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Abstract

In this paper, a joint distribution of all relevant environmental parameters used
in design of offshore structures including directional components is presented,
along with a novel procedure for dependency modelling between wind and wind
sea. Probabilistic directional models are rarely used for response calculation
and reliability assessments of stationary offshore structures. However, very few
locations have the same environment from all compass directions in combination
with a rotationally symmetric structure. The scope of this work is to present
a general environmental joint distribution with directional descriptions for long
term design of stationary offshore structures such as offshore wind turbines.
Wind, wind sea and swell parameters will be investigated for a chosen location
in the central North Sea.
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1. Introduction

The present work presents a general multi-dimensional joint distribution
which is fitted to data from the site of a future offshore wind farm in the central
North Sea. The aim is to obtain a statistical representation of combinations of
all relevant environmental variables for design of offshore wind turbines where5

absolute and relative load directions are important for response analyses. The
proposed model is useful for full long term analyses to calibrate simplified de-
sign methods, and finding probable combinations of environmental parameters
for extreme sea states and simplified ULS design [1]. Environmental variables
include wind, wind sea, swell and tide, as well as their respective directions.10
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A conditional modelling approach [2] will be utilized, due to its robustness for
description of simultaneous information in data. Copula-based methods may be
an alternative, but still need further exploration [3, 4, 5].

Depending on the desired accuracy of the structural response and reliabil-
ity estimations, the joint environmental distributions can be extended to high15

dimensions corresponding to the available site-specific data. Accounting for en-
vironmental variable correlations has shown to reduce design conservatism [6] for
structures related to oil and gas extraction on the Norwegian continental shelf.
Joint modelling of offshore environmental processes has evolved over the years to
facilitate probabilistic analysis of structures. Early adoptions include a bottom-20

fixed structure accounting for wave height and current [7]. A comprehensive
omni-directional model including wind, wave, current and tidal elevation can be
found in e.g. [8], and it is often referred to by standards for joint modelling of
environmental processes [9]. A similar model is used in e.g. [10], adopted for the
northern North Sea and more recently in [11] for several locations. In [12], an25

extension is added to model the mean and standard deviation of the wind and
wave direction. Later, a model for description of combined sea (wind sea and
swell) and relative directions was presented in e.g. [13]. It is still a challenge to
model directional processes. For instance, consistency with regard to combining
omni-directional and multi-directional data must be considered in probabilistic30

design [14].
For offshore wind turbines, the structural dynamics with a power-producing

rotor will introduce directionally dependent response characteristics [15, 16, 17].
Hence, a statistical description of both absolute and relative directions of the
load processes is of importance. A continuous wave directional distribution35

can be found in e.g. [18] and combined with a structural resistance in [19] as
a function of the absolute direction. Further, a model for relative wind-wave
direction was proposed in [20], but lacks relation to the earth-fixed coordinate
system, which will be introduced in the present work.

In [21] and [22], the absolute wind direction was modelled using the von40

Mises distribution [23, 24], which has proven suitable for circular distributions.
Furthermore, a relation between wind speed and direction was presented in [25].
This dependency will be also explored in this paper, with a slightly more prag-
matic approach and in combination with other relevant offshore environmental
processes.45

The present study proposes a new combination of conditional environmental
distributions which can be found in the literature and verifies it by environ-
mental data from the North Sea. The paper is organized as follows: First,
the example offshore site is presented along with the data characteristics before
and after pre-processing. Secondly, the full environmental join distribution is50

constructed along with evaluation of the goodness of the conditional fittings.
Finally, an error test of the complete distribution is performed.
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2. Offshore site

Hindcast data for description of the wind and wave environment used in the
study is provided by the Norwegian Meteorological Institute [26] for the location55

shown in Fig. 1. The data contains information about the wind speed, wind
direction and significant wave height, peak period, and direction for both wind
sea and swell. The data are sampled every third hour and cover the historical
period of approximately 60 years.

