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Abstract—In polar region operations, drift sea ice
positioning and tracking is useful for both scien-
tific and safety reasons. Modeling ice movements has
proven difficult, not least due to the lack of informa-
tion of currents and winds of high enough resolution.
Thus, observations of drift ice is essential to an up-to-
date ice-tracking estimate.
As an inverse problem, it is possible to extract

current and wind estimates from the tracked objects
of a Multi-Target Tracking (MTT) filter. By inserting
the track estimates into a Gaussian field, we obtain
a two-dimensional current estimate over a region of
interest.
The algorithm is applied to a Terrestrial Radar In-

terferometer (TRI) dataset from Kongsfjorden, Sval-
bard, to show the practical application of the current
estimation.

I. Introduction
Work in the polar regions of our planet is unavoidably

linked with hazards such as drift ice. Increased presence
fueled by economic interests in the Arctic, has for several
decades called for research in the field of Ice Manage-
ment [14]. A comprehensive overview of Ice Management
in practical use is provided in [3]. The field deals with
the detection, tracking and forecast of ice, but also the
physical actions taken to avoid collisions [3].

For tracking sea ice movements, multiple sensors
have been studied — such as satellite-carried Synthetic
Aperture Radar (sar) [12], Unmanned Aerial Systems
(uas’s)[7, 5, 9] and, as studied in this paper, Terrestrial
Radar Interferometer (tri) [20]. The implementation is
applied to a tri dataset provided by Norut, exemplified
in Figure 1. The extraction of detections from the im-
agery is detailed in Section II.

The detections are tracked in time using a Labeled
Multi-Bernoulli lmb filter — presented in Section III.
From the tracking of the ice obects, it is possible to
extract position and velocity estimates. These can be
used to estimate a Gaussian velocity field which can be

Figure 1: Example data from the Norut tri dataset.

interpreted as the result of currents and/or winds. This
field can be used for user presentation, but potentially
also for motion modeling and prediction — albeit with a
risk of filter information looping. This system is outlined
in Figure 2.
The theory of Gaussian fields is briefly presented in

Section IV and then applied in Section V where the
tuning and results are presented.

II. Sea Ice Detection
In April 2016, the partners of the Norwegian Centre

for Integrated Remote Sensing and Forecasting for Arctic
Operations — CIRFA — conducted a field campaign
in Kongsfjorden on Svalbard. One of the datasets col-
lected is from a GAMMA Portable Radar Interferometer
(gpri). As an application, we study the extraction of ice
detections from this data and its tracking with the lmb



Figure 2: System outline. Scans are reported from multi-
target sensing sensors and tracked in an lmb filter. This
information is then extrapolated through a Gaussian field
current estimation model and evaluated and displayed to
the user.

filter. This dataset has been previously presented in [13],
but is briefly recapitulated here for completeness.

A. Pre-processing
Each scan is delivered as the intensity of the response

along range and azimuth transformed into Cartesian
coordinates. From this, detections are extracted from the
raw signal in a pre-processing step, through standard
image processing methods.

Two types of ice are considered; 1) large regions of
stationary sea ice with high signal-to-noise ratio that can
be segmented independently for each scan and 2) drift ice
with low signal-to-noise ratio that require pre-processing
over several scans for detection. A land mask is applied
to the image to ensure that detections are only obtained
in water regions.

1) Detection of Stationary Sea Ice: Large areas of
stationary ice are visible in the water, in particular
in proximity to land. However, due to speckle noise
and varying intensity over the image a simple threshold
results in poor performance. To improve the signal-to-
noise ratio, a sequence of standard image segmentation
methods [4] are applied [13] to average, filter and extract
areas considered stationary over an extended period of
time.

2) Detection of Drift Ice: Drift ice is generally small
and often difficult to distinguish in the speckle noise.
In the dataset, a background model is estimated in
water regions, modelling each pixel as a mixture of
Gaussian distributions [8, 17]. A simplified expectation-
maximization method [1] is then used to continuously es-
timate the means and covariances in the model over time.
For an incoming scan, all pixels that are significantly
different from their background models are segmented
as foreground. This implies many false detections, which
is mitigated by extracting connected components of a

minimum size of 150 m2. The reports are then obtained
as the centroid of each connected component.

III. The Labeled Multi-Bernoulli Filter

To track point-target ice-objects in the data, the lmb
filter is employed, although many MTT algorithms exist
that would provide a comparable level of accuracy and
performance. The lmb filter was proposed in [16] as
a simplification of the δ-glmb-filter [19, 18], and the
implementation used is outlined in [13].

