memory registers allocation and

other set up configurations.

By understanding the procedures discussed in [8], it is

possible to learn how to completely integrate this fast

prototyping tool with a real hardware target, from the most

basic task of creating a digital circuit in PSIM, up to the

loading and running of a programme with F28335 DSPs. The

work presented in [2], in spite of being generic regarding the

explanation of this entire process, is an interesting resource for

assimilating the attractiveness of auto-code generation in

converter applications and educational resources.

The methodology here adopted, taking into consideration

the aforementioned goals, structures the code generation

operation with PSIM following the scheme in Fig. 1. From

that, one can note that PSIM is able to configure the minimum

elements responsible for the prototyping of a power converter,

from receiving inputs, to the processing of data, and finally the

creation of hardware output control commands. Outputs at this

point mean PWM signals, or any other kind of digital

command within the range of the DSP hardware limitation. It

is highlighted the possibility to both use digital circuits or C

TABLE I - Features of the Hardware Target

F28335 Experimenter Kit + ControlCARD

Feature Description Peripherals

Clock 150MHz 18 PWM outputs

CPU 32-Bit 8 32-Bit timers

Memory
256KB Flash

68 KB RAM

12-Bit ADC with 16 channels

Anti-aliasing filter at ADC inputs

Power Supply 5V Docking Station

GPIO Pins 88

5V and 3.3V Pins

UART Communication through USB
Wire-wrap and soldering prototype area

Sampling
C Blocks

DAC

SPI

Digital
Output

Unit
2,3,...,x

Unit 1

PSIM Programmable

Data Handling

ADC

Hardware
(PWM, Actuator, etc)

Scope

Digital
Input

Digital
Logic

Fig. 1. Range of PSIM auto-code generation for the F28335.

3.3V

GP IO16

VDD NC SCK SDI NC NC

VoutA VoutBVrefA Vss VrefB

CS

SH DN LD AC

GP IO14

GP IO18GP IO193.3V

DAC MCP4922

Fig. 2. DAC MCP4922 proposed wiring connection.

code blocks to create the desired logic for the output

generation.

An interesting alternative related to SPI communication

with PSIM, beyond the primary one, which is transferring data

among devices, is the ability to program DAC hardware. This

application is very helpful since it allows the analysis of digital

reference signals that are used inside the DSP program,

supporting troubleshooting of the circuit’s logic. In this paper,

a 12-Bit MCP4922 DAC was programmed and is used for

explaining this claim through real examples. The material

found in [9], along with the respective example found within

PSIM’s installation directory, is sufficient for rapidly

implementing such component.

The schematic depicted in Fig. 2 may be used as reference

for the connection of this particular DAC model with the

Experimenter Kit. Under such wiring, this model provides two

analog outputs (VoutA and VoutB), that range from Vss to VDD.

VrefA and VrefB are the reference inputs for channels A and B,

and the shutdown pin (SHDN) needs to be high when the DAC

is active. LDAC is the synchronization input, while SDI is the

SPI data input pin, and SCK is the SPI clock input. The Chip

Select pin is CS, and NCs are not connected pins.

Accordingly, examples can be described with the intention

of showing the feasibility of this tool and explaining

possibilities for fast implementations in power converter

prototypes or the offering of educational material with

practical and theoretical content.

III. EXAMPLE CASES WITH PSIM AND F28335

Here the suitability of the auto-code generation with PSIM

is proved to be feasible through the experimental evaluation

of educational examples. Such cases focus on the digital

implementation of filters, and single-phase inverter

applications (synchronism algorithm and PWM generation).

 A. IIR Filter

Digital filters are interesting alternatives for separating

desired frequency components in audio and image processing,

filtering voltage and current signals under nonsinusoidal

conditions to be used in control references for active power

filters [10], and many other applications [11].

As described in [12], IIR filters are as notch filters, giving

infinite gains in selected frequencies, and allowing the

filtering in determined bands. For instance, considering the

purpose of identifying components in a polluted signal, it

would be enough to use a band-pass approach [13].