Figure 1: Planned (green) and possible (yellow) offshore wind farms at Dogger Bank with
location for hindcast data (red)

The hindcast data are pre-processed in order to remove ties due to discrete60

frequencies in the hindcast model, and to make the data independent and iden-
tically distributed (iid). This is done by de-seasonalizing the raw data with a
moving average algorithm. De-seasoning is one of the suggested pre-processing
methods when using data from measurements [27]. Note that directional data is
not pre-processed. The effects of pre-processing can be seen in Fig. 2 and 3. It65

is clear that the de-seasonalizing algorithm reduces the tail-distribution of the
wind speed and significant wave height, yielding smaller extreme values. The
average conditional exceedance rate (ACER) approach as described in [28] is
plotted in Fig. 3 for two values of the conditioning parameter k. In the ACER
method, k consecutive peaks over a given exceedance level will be considered de-70

pendent and only the first peak will be counted. It is seen that de-seasonalizing
has a large effect on the high-percentile values, but the ACER method varies
from the wind speed to the wave height, indicating a higher inter-dependency
in the wave height hindcast data. This is reflected in Tab. 1 where the ACER
method has a much larger impact on the extreme values for wave height.75
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V [m/s] Hw
S [m]

k 1 2 1 2
Raw 32.74 32.61 9.07 8.68
De-seasoned 30.35 29.96 8.62 7.94

Table 1: 50-year values using the ACER method with and without de-seasonalizing
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Figure 2: De-seasonalizing of wind and wind sea
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Figure 3: Upcrossing rates by ACER method and de-seasonalizing

Scatters of the data before and after pre-processing are shown in Fig. 4 for
wind speed, significant wave height and peak period for wind sea. The pre-
processed data appears to be more densely distributed, and the ties created by
binning of the peak period are removed solely by de-seasonalizing.

3. Environmental joint distribution80

Before constructing the environmental joint distribution, some observations
and assumptions are made regarding the measurement data. First, the wind sea
and swell components of the wave environment are assumed to be uncorrelated
and treated separately. This has no effect on extreme wave heights or the
distribution tail, but the average wind sea significant wave height is smaller
than the expected total sea significant wave height. Thus, the separation is
expected to reduce conservatism related to fatigue, but retains the extreme
wave loads. Due to the sheltering effect of the British Islands, the wave climate
in the central North Sea is mostly dominated by wind sea [29], and the swell
is mainly propagating in a southerly direction [17]. Second, the astronomical
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(a)

(b)

Figure 4: Hindcast data before and after pre-processing using a de-seasoning algorithm

tide is assumed uncorrelated with both the wind sea and swell. It should be
noted that the design standards require the storm surge component of the water
level and wind generated current to be accounted for. However, these effects are
not considered in the present work, but would otherwise be included as wind
sea dependent parameters. As a result, the complete joint distribution can be
written as:

fXe = fXw · fXs · fHt (1)

where the wind sea and swell parameters are gathered in:

Xw = [V,Θv, H
w
S , T

w
P ,Θ

r
w]

Xs = [Hs
S , T

s
P ,Θs]

(2)

respectively, and described in Tab. 2 with distribution types used for marginal
and conditional formulations. Note that the wind speed and direction are ob-
tained from hindcast data at 100 meter above sea level (m.a.s.l.) for compati-
bility with future offshore wind farms, and to reduce the uncertainty that arises
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from manual extrapolation of the wind speed at 10 m.a.s.l. An average power-85

law exponent for wind speed extrapolation from 10 to 100 m.a.s.l. of 0.07 (18%
increase) and a standard deviation of 0.05 is observed in the hindcast data. This
uncertainty is removed when using the 100 m.a.s.l. values directly. The depen-
dencies between the environmental parameters are modelled using conditional
fitting parameters, which is the industry standard [9]. Other approaches have90

been investigated, such as copula-based methods [4], but the traditional method
with parameter fitting has proven the most robust and practical.

Table 2: Marginal distribution types and description of environmental parameters

Parameter Distribution Description Unit
V v 3-p Weibull Wind speed at 100 m.a.s.l. [m/s]
Θv θv von Mises mix Wind direction at 100 m.a.s.l. [deg]
Hw
S hw 3-p Weibull Significant wave height for wind sea [m]

TwP tw Lognormal Peak period for wind sea spectrum [m]
Θr
w θw Trunc. Normal Relative wind-wave direction [deg]

Hs
S hs 3-p Weibull Significant wave height for swell [m]

T sP ts Lognormal Peak period for swell spectrum [s]
Θs θs von Mises mix Swell direction [deg]
Ht H Normal mix Water level [m]

W
in

d
se

a
S

w
el

l

The parameter dependencies can be revealed by investigating bi-variate his-
tograms of the raw data and the correlation coefficients. For simplicity, each
parameter can only depend on one other parameter, but multi-dimensional de-95

pendencies are still captured in an indirect manner. In Tab. 3, an overview is
given for the dependency modelling. For instance, Hw

S is depending on V , but
not vice versa. The dependencies are chosen based on the physics of environ-
mental phenomena and by trials aiming to provide the description with minimal
amount of conditional parameters. For instance, the wind direction is depen-100

dent on wind speed and not the other way around as it turned out easier to
make a bounded variable conditioned on an unbounded one. More discussions
on dependency modelling can be found in e.g. [20].