A. Outline

The lmb filter is defined in the framework of Finite
Set Statistics (fisst) [16], of which the Random Finite
Set (rfs) is an integral part. An rfs is a set with a
probabilistic cardinality distribution, i.e. each potential
element is included in the set with a given probability.
Specifically, a Bernoulli rfs is a random set which is
empty with probability 1 − r, and with probability r is
a singleton. For an element x with probability p (·), the
Bernoulli rfs pdf is given by

π (X) =
{

1− r if X = ∅
r · p (x) if X = {x}

. (1)

A multi-Bernoulli rfs is the resulting set of the union of
M independent Bernoulli-distributed random finite sets
X(i): X =

⋃M
i=1X

(i). Consequently, the multi-Bernoulli
rfs is parametrized by the set

{(
r(i), p(i))}M

i=1, and its
pdf is given by [11]

π ({x1, . . . , xn}) =
M∏

j=1

(
1− r(j)

)
×

∑
1≤i1 6=···6=in≤M

n∏
j=1

r(ij)p(ij) (xj)
1− r(ij) .

(2)

The labeled multi-Bernoulli is obtained by the augmen-
tation of each Bernoulli rfs with a unique label, ` ∈ L.
The lmb rfs can thus be described by the set{(

r(`), p(`)
)}

`∈L
.

This set fully describes a multi-target probability density,
π (X), which can be written with the following the
shorthand notation π =

{(
r(`), p(`))}

`∈L, representing
the current best estimate of 1) possible target state
distributions, and 2) the probability of each member
corresponding to a true target.
The lmb filter follows the classical predict/correct

filter recursion after each of which an updated lmb rfs
is obtained. The specifics of each step is presented in e.g.
[13, 16].



B. Model
The drift ice is modelled as having a discrete nearly

constant velocity subject to zero-mean white-noise accel-
eration, as discretized from the continuous-time nearly-
constant-velocity model [10]. The states in the model are
position and velocity in two dimensions, and the sensor
is modelled to directly measure the position of the drift
ice with zero-mean Gaussian noise.

The sampling time of the motion model is 180 s,
matching the sample rate of the tri sensor. The motion
model covariance parameter is chosen, through manual
tuning, in both dimensions as 1.7× 10−5 m2/s3 and the
measurement noise standard deviation is chosen as 12.2 m
in each dimension.

C. Implementation
The implementation of the lmb that was used in this

paper is available under a Free and Open-Source Software
(FOSS) license at https://github.com/jonatanolofsson/
lmb. Notably, it uses a spatially indexed storage which
facilitates a scalable correction update. This spatial in-
dexing can also be used for a scalable calculation of the
Gaussian field.

IV. Gaussian Fields
The LMB filter estimates positions and velocities of

detections in the scene — properties which can be input
into a Gaussian field for the estimation of a continous
field of forces acting upon the ice objects in the region
— currents or wind.

Gaussian fields is the extension of Gaussian processes
into multi-dimensional space, and the standard equations
of Gaussian processes are straightforwardly applied by
simply extending the state vectors and covariances ac-
cordingly.

A Bayesian method by nature, Gaussian fields can
be used to estimate the value of a vector field function
at given points but also an estimated measure of the
uncertainty of this estimate — its covariance. In essence,
for a given point of interest, a Gaussian process/field uses
the function values of other points and their associated
covariances to create a weighted estimate of the function
value at the point of interest.

In its simplest form, each dimension of the vector
field is separable into independent Gaussian processes
although in general, covariance between the dimensions
must be taken into account if the dimensions are not fully
statistically independent.

Given points X where the vector field has been mea-
sured to be y (except for a mean, which may be removed
and added back at the end) — and points of interest in
X∗ where we want to evalate the estimated underlying
function — the formula, from which the concept of
Gaussian processes and fields are derived, is the joint
Gaussian: [

y
f∗

]
∼ N

(
0,
[
K K∗
KT
∗ K∗∗

])
, (3)

where f∗ is a vector of the (concatenated) vector-field
values at the points of interest, and K = cov (y, y), K∗ =
cov (y, f∗), K∗∗ = cov (f∗, f∗) [15].
This leads, for the points in X∗, to the predictive

equation [15] of

f∗|X, y,X∗ ∼ N
(
f̄∗, cov (f∗)

)
, where (4)

f̄∗ , KT
∗ K

−1y, (5)
cov (f∗) = K∗∗ −KT

∗ K
−1K∗. (6)