Thus, for this example it is considered a band-pass filter

with desired center frequency (ω0) defined to be 60 Hz, with a

passing-band (ωc) of 4 Hz. In a digital implementation, we

must account for the discretization of the filter, which may be

obtained by a Bilinear Transformation, resulting in the

difference equation given in (1).

a0.y(k) = b0.x(k) + b1.x(k-1) + b2.x(k-2) – a1.y(k-1) – a2.y(k-2) (1)

Where, “y” and “x” are the respective output and input of

the filter at a “k” sample. Their aggregated coefficients, “an”

and “bn”, were calculated considering a sampling frequency

(fs) of 12 kHz, being limited by the 32-bit precision of the

F28335, and are shown in Table II.

The difference equation (1) was implemented within a

Simplified C Code block, and the PSIM schematic was

developed as presented in Fig. 3. One can note that this

scheme faithfully follows the methodology discussed in

Fig. 1, in which the IIR filter output is viewed in an

oscilloscope by means of a DAC. Depending on the features

of one’s data acquisition circuit, the ADC block from

SimCoder module gives the flexibility on accepting such

measurements as AC or DC inputs.

In AC mode, if the input signal presents any offset level, it

is removed automatically. On the opposite, if operating in DC

mode, any undesired offset value should be removed by means

of an additional routine. Here it is presented the latter case,

reinforcing the goal of educational contribution.

The simulation result of such circuitry is depicted in Fig. 4.

That is the expected outcome, considering that the Fourier

Series [12] decomposes a square wave as the sum of infinite

sinusoidal signals of odd multiple frequencies. Finally, the

code automatically generated by PSIM from the simulation in

Fig. 3 was loaded into the DSP through CCS.

By using a function generator, a unitary square wave signal

with offset was connected to the selected ADC input pin, and

the output processed by the IIR filter running on the physical

DSP was watched by pinching an oscilloscope probe in the

respective DAC output pin. From Fig. 5 it is possible to see

the input signal with offset (1-blue), the input after the offset

removal algorithm (2-cyan) and the filter output (4-green)

giving the expected result. Note that the experimental result

TABLE II - IIR Filter Coefficients
a's Value b's Value

a0 1.000000000 b0 0.001045930

a1 -1.996923387 b1 0.000000000

a2 0.997908139 b2 -0.001045930

Fig. 3. PSIM circuitry for the IIR filter.

Fig. 4. Simulation result for the IIR filter in PSIM.

Fig. 5. Experimental result of the IIR filter.

matches the simulated one.

 B. PLL

PLL synchronism algorithms have been playing a key role

on grid connected DC-AC power converters. They are

significantly important to regulate energy injection into grids,

when compliance requirements need to be met, as well as for

providing adequate power quality interventions, which is the

case of active power filters and multifunctional inverters. The

PLL methodology proposed in [14] is here adopted for the

exemplification of how other phase detection algorithms

might be implemented in DSPs using PSIM generated codes.

Looking at single-phase inverters, this methodology

consists on synthesizing an orthogonal signal from the

fundamental frequency of a reference voltage, as depicted in

Fig. 6. Such operation lies on the idea of attaining the dot

product (dp) between the orthogonal (x+) and the reference

signal (x), comparing it with a null reference (d*
p), and using

the respective error into a PI controller for adjusting the

angular frequency (ωx) of this orthogonal unitary signal,

aiming at zero error. For educational purposes, or even fast

learning for prototyping use, [13] presents a very accessible

explanation for this PLL methodology and facilitated

directions for its implementation in PSIM.

Employing such methodology, and also following a

similar circuitry approach as the IIR filter, the PSIM schematic

depicted in Fig. 7 was built. Once again a squared wave is

chosen as input signal, aiming to show that, even under very

nonsinusoidal voltage conditions, the PLL should be able to

synthesize an orthogonal component of the fundamental

frequency from the mentioned input.

 An interesting feature of such algorithm is the ability to

provide a unitary orthogonal reference that can be used to

synthesize any other multiple signal, meaning variant in

multiple frequencies or even with phase displacements and

amplitude variations. In Fig. 8 it is possible to notice that, from

a square wave reference (in green), the PLL detects a unitary

sinusoidal orthogonal signal (in red), and also allows the

generation of a signal in-phase with the fundamental

frequency of the input (in blue).

The experimental implementation is made likewise,

generating the code from PSIM and loading onto the

hardware. The result is shown in Fig. 9, where one can note

the in-phase (2-cyan) and quadrature (orthogonal) (4-green)

signals created from a square wave reference with offset (1-

blue). Yet, in Fig. 10 it is shown how the in-phase reference

may be handled for creating a 3rd harmonic signal (4-green).