Table 3: Dependency table with dependent variable in rows and independent in columns

V Θv Hw
S TwP Θw

r Hs
S T sP Θs Ht

V 1
Θv 1 1
Hw
S 1 1

TwP 1 1
Θw
r 1 1

Hs
S 1

T sP 1 1
Θs 1 1
Ht 1
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The distribution parameters, e.g. the mean value, standard deviation etc.,
in the conditional PDFs are fitted to the pre-processed hindcast data with a
least-squares algorithm and a general non-linear regression line given by:

p(x) = p1 + p2 · xp3 + p4 exp[p5(x+ p6)p7 ] (3)

for a given parameter p as a function of x with the fitting constants p1,...,7. This
is an extended fitting function to those presented in e.g. [9, 12]. Since there is105

no need to fit seven constants for each distribution parameter, the distribution
parameter regression lines are constructed individually to obtain a reasonable
function for extrapolation to be presented in the next subsections. Resulting
fitting parameters can be found in the appendix.

3.1. Wind and wind sea110

The model for wind sea parameters is assumed to only depend on the wind
speed. Also, the peak period is assumed independent of the wind speed, which is
often a good assumption [11, 20]. It has also been observed that the relative di-
rection between wind and wind sea can be described with a Normal distribution.
The wind sea joint distribution is then approximated as:

fXw
≈ fV · fΘv|V · fHwS |V · fTwP |HwS · fΘrw|HwS (4)

Figure 5: Wind speed data with Weibull fit

Figure 5 shows the quantile plot of the wind speed marginal distribution
using the 3-parameter Weibull distribution. The wind direction is dependent
on the wind speed and found to be well approximated by a combination of von
Mises distributions, using the von Mises mixture distribution:

fΘv|V (θv|v) =

nθv∑
i=1

wi(v) · f (i)
Θv

(θv) =

nθv∑
i=1

wi(v)
eκi cos(θv−µi)

2πI0(κi)
(5)

where
∑
i wi(u) ≈ 1 and I0 is the modified Bessel function of order zero. For

the marginal distribution in Fig. 6, nθv = 3 has proven sufficient. The figure
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also show the contribution from each component and both the location (µ) and
the concentration parameter (κ) are kept independent of wind speed in the115

conditional model. The wind speed dependent weights can be found in Fig. 7,
while the remaining values can be found in the appendix.

Figure 6: Marginal directional wind distribution with each von Mises component
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Figure 7: Fitting of weighting parameters for wind speed direction

The wind speed-conditioned directional distribution in Fig. 8 shows that
strong winds are more likely to originate from the south west, which is well
captured by the model.120

The wind sea significant wave height conditioned on the wind speed follows
a three parameter Weibull distribution as illustrated with some examples in
Fig. 9a obtained with the fitted parameters in Fig. 9b. Describing the param-
eters in a three-parameter Weibull distribution conditionally is not presented
elsewhere in the literature and may prove challenging. A good fit is observed for125

most Hw
S values, using a two-step fitting procedure; first, an estimation of the lo-

cation parameter (γ) is performed [30] for each wind speed bin and a continuous
fit is made based on Eq. 3. Second, a 2-parameter Weibull fit is performed in the
same bins, correcting the data with the analytic location parameter obtained
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Figure 8: Fitting goodness of wind direction conditioned on the wind speed

in the previous step. As a result, simple expressions are obtained as a function130

of the wind speed, with fitting constants given in the Appendix. Care should
be taken in modelling the location parameter in order to capture the smallest
values of the significant wave height, which are most probably occurring for low
wind speeds as seen in Fig. 9b.

The wave peak period is dependent on the significant wave height. The135

fitted parameters are found in Fig. 10b and the conditional quantile plots can
be found in Fig. 10a. For small wave heights, it appears that some large values
of the peak period does not satisfy a Lognormal assumption. These data are
probably representing swell periods, which are unsuccessfully separated from
the wind sea during generation of hindcast data. Such data are also visible in140

Fig. 4, where some outliers in terms of small steepness are observed. Further, the
wind-wave relative direction is modelled with a Normal distribution truncated
on ±90 degrees relative to the wind direction. The quantile plots in Fig. 11a
shows a good fit with the parameters in Fig. 11b. Interestingly, the standard
deviation is independent of the wave height, while the mean relative direction145

is decreasing linearly, due to a higher probability of time lag between the wind
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Figure 9: Wind sea significant wave height

and wave directional changes for high sea states. In other words, the relative
probability of misaligned wind and wind sea is increasing with increasing wave
height.