I.e., f̄∗ contains the mean of the estimated vectors at the
points in X∗, and cov (f∗) contains their joint covariance.
In the application of this paper, we see the velocity
estimates as the measurements y, taken at the estimated
position of each target track — X.
For Gaussian processes, the matrices K∗ and K∗∗ are

predominantly generated by standard covariance func-
tions — kernels —, functions of point pairs which to-
gether form valid covariance matrices [2], each element
being

Ki,j = k (xi, xj)
= cov (f (xi) , f (xj)) , (7)

where f is the estimated underlying function

f (x) ∼ GP (m (x) , k (x, x′)) (8)

for a specified mean function m. In the N -dimensional
case, Ki,j instead represents the N × N -dimensional
submatrix with its upper left corner at (N · i,N · j).
As an example kernel, the squared exponential (SE)

kernel for points x, x′ is defined in one dimension as

kSE (x, x′) = σ2 exp
(
− (x− x′)2

2`2

)
, (9)

parametrized by the hyperparameter l. This can be ex-
tended to the multi-dimensional case

kSE (x,x′) = P exp
(
−1

2(x− x′)T
L−1 (x− x′)

)
, (10)

with P being the covariance matrix at x and L being the
scaling and rotation of the bell-shaped attenuation when
moving away from x. Other kernels may be extended
analogously.
Note that the points are not necessarily in space —

kernels may defined in any dimension. For example, a
kernel may defined for the time dimension to represent a
time dependency with a forgetting factor.
While kernels, and combination of kernels [2], is the

standard way of forming the submatrices of (3), the
predictive equations are valid for all valid (co)variance
matrices. For example — and relevantly — the uncer-
tainty of the filtered velocity estimates of Section III may
be incorporated in the K and K∗ matrices. For the lmb
velocity covariance, this corresponds to the case of noisy
measurements in the Gaussian process [15]. Another noise
source comes from the uncertainty in position. However,

https://github.com/jonatanolofsson/lmb
https://github.com/jonatanolofsson/lmb


(a) Tracks after 2 h. (b) Tracks after 4 h. (c) Tracks after 7 h.

Figure 3: Drift ice tracks over time, showing the land mask in blue and stationary detections in green. Tracks and
targets retain an individual randomly assigned color over time.

a detailed handling of this is less straightforward and thus
currently only taken into account indirectly through the
general kernel.

V. Results

This section describes the evaluation of the applica-
tion of Gaussian fields to a tri dataset collected by
the Norwegian research institute Norut at Kongsfjorden,
Svalbard.

From the dataset, detections are extracted and tracked
with the lmb filter to generate tracks with estimated
velocities and positions. The estimated target velocities
are used to form a Gaussian field of velocities, observed
at the target’s positions.

In [13], an ice tracker was developed for the use on this
dataset. The results are exhibited in Figure 3.

A variation of kernel choices and kernel parametriza-
tion is evaluated against a score for comparing the pre-
dictive qualities of the model. Given a velocity prediction
and a verification vector — v̄ and v respectively, with as-
sociated covariances Pv̄ and Pv — the optimal prediction
is obtained when v̄ = v. A description of the distribution
difference is the innovation between the two, which in the
Gaussian case is formed by the Gaussian distribution

N (v̄ − v; 0, Pv̄ + Pv) = N (ṽ; 0,Σ) .

A similarity score may be devised from the negative
log likelihood of the innovation:

γ = 1
2
(
ln |Σ|+ ṽT Σ−1ṽ + 2 ln 2π

)
(11)

The total score is created for each frame — repeatedly
in Monte Carlo fashion — by putting aside 25 % of the
detections for a verification dataset and averaging the
score they receive when compared to the predictions from
the Gaussian field.

For the predictive modelling of the iceberg motion, the
following kernels were considered in particular (for r =
|x− x′|, hyperparameter l):

Exponential (EXP) e−
r/l

Squared Exponential (SE) e−(r/l)2

Corrected Inverse Distance (CID)
(
1 + r

l

)−1

Rational Quadratic (RQ)
(

1 + r2

l2

)−1

Additionally, the kernels were combined with a CID
kernel over the time dimension. In these cases, historical
data from the lmb tracks were used for additional data.
The above kernels were tested — with and without

time kernel — for a variation of physically reasonable
hyperparameter settings. The results are summarized in
Table I and exemplified in Figure 4 (kernels with a time
factor are suffixed by T.).