This functionality given by the flexibility of some PLL

algorithms, for instance, is highly useful when generating

control references for an active power filter responsible for

selectively mitigating harmonic pollution in a grid.

 C. Three-level PWM Generation

Concerning operation control of power converters, the

pulse width modulation (PWM) is one of the most used

techniques. SimCoder elements can generate this type of

digital signals based on a given reference. Taking the

SimCoder “1-ph PWM” element as example, it allows full-

bridge single-phase inverters [15] to be controlled by the

respective output modulation signals.

This PWM generation is done by comparing a carrier

wave, which may be configured as a sawtooth or triangular

signal, with the control reference. However, the SimCoder

PWM elements can create a two-level modulation, which

results in inverter outputs synthesized by +VDC and –VDC

voltage levels. The work in [2] controls a single-phase inverter

through PSIM generated code based on this type of

modulation. Although effective, with a three-level PWM, also

called unipolar modulation [15], lower harmonic content is

generated, being more suitable for active filtering

applications. The difference between the above mentioned

modulation and the two-leveled one, consists in generating as

output, three voltage levels (+ VDC, 0, –VDC).

The proposed open loop scheme in Fig. 11 is utilized as

example of unipolar PWM generation using SimCoder blocks.

Note that two single-phase PWM blocks (I and II) are used,

being each one configured for different PWM modules. For

such topology, the modulation signal “m” generates digital

complementary commands (A and B ports) for the first leg of

the inverter (switches: upper S1_PWM and lower S4_PWM),

and for the second leg (upper S3_PWM and lower S2_PWM).

Note that the modulation signal of the second leg goes through

𝜔𝑛𝑜𝑚

𝜔𝑥 ∆𝜔 𝜀𝑑𝑝 𝑑𝑝
∗

2𝜋

0

𝑑𝑝 𝑥⊥
𝑑𝑝

𝜃

+
-

𝐾𝑃𝑃𝐿𝐿 +
𝐾𝐼𝑃𝐿𝐿
𝑠

 +
+ 𝜔𝑥𝑑𝜏

𝑡

0

x𝑀𝐴𝐹 𝑠𝑖𝑛(𝜃)

Fig. 6. Methodology of PLL algorithm.

Fig. 7. PSIM circuitry for the PLL synchronism algorithm.

Fig. 8. Simulation result for the PLL in PSIM.

Fig. 9. Experimental result of the PLL algorithm.

Fig. 10. DSP generating a 3rd harmonic signal from the PLL output.

a negative unitary gain to generate the 180° phase

displacement required for the unipolar modulation, as shown

in Fig. 12. It is reinforced that using C blocks in auto-code

generation provides scalability of the tool, for instance,

allowing easier manipulation of variables for several

applications. The mentioned scalability is justified by the

capability of providing a more flexible way to handle a

reference signal used in the PWM generation. The

explanations of the following two examples allows a better

understanding of this statement.

x

Fig. 11. PSIM circuitry for the PWM generation example.

Fig. 12. Three-level PWM generation.

Fig. 13. PWM generated with a constant reference.

Fig. 14. 12kHz three-level PWM over a low-pass filter.

For educational purposes, an example of PWM generation

is given by using the PWM block “I” from Fig. 11. For this

case, it is considered a triangular carrier wave with 1V peak-

to-peak, 0V offset and 1kHz of switching frequency. For the

reference “m”, it is proposed the implementation of a RMS

(root mean square) algorithm responsible for calculating this

respective value from a sinusoidal input, which is generated

by using a function generator set for creating a 60Hz

sinusoidal signal, with 2V peak-to-peak, as shown in the

experimental result of Fig. 13. The RMS calculation is

performed inside the C block with very few code instructions.

The mentioned RMS value is then used as the reference

signal for the PWM. For such case, the respective RMS value

(4-green) is close to the 0.707V expected. Thus, the duty cycle

of the PWM is around 70%, as depicted in the PWM digital

pin output (2-cyan) of the “port A”, and its complementary

“port B” (3-purple).

Furthermore, consider the circuitry of Fig. 11 without

modifications: a three-level PWM generation is used to

command a full-bridge inverter [16], as also shown in Fig. 15.