3.2. Swell150

The joint distribution for swell is assumed independent of the wind sea vari-
ables and approximated as:

fXs
≈ fHs

S
· fT s

P |Hs
S
· fΘs|HsS (6)

where the swell peak period is conditioned on the swell significant wave height
and the direction of propagation is dependent on significant wave height. The
3-parameter Weibull distribution provides a good fit for the swell significant
wave height as seen in Fig. 12a when Hs

S > e−1 ≈ 0.37 meter. Furthermore,
the swell directional distribution in Fig. 12b is approximated by a bimodal von
Mises mixture distribution, representing the swell from the northern and south-
ern North Sea. In [29], typical swell directions can be found, indicating that
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Figure 10: Wind sea peak period

swell from north originates from heavy weather in the north Atlantic sea. How-
ever, the Dogger Bank area is still dominated by wind sea due to a high degree
of energy dissipation in the swell before reaching the area of interest. Swell
from the south and other directions is less likely, but present in the hindcast
data. Of course, the swell separation technique used by the wave spectral model
by which the data were simulated might affect the predicted direction as well
as the period and wave height combinations, introducing uncertainties in the
data and the fitted model. It can therefore be argued that modelling the swell
directional distributions may require some additional considerations, especially
for the direction. The directional dependency on the swell wave height is mod-
elled in a similar manner as the conditional wind direction, with two dominating
directions:

fΘs|HsS (θs|hs) =

2∑
i=1

wi(hs) · f (i)
Θs

(θs) =

2∑
i=1

wi(hs)
eκi cos(θs−µi)

2πI0(κi)
(7)
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Figure 11: Wind sea relative direction

The first direction is from south, with a wide spread as seen in Fig. 12b, re-
sulting in a close to uniform distribution. The second is from north, which is
more narrow banded. With a least-squares fitting method, the best weighting
parameters are found given the µ and κ parameters in the von Mises distribu-
tion obtained from the marginal fit. The result is shown in Fig. 14 with power155

function fits, and fitting parameters can be found in the appendix. As expected,

the northern direction (Θ
(2)
s ) dominates for larger Hs

S .
The swell peak period dependence on the swell significant wave height is well

captured by a conditional Lognormal distribution as seen in Fig. 13a and 13b
for quantile plots and parameter fitting, respectively.160

3.3. Tide

As tidal current is not expected to lead to an increased loading at the bottom-
fixed wind turbines at the present site, at least in a linear manner, it is neglected
in this study. However, the water level variation induced by tides may affect
the wave loads significantly due to the shallow water depths and is therefore165

included.
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(a) Swell significant wave height

(b) Marginal swell directional distribution

Figure 12: Swell wave height and directional distribution

The tide is modelled as an independent process. By only accounting for tidal
variations due to the astronomical tide, this is expected to be a good approxima-
tion. However, this may be non-conservative for three-hour analysis of extreme
sea-states, as the storm duration is typically longer than three hours when in-
cluding the temporal evolution. To account for the possibility of having a high
sea state in combination with a high astronomical tide, the industry standards
typically require extreme conditions to be modelled in combination with an high
water level [27]. Other important environmental phenomena leading to currents
and water level variations such as storm surge is not accounted for in the present
work, but should rather be included in the description of the wind sea, wind
speed dependent. The water level data is retrieved from www.worldtide.info

for the actual location, transformed to values representative for three hour dura-
tions for compatibility with the hindcast data, and fitted to a Gaussian mixture
model as illustrated in Fig. 15. Here, two components are needed for a good

14
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Figure 13: Swell peak period with fitted function for the swell wave height dependent param-
eters

fit, and the tidal water level distribution is modelled as:

fHt ∼
2∑
i=1

wi · N (µi, σ
2
i ) (8)

with the fitting parameters given in the appendix.
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Figure 14: Weighting parameters for 2-folded von Mises mixture distribution of swell direction
with fitting functions