Kernel Score Score cov. Relative, %
EXP(400) 5.09175 0.0189955 101.105
EXP(750) 5.10378 0.0181352 101.344
EXP(1200) 5.12499 0.0369751 101.765
SE(200) 6.10111 23.3351 121.147
CID(100) 5.07517 0.0204076 100.775
CID(400) 5.07999 0.0274274 100.871
CID(900) 5.11524 0.0307042 101.571
RQ(200) 5.57251 0.578188 110.651
EXPT(400, 30) 5.05754 0.0236918 100.425
EXPT(750, 30) 5.07125 0.0203695 100.698
EXPT(1200, 30) 5.07709 0.0217448 100.813
CIDT(100, 30) 5.03612 0.0145595 100
CIDT(400, 30) 5.05708 0.0216197 100.416
CIDT(900, 30) 5.0955 0.0224501 101.179

Table I: Score chart for a selected sample of kernels and
hyperparameters. A lower score indicates a better match,
and a lower covariance indicate consistent performance.
Kernel distance hyperparameters are given in meters and
minutes respectively. With multiple similar scores, the
comparison is inconclusive for a single best setting.

The best matches to the verification set are obtained
through the use of an exponential or a CID kernel,
altough for this specific dataset, similar scores are ob-
tainable from different parameter settings. In our simu-
lations, the rapid decline in correlation with the squared
exponential kernel was so severe that it caused numerical
problems with an l hyperparameter outside the tested
range. Thus, only values up to 200 m were tested.



(a) EXP(750 m) (b) CIDT(1000 m, 90 min)

Figure 4: Using two example kernels, these images exemplify the resulting velocity vector field attained from the
Gaussian field. The blue area represents the masked land, the green area the stationary ice and the blue arrows the
ice objects used for training the Gaussian field. The verification set and their projected estimates are green and red
arrows respectively. The background — ranging from red (high) to green (low) — is determined by the trace of the
Gaussian field velocity covariance in each point, thus representing the inverse of the level of information available at
each point.

VI. Conclusions

This paper presents a follow-up for the [13] paper —
exploring the extension of mtt state estimation into
Gaussian field prediction modelling — and presents an
abbreviated introduction to the application of Gaussian
fields as a method of modeling ice motion over an ob-
served region, based on the input of tracked ice objects.

Based on the available observations, the Gaussian field
provides a continous representation of the predicted ob-
ject velocities of an area.

Due to the lack of precise information about for exam-
ple ice object size and weight, it is difficult to draw precise
predictive conclusions about other, or future, ice objects
as the forces will act differently depending on object size
and other physical properties. One remedy for this may
be to include information about e.g. Hu moments [6]
and use this information in the kernels as measures of
inter-object proximity. The steady-state assumption that
corresponds to assuming similar speeds of nearby ice-
objects appears, however, to work reasonably well in
practice.

As it is its main input, the performance of the Gaussian
field model is strongly dependent on the quality of the
tracker. Further tuning, testing and verification of both
the tracker and the Gaussian field model is still required
to attain a general result which confidently describes
the scenario. One potential improvement, for scalability
as well as improved results, would be to create a more
local model of the velocity mean. Currently the mean is
shared throughout the entire dataset. Relevantly, a major

limiter for using Gaussian fields with large datasets is the
computational burden of inverting large matrices and this
can partially be remedied through the use of gating —
a process in which only the points which most affect the
result are selected to create a considerably smaller matrix
to invert, at the same time yielding more local results for
each point. This gating can be naturally facilitated with
the spatially indexed storage in the lmb implementation
used in this paper.
The application of Gaussian models are often auto-

mated through the optimization of the kernel hyperpa-
rameters using e.g. Monte Carlo optimization. This is of
course relevant here, although must be combined with
the manual addition of the experience and understanding
of relevant hyperparameter intervals. It also requires
datasets of significant size, which is not yet available for
this particular application.
With parameter tuning, very similar results can be

obtained with different kernels. The similarities in scores
also indicates that in this dataset, the velocities are
generally not too far from the mean. Thus, rather than
conclude a specific best kernel choice for this application,
we chose to focus on the general process of combining
the multi-target tracking with Gaussian fields to attain
a velocity field model over the observed region.
Future work include two primary aspects: the feedback

of the Gaussian field to the lmb filter for ice motion
prediction, and its use for the planning of information
acquisition. In the first case, the velocity model obtained
in the Gaussian field can be utilized e.g. in the initializa-
tion of new targets in the tracker, providing an improved



model for initiating new targets from a single detection
where velocity data is otherwise unavailable.

In the second case, we can see the Gaussian field
covariance measure as an inverse metric of information.
This metric can be employed in an optimization routine
to plan the route of one or more moving sensor agents,
to maximize the information gain.
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