The AC output voltage of the inverter is given by the

combination of the modulation levels, having positive voltage

supply when “S1_PWM” is closed, and negative when

“S3_PWM” is closed. For such case, in both PWM blocks (I

and II), a carrier wave with 2V peak-to-peak, -1V offset, and

12kHz as switching frequency is considered. Just as

previously, the earlier PLL algorithm is employed and its

unitary output signal is set as the reference “m” of the PWM.

Since the output of the PWM digital pins are pulsed

signals, on a such high frequency, it is not very straightforward

to present those results on a didactic way. Therefore, the AC

output signal generated under a three-level PWM is shown in

Fig. 14 by passing the difference of the digital outputs pins

(S1_PWM and S3_PWM) on a low pass filter implemented on

the oscilloscope. One can note that, giving an input reference

with offset (1-blue) for the ADC, the PLL synthesizes the in-

phase signal (4-green), and the three-level PWM output,

which is passed through the filter (M-red), adequately follows

its control reference.

It is restated that the most adequate way to evaluate the

PWM generation, by auto generating code from PSIM, would

be watching the real voltage and current outputs of a physical

inverter. However, since an experimental inverter prototype is

still under development, these particular results will be

presented in a future work. Moreover, the designer must just

keep in mind that, for more elaborated cases, memory and

processing capacity are limited in the F28335. Therefore it is

advisable, for instance, to create a “set bit – clear bit”

interruption routine [17] within the CCS compiled code to

ensure correct operation.

IV. DISCUSSIONS ON CONSTRAINTS

For the purpose of acquainting beginner users before

committing effort to learn how to use this tool, the following

points are risen:

• Elements availability: due to the fact that the SimCoder

environment only accepts digital domain simulation,

there is a limited number of elements that can be used.

For instance, only a few digital filters for fast design are

provided, forcing the user to create his/her own, through

Z domain functions or C blocks, as in the example earlier

shown here;

• C blocks: one must keep in mind that, if any C codes are

desired to be used for handling data, only simplified

blocks are available. In such blocks, under such

application, the available code prompt works as a

"main()" function. Therefore, if one defines any other C

functions inside it, those will not be accessible for the

sequential running of the DSP code. That happens

because PSIM’s automatic generation allocates such

codes inside interruption calls. Hence, one would have a

function definition inside such interruptions, which are

also functions. A possible way out of that could be

through the adequacy of the code inside the CCS;

• PWM Generators: this may be one of the most critical

constraints of this tool, and it is directed to users who

wish to employ closed loop control schemes for

converters. It is very important for the user to know that all

the respective PWM generation blocks, as the “1-ph

PWM” aforementioned, have an inherited digital unit

delay (Z-1) in their construction [4]. The impact of that

relates to likely unstable conditions of the system on

simulations. For example, Fig. 15-a presents a simulation

scheme to show the condition of such instability.

Looking at this last particular PWM simulation, the inverter

was supposed to act as a multifunctional unit, injecting all the

active and non-active currents drawn by the nonlinear load.

Disregarding the above-mentioned delay, Fig. 15-c shows the

outcome of the unstable condition. On the opposite, when this

delay is accounted for in the controller design, the inverter

current (in blue) follows the reference (in red), resulting in the

desired behavior depicted in Fig. 15-b. In Fig. 16 the control

scheme adopted for the inverter is presented, where “Ci(s)” is

the controller transfer function, “Gi(s)” is the inverter model,

and “Ki” is the current transducer gain. “PWM(s)” stands for

the dynamic of the modulation, and “VDC” is the inverter static

gain.

Since remodeling controllers is not a trivial task, it is also

mentioned that another possibility to work around that issue

would be to simulate with a higher carrier frequency,

multisampling the output and making the delay irrelevant in a

steady-state condition [16]. Finally, when it comes to

applications where faster and more precise PWMs are needed

there is the possibility to use external PWM modules

connected to the I2C (Inter-Integrated-Circuit) bus of the

F28335 Kit. However one must keep in mind that there are no

SimCoder elements for that, requiring I2C codes to be

implemented with C blocks.

Currently, some ongoing work is focusing on effectively

controlling a single-phase inverter in a closed loop scheme by

using DSP codes generated from PSIM.

a)

b) c)

Fig. 15. Accounting for the delay of PWM generation block.

i* ei m d iinv

+
-

PWM(s) VDC Gi(s)Ci(s)

Ki

Fig. 16. Block diagram of current control with three-level PWM.