Figure 15: Tidal elevation

4. Simulation results

With an environmental model that contains a large number of variables
where many of them are uncorrelated, numerical integration over the complete170

domain in combination with response calculation of offshore structures may be-
come computationally too demanding and impractical to perform. Also, direct
integration would not yield any error estimation. The efficiency of methods
based on Monte Carlo simulation (MCS) does, however, not depend on the
sampling domain. Latin Hypercube sampling (LHS) is another way of sampling175

from a high-dimensional domain and has proven efficient in terms of probability
density estimation and in applications related to structural reliability analysis
[31]. Hence, MCS or LHS with variance reduction techniques and various means
of importance sampling related to the system dynamics are promising tools for
use in probabilistic design where the stochastic variables are described by a joint180

probability model. See e.g. [32] and [33] for examples of application.
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The obtained joint probability density function is tested against the pre-
processed hindcast data by a Monte Carlo simulation. All 2D combinations in
the data are compared with a root-mean-square-error (RMSE) estimate given
as:

RMSE =

√∑
j

∑
i

(Xij − Yij)2 (9)

for fractions of empirical data X and simulated data Y in bin (i,j), an approach
similar to [3]. Each data set is divided into the same 50 equally spaced intervals,
so that i, j = 1, . . . , 50. Results from 150 000 MCS are shown in Tab. 4. Except
for the marginal swell directional distribution, the RMSE values are in general185

low, indicating good representation of both marginals on the diagonal and joint
distributions elsewhere.

The resulting marginals are presented in the form of histograms to illustrate
the similarities between the pre-processed hindcast data and simulated data.
The wind speed and wind direction show a very good fit in Fig. 16. In Fig. 17,190

the wind sea parameters are compared, showing only a slight deviation for
small values of the significant wave height and peak period. Swell sea and tidal
elevation are presented in Fig. 18, and again the agreement is good, although
the directional hindcast data is not completely described by a 2-fold von Mises
distribution due to some irregularities.195

Table 4: RMSE from simulations

V Θv Hw
S TwP Θr

w Hs
S T sP Θs Ht

V 0.012 0.006 0.018 0.021 0.013 0.012 0.022 0.044 -
Θv - 0.013 0.007 0.009 0.029 0.014 0.009 0.047 -
Hw
S - - 0.027 0.036 0.015 0.014 0.042 0.054 -

TwP - - - 0.029 0.013 0.013 0.045 0.046 -
Θr
w - - - - 0.011 0.015 0.016 0.064 -

Hs
S - - - - - 0.036 0.019 0.054 -

T sP - - - - - - 0.025 0.051 -
Θs - - - - - - - 0.191 -
Ht - - - - - - - - 0.029
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(a) (b)

Figure 16: Pre-prcessed wind data compared to results from MCS

(a) (b)

(c)

Figure 17: Pre-prcessed wind sea data compared to results from MCS
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(a) (b)

(c) (d)

Figure 18: Pre-prcessed swell and tidal data compared to results from MCS

4.1. Environmental contours

To further compare the fitted model with the hindcast data, several environ-
mental contours calculated using IFORM [1] have been established. The results
are shown in Fig. 19a for 2D contours for wind speed and wind sea significant
wave height and for peak period in Fig. 19b. From Fig. 19a, it can be observed200

that the model will allow slightly higher extreme wave heights for approximately
8 < V < 18 than the hindcast data suggests. This is partly a result of the sta-
tistical uncertainty when fitting a distribution to hindcast data as higher classes
of wave heights given wind speed include less observations. To investigate the
assumption of independent wind sea and swell, the corresponding wave heights205

and contour lines are plotted in Fig. 19c. Overall, the hindcast data seems to lie
inside the contour lines, without excessive out-crossings of the 50-year contour
line. To illustrate some 3D effects, the significant wave height and peak period
for wind sea is plotted in Fig. 19d for 22 < V < 24. This domain contains very
few data points and are subject to statistical uncertainty due to limited numbers210

of observations. Therefore, larger variations are observed in the peak period for
a given wave height when extrapolating to 10 and 50 year return periods.
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Figure 19: Contour lines for environmental conmbinations with 10 and 50 year return periods
including pre-processed hindcast data

5. Conclusion

A method for obtaining an analytic probabilistic description of the envi-
ronmental parameters including directional effects is proposed and verified by215

hindcast data from a specific location in the North Sea. The model provides a
good representation of the wind, wind sea and swell environment at the consid-
ered location. The model is meant to be used for calculations of environmental
loads of marine structures, e.g. offshore wind turbines, in probabilistic design.
A paper demonstrating its application will follow. A conservative description220

of the peak period for a given significant wave height is also demonstrated by
use of the contour plots, which is a good tool for design of dynamically sen-
sitive offshore structures subjected to higher order loading, like bottom-fixed
monopile-mounted wind turbines [34].

A von Mises mixture distribution conditioned on the wind speed is success-225

fully adopted for modelling the wind direction, and has proven very flexible for
multi-directional processes. As a first approach, only conditioning the weights
of the main wind directions in the folded von Mises distribution has proven
very effective. The continuous directional distribution of wind speed which is

20



proposed can be used in probabilistic analysis of rotationally symmetric struc-230

tures or as a response parameter for non-symmetric structures. To the authors’
knowledge, a 3-parameter Weibull distribution of significant wave height condi-
tioned on the wind speed has been established for the first time, and an efficient
fitting method is presented in order to obtain a satisfactory fit. Also, a separate
joint distribution for swell is useful especially for fatigue design and will allow to235

capture important response for structures sensitive to environmental directions,
such as offshore wind turbines. In a similar manner, a description of the current
velocity and direction may be included in the proposed joint model if such data
exists.
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Appendix

Table 5: Fitting constants

Var. Par. Arg. Marg. p1 p2 p3 p4 p5 p6 p7

V α - 9.49e+00 9.49e+00 0 1 0 1 0 1
β - 2.19e+00 2.19e+00 0 1 0 1 0 1
γ - 2.28e+00 2.28e+00 0 1 0 1 0 1

Θv w1 v 2.77e-01 0 0 1 4.28e-01 -1.06e-03 1 2.52e+00
w2 v 4.33e-01 0 0 1 1 -1.62e+03 1.89e+01 -2.28e+00
w3 v 2.90e-01 0 0 1 2.26e+00 -1.63e+00 5.88e+00 1.03e-01
µ1 - 1.11e+02 1.11e+02 0 1 0 1 0 1
µ2 - 2.27e+02 2.27e+02 0 1 0 1 0 1
µ3 - 3.24e+02 3.24e+02 0 1 0 1 0 1
κ1 - 1.02e+00 1.02e+00 0 1 0 1 0 1
κ2 - 2.02e+00 2.02e+00 0 1 0 1 0 1
κ3 - 1.73e+00 1.73e+00 0 1 0 1 0 1

Hw
S α v 1.56e+00 7.04e-01 0 0 1.32e+00 -1.23e+02 0 -2.00e+00

β v 1.43e+00 1.51e+00 4.41e+01 -1.39e+00 0 1 0 1
γ v -9.39e-02 -5.94e-01 6.96e-03 2.00e+00 0 1 0 1

TwP µ h 1.61e+00 0 1.58e+00 2.45e-01 0 1 0 1
σ h 3.54e-01 0 1.35e-01 -2.14e-01 0 1 0 1

Θr
w µ h 2.38e-01 4.45e+00 -2.57e+00 1 0 1 0 1

σ h 1.71e+01 1.63e+01 0 1 0 1 0 1
Hs
S α - 6.38e-01 6.38e-01 0 1 0 1 0 1

β - 1.32e+00 1.32e+00 0 1 0 1 0 1
γ - 3.32e-01 3.32e-01 0 1 0 1 0 1

T sP µ hs 2.03e+00 0 2.11e+00 1.45e-01 0 1 0 1
σ hs 2.81e-01 0 0 1 3.22e-01 -2.97e-01 0 1

Θs w1 hs 6.93e-01 1.53e+00 -9.53e-01 2.60e-01 0 1 0 1
w2 hs 3.07e-01 -5.26e-01 9.53e-01 2.60e-01 0 1 0 1
µ1 - 1.80e+02 1.80e+02 0 1 0 1 0 1
µ2 - 3.00e+00 3.00e+00 0 1 0 1 0 1
κ1 - 1.71e-01 1.71e-01 0 1 0 1 0 1
κ2 - 7.42e+01 7.42e+01 0 1 0 1 0 1

Ht w1 - 5.01e-01 5.01e-01 0 1 0 1 0 1
w2 - 4.99e-01 4.99e-01 0 1 0 1 0 1
µ1 - 4.27e-01 4.27e-01 0 1 0 1 0 1
µ2 - -4.30e-01 -4.30e-01 0 1 0 1 0 1
σ1 - 7.35e-02 7.35e-02 0 1 0 1 0 1
σ2 - 7.79e-02 7.79e-02 0 1 0 1 0 1
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