V. CONCLUSIONS

Auto-code generation for DSP programming using PSIM is

an interesting tool and can provide a fast prototyping

alternative for the project of power converters. Moreover, it

was shown that it could be well suited for educational

purposes, once it allows easy experimental handling.

Nonetheless, several limitations, such as the unit delay

inherited on PWM generation elements, and the implications

of Simplified C blocks with functions, were pointed out. Thus,

it is finally concluded that, by taking those issues into

consideration when building PSIM simulations, the

employment of the SimCoder module offers a reliable and

accessible way to program DSPs.

ACKNOWLEDGEMENTS

The authors are grateful to FAPESP (2016/08645-9) and

CAPES Brazilian agencies, and the Research Council of

Norway (f261735/H30) for supporting the NB_POCCREI

project and the related international collaboration.

REFERENCES

[1] Jacobs, J.; Detjen, D.; Karipidis, C.; Doncker, R. "Rapid Prototyping

Tools for Power Electronic Systems: Demonstration with Shunt Active
Power Filters", IEEE Trans. Power Electron. vol. 19, pp. 500-507,

March 2004.

[2] Rodrigues, M.; Silva, N.; Nunes, W. "Aplicação do software PSIM
para o uso em prototipagem rápida através de um processador digital

de sinais", COBENGE, 2014. (in Portuguese)

[3] Morkoc, C.; Onal, Y.; Kesler, M. "DSP based embedded code
generation for PMSM using sliding mode controller", 16th IEEE

PEMC, Sep. 2014.

[4] POWERSIM, "SimCoder User's Guide", Powersim Inc., v. 11.0, Sep.
2016. Available at: https://powersimtech.com/drive/uploads/2016/12/

SimCoder-v11-User-Manual.pdf.

[5] Texas Instruments, "TMS320C2000 Experimenter Kit Overview", TI -
Quick Start Guide, Feb. 2011. Available at:

http://www.ti.com/lit/ug/sprufr5f/sprufr5f.pdf.

[6] Texas Instruments, "C2000 Real-Time Microcontrollers", C2000
Microcontrollers Brochure, June 2016. Available at:

http://www.ti.com/lit/sg/sprb176ad/sprb176ad.pdf.

[7] Texas Instruments, "TMS320C2xx/C24x Code Composer User’s
Guide", TI - Manuals, Oct. 2000. Available at:

http://www.ti.com/lit/ug/spru490/spru490.pdf.

[8] POWERSIM, "Auto Code Generation for F2833X Target", PSIM
Tutorial, Oct. 2016. Available at:

https://powersimtech.com/drive/uploads/2016/12/Tutorial-Auto-

Code-Generation-for-F2833x-Target.pdf.
[9] POWERSIM, "Using SPI in F2833X/F2803X Target", PSIM Tutorial,

Oct. 2016. Available at:

https://powersimtech.com/drive/uploads/2016/12/Tutorial-Using-SPI-
in-F2833x-F2803x-Target.pdf.

[10] Sozanski, K. "Selected Active Power Filter Control Algorithms",

Digital Signal Processing in Power Electronics Control Circuits, pp.
145-204, Ed. Springer, 2013.

[11] Smith, S. "The Scientist and Engineer’s Guide to Digital Signal

Processing", 2nd Ed., Analog Devices, 1999.
[12] Oppenheim, A. "Discrete-Time Signal Processing", 3rd Ed., Prentice-

Hall, 2009.

[13] Simoes, M.; Farret, F. "Modeling Power Electronics and Interfacing
Energy Conversion Systems", 1st Ed., Wiley-IEEE Press, 2017.

[14] Marafao, F.; Deckmann, S.; Pomilio, J.; Machado, R. "Metodologia de

Projeto e Análise de Algoritmos de Sincronismo PLL", Eletrônica de
Potência – SOBRAEP, vol. 10, nº 1, June 2005. (in Portuguese)

[15] Rashid, M. H. "Power Electronics Handbook", 3rd Ed., 2011.

[16] Buso, S.; Mattavelli, P. "Digital Control in Power Electronics", 2nd Ed.,
Morgan&Claypool, 2015.

[17] Texas Instruments, "TMS320x2833x,2823x System Control and

Interrupts", Reference Guide, Sep. 2007. Available at:
http://www.ti.com/lit/ug/sprufb0d/sprufb0d.pdf